WO2024131537A1 - 一种亲水涂层、制备方法及器件 - Google Patents

一种亲水涂层、制备方法及器件 Download PDF

Info

Publication number
WO2024131537A1
WO2024131537A1 PCT/CN2023/136956 CN2023136956W WO2024131537A1 WO 2024131537 A1 WO2024131537 A1 WO 2024131537A1 CN 2023136956 W CN2023136956 W CN 2023136956W WO 2024131537 A1 WO2024131537 A1 WO 2024131537A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic coating
coating according
hydrophilic
coating
preparing
Prior art date
Application number
PCT/CN2023/136956
Other languages
English (en)
French (fr)
Inventor
宗坚
陈海力
Original Assignee
江苏菲沃泰纳米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技股份有限公司 filed Critical 江苏菲沃泰纳米科技股份有限公司
Publication of WO2024131537A1 publication Critical patent/WO2024131537A1/zh

Links

Definitions

  • a hydrophilic coating has a water contact angle of less than 10° and is formed by depositing an organic silicon monomer on a substrate surface through hot wire chemical vapor deposition in an oxygen atmosphere.
  • R 1 , R 5 and R 9 are independently selected from C 1 -C 10 alkyl groups or C 1 -C 10 alkoxy groups
  • R 2 , R 3 , R 4 , R 6 and R 10 are independently selected from hydrogen atoms, C 1 -C 10 alkyl groups or C 1 -C 10 alkoxy groups
  • R 7 is a hydrogen atom, a hydroxyl group, a C 1 -C 10 alkyl group or a C 1 -C 10 alkoxy group
  • R 8 is a hydrogen atom or a C 1 -C 10 alkyl group
  • n is an integer from 1 to 10
  • m is an integer from 1 to 10.
  • the organic silicon monomer is ethyl orthosilicate, tetramethoxysilane, propyl orthosilicate or butyl orthosilicate.
  • the thickness of the hydrophilic coating is 5 to 3000 nm.
  • a method for preparing the hydrophilic coating as described above comprises the following steps:
  • the vacuum deposition chamber is evacuated, oxygen, inert gas and organosilicon monomer gas are introduced, and the heating wire heating and the cooling device are turned on to carry out the hot wire chemical vapor deposition.
  • the heating wire is a metal wire containing at least one of nickel, chromium or tungsten.
  • the temperature of the sample stage is controlled below 100°C, and the temperature of the heating wire is 200-900°C.
  • the method further includes the following steps: before the hot wire chemical vapor deposition, performing plasma pre-treatment on the surface of the substrate.
  • the plasma is a dual-electrode pulsed plasma.
  • a device at least part of the surface of which has the hydrophilic coating as described above.
  • the hydrophilic coating of a specific embodiment of the present invention is formed by hot wire chemical vapor deposition of silicone monomers on the surface of a substrate under an atmosphere containing oxygen.
  • the hydrophilic coating has excellent hydrophilic properties, a water contact angle of less than 10°, and excellent hydrophilic retention in a high humidity environment.
  • FIG1 is a diagram showing the anti-fog test results of Example 1.
  • FIG2 is a diagram showing the anti-fog test results of Example 2.
  • the hydrophilic coating of the specific embodiment of the present invention is deposited by hot wire chemical vapor deposition.
  • the organic silicon monomer can form an excellent hydrophilic coating on the surface of the substrate under the catalytic reaction of the heated metal hot wire under oxygen atmosphere conditions, and the hydrophilic coating has excellent hydrophilic retention in a high humidity environment. Persistence.
  • the water contact angle of the hydrophilic coating in a specific embodiment of the present invention is obtained by testing according to the GB/T30447-2013 standard. In some specific embodiments, the water contact angle of the hydrophilic coating is below 5°.
  • the hydrophilic coating of a specific embodiment of the present invention has excellent hydrophilic retention in a high humidity environment.
  • the water contact angle of the hydrophilic coating after being immersed in water at room temperature for 10 minutes has a change rate of no more than 30%.
  • the water contact angle of the hydrophilic coating after being immersed in water at room temperature for 10 minutes has a change rate of no more than 20%.
  • the water contact angle of the hydrophilic coating after being immersed in water at room temperature for 10 minutes has a change rate of no more than 10%.
  • the water contact angle of the hydrophilic coating after being immersed in water at room temperature for 10 minutes has a change rate of no more than 5%.
  • the organosilicon monomer has a structure shown in the following formula (1):
  • R1 is selected from C1 - C10 alkyl or C1 - C10 alkoxy
  • R2, R3 and R4 are independently selected from hydrogen atom, C1 - C10 alkyl or C1- C10 alkoxy.
  • R1 is selected from C1 - C4 alkyl or C1 - C4 alkoxy
  • R2 , R3 and R4 are independently selected from hydrogen atom, C1 - C4 alkyl or C1 - C4 alkoxy.
  • the C1 - C4 alkyl is specifically exemplified by methyl, ethyl, propyl, butyl or isobutyl, or C1 -C4 alkoxy.
  • the C1 - C4 alkoxy is specifically exemplified by methoxy, ethoxy, propoxy, butoxy or isobutoxy.
  • R 1 , R 2 , R 3 and R 4 are independently selected from C 1 -C 4 alkoxy groups.
  • the organic silicon monomer is ethyl orthosilicate, tetramethoxysilane, propyl orthosilicate or butyl orthosilicate.
  • the organosilicon monomer has a structure shown in the following formula (2):
  • R5 is selected from C1 - C10 alkyl or C1 - C10 alkoxy
  • R6 is selected from hydrogen atom, C1 - C10 alkyl or C1 - C10 alkoxy
  • R7 is hydrogen atom, hydroxyl, C1- C10 alkyl or C1 -C10 alkoxy
  • R8 is hydrogen atom or C1 - C10 alkyl
  • n is an integer from 1 to 10 , specifically 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • R5 is selected from C1 - C4 alkyl or C1 - C4 alkoxy
  • R6 is selected from hydrogen atom, C1 - C4 alkyl or C1 - C4 alkoxy
  • R7 is hydrogen atom, hydroxyl, C1 - C4 alkyl or C1 - C4 alkoxy
  • R8 is hydrogen atom or C1 - C4 alkyl
  • the C1 - C4 alkyl is specifically exemplified by methyl, ethyl, propyl, butyl or isobutyl
  • the C1 - C4 alkoxy is specifically exemplified by methoxy, ethoxy, propoxy, butoxy or isobutoxy.
  • the organosilicon monomer has a structure shown in the following formula (3):
  • R 9 is selected from C 1 -C 10 alkyl or C 1 -C 10 alkoxy
  • R 10 is selected from hydrogen atom, C 1 -C 10 alkyl or C 1 -C 10 alkoxy
  • m is an integer from 1 to 10, specifically 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • R 9 is selected from C 1 -C 4 alkyl or C 1 -C 4 alkoxy
  • R 10 is selected from hydrogen atom, C 1 -C 4 alkyl or C 1 -C 4 alkoxy.
  • the C 1 -C 4 alkyl group specifically includes methyl, ethyl, propyl, butyl or isobutyl, or C 1 -C 4 alkoxy, the C 1 -C 4 alkoxy group specifically includes methoxy, ethoxy, propoxy, butoxy or isobutyl.
  • the boiling point of the organosilicon monomer is below 200°C.
  • the hydrophilic coating of the specific embodiment of the present invention has a thickness of nanometer level. In some specific embodiments, the thickness of the coating is 1 to 3000 nm. In some specific embodiments, the thickness of the coating is 5 to 500 nm. In some specific embodiments, the thickness of the coating is 5 to 150 nm.
  • the substrate is metal, ceramic, plastic, glass, electronic equipment or optical instrument, etc.
  • the substrate is a transparent material, for example, it can be a lens of glasses, goggles, laser protective glasses, telescopes and lenses of various camera equipment, observation windows of various machines, sports diving goggles, bathroom glass, chemical or biological protective masks, vehicle windshields and rearview mirrors, explosive disposal protection equipment, helmets, solar panels, observation windows of measuring instruments, glass covers, glass walls of greenhouses, etc.
  • a specific embodiment of the present invention also provides a method for preparing the hydrophilic coating as described above, comprising the following steps:
  • the vacuum deposition chamber is evacuated, oxygen, inert gas and organosilicon monomer gas are introduced, and the heating wire heating and the cooling device are turned on to carry out the hot wire chemical vapor deposition.
  • the heating wire is a metal wire containing at least one of nickel, chromium or tungsten, for example, it can be nickel wire, chromium wire, tungsten wire, nickel-chromium wire or nickel-tungsten wire, etc.
  • the temperature of the sample stage is controlled below 100°C, in some specific embodiments, the temperature of the sample stage is controlled at 20-50°C, for example, it can be 20°C, 30°C, 40°C or 50°C, etc.
  • the cooling device of the sample stage adopts a water cooling device.
  • the temperature of the heating wire is 200°C to 900°C, and specifically may be 200°C, 250°C, 300°C, 400°C, 500°C, 600°C, 700°C, 800°C or 900°C, etc.
  • the vacuum degree of the vacuum deposition chamber can be set according to actual conditions.
  • the vacuum degree is 0.1 to 1000 mTorr, in some specific embodiments, the vacuum degree is 1 to 100 mTorr, and in some specific embodiments, the vacuum degree is 5 to 50 mTorr.
  • the inert gas includes nitrogen, helium, neon or argon, etc.
  • the flow rate of the inert gas is 0 to 1000 sccm, in some specific embodiments, the flow rate of the inert gas is 5 to 500 sccm, and in some specific embodiments, the flow rate of the inert gas is 50 to 200 sccm.
  • the flow rate of the inert gas is 1 to 1000 sccm, in some specific embodiments, the flow rate of the inert gas is 5 to 500 sccm, and in some specific embodiments, the flow rate of the inert gas is 50 to 200 sccm.
  • the preparation method of the hydrophilic coating of the specific embodiment of the present invention also includes the following steps: before the hot wire chemical vapor deposition, the surface of the substrate is subjected to plasma pretreatment.
  • the plasma is a dual-electrode pulsed plasma.
  • the discharge power of the pulsed plasma is 10 to 1000 W
  • the discharge time is 10 to 1000 s
  • the pulse frequency is 1 to 1000 Hz
  • the pulse duty cycle is 1:1 to 1:500.
  • the discharge power of the pulsed plasma is 100 to 500 W
  • the discharge time is 100 to 500 s
  • the pulse frequency is 10 to 500 Hz
  • the pulse duty cycle is 1:10 to 1:100.
  • the plasma pretreatment is carried out in an atmosphere having oxygen
  • the plasma pretreatment is carried out in an atmosphere having an inert gas
  • the plasma pretreatment is carried out in an atmosphere having oxygen and an inert gas.
  • the method for preparing the hydrophilic coating also includes the following steps: after the hot wire chemical vapor deposition, the surface of the coating deposited by the hot wire chemical vapor deposition is subjected to plasma post-treatment in an oxygen atmosphere.
  • the plasma is a dual-electrode pulsed plasma.
  • the discharge power of the pulsed plasma is 10 to 1000 W
  • the discharge time is 1 to 1000 s
  • the pulse frequency is 1 to 1000 Hz
  • the pulse duty cycle is 1:1 to 1:500.
  • the discharge power of the pulsed plasma is 100 to 500 W
  • the discharge time is 10 to 500 s
  • the pulse frequency is 10 to 500 Hz
  • the pulse duty cycle is 1:10 to 1:100.
  • a pair or more copper electrodes are provided in the vacuum deposition chamber, and before and after the hot wire chemical vapor deposition, the copper electrodes are turned on, and the plasma pre-treatment and plasma post-treatment processes are directly carried out in the vacuum deposition chamber.
  • the organosilicon monomer enters the vaporization chamber for vaporization and is then introduced into the vacuum deposition chamber, in some specific embodiments, the organosilicon monomer enters the vaporization chamber at a certain flow rate, in some specific embodiments, the organosilicon monomer enters the vaporization chamber in multiple batches, in some specific embodiments, the flow rate of the organosilicon monomer entering the vaporization chamber is 10-2400 ⁇ L/min, and in some specific embodiments, the flow rate of the organosilicon monomer entering the vaporization chamber is 100-500 ⁇ L/min.
  • a specific embodiment of the present invention further provides a device, wherein at least a portion of the surface of the device has the above-mentioned hydrophilic coating.
  • the above-mentioned hydrophilic coating is deposited on a portion of the surface or the entire surface of the device.
  • Coating thickness test Use the American Filmetrics F20-UV-film thickness measuring instrument to test Measurement.
  • Anti-fog test Place the glass plate sample on a 95°C constant temperature water bath with the coating surface facing the water vapor. The distance between the water surface and the coating surface is 5cm. Observe whether fogging occurs after 10 minutes.
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed on a sample stage of a vacuum deposition chamber equipped with a pair of copper rod electrodes.
  • the vacuum deposition chamber was evacuated to a vacuum degree of 8 mTorr, and the temperature of the sample stage was controlled to about 30°C by water cooling.
  • helium and oxygen were introduced at a flow rate of 90 sccm each, and the chamber pressure was 100 mTorr.
  • the copper rod electrode pulse plasma discharge was turned on to pretreat the surface of the transparent glass plate.
  • the discharge time was 240s and the discharge power was 400W.
  • TEOS tetraethyl orthosilicate
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed on a sample stage of a vacuum deposition chamber equipped with a pair of copper rod electrodes.
  • the vacuum deposition chamber was evacuated to a vacuum degree of 8 mTorr, and the temperature of the sample stage was controlled to about 30°C by water cooling.
  • helium and oxygen were introduced at a flow rate of 90 sccm each, and the chamber pressure was 100 mTorr.
  • the nickel-chromium hot wire power supply was turned on and the hot wire temperature was controlled to be 300°C.
  • Tetraethyl orthosilicate (TEOS) was vaporized at a temperature of 110°C and introduced into the vacuum deposition chamber at a flow rate of 300 ⁇ l/min. At the same time, Keep the water-cooled sample stage temperature, chamber pressure, and helium and oxygen flow rates constant;
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed on a sample stage of a vacuum deposition chamber equipped with a pair of copper rod electrodes.
  • the vacuum deposition chamber was evacuated to a vacuum degree of 8 mTorr, and the temperature of the sample stage was controlled to about 30°C by water cooling.
  • helium and oxygen were introduced at a flow rate of 90 sccm each, and the chamber pressure was 100 mTorr.
  • the copper rod electrode pulse plasma discharge was turned on to pretreat the surface of the transparent glass plate.
  • the discharge time was 240s and the discharge power was 400W.
  • the copper rod electrode plasma discharge was turned off, and the nickel-chromium hot wire power supply was turned on, and the hot wire temperature was controlled to be 300°C; tetraethyl orthosilicate (TEOS) was vaporized at a temperature of 110°C and introduced into the vacuum deposition chamber at a flow rate of 300 ⁇ l/min; at the same time, the temperature of the water-cooled sample stage, the chamber pressure, and the flow rates of helium and oxygen were kept unchanged;
  • TEOS tetraethyl orthosilicate
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed in the PECVD vacuum reaction chamber, and the reaction chamber was continuously evacuated to a vacuum degree of 80 mTorr.
  • the temperature was 45°C, and helium was introduced at a flow rate of 40 sccm;
  • the chamber pressure was maintained at 80 mTorr, the helium flow rate was maintained at 40 sccm, and the RF plasma discharge was turned on to pre-treat the surface of the transparent glass plate.
  • the RF energy output mode was continuous discharge, the discharge time was 300 s, and the discharge power was 300 W.
  • the RF energy output mode was pulsed, the discharge time was 5400 s, the discharge power was 80 W, the pulse frequency was 50 Hz, and the pulse duty cycle was 45%;
  • the reaction chamber is restored to normal pressure, the chamber is opened to take out the silicon wafer and glass plate samples, the coating thickness of the silicon wafer is tested, and the water contact angle test results of the coating on the glass plate sample are listed in Table 1 below.
  • Table 1 At room temperature, the glass plate sample is immersed in water for different time periods, and then naturally dried and the water contact angle test results are listed in Table 2 below.
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed in a PECVD vacuum reaction chamber.
  • the reaction chamber was continuously evacuated to a vacuum degree of 80 mTorr.
  • the temperature inside the chamber was 45°C.
  • Helium was introduced at a flow rate of 40 sccm.
  • the chamber pressure was maintained at 80 mTorr, the helium flow rate was maintained at 40 sccm, and the RF plasma discharge was turned on to pre-treat the surface of the transparent glass plate.
  • the RF energy output mode was continuous discharge, the discharge time was 300 s, and the discharge power was 300 W.
  • 1,4-butenediol and methacrylamide were mixed in a mass ratio of 5:1, stirred at room temperature for 10 minutes to mix evenly, then introduced into the vaporization chamber for vaporization and then introduced into the PECVD vacuum reaction chamber, the monomer flow rate into the vaporization chamber was 120 ⁇ L/min, the monomer vaporization temperature was 110°C, the chamber pressure was maintained at 80 mTorr, the helium flow rate was maintained at 40 sccm, and the RF plasma discharge was turned on.
  • the RF energy output mode was pulsed, the discharge time was 1800 s, the discharge power was 80 w, the pulse frequency was 50 Hz, and the pulse duty cycle was 45%;
  • the reaction chamber is restored to normal pressure, the chamber is opened to take out the silicon wafer and glass plate samples, the coating thickness of the silicon wafer is tested, and the water contact angle test results of the coating on the glass plate sample are listed in Table 1 below.
  • Table 1 At room temperature, the glass plate sample is immersed in water for different time periods, and then naturally dried and the water contact angle test results are listed in Table 2 below.
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed in a PECVD vacuum reaction chamber.
  • the reaction chamber was continuously evacuated to a vacuum degree of 80 mTorr.
  • the temperature inside the chamber was 45°C.
  • Helium was introduced at a flow rate of 40 sccm.
  • TEOS tetraethyl orthosilicate
  • the reaction chamber is restored to normal pressure, the chamber is opened to take out the silicon wafer and glass plate samples, the coating thickness of the silicon wafer is tested, and the water contact angle test results of the coating on the glass plate sample are listed in Table 1 below.
  • Table 1 At room temperature, the glass plate sample is immersed in water for different time periods, and then naturally dried and the water contact angle test results are listed in Table 2 below.
  • a transparent glass plate (length: 13 cm, width: 6.5 cm, thickness: 1 mm) and a silicon wafer were placed on a sample stage of a vacuum deposition chamber equipped with a pair of copper rod electrodes.
  • the vacuum deposition chamber was evacuated to a vacuum degree of 8 mTorr, and the sample stage temperature was controlled to about 30°C by water cooling.
  • Helium was introduced at a flow rate of 90 sccm and a chamber pressure of 100 mTorr.
  • the nickel-chromium hot wire power supply was turned on and the hot wire temperature was controlled to be 300°C; tetraethyl orthosilicate (TEOS) was vaporized at a temperature of 110°C and introduced into the vacuum deposition chamber at a flow rate of 300 ⁇ l/min; at the same time, the temperature of the water-cooled sample stage, the chamber pressure, and the flow rates of helium and oxygen were kept unchanged;
  • TEOS tetraethyl orthosilicate
  • the hydrophilic coating formed by hot wire chemical vapor deposition of organic silicon monomer ethyl orthosilicate on the surface of the substrate under an oxygen atmosphere has excellent hydrophilic properties, and its water contact angle is below 5°. Moreover, the water contact angle of the coating can still be maintained below 10° after being immersed in water for 180 minutes, indicating that it has excellent hydrophilic retention in a high humidity environment.
  • Comparative Examples 1-2 although a coating with excellent hydrophilic properties can be obtained by plasma polymerization of a hydrophilic monomer, it is immersed in water for 10 minutes. The hydrophilicity is significantly attenuated, indicating that its hydrophilicity retention in a high humidity environment is relatively poor.
  • Comparative Example 3 the plasma polymerization coating or the coating of ethyl orthosilicate is used, and its water contact angle is 95°, indicating that it is not hydrophilic.
  • Comparative Example 4 ethyl orthosilicate is not subjected to hot wire chemical vapor deposition in an oxygen atmosphere, and its water contact angle is 20°, indicating that its coating has a relatively poor hydrophilicity.
  • Example 3 the hydrophilicity retention of the glass plate with a plasma pre-treatment step and a plasma post-treatment step in an oxygen atmosphere in a high humidity environment is better than that of the glass plate with only a plasma pre-treatment step in Example 1, and the hydrophilicity and hydrophilicity retention of the glass plate sample with only a plasma pre-treatment step in a high humidity environment are better than those of the glass plate sample without a plasma pre-treatment step and a post-treatment step in Example 2, indicating that the plasma pre-treatment step is conducive to improving the hydrophilicity of the coating and the hydrophilicity retention in a high humidity environment, and the plasma post-treatment step in an oxygen atmosphere can further improve the hydrophilicity retention of the coating in a high humidity environment.
  • the results shown in Figures 1 to 3 indicate that the coatings in Examples 1 to 3 have excellent anti-fog properties.

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

一种亲水涂层、制备方法及器件,所述亲水涂层由有机硅单体在具有氧气的气氛条件下通过热丝化学气相沉积于基材表面所形成,所述亲水涂层具有优异的亲水性能,其水接触角在10°以下,并且,所述亲水涂层在高湿环境下具有优异的亲水保持性。

Description

一种亲水涂层、制备方法及器件
本申请要求于2022年12月22日提交中国专利局、申请号为202211657189.2、发明名称为“一种亲水涂层、制备方法及器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及热丝化学气相沉积领域,特别涉及一种热丝化学气相沉积的亲水涂层、制备方法及器件。
背景技术
在基材表面制备亲水性高分子涂层是目前应用较广泛的制备亲水涂层的方法之一。该种亲水性高分子涂层表面通常都含有大量亲水性基团(-OH、-COOH和-NH2等能形成氢键的原子基团或离子基团),使得涂层能够具有亲水和吸水性质。
例如有文献报道,在氮气保护下将甲基丙烯酸羟乙酯、甲基丙烯酸、过氧化苯甲酰和乙二醇单乙醚的均匀混合液在65℃下反应6~8h,再将混合液浓度稀释至10%,加入少量双甲基丙烯酸乙二醇酯及过氧化苯甲酰,喷涂于基材表面室温晾干1-2h,最后在120℃下烘干l~2h,冷却至室温就能得到超亲水表面。但是这类带有亲水基团的高分子材料制备得到的超亲水涂层表面耐磨性差、极不耐水浸泡,在高湿度环境下因涂层表面吸水饱和,水接触角很容易就升高,导致涂层失去超亲水性能。超亲水性能的不耐水及不耐湿,大大降低了超亲水涂层在防雾,自清洁等领域的应用。
发明内容
本发明的具体实施方式提供一种具有优异亲水性以及高湿环境下优异 的亲水保持性的亲水涂层、制备方法及器件,具体方案如下:
一种亲水涂层,所述亲水涂层的水接触角在10°以下,所述亲水涂层是由有机硅单体在具有氧气的气氛条件下通过热丝化学气相沉积于基材表面所形成。
可选的,所述亲水涂层的水接触角在5°以下。
可选的,所述亲水涂层在常温下于水中浸泡120分钟后的水接触角在10°以下。
可选的,所述有机硅单体选自于下式(1)~(3)中结构的至少一种,
上式(1)~(3)中,R1、R5和R9分别独立的选自于C1-C10的烷基或C1-C10的烷氧基,R2、R3、R4、R6和R10分别独立的选自于氢原子、C1-C10的烷基或C1-C10的烷氧基,R7为氢原子、羟基、C1-C10的烷基或C1-C10的烷氧基,R8为氢原子或C1-C10的烷基,n为1到10的整数,m为1到10的整数。
可选的,所述有机硅单体为式(1)所示结构,R1、R2、R3和R4分别独立的选自于C1-C4的烷氧基。
可选的,所述有机硅单体为正硅酸乙酯、四甲氧基硅烷、正硅酸丙酯或正硅酸丁酯。
可选的,所述有机硅单体的沸点在200℃以下。
可选的,所述亲水涂层的厚度为5~3000nm。
一种如上所述亲水涂层的制备方法,包括以下步骤:
将基材放置于真空沉积室的具有冷却装置的样品台上;
对真空沉积室抽真空,通入氧气、惰性气体和有机硅单体气体,开启加热丝加热以及所述冷却装置进行所述热丝化学气相沉积。
可选的,所述加热丝为含有镍、铬或钨中的至少一种的金属丝。
可选的,所述样品台的温度控制在100℃以下,加热丝的温度为200~900℃。
可选的,还包括以下步骤:在所述热丝化学气相沉积前,对基材表面进行等离子体前处理。
可选的,还包括以下步骤:在所述热丝化学气相沉积后,在氧气气氛下,对所述热丝化学气相沉积的涂层表面进行等离子体后处理。
可选的,所述等离子体为双电极脉冲等离子体。
一种器件,所述器件的至少部分表面具有如上所述的亲水涂层。
本发明具体实施方式的亲水涂层,所述亲水涂层由有机硅单体在具有氧气的气氛条件下通过热丝化学气相沉积于基材表面所形成,所述亲水涂层具有优异的亲水性能,其水接触角在10°以下,并且,所述亲水涂层在高湿环境下具有优异的亲水保持性。
附图说明
图1为实施例1的防雾测试结果图;
图2为实施例2的防雾测试结果图;
图3为实施例3的防雾测试结果图。
具体实施方式
本发明的具体实施方式提供一种亲水涂层,所述亲水涂层的水接触角在10°以下,所述亲水涂层是由有机硅单体在具有氧气的气氛条件下通过热丝化学气相沉积于基材表面所形成。
本发明具体实施方式的亲水涂层,通过热丝化学气相沉积,所述有机硅单体在氧气气氛条件下,在加热金属热丝的催化反应下,可在基材表面形成优异的亲水涂层,并且所述亲水涂层在高湿环境下具有优异的亲水保 持性。
本发明具体实施方式的亲水涂层,所述水接触角是根据GB/T30447-2013标准进行测试获得,在一些具体实施方式中,所述亲水涂层的水接触角在5°以下。
本发明具体实施方式的亲水涂层,所述亲水涂层在高湿环境下具有优异的亲水保持性,在一些具体实施方式中,所述亲水涂层在常温下于水中浸泡120分钟后的水接触角在10°以下,在一些具体实施方式中,所述亲水涂层在常温下于水中浸泡120分钟后的水接触角在5°以下。
本发明具体实施方式的亲水涂层,所述亲水涂层在高湿环境下具有优异的亲水保持性,在一些具体实施方式中,所述亲水涂层在常温下于水中浸泡10分钟后的水接触角大小变化率不大于30%,在一些具体实施方式中,所述亲水涂层在常温下于水中浸泡10分钟后的水接触角大小变化率不大于20%,在一些具体实施方式中,所述亲水涂层在常温下于水中浸泡10分钟后的水接触角大小变化率不大于10%,在一些具体实施方式中,所述亲水涂层在常温下于水中浸泡10分钟后的水接触角大小变化率不大于5%。
本发明具体实施方式的亲水涂层,在一些具体实施方式中,所述有机硅单体具有下式(1)所示的结构,
式(1)中,R1选自于C1-C10的烷基或C1-C10的烷氧基,R2、R3和R4分别独立的选自于氢原子、C1-C10的烷基或C1-C10的烷氧基,在一些具体实施方式中,R1选自于C1-C4的烷基或C1-C4的烷氧基,R2、R3和R4分别独立的选自于氢原子、C1-C4的烷基或C1-C4的烷氧基,所述C1-C4的烷基具体例如甲基、乙基、丙基、丁基或异丁基等,或C1-C4的烷氧基,所述C1-C4的烷氧基具体例如甲氧基、乙氧基、丙氧基、丁氧基或异丁氧基等。在一些具体实施方式中,所述R1、R2、R3和R4分别独立的选自于C1-C4的烷氧基,在一些具体实施方式 中,所述有机硅单体为正硅酸乙酯、四甲氧基硅烷、正硅酸丙酯或正硅酸丁酯。
本发明具体实施方式的亲水涂层,在一些具体实施方式中,所述有机硅单体具有下式(2)所示的结构,
式(2)中,R5选自于C1-C10的烷基或C1-C10的烷氧基,R6选自于氢原子、C1-C10的烷基或C1-C10的烷氧基,R7为氢原子、羟基、C1-C10的烷基或C1-C10的烷氧基,R8为氢原子或C1-C10的烷基,n为1到10的整数,具体的为1、2、3、4、5、6、7、8、9或10。在一些具体实施方式中,所述R5选自于C1-C4的烷基或C1-C4的烷氧基,R6选自于氢原子、C1-C4的烷基或C1-C4的烷氧基,R7为氢原子、羟基、C1-C4的烷基或C1-C4的烷氧基,R8为氢原子或C1-C4的烷基,所述C1-C4的烷基具体例如甲基、乙基、丙基、丁基或异丁基等,或C1-C4的烷氧基,所述C1-C4的烷氧基具体例如甲氧基、乙氧基、丙氧基、丁氧基或异丁氧基等。
本发明具体实施方式的亲水涂层,在一些具体实施方式中,所述有机硅单体具有下式(3)所示的结构,
式(3)中,R9选自于C1-C10的烷基或C1-C10的烷氧基,R10选自于氢原子、C1-C10的烷基或C1-C10的烷氧基,m为1到10的整数,具体的为1、2、3、4、5、6、7、8、9或10。在一些具体实施方式中,所述R9选自于C1-C4的烷基或C1-C4的烷氧基,R10选自于氢原子、C1-C4的烷基或C1-C4的 烷氧基,所述C1-C4的烷基具体例如甲基、乙基、丙基、丁基或异丁基等,或C1-C4的烷氧基,所述C1-C4的烷氧基具体例如甲氧基、乙氧基、丙氧基、丁氧基或异丁氧基等。
本发明具体实施方式的亲水涂层,考虑到便于有机硅单体蒸发气化,在一些具体实施方式中,所述有机硅单体的沸点在200℃以下。
本发明具体实施方式的亲水涂层,所述涂层厚度为纳米级,在一些具体实施方式中,所述涂层的厚度在1~3000nm,在一些具体实施方式中,所述涂层的厚度在5~500nm,在一些具体实施方式中,所述涂层的厚度在5~150nm。
本发明具体实施方式的亲水涂层,在一些具体实施方式中,所述基材为金属、陶瓷、塑料、玻璃、电子设备或光学仪器等。在一些具体实施方式中,所述基材为透明材料,具体的例如可以是眼镜的镜片、护目镜、激光防护镜、望远镜及各种摄像设备的镜头、各种机械的观察窗、运动潜水镜、浴室玻璃、化学或生物防护面具、车辆挡风玻璃及后视镜、排爆处理防护设备、头盔、太阳能电池板、测量仪器的观察窗、玻璃罩、温室的玻璃墙等。
本发明的具体实施方式还提供一种如上所述亲水涂层的制备方法,包括以下步骤:
将基材放置于真空沉积室的具有冷却装置的样品台上;
对真空沉积室抽真空,通入氧气、惰性气体和有机硅单体气体,开启加热丝加热以及所述冷却装置进行所述热丝化学气相沉积。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,所述加热丝为含有镍、铬或钨中的至少一种的金属丝,具体例如,可以是镍丝、铬丝、钨丝、镍铬丝或镍钨丝等等。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,所述样品台的温度控制在100℃以下,在一些具体实施方式中,所述样品台的温度控制在20~50℃,具体的例如可以是20℃、30℃、40℃或50℃等等,在一些具体实施方式中,所述样品台的冷却装置采取水冷却装置。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中, 所述加热丝的温度为200℃~900℃,具体的例如可以是200℃、250℃、300℃、400℃、500℃、600℃、700℃、800℃或900℃等等。
本发明具体实施方式的亲水涂层的制备方法,所述对真空沉积室抽真空的真空度可以根据实际情况进行设置,在一些具体实施方式中,所述真空度为0.1~1000mTorr,在一些具体实施方式中,所述真空度为1~100mTorr,在一些具体实施方式中,所述真空度为5~50mTorr。
本发明具体实施方式的亲水涂层的制备方法,所述惰性气体包括氮气、氦气、氖气或氩气等,在一些具体实施方式中,所述惰性气体的流量为0~1000sccm,在一些具体实施方式中,所述惰性气体的流量为5~500sccm,在一些具体实施方式中,所述惰性气体的流量为50~200sccm。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,所述惰性气体的流量为1~1000sccm,在一些具体实施方式中,所述惰性气体的流量为5~500sccm,在一些具体实施方式中,所述惰性气体的流量为50~200sccm。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,亲水涂层的制备方法还包括以下步骤:在所述热丝化学气相沉积前,对基材表面进行等离子体前处理,在一些具体实施方式中,所述等离子体为双电极脉冲等离子体,通过所述等离子体前处理,可进一步有效提高所述亲水涂层的亲水性及高湿环境下的亲水保持性,在一些具体实施方式中,所述脉冲等离子体的放电功率为10~1000W,放电时间10~1000s,脉冲频率在1到1000HZ,脉冲的占空比在1:1到1:500,在一些具体实施方式中,所述脉冲等离子体的放电功率为100~500W,放电时间100~500s,脉冲频率在10到500HZ,脉冲的占空比在1:10到1:100。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,所述等离子体前处理在具有氧气的气氛下进行,在一些具体实施方式中,所述等离子体前处理在具有惰性气体的气氛下进行,在一些具体实施方式中给,所述所述等离子体前处理在具有氧气和惰性气体的气氛下进行。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中, 亲水涂层的制备方法还包括以下步骤:在所述热丝化学气相沉积后,在氧气气氛下,对所述热丝化学气相沉积的涂层表面进行等离子体后处理,在一些具体实施方式中,所述等离子体为双电极脉冲等离子体,通过所述等离子体后处理,可进一步有效提高所述亲水涂层的亲水性及高湿环境下的亲水保持性,在一些具体实施方式中,所述脉冲等离子体的放电功率为10~1000W,放电时间1~1000s,脉冲频率在1到1000HZ,脉冲的占空比在1:1到1:500,在一些具体实施方式中,所述脉冲等离子体的放电功率为100~500W,放电时间10~500s,脉冲频率在10到500HZ,脉冲的占空比在1:10到1:100。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,所述真空沉积室中设置有一对或以上的铜电极,在所述热丝化学气相沉积前后,开启所述铜电极,直接在所述真空沉积室中进行所述等离子体前处理和等离子体后处理工艺。
本发明具体实施方式的亲水涂层的制备方法,在一些具体实施方式中,所述有机硅单体进入气化室气化后然后导入所述真空沉积室,在一些具体实施方式中,所述有机硅单体以一定的流速进入气化室,在一些具体实施方式中,所述有机硅单体分多批次进入气化室,在一些具体实施方式中,所述有机硅单体进入气化室的流量为10-2400μL/min,在一些具体实施方式中,所述有机硅单体进入气化室的流量为100-500μL/min。
本发明具体实施方式的亲水涂层的制备方法,所述亲水涂层、有机硅单体以及基材等的说明如前所述。
本发明的具体实施方式还提供一种器件,所述器件的至少部分表面具有以上所述亲水涂层,在一些具体实施方式中,所述器件的部分表面或全部表面沉积有上述亲水涂层。
以下通过具体实施例对本公开做进一步说明。
实施例
测试方法说明
涂层厚度测试:使用美国Filmetrics F20-UV-薄膜厚度测量仪进行检 测。
水接触角测试:根据GB/T 30447-2013标准进行测试。
防雾测试:将玻璃板样品置于95℃恒温水浴锅上面,涂层面朝向水蒸气,其中水面和涂层面距离为5cm,观察10min后是否起雾。
实施例1
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm),以及硅片放置于设置有一对铜棒电极的真空沉积室的样品台上,对真空沉积室抽真空至真空度8mTorr,通过水冷将样品台温度控制为30℃左右;同时通入氦气和氧气,流量均为90sccm,腔体压力为100mTorr;
开启铜棒电极脉冲等离子体放电,对透明玻璃板表面进行预处理,放电时间为240s,放电功率400W;
关闭铜棒电极等离子体放电,将镍铬热丝电源打开,控制热丝温度为300℃;将正硅酸乙酯(TEOS)在温度为110℃下汽化后以300μl/min的流量通入真空沉积室;与此同时,保持水冷样品台温度、腔体压力及氦气和氧气流量不变。
涂层结束后,维持温度及真空度不变,30min后破真空取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中,对涂层后(镀膜)的玻璃板样品和未镀膜的空白玻璃板样品进行防雾测试结果如图1所示。
实施例2
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm),以及硅片放置于设置有一对铜棒电极的真空沉积室的样品台上,对真空沉积室抽真空至真空度8mTorr,通过水冷将样品台温度控制为30℃左右;同时通入氦气和氧气,流量均为90sccm,腔体压力为100mTorr;
将镍铬热丝电源打开,控制热丝温度为300℃;将正硅酸乙酯(TEOS)在温度为110℃下汽化后以300μl/min的流量通入真空沉积室;与此同时, 保持水冷样品台温度、腔体压力及氦气和氧气流量不变;
涂层结束后,维持温度及真空度不变,30min后破真空取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中,对涂层后(镀膜)的玻璃板样品和未镀膜的空白玻璃板样品进行防雾测试结果如图2所示。
实施例3
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm),以及硅片放置于设置有一对铜棒电极的真空沉积室的样品台上,对真空沉积室抽真空至真空度8mTorr,通过水冷将样品台温度控制为30℃左右;同时通入氦气和氧气,流量均为90sccm,腔体压力为100mTorr;
开启铜棒电极脉冲等离子体放电,对透明玻璃板表面进行预处理,放电时间为240s,放电功率400W;
关闭铜棒电极等离子体放电,将镍铬热丝电源打开,控制热丝温度为300℃;将正硅酸乙酯(TEOS)在温度为110℃下汽化后以300μl/min的流量通入真空沉积室;与此同时,保持水冷样品台温度、腔体压力及氦气和氧气流量不变;
关闭镍铬热丝加热电源,关闭氦气流量,维持氧气流量90sccm不变,维持腔体压力100mTorr不变;再次开启铜棒电极脉冲等离子体放电,放电时间为30s,放电功率300W;
涂层结束后,维持温度及真空度不变,30min后破真空取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中,对涂层后(镀膜)玻璃板样品和未镀膜的空白玻璃板样品进行防雾测试结果如图3所示。
对比例1
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm)以及硅片放置于PECVD真空反应腔体内,对反应腔体连续抽真空使真空度达到80毫托,腔体内部 温度为45℃,通入氦气,流量为40sccm;
保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电对透明玻璃板表面进行预处理,射频的能量输出方式为连续放电,放电时间300s,放电功率300w;
然后,通入1,4-丁烯二醇,单体流量为120μL/min,单体气化温度为110℃,保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电,射频的能量输出方式为脉冲,放电时间5400s,放电功率80w,脉冲频率50Hz,脉冲占空比45%;
涂层制备结束后,使反应腔体恢复至常压,打开腔体取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中。
对比例2
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm)以及硅片放置于PECVD真空反应腔体内,对反应腔体连续抽真空使真空度达到80毫托,腔体内部温度为45℃,通入氦气,流量为40sccm;
保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电对透明玻璃板表面进行预处理,射频的能量输出方式为连续放电,放电时间300s,放电功率300w;
然后,将1,4-丁烯二醇:甲基丙烯酰胺按照质量比例5:1进行混合,室温下搅拌10分钟混合后均匀,然后通入气化室气化后导入PECVD真空反应腔体内,通入气化室的单体流量为120μL/min,单体气化温度为110℃,保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电,射频的能量输出方式为脉冲,放电时间1800s,放电功率80w,脉冲频率50Hz,脉冲占空比45%;
涂层制备结束后,使反应腔体恢复至常压,打开腔体取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中。
对比例3
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm)以及硅片放置于PECVD真空反应腔体内,对反应腔体连续抽真空使真空度达到80毫托,腔体内部温度为45℃,通入氦气,流量为40sccm;
然后,通入正硅酸乙酯(TEOS),单体流量为45μL/min,单体气化温度为110℃,保持腔体气压为80毫托,保持氦气流量为40sccm,开启射频等离子体放电,射频的能量输出方式为脉冲,放电时间3600s,放电功率80w,脉冲频率50Hz,脉冲占空比45%;
涂层制备结束后,使反应腔体恢复至常压,打开腔体取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中。
对比例4
将透明玻璃板(长:13cm,宽:6.5cm,厚1mm)以及硅片放置于设置有一对铜棒电极的真空沉积室的样品台上,对真空沉积室抽真空至真空度8mTorr,通过水冷将样品台温度控制为30℃左右;通入氦气,流量为90sccm,腔体压力为100mTorr;
将镍铬热丝电源打开,控制热丝温度为300℃;将正硅酸乙酯(TEOS)在温度为110℃下汽化后以300μl/min的流量通入真空沉积室;与此同时,保持水冷样品台温度、腔体压力及氦气和氧气流量不变;
涂层结束后,维持温度及真空度不变,30min后破真空取出硅片和玻璃板样品,对硅片进行涂层厚度测试,对玻璃板样品进行涂层的水接触角测试结果列入下表1中,常温下,将玻璃板样品浸没于水中不同时间,然后自然晾干后进行水接触角测试结果列入下表2中。
表1实施例1-3、对比例1-4的涂层厚度及水接触角测试结果
表2实施例1-3、对比例1-4的玻璃板样品不同浸没时间涂层的水接触角测试结果
根据上表1和2中结果,实施例1-3中,由有机硅单体正硅酸乙酯在具有氧气的气氛条件下通过热丝化学气相沉积于基材表面所形成,所述亲水涂层具有优异的亲水性能,其水接触角在5°以下,并且,所述涂层浸没在水中180分钟后的水接触角依然能保持在10°以下,表明其在高湿环境下具有优异的亲水保持性,对比例1-2中,采用亲水单体通过等离子聚合涂层虽然可以获得优异亲水性能的涂层,但是其浸没在水中10min,其 亲水性便发生明显的大幅度衰减,表明其在高湿环境下的亲水保持性比较差,对比例3中,对正硅酸乙酯采用等离子体聚合涂层或的涂层,其水接触角为95°,表明其不具有亲水性,对比例4中,正硅酸乙酯未在氧气气氛下进行热丝化学气相沉积,其水接触角为20°,表明其涂层的亲水性比较差。由实施例1-3的结果对比,实施例3中,具有等离子体前处理步骤和氧气气氛下等离子体后处理步骤的玻璃板在高湿环境下的亲水保持性优于实施例1中仅具有等离子体前处理步骤的玻璃板,仅具有等离子体前处理步骤的玻璃板样品的亲水性和在高湿环境下的亲水保持性都优于实施例2中不具有等离子体前处理步骤和后处理步骤的玻璃板样品,表明等离子体前处理步骤有利于提高涂层的亲水性和在高湿环境下的亲水保持性,氧气气氛下等离子体后处理步骤可进一步提高涂层在高湿环境下的亲水保持性。由图1-图3的结果表明,实施例1-3中的涂层具有优异的防雾性能。
虽然本公开披露如上,但本公开并非限定于此。任何本领域技术人员,在不脱离本公开的精神和范围内,均可作各种更动与修改,因此本公开的保护范围应当以权利要求所限定的范围为准。

Claims (15)

  1. 一种亲水涂层,其特征在于,所述亲水涂层的水接触角在10°以下,所述亲水涂层是由有机硅单体在具有氧气的气氛条件下通过热丝化学气相沉积于基材表面所形成。
  2. 根据权利要求1所述的亲水涂层,其特征在于,所述亲水涂层的水接触角在5°以下。
  3. 根据权利要求1所述的亲水涂层,其特征在于,所述亲水涂层在常温下于水中浸泡120分钟后的水接触角在10°以下。
  4. 根据权利1所述的亲水涂层,其特征在于,所述有机硅单体选自于下式(1)~(3)中结构的至少一种,
    上式(1)~(3)中,R1、R5和R9分别独立的选自于C1-C10的烷基或C1-C10的烷氧基,R2、R3、R4、R6和R10分别独立的选自于氢原子、C1-C10的烷基或C1-C10的烷氧基,R7为氢原子、羟基、C1-C10的烷基或C1-C10的烷氧基,R8为氢原子或C1-C10的烷基,n为1到10的整数,m为1到10的整数。
  5. 根据权利要求1所述的亲水涂层,其特征在于,所述有机硅单体为式(1)所示结构,R1、R2、R3和R4分别独立的选自于C1-C4的烷氧基。
  6. 根据权利要求5所述的亲水涂层,其特征在于,所述有机硅单体为正硅酸乙酯、四甲氧基硅烷、正硅酸丙酯或正硅酸丁酯。
  7. 根据权利要求1所述的亲水涂层,其特征在于,所述有机硅单体的沸点在200℃以下。
  8. 根据权利要求1所述的亲水涂层,其特征在于,所述亲水涂层的厚度为5nm~3000nm。
  9. 一种如权利要求1-8中任意一项所述亲水涂层的制备方法,其特征在于,包括以下步骤:
    将基材放置于真空沉积室的具有冷却装置的样品台上;
    对真空沉积室抽真空,通入氧气、惰性气体和有机硅单体气体,开启加热丝加热以及所述冷却装置进行所述热丝化学气相沉积。
  10. 根据权利要求8所述亲水涂层的制备方法,其特征在于,所述加热丝为含有镍、铬或钨中的至少一种的金属丝。
  11. 根据权利要求8所述亲水涂层的制备方法,其特征在于,所述样品台的温度控制在100℃以下,加热丝的温度为200~900℃。
  12. 根据权利要求8所述亲水涂层的制备方法,其特征在于,还包括以下步骤:在所述热丝化学气相沉积前,对基材表面进行等离子体前处理。
  13. 根据权利要求8所述亲水涂层的制备方法,其特征在于,还包括以下步骤:在所述热丝化学气相沉积后,在氧气气氛下,对所述热丝化学气相沉积的涂层表面进行等离子体后处理。
  14. 根据权利要求12或13所述亲水涂层的制备方法,其特征在于,所述等离子体为双电极脉冲等离子体。
  15. 一种器件,其特征在于,所述器件的至少部分表面具有权利要求1-8中任一项所述的亲水涂层。
PCT/CN2023/136956 2022-12-22 2023-12-07 一种亲水涂层、制备方法及器件 WO2024131537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211657189.2A CN118239694A (zh) 2022-12-22 2022-12-22 一种亲水涂层、制备方法及器件
CN202211657189.2 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024131537A1 true WO2024131537A1 (zh) 2024-06-27

Family

ID=91560963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136956 WO2024131537A1 (zh) 2022-12-22 2023-12-07 一种亲水涂层、制备方法及器件

Country Status (2)

Country Link
CN (1) CN118239694A (zh)
WO (1) WO2024131537A1 (zh)

Also Published As

Publication number Publication date
CN118239694A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
CN106011785B (zh) 一种原子层沉积制备高均匀性Nb掺杂TiO2透明导电薄膜的方法
CN104498895B (zh) 一种超薄氮氧化硅膜材料及其制备方法和用途
DE69837954T2 (de) Schutzbeschichtung mittels Lichtbogenplasma mit hoher Abscheidungsrate
US8460753B2 (en) Methods for depositing silicon dioxide or silicon oxide films using aminovinylsilanes
JPH05502695A (ja) 遷移金属窒化物の化学蒸着方法
JP2022541547A (ja) 撥水ナノ膜及びその製造方法、応用、並びに製品
WO2012153781A1 (ja) フッ素含有有機ケイ素化合物薄膜の製造方法、及び、製造装置
WO2020082677A1 (zh) 一种含硅共聚物纳米涂层及其制备方法
Kang et al. Properties of aluminium oxide films prepared by plasma-enhanced metal-organic chemical vapour deposition
CN108493105B (zh) 二氧化硅薄膜及其制备方法
CN114335392B (zh) 一种oled柔性显示用减反射膜的制备工艺
Hoffman et al. Plasma‐enhanced chemical vapor deposition of silicon, germanium, and tin nitride thin films from metalorganic precursors
JP4337164B2 (ja) 光学製品及びその製造方法
WO2024131537A1 (zh) 一种亲水涂层、制备方法及器件
JP3128554B2 (ja) 酸化物光学薄膜の形成方法及び酸化物光学薄膜の形成装置
Saloum et al. Structural, optical and electrical properties of plasma deposited thin films from hexamethyldisilazane compound
JP5027980B2 (ja) フッ素添加シリカ薄膜を付着させる方法
KR101972056B1 (ko) 비정질 실리콘을 이용한 실리카 나노와이어의 제조방법
JPH04299515A (ja) X線リソグラフィ−マスク用x線透過膜およびその製造方法
CN109468604B (zh) 高透射率igzo薄膜的制备方法
US20110175207A1 (en) Method for producing metal oxide layers
Edlinger et al. Properties of ion-plated Nb2O5 films
TWI846402B (zh) 一種防霧塗層及其製備方法、及產品
CN111334771B (zh) 一种电致变色薄膜及其制备方法和应用
TWI846563B (zh) 一種親水塗層、製備方法及器件