WO2024128216A1 - セメント組成物及び水硬性組成物 - Google Patents

セメント組成物及び水硬性組成物 Download PDF

Info

Publication number
WO2024128216A1
WO2024128216A1 PCT/JP2023/044385 JP2023044385W WO2024128216A1 WO 2024128216 A1 WO2024128216 A1 WO 2024128216A1 JP 2023044385 W JP2023044385 W JP 2023044385W WO 2024128216 A1 WO2024128216 A1 WO 2024128216A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
cement
parts
alkaline earth
cement composition
Prior art date
Application number
PCT/JP2023/044385
Other languages
English (en)
French (fr)
Inventor
和揮 小林
嘉史 扇
真幸 橋本
佳史 細川
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Publication of WO2024128216A1 publication Critical patent/WO2024128216A1/ja

Links

Definitions

  • the present invention relates to a cement composition and a hydraulic composition containing the cement composition.
  • Patent Document 1 describes a cementitious hardened body that can absorb a large amount of carbon dioxide during the curing process and thereby significantly reduce the total amount of carbon dioxide emitted, which is obtained by carbonating a hardened body of a cement mixture that contains (A) a powder for mixing with cement containing either or both of mullite and anorthite, and a powdered cement composition containing Portland cement, (B) water, and (C) aggregate.
  • Patent Document 2 describes a cementitious hardened body that can absorb a large amount of carbon dioxide during the curing process, thereby greatly reducing the total amount of carbon dioxide emitted, and has a small rate of decrease in compressive strength when the entire powder material is composed of Portland cement.
  • the cementitious hardened body is characterized by being obtained by carbonating a hardened body of a cement kneaded product containing: (A) a pulverized product of a fired product containing 10 to 200 parts by mass of C2AS per 100 parts by mass of C2S and having a C3A content of 20 parts by mass or less, a powdered cement composition containing Portland cement, (B) water, and (C) aggregate.
  • Patent Document 3 describes a fired product (cement admixture) capable of reducing the heat of hydration of cement and improving fluidity, which is characterized by containing 10 to 100 parts by weight of C2AS per 100 parts by weight of C2S and having a C3A content of 20 parts by weight or less.
  • the object of the present invention is to provide a cement composition that contains pulverized calcined material (not corresponding to pulverized cement clinker) as a cement admixture, has excellent strength development, and can absorb and fix a large amount of carbon dioxide during the curing process, thereby reducing the total amount of carbon dioxide emitted, and a hydraulic composition that contains the cement composition.
  • the present inventors have found that the above objects can be achieved by (A) (i) a powdered cement-containing material including pulverized Portland cement or Portland cement clinker, and (ii) a pulverized product of a fired material that contains 2CaO.SiO2 and 2CaO.Al2O3.SiO2 and satisfies specific conditions, and (B) (iii) a cement composition including an amine, and have completed the present invention. That is, the present invention provides the following [1] to [15].
  • the fired product does not contain 3CaO.Al2O3 , or contains 15 parts by mass or less per 100 parts by mass of the 2CaO.SiO2.
  • a cement composition comprising: (i) Portland cement or Portland cement clinker ground product; (ii) a ground product of the fired product containing 2CaO.SiO2 and 2CaO.Al2O3.SiO2 , the ground product satisfying the following conditions (1) to ( 2 ); and (iv) an alkaline earth metal-containing substance, wherein the content of the alkaline earth metal in the cement composition (wherein the alkaline earth metal-containing substance contains only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide as alkaline earth metals other than the alkaline earth metals) is 0.1 to 10 mass % in terms of oxide.
  • the amount of the 2CaO.Al 2 O 3.SiO 2 is 10 to 100 parts by mass relative to 100 parts by mass of the 2CaO.SiO 2.
  • the fired product does not contain 3CaO.Al 2 O 3 , or contains 3CaO.Al 2 O 3 in an amount of 15 parts by mass or less relative to 100 parts by mass of the 2CaO.SiO 2.
  • the cement composition according to [6] wherein the content of the ground material of the fired product in the cement composition is 10 to 90 mass%.
  • Mg magnesium
  • a hydraulic composition comprising the cement composition according to any one of [1] to [5], water, and an aggregate, wherein the amount of the water is 25 to 70 parts by mass per 100 parts by mass of the powdered cement-containing material.
  • the hydraulic composition according to the above [10] which is a carbonated hardened material obtained by carbonation curing.
  • a hydraulic composition comprising the cement composition according to any one of [6] to [9], water, and an aggregate, wherein the amount of the water is 25 to 70 parts by mass per 100 parts by mass of the cement composition.
  • the hydraulic composition according to the above [12] which is a carbonated hardened material obtained by carbonation curing.
  • a method for producing the hydraulic composition according to [11] above comprising: a kneaded product preparation step of preparing a kneaded product, which is a mixture of the materials constituting the cement composition, the water, and the aggregate; a casting step of casting the kneaded product into a formwork; a demolding step of removing a hardened body of the kneaded product from the formwork after the kneaded product in the formwork has hardened; and a carbonation curing step of carbonating and curing the hardened body of the kneaded product demolded from the formwork to obtain the carbonated hardened body.
  • a method for producing the hydraulic composition according to [13] above comprising: a kneaded product preparation step of preparing a kneaded product, which is a mixture of the materials constituting the cement composition, the water, and the aggregate; a casting step of casting the kneaded product into a formwork; a demolding step of removing a hardened body of the kneaded product from the formwork after the kneaded product in the formwork has hardened; and a carbonation curing step of carbonating and curing the hardened body of the kneaded product demolded from the formwork to obtain the carbonated hardened body.
  • the cement composition of the present invention exhibits excellent strength development when it is hardened by adding water.
  • the cement composition of the present invention can absorb and fix a large amount of carbon dioxide by carrying out carbonation curing or the like in the curing process when water is added to form a hardened product, thereby reducing the total amount of carbon dioxide emitted.
  • the raw material composition of the ground burned product (ii) constituting the cement composition of the present invention and reducing the CaO content compared to Portland cement it is possible to reduce the amount of carbon dioxide emitted during production.
  • by lowering the firing temperature during production of the burned product compared to the firing temperature during production of Portland cement it is possible to reduce the amount of carbon dioxide emitted from the fuel used for firing.
  • cement composition A An example of the cement composition of the present invention is a powdered cement-containing material comprising (A) (i) Portland cement or pulverized Portland cement clinker, and (ii) a pulverized product of a fired product containing 2CaO.SiO 2 (hereinafter also referred to as "C 2 S") and 2CaO.Al 2 O 3.SiO 2 (hereinafter also referred to as "C 2 AS”), the pulverized product satisfying the following conditions (1) and (2), and (B) (iii) an amine (hereinafter also referred to as "cement composition A").
  • the amount of the 2CaO.Al 2 O 3.SiO 2 is 10 to 100 parts by mass per 100 parts by mass of the 2CaO.SiO 2.
  • the fired product does not contain 3CaO.Al 2 O 3 (hereinafter also referred to as "C 3 A"), or contains 15 parts by mass or less per 100 parts by mass of the 2CaO.SiO 2. This will be explained in detail below.
  • the powdered cement-containing material includes (i) pulverized Portland cement or Portland cement clinker, and (ii) a pulverized fired product containing 2CaO.SiO2 and 2CaO.Al2O3.SiO2 , and the pulverized fired product satisfies the above conditions (1) and ( 2 ).
  • Portland cement include various types of Portland cement such as ordinary Portland cement, high early strength Portland cement, moderate heat Portland cement, and low heat Portland cement.
  • Examples of the pulverized Portland cement clinker include pulverized clinker of the various Portland cements mentioned above.
  • normal Portland cement or pulverized normal Portland cement clinker is preferred.
  • the Blaine specific surface area of Portland cement or pulverized Portland cement clinker is preferably 2,500 to 5,000 cm 2 /g, more preferably 3,000 to 4,500 cm 2 /g. If the Blaine specific surface area is 2,500 cm 2 /g or more, the strength development of the cement composition is further improved. If the Blaine specific surface area is 5,000 cm 2 /g or less, the fluidity of the cement composition before hardening is further improved.
  • the content of Portland cement or pulverized Portland cement clinker in the powdered cement content is preferably 10 to 70 mass%, more preferably 15 to 60 mass%, even more preferably 20 to 50 mass%, and particularly preferably 25 to 40 mass%. If the content is 10 mass% or more, the strength of the hardened body of the hydraulic composition can be increased. If the content is 60 mass% or less, the content of (ii) the pulverized burned material becomes larger, and the reduction in carbon dioxide emissions described above can be further achieved.
  • the content of Portland cement or ground Portland cement clinker in the cement composition A is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, even more preferably 20 to 50% by mass, and particularly preferably 25 to 40% by mass. If the content is 10% by mass or more, the strength of the hardened body can be increased. If the content is 60% by mass or less, the content of (ii) ground fired material becomes larger, and the reduction in carbon dioxide emissions described above can be further achieved.
  • a fired product containing C 2 S and C 2 AS (hereinafter, also simply referred to as "fired product")
  • the amount of C 2 AS relative to 100 parts by mass of C 2 S is 10 to 100 parts by mass, preferably 20 to 80 parts by mass, more preferably 25 to 70 parts by mass, and particularly preferably 30 to 60 parts by mass.
  • the carbonation of the hydraulic composition (e.g., mortar) during carbonation curing is difficult to proceed, and the amount of carbon dioxide absorbed at an early age is small.
  • the amount of C 2 S When the amount exceeds 100 parts by mass, the amount of C 2 S is relatively small, so that the strength development of the cement composition is reduced and the amount of carbon dioxide absorbed by the hydraulic composition at a long age is reduced.
  • the fired product contains C 3 A
  • the amount of C 3 A relative to 100 parts by mass of C 2 S is 15 parts by mass or less, preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 3 parts by mass. It is difficult to produce a fired product when the amount exceeds 15 parts by mass.
  • the amount when the amount is 15 parts by mass or less, the fluidity of the hydraulic composition before hardening is further improved.
  • the fired product may contain 4CaO.Al 2 O 3.Fe 2 O 3 (hereinafter also referred to as "C 4 AF").
  • C 4 AF 4CaO.Al 2 O 3.Fe 2 O 3
  • the amount of C4AF relative to 100 parts by mass of C2S is preferably 30 parts by mass or less, more preferably 0.1 to 20 parts by mass, further preferably 0.5 to 15 parts by mass, and particularly preferably 1.0 to 10 parts by mass. When the amount is 30 parts by mass or less, the hydration activity of the hydraulic composition at an early age can be further improved.
  • the total amount of C4AF and C2AS relative to 100 parts by mass of C2S is preferably 10 to 100 parts by mass, more preferably 20 to 90 parts by mass, and particularly preferably 30 to 80 parts by mass.
  • the amount is 10 parts by mass or more, the calcined product is more likely to carbonate the hydraulic composition (e.g., mortar) during carbonation curing, and the amount of carbon dioxide absorbed at an early age is greater.
  • the amount of C2S is relatively large, so that the strength development of the cement composition is improved and the amount of carbon dioxide absorbed by the hydraulic composition at a long age is greater.
  • the amount of C4AF relative to 100 parts by mass of C2AS is preferably 210 parts by mass or less, more preferably 100 parts by mass or less, further preferably 50 parts by mass or less, and particularly preferably 20 parts by mass or less. When the amount is 210 parts by mass or less, the hydration activity of the hydraulic composition at an early age can be further improved.
  • the content of C 2 S (belite) in the fired product is preferably 50 to 80 mass%, more preferably 55 to 75 mass%, and particularly preferably 60 to 70 mass%. If the content is 50 mass% or more, the long-term strength development of the cement composition is further improved. If the content is 80 mass% or less, the initial strength development of the cement composition is further improved.
  • the content of C 2 AS in the fired product is preferably 10 to 60% by mass, more preferably 20 to 50% by mass, and particularly preferably 25 to 40% by mass. If the content is 10% by mass or more, the carbonation of the hydraulic composition is facilitated, and the hydraulic composition absorbs more carbon dioxide at an early age. If the content is 60% by mass or less, the amount of C 2 S is relatively large, so that the strength development of the cement composition is improved and the hydraulic composition absorbs more carbon dioxide at a long age.
  • the content of C3A (aluminate phase) in the fired product is preferably 10 mass% or less, more preferably 0.1 to 5 mass%, and particularly preferably 0.5 to 3.5 mass%. If the content is 10 mass% or less, the fluidity of the hydraulic composition before hardening is further improved.
  • the content of C4AF (ferrite phase) in the fired product is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. If the content is 20% by mass or less, the hydration activity of the hydraulic composition at an early age can be further improved.
  • the content of C3S (alite; 3CaO.SiO2 ) in the fired product is preferably 5 mass% or less, more preferably 3 mass% or less, and particularly preferably 1 mass% or less. If the content is 5 mass% or less, the fluidity of the hydraulic composition before hardening can be further improved.
  • the CaO content in the fired product (particularly when limestone is used as a raw material) is preferably 50 to 59% by mass, more preferably 52 to 58% by mass, and particularly preferably 53 to 57% by mass. If the above ratio is 50% by mass or more, the strength development of the cement composition is improved. If the above content is 59% by mass or less, the amount of carbon dioxide emitted during firing can be further reduced.
  • the SiO2 content in the fired product is preferably 15 to 45% by mass, more preferably 20 to 40% by mass, and particularly preferably 25 to 35% by mass.
  • the content of Al 2 O 3 in the fired product is preferably 1 to 10 mass %, more preferably 3 to 9 mass %, and particularly preferably 4 to 8 mass %.
  • the content of Fe 2 O 3 in the fired product is preferably 1 to 8 mass %, more preferably 2 to 6 mass %, and particularly preferably 3 to 5 mass %.
  • the mineral composition of the fired product (contents of C2S , C2AS , C3A , and C4AF , etc.) can be quantified by X-ray diffraction (XRD)/Rietveld analysis, etc., for the fired product.
  • XRD X-ray diffraction
  • the theoretical profile of each mineral can be fitted to the powder X-ray diffraction chart (actual profile) of the fired product and quantified by Rietveld analysis.
  • commercially available analysis software can be used.
  • the mineral composition can also be quantified by microscopic observation or point counting using electron backscatter diffraction, etc.
  • the above-mentioned fired product can be produced, for example, by preparing the raw material from one or more materials selected from industrial waste, general waste, construction waste soil, etc. so as to have the target mineral composition, chemical composition, etc. of the fired product, and then firing the raw material at, for example, 1,000 to 1,400°C (preferably 1,200 to 1,400°C, and more preferably 1,300 to 1,400°C).
  • raw materials such as a calcium raw material (e.g., limestone), a silicon raw material, an aluminum raw material, and an iron raw material may be used.
  • the obtained fired product is suitably pulverized using a pulverizer such as a ball mill or a rod mill.
  • a pulverizer such as a ball mill or a rod mill.
  • the fired product and the gypsum may be pulverized and mixed at the same time.
  • the Blaine specific surface area of the fired product is preferably 2,500 to 5,000 cm 2 /g, more preferably 3,000 to 4,500 cm 2 /g. If the Blaine specific surface area is 2,500 cm 2 /g or more, the hydration reaction is further promoted, the amount of carbon dioxide absorption is further increased, and the strength development of the cement composition is further improved. If the Blaine specific surface area is 5,000 cm 2 /g or less, the fluidity of the hydraulic composition before hardening is further improved.
  • the content of the pulverized calcined product in the powdered cement-containing material is preferably 10 to 90% by mass, more preferably 30 to 85% by mass, even more preferably 40 to 80% by mass, even more preferably 50 to 80% by mass, and particularly preferably 60 to 80% by mass. If the content is 10% by mass or more, the amount of carbon dioxide absorbed by the hydraulic composition at the initial age is increased. If the amount is 90% by mass or less, the strength development of the cement composition is less likely to decrease due to the relatively small amount of Portland cement or pulverized Portland cement clinker.
  • the amount of the pulverized burned material relative to 100 parts by mass of Portland cement or pulverized Portland cement clinker is preferably 65 to 500 parts by mass, more preferably 100 to 400 parts by mass, even more preferably 150 to 350 parts by mass, and particularly preferably 200 to 320 parts by mass. If the amount is 65 parts by mass or more, the amount of carbon dioxide absorbed by the hydraulic composition at the initial age becomes larger. If the amount is 500 parts by mass or less, the strength development of the cement composition is less likely to decrease due to the relatively small amount of Portland cement or pulverized Portland cement clinker.
  • the content of the pulverized calcined product in the cement composition is preferably 10 to 90% by mass, more preferably 30 to 85% by mass, even more preferably 40 to 80% by mass, even more preferably 50 to 80% by mass, and particularly preferably 60 to 80% by mass. If the content is 10% by mass or more, the amount of carbon dioxide absorbed by the hydraulic composition at the initial age is increased. If the amount is 90% by mass or less, the strength development of the cement composition is less likely to decrease due to the relatively small amount of Portland cement or pulverized Portland cement clinker.
  • the ratio of the total amount of component (i) and component (ii) in the powdered cement-containing material (A) is preferably 80 mass% or more, more preferably 90 mass% or more, and particularly preferably 95 mass% or more, from the viewpoint of improving the strength development of the cement composition and increasing the amount of carbon dioxide absorption.
  • the powdered cement-containing material may contain (iv) an alkaline earth metal-containing material.
  • an alkaline earth metal-containing material When the powdered cement-containing material contains an alkaline earth metal-containing material, the strength development of the cement composition can be further improved.
  • alkaline earth metals contained in the alkaline earth metal-containing material include calcium (Ca), magnesium (Mg), strontium (Sr), barium (Ba), radium (Ra), and beryllium (Be), etc. These may be contained alone or in combination of two or more.
  • the form of the alkaline earth metal contained in the cement composition is preferably an alkaline earth metal oxide or an alkaline earth metal hydroxide, and more preferably an alkaline earth metal oxide.
  • magnesium-containing substance examples include magnesium oxide, magnesium hydroxide, magnesium sulfate, magnesium nitrate, magnesium chloride, etc.
  • magnesium oxide and magnesium hydroxide are preferred, and magnesium oxide is more preferred.
  • These may be reagents, or may be magnesium-containing substances such as periclase (a mineral containing magnesium oxide), light-burned magnesia (MgO), partial hydrate of light-burned magnesia, light-burned dolomite (CaO.MgO), and partial hydrate of light-burned dolomite. These may be used alone or in combination of two or more.
  • Examples of calcium sources (calcium-containing substances) when the alkaline earth metal-containing substance contains calcium as the alkaline earth metal include calcium oxide, calcium hydroxide, calcium nitrate, and calcium chloride. These may be reagents, or may be calcium-containing substances such as quicklime, slaked lime, ready-mixed concrete sludge, and waste concrete. These may be used alone or in combination of two or more. Among these, calcium oxide and calcium hydroxide are preferred, and calcium oxide is more preferred, from the viewpoint of further improving the strength development of the cement composition.
  • the ready-mixed concrete sludge is preferably a powdery one that is collected as fine powder containing cement hydrates and non-hydrated cement by sieving sludge generated in the concrete manufacturing process at a ready-mixed concrete plant or a concrete product plant using a sieve or the like.
  • Ready-mixed concrete sludge is easily carbonatable, and the CaO content is usually 30 mass% or more.
  • the waste concrete is preferably fine powder containing cement hydrate and non-hydrated cement, which is obtained by crushing concrete waste generated during the demolition of concrete structures, etc., and then removing aggregate from the crushed concrete. Fine powder of waste concrete is easily carbonated, and the CaO content is usually 15 mass% or more.
  • the alkaline earth metal-containing material is usually in a powder form from the viewpoint of improving the strength development of the hydraulic composition.
  • the content of alkaline earth metals in the powdered cement-containing composition (wherein alkaline earth metals other than those contained in the alkaline earth metal-containing composition (in other words, alkaline earth metals contained in materials other than the alkaline earth metal-containing composition contained in the powdered cement-containing composition) include only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide) is 0.1 to 10 mass%, more preferably 0.2 to 8 mass%, and particularly preferably 0.5 to 6 mass%, calculated as oxide. If the content is less than 0.1 mass%, the strength development of the cement composition decreases. If the content exceeds 10 mass%, the initial strength development of the cement composition (for example, at 1 day age) may decrease.
  • the powdered cement-containing material contains multiple alkaline earth metals (however, the alkaline earth metals other than the alkaline earth metals contained in the alkaline earth metal-containing material include only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide), the above content is the total content.
  • the above-mentioned components (i) to (ii) and components (v) to (vi) (described later) may contain periclase (MgO), magnesium hydroxide (Mg(OH) 2 ), calcium oxide (CaO; particularly free calcium oxide), calcium hydroxide (Ca(OH) 2 ), etc.
  • the alkaline earth metal content includes these alkaline earth metals in addition to the alkaline earth metals contained in the alkaline earth metal-containing material.
  • alkaline earth metals e.g., calcium
  • silicate minerals e.g., belite, alite
  • aluminate phases e.g., aluminate phases
  • ferrite phases which are contained in components (i) to (iii) and components (v) to (vi), as well as alkaline earth metals such as gypsum (CaSO 4 ) and calcium carbonate (magnesium oxide, magnesium hydroxide, calcium oxide, and alkaline earth metals other than calcium hydroxide), do not affect the effects of the present invention, or are present in such small amounts that they have almost no effect on the effects of the present invention.
  • the contents of periclase (MgO) and magnesium hydroxide (Mg(OH) 2 ) contained in the components (i) to (ii) and the components (v) to (vi) can be measured by X-ray diffraction (XRD)/Rietveld method or the like.
  • the content of calcium oxide (CaO) or calcium hydroxide (Ca(OH) 2 ) contained in components (i) to (ii) and components (v) to (vi) can be measured by X-ray diffraction (XRD)/Rietveld method or in accordance with "JCAS I-01-1997 (Method for quantification of free calcium oxide)".
  • the content of magnesium in the powdered cement content is preferably 1.0 to 10 mass%, more preferably 2.5 to 8.0 mass%, and particularly preferably 4.0 to 6.0 mass%, calculated as oxide. If the content is 1.0 mass% or more, the strength development of the cement composition is further improved. If the content exceeds 10 mass%, the initial strength development of the cement composition (e.g., at 1 day) may decrease.
  • the content of calcium in the powdered cement-containing material is preferably 0.8 to 10 mass%, more preferably 1.0 to 4.0 mass%, further preferably 1.2 to 3.0 mass%, and particularly preferably 1.5 to 2.0 mass%, calculated as oxide. If the content is 0.8 mass% or more, the strength development of the cement composition is further improved. If the content exceeds 10.0 mass%, the initial strength development of the cement composition (e.g., at 1 day of age) may decrease.
  • the content of SO 3 in the powdery cement composition is preferably 6.0% by mass or less, more preferably 0.5 to 5.0% by mass, even more preferably 1.0 to 4.5% by mass, and particularly preferably 1.5 to 4.0% by mass. If the content is 6.0% by mass or less, the strength development of the cement composition can be further improved.
  • gypsum can be used as a material for the powdered cement composition in addition to components (i) to (ii) and (iv) in order to adjust the SO3 content in the powdered cement-containing material so that it falls within the above-mentioned numerical range.
  • Examples of the type of gypsum are not particularly limited, and include, for example, natural dihydrate gypsum, flue gas desulfurization gypsum, phosphate gypsum, titanic gypsum, hydrofluoric gypsum, etc. These may be used alone or in combination of two or more.
  • Examples of the form of gypsum include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. These may consist of only one type, or may include two or more types.
  • the powdered cement-containing material preferably contains gypsum in addition to the components (i) to (ii) and (iv).
  • the powdered cement-containing material may contain other materials in addition to the above-mentioned components (components (i) to (ii) and (iv)) as necessary, within the scope of the object of the present invention.
  • examples of other materials that may be added as necessary include various admixtures such as fly ash, silica fume, and ground granulated blast furnace slag, and various powdered admixtures.
  • the powdered cement-containing material may also contain an alkali metal.
  • the content of other materials in the powdered cement-containing composition is preferably 30 mass % or less, and more preferably 20 mass % or less, from the viewpoint of strength development of the powdered cement-containing composition.
  • the cement composition A contains, as the component (B), (iii) an amine.
  • Component (iii): Amine examples of the amine include chain amines such as alkanolamines, alkylamines, polyamines, and hydroxylamines, and water-soluble amines such as cyclic amines, etc. These may be used alone or in combination of two or more. Among these, from the viewpoints of improving the strength development and increasing the amount of fixed carbon dioxide, chain amines are preferred, and alkanolamines are more preferred.
  • the alkanolamine is an amine having an amino group and a hydroxyl group in the molecule.
  • alkanolamines include monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, methyldiethanolamine, 2-amino-2-methyl-1-propanol, methyldiisopropanolamine, diethanolisopropanolamine, diisopropanolethanolamine, tetrahydroxyethylethylenediamine, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine, tris(2-hydroxybutyl)amine, diglycolamine, and the like.
  • monoethanolamine, diethanol, and triisopropanolamine are preferred from the viewpoints of availability and improved strength development. These may be used alone or in combination of two or more.
  • alkanolamine having a structure in which a part of the alkanolamine is bonded to a polymer may also be used.
  • the alkanolamine may be a used alkanolamine obtained from a carbon dioxide recovery unit.
  • a liquid containing deteriorated alkanolamine is usually discarded.
  • the waste liquid can be effectively utilized.
  • Alkanolamines are known as grinding aids and may be used as grinding aids as well.
  • the amount of the amine (B) relative to 100 parts by mass of the powdery cement-containing material (A) described above is preferably 0.001 to 5.0 parts by mass, more preferably 0.005 to 4.0 parts by mass, even more preferably 0.02 to 2.0 parts by mass, even more preferably 0.05 to 1.8 parts by mass, even more preferably 0.1 to 1.6 parts by mass, even more preferably 0.5 to 1.4 parts by mass, and particularly preferably 0.8 to 1.2 parts by mass. If the amount is 0.001 parts by mass or more, the amount of carbon dioxide fixed can be increased, and the strength development can be further improved. If the amount is 5.0 parts by mass or less, the fluidity of the hydraulic composition before hardening can be prevented from deteriorating. Moreover, the cement composition A is preferably in a powder form from the viewpoints of ease of transportation and production of the hydraulic composition.
  • the method for producing the cement composition A is not particularly limited, and examples thereof include a method in which the materials such as the above-mentioned components (i) to (vi) are mixed to prepare a cement composition.
  • the order in which the materials are mixed is not particularly limited, and examples thereof include (a-1) a method of simultaneously mixing pulverized Portland cement or Portland cement clinker, a pulverized burned material containing C 2 S and C 2 AS, and an amine, (a-2) a method of simultaneously pulverizing and mixing Portland cement or Portland cement clinker and a burned material containing C 2 S and C 2 AS, and then mixing the resulting mixture with an amine, and (a-3) a method of simultaneously pulverizing and mixing Portland cement or Portland cement clinker, a burned material containing C 2 S and C 2 AS, and an amine.
  • the amine also has an effect as a grinding aid.
  • the cement composition further comprises materials such as alkaline earth metal-containing materials, the materials are usually mixed simultaneously with the Portland cement or Portland cement clinker, the calcined product containing C 2 S and C 2 AS.
  • a powdered cement-containing material obtained by previously mixing the components (i) and (ii), the component (iii), water, and aggregate
  • the component (iii) is previously mixed with water to form an aqueous solution.
  • a used alkanolamine (alkanolamine-containing waste liquid) obtained from a carbon dioxide capture device is used as the component (iii)
  • the amount of each material is determined so that the content of each material in the cement composition falls within a target numerical range.
  • the amount of the alkaline earth metal-containing material is determined by measuring the content of the alkaline earth metal in each material in advance, and then determining the content (oxide equivalent) of the alkaline earth metal in the cement composition (wherein the alkaline earth metal other than the alkaline earth metal contained in the alkaline earth metal-containing material includes only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide) within a target numerical range.
  • cement composition B Another example of the cement composition of the present invention is a cement composition (hereinafter also referred to as "cement composition B") containing (i) Portland cement or Portland cement clinker pulverized product, (ii) a fired product containing 2CaO.SiO2 and 2CaO.Al2O3.SiO2 , the fired product being a pulverized product that satisfies the above-mentioned conditions (1) to ( 2 ), and (iv) an alkaline earth metal-containing material, in which the content of alkaline earth metals in the cement composition (however, alkaline earth metals other than those contained in the alkaline earth metal-containing material (in other words, alkaline earth metals contained in materials other than the alkaline earth metal-containing material contained in the cement composition) include only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide) is 0.1 to 10 mass% in terms of oxide.
  • the cement composition B does not contain the above-mentioned component (i
  • the alkaline earth metal-containing material may be the same as the components (i), (ii), and (iv) used in the cement composition A, respectively.
  • the content of Portland cement or ground Portland cement clinker in the cement composition B is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and particularly preferably 20 to 40% by mass. If the content is 10% by mass or more, the strength of the hardened body can be increased. If the content is 60% by mass or less, the content of (ii) ground fired material becomes larger, and the reduction in carbon dioxide emissions can be further achieved.
  • the amount of pulverized burned material per 100 parts by mass of Portland cement or pulverized Portland cement clinker is preferably 30 to 500 parts by mass, more preferably 65 to 450 parts by mass, even more preferably 100 to 400 parts by mass, even more preferably 150 to 350 parts by mass, and particularly preferably 200 to 320 parts by mass. If the amount is 65 parts by mass or more, the amount of carbon dioxide absorbed by the hydraulic composition at the initial age will be greater. If the amount is 500 parts by mass or less, the strength expression of the cement composition is less likely to decrease due to the relatively small amount of Portland cement or pulverized Portland cement clinker.
  • the content of the pulverized calcined product in the cement composition B is preferably 10 to 90% by mass, more preferably 30 to 85% by mass, even more preferably 40 to 80% by mass, even more preferably 50 to 80% by mass, and particularly preferably 60 to 80% by mass. If the content is 10% by mass or more, the amount of carbon dioxide absorbed by the hydraulic composition at the initial age is increased. If the amount is 90% by mass or less, the strength development of the cement composition is less likely to decrease due to the relatively small amount of Portland cement or pulverized Portland cement clinker.
  • the ratio of the total amount of the component (i) and the component (ii) in the cement composition B is preferably 80 mass % or more, more preferably 90 mass % or more, and particularly preferably 95 mass % or more, from the viewpoints of improving the strength development of the cement composition and increasing the amount of carbon dioxide absorption.
  • alkaline earth metals in cement composition B (wherein alkaline earth metals other than those contained in the alkaline earth metal-containing substance (in other words, alkaline earth metals contained in materials other than the alkaline earth metal-containing substance contained in cement composition B) include only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide) is 0.1 to 10 mass%, more preferably 0.2 to 8 mass%, and particularly preferably 0.5 to 6 mass%, calculated as oxide. If the content is less than 0.1 mass%, the strength development of the cement composition decreases. If the content exceeds 10 mass%, the initial strength development of the cement composition (for example, at 1 day age) may decrease.
  • the cement composition B contains a plurality of alkaline earth metals (however, the alkaline earth metals other than the alkaline earth metals contained in the alkaline earth metal-containing material include only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide), the above content is the total content.
  • components (i) to (ii), component (v) (described later), and component (vi) (described later) may contain periclase (MgO), magnesium hydroxide (Mg(OH) 2 ), calcium oxide (CaO; particularly free calcium oxide), calcium hydroxide (Ca(OH) 2 ), etc.
  • the alkaline earth metal content includes these alkaline earth metals in addition to the alkaline earth metals contained in the alkaline earth metal-containing material.
  • alkaline earth metals e.g., calcium
  • silicate minerals e.g., belite, alite
  • aluminate phases e.g., aluminate phases
  • ferrite phases which are contained in components (i) and (ii) and components (v) and (vi), as well as alkaline earth metals such as gypsum (CaSO 4 ) and calcium carbonate (magnesium oxide, magnesium hydroxide, calcium oxide, and alkaline earth metals other than calcium hydroxide), do not affect the effects of the present invention, or are present in such small amounts that they have almost no effect on the effects of the present invention.
  • gypsum CaSO 4
  • calcium carbonate magnesium oxide, magnesium hydroxide, calcium oxide, and alkaline earth metals other than calcium hydroxide
  • the content of magnesium in the cement composition B is preferably 1.0 to 10 mass%, more preferably 2.5 to 8 mass%, and particularly preferably 4.0 to 6 mass%, calculated as oxide. If the content is 1.0 mass% or more, the strength development of the cement composition is further improved. If the content exceeds 10 mass%, the initial strength development of the cement composition (e.g., at 1 day) may decrease.
  • the content of calcium in the cement composition B is preferably 0.8 to 10 mass%, more preferably 1.0 to 4.0 mass%, further preferably 1.2 to 3.0 mass%, and particularly preferably 1.5 to 2.0 mass%, calculated as an oxide. If the content is 0.8 mass% or more, the strength development of the cement composition is further improved. If the content exceeds 10.0 mass%, the initial strength development of the cement composition (for example, at 1 day of age) may decrease.
  • the content of SO 3 in the cement composition B is preferably 6.0% by mass or less, more preferably 0.5 to 5.0% by mass, even more preferably 1.0 to 4.5% by mass, and particularly preferably 1.5 to 4.0% by mass. If the content is 6.0% by mass or less, the strength development of the cement composition can be further improved.
  • gypsum can be used as component (v) in addition to components (i) to (ii) and (iv) as materials for cement composition B in order to adjust the SO 3 content in cement composition B to fall within the above-mentioned numerical range.
  • cement composition B as the gypsum (v), the same one as the component (v) used in the cement composition A can be used.
  • component (i) of cement composition B is ground Portland cement clinker, it preferably contains gypsum in addition to components (i) to (ii) and (iv).
  • the cement composition B may contain another material (component (vi)) as necessary, within the scope of the object of the present invention.
  • examples of other materials that may be mixed as necessary include various admixtures such as fly ash, silica fume, and ground granulated blast furnace slag, and various powdered admixtures.
  • the cement composition B may also contain an alkali metal in addition to the alkaline earth metal.
  • the content of the other materials in the cement composition B is preferably 30 mass % or less, and more preferably 20 mass % or less, from the viewpoint of the strength development of the cement composition.
  • the cement composition B is preferably in a powder form from the viewpoints of ease of transportation and production of the hydraulic composition.
  • the method for producing the cement composition B is not particularly limited, and examples thereof include a method of mixing each material such as the above-mentioned components (i) to (ii) and (iv) to (vi) to prepare a cement composition.
  • the order in which the materials are mixed is not particularly limited, and examples thereof include (i) a method in which Portland cement or Portland cement clinker pulverized product, a pulverized product of a burned product containing C2S and C2AS , and a powdered alkaline earth metal-containing material are simultaneously mixed, (ii) a method in which Portland cement or Portland cement clinker, a burned product containing C2S and C2AS , and a lump of alkaline earth metal-containing material are simultaneously pulverized and mixed, and (iii) a method in which Portland cement or Portland cement clinker and a burned product containing C2S and C2AS are simultaneously pulverized and mixed, and then the obtained mixture is mixed with the powdered alkaline earth metal-containing material.
  • the amount of each material is determined so that the content of each material in the cement composition falls within a target numerical range.
  • the amount of the alkaline earth metal-containing material is determined by measuring the content of the alkaline earth metal in each material in advance, and then determining the content (oxide equivalent) of the alkaline earth metal in the cement composition (wherein the alkaline earth metal other than the alkaline earth metal contained in the alkaline earth metal-containing material includes only magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide) within a target numerical range.
  • the above-mentioned cement composition A or B can be hardened by containing water.
  • An example of the hydraulic composition of the present invention contains the above-mentioned cement composition A, water, and aggregate, and the amount of water is 25 to 70 parts by mass per 100 parts by mass of the powdered cement-containing material (hereinafter, also referred to as "hydraulic composition A").
  • Another example of the hydraulic composition of the present invention contains the above-mentioned cement composition B, water, and aggregate, and the amount of water per 100 parts by mass of the cement composition is 25 to 70 parts by mass (hereinafter, also referred to as "hydraulic composition B").
  • the term “hydraulic composition” includes both the fluid form before hardening and the form after hardening.
  • the water is not particularly limited, and examples thereof include tap water, recycled water as specified in "JIS A 5308:2019 (Ready Mixed Concrete)", and the like.
  • the amount of water per 100 parts by mass of the powdered cement-containing material is 25 to 70 parts by mass, preferably 30 to 65 parts by mass, more preferably 40 to 60 parts by mass, and particularly preferably 45 to 55 parts by mass. If the amount is less than 25 parts by mass, the fluidity of the hydraulic composition before hardening decreases. If the amount is more than 70 parts by mass, the strength of the hardened product of the hydraulic composition decreases.
  • the amount of water relative to 100 parts by mass of the cement composition B is 25 to 70 parts by mass, preferably 30 to 65 parts by mass, more preferably 40 to 60 parts by mass, and particularly preferably 45 to 55 parts by mass. If the amount is less than 25 parts by mass, the fluidity of the hydraulic composition before hardening decreases. If the amount is more than 70 parts by mass, the strength of the hardened product of the hydraulic composition decreases.
  • the aggregate may be fine aggregate alone or a combination of fine and coarse aggregates.
  • any of natural aggregates, artificial aggregates, and recycled aggregates may be used.
  • the fine aggregate is not particularly limited, and examples thereof include river sand, mountain sand, land sand, sea sand, crushed sand, silica sand, limestone fine aggregate, slag fine aggregate, lightweight fine aggregate, clinker fine aggregate, glass aggregate, and CCU fine aggregate (fine aggregate in which carbon dioxide is fixed to one or more types selected from recycled aggregate, waste concrete, blast furnace slag, and steelmaking slag), etc. These may be used alone or in combination of two or more types.
  • the coarse aggregate is not particularly limited, and examples thereof include river gravel, mountain gravel, land gravel, sea gravel, crushed stone, limestone coarse aggregate, slag coarse aggregate, lightweight coarse aggregate, clinker coarse aggregate, glass aggregate, and CCU coarse aggregate (coarse aggregate in which carbon dioxide is fixed to one or more selected from recycled aggregate, waste concrete, blast furnace slag, and steelmaking slag), etc. These may be used alone or in combination of two or more.
  • the fine aggregate ratio volume ratio of fine aggregate/(fine aggregate+coarse aggregate) expressed as a percentage
  • the content of the aggregate in the hydraulic composition A (the total amount of fine aggregate and coarse aggregate when both are used) is preferably 200 to 750 parts by mass, more preferably 300 to 650 parts by mass, per 100 parts by mass of the powdered cement-containing material.
  • the content of the aggregate in the hydraulic composition B (the total amount of fine aggregate and coarse aggregate when both are used) is preferably 200 to 750 parts by mass, more preferably 300 to 650 parts by mass, per 100 parts by mass of the cement composition B.
  • the hydraulic composition may contain various admixtures such as cement dispersants (water-reducing agents, air-entraining water-reducing agents, high-performance water-reducing agents or high-performance air-entraining water-reducing agents), air-entraining agents, defoamers, shrinkage-reducing agents, organic fibers, glass fibers, etc., as necessary, within the scope that does not impair the object of the present invention.
  • cement dispersants water-reducing agents, air-entraining water-reducing agents, high-performance water-reducing agents or high-performance air-entraining water-reducing agents
  • defoamers air-entraining agents
  • shrinkage-reducing agents organic fibers, glass fibers, etc.
  • the strength of the hydraulic composition can be further increased.
  • the carbonated hardened body can be obtained, for example, by subjecting the hydraulic composition to carbonation curing.
  • Carbon dioxide is fixed in the hydraulic composition by carbonation curing, and the structure of the hydraulic composition is densified, thereby making it possible to increase the strength of the hydraulic composition.
  • the carbonation curing method is not particularly limited, and examples thereof include a method of exposing the hydraulic composition to carbon dioxide for carbonation curing, and a method of blowing carbon dioxide into the hydraulic composition when kneading the hydraulic composition (in this case, a larger amount of carbon dioxide can be absorbed), etc.
  • the carbonation of the hydraulic composition also includes a form in which carbonation occurs naturally by absorbing carbon dioxide in the air over a long period of time in the form of a concrete product, concrete structure, concrete pavement, or the like.
  • the amount of carbon dioxide fixed per ton of cement composition is preferably 80 to 400 kg/ton, more preferably 100 to 350 kg/ton, even more preferably 150 to 330 kg/ton, still more preferably 200 to 315 kg/ton, and particularly preferably 250 to 300 kg/ton. If the amount of fixation is 80 kg/ton or more, the total amount of carbon dioxide discharged can be further reduced. If the amount of fixation is 400 kg/ton or less, productivity can be further improved.
  • An example of a method for producing a hardened body of a hydraulic composition obtained by carbonation curing includes a method including a mixture preparation step of preparing a mixture, which is a mixture of the materials constituting the cement composition, water, and aggregate, a casting step of casting the mixture into a formwork, a demolding step of removing the hardened body of the kneaded material from the formwork after the kneaded material in the formwork has hardened, and a carbonation curing step of carbonating the hardened body of the kneaded material demolded from the formwork to obtain a carbonated hardened body.
  • a mixture preparation step of preparing a mixture which is a mixture of the materials constituting the cement composition, water, and aggregate
  • a casting step of casting the mixture into a formwork a demolding step of removing the hardened body of the kneaded material from the formwork after the kneaded material in the formwork has hardened
  • a carbonation curing step of carbonating the hard
  • This step is a step of preparing a kneaded product, which is a mixture of the materials constituting the cement composition, water, and aggregate.
  • the method for preparing a kneaded product, which is a mixture of the materials constituting the cement composition A, water, and aggregate is not particularly limited, and examples thereof include (a-1) a method of simultaneously kneading (mixing) a pre-prepared cement composition A, water, and aggregate, and (a-2) a method of simultaneously kneading (mixing) a powdery cement-containing product (A) obtained by previously mixing the components (i) to (ii) constituting the component (A), the component (B), water, and aggregate, and the like.
  • the method for preparing a kneaded product which is a mixture of the materials constituting the cement composition B, water, and aggregate
  • examples thereof include (b-1) a method of simultaneously mixing a pre-prepared cement composition B, water, and aggregate, and (b-2) a method of simultaneously mixing a pre-mixed mixture of the components (i) and (ii), the component (iv), water, and aggregate.
  • the method for kneading the materials is not particularly limited.
  • the device used for kneading is also not particularly limited, and for example, a commonly used mixer such as an omni mixer, a pan mixer, a twin-shaft mixer, or a tilting mixer can be used.
  • This process is a process in which the mixture obtained in the previous process is poured into a formwork.
  • the casting method is not particularly limited, and a conventional method such as casting can be used.
  • the curing method used after pouring the kneaded material into the formwork and before demolding is not particularly limited, and for example, general curing methods such as air curing, moist air curing, underwater curing, sealed curing, and steam curing can be used.
  • Mold removal process This step is a step in which, after the kneaded mixture in the formwork has hardened, the hardened hydraulic composition obtained by the hardening of the kneaded mixture is removed from the formwork.
  • This step is a step of carbonating the hardened hydraulic composition released from the formwork to obtain a carbonated hardened body by carbonating the hardened hydraulic composition.
  • the concentration of carbon dioxide gas in carbonation curing is preferably 1 vol% or more, more preferably 10 vol% or more, even more preferably 50 vol% or more, and particularly preferably 60 vol% or more.
  • the concentration of carbon dioxide gas is preferably 95 vol% or less, more preferably 85 vol% or less, and even more preferably 80 vol% or less.
  • the temperature in the carbonation curing is preferably 5 to 100°C, more preferably 10 to 90°C, even more preferably 15 to 80°C, even more preferably 20 to 75°C, even more preferably 25 to 70°C, even more preferably 30 to 65°C, even more preferably 30 to 50°C, and particularly preferably 30 to 40°C. If the temperature is 5°C or higher, the efficiency of carbonation is further improved and the strength of the hardened body is further increased. If the temperature is 100°C or lower, the energy cost required for the carbonation curing can be further reduced.
  • the relative humidity during carbonation curing is preferably 20 to 90%, more preferably 30 to 80%, and particularly preferably 40 to 70%. If the relative humidity is 20% or more, the efficiency of carbonation is improved and the strength of the hardened body is increased. If the relative humidity is 90% or less, the cost of curing equipment can be reduced.
  • the fired product was pulverized, and the powder X-ray diffraction (XRD) pattern of the pulverized product was obtained using an X-ray diffractometer (manufactured by Bruker Japan, product name "D8 ADVANCE A-25 type").
  • the obtained powder XRD pattern was qualitatively analyzed using analysis software (manufactured by Bruker Japan, product name "DIFFRAC.EVA"), and peaks of C 2 S ( ⁇ -C 2 S), C 2 AS, C 3 A, and CA were observed. On the other hand, no peak of MgO (periclase) was observed.
  • the mineral composition of the ground material was measured by fitting the theoretical profiles of each mineral, C 2 S ( ⁇ -C 2 S), C 2 AS, C 3 A, and CA, to the measured profiles obtained from the powder XRD results by the Rietveld method. The results are shown in Table 2.
  • the content of f.CaO in the fired product was measured in accordance with "JCAS I-01-1997 (Method for Determination of Free Calcium Oxide)" and was found to be 0.3 mass%.
  • the fired product did not contain Mg(OH) 2 or Ca(OH) 2 .
  • the pulverized product of the fired material had a Blaine specific surface area of 3,310 cm 2 /g.
  • Examples 1 to 3 The calcined product and the exhausted dihydrate gypsum were mixed and pulverized in amounts such that the mass ratio was 95.67:4.33 to obtain a mixture of the pulverized calcined product and the exhausted dihydrate gypsum.
  • the mixture and ordinary Portland cement were mixed in a mass ratio of 75:25 (mixture: ordinary Portland cement) to obtain a powdered cement-containing material.
  • the chemical composition (actual values) of the powdered cement-containing material is shown in Table 6, and the mineral composition (calculated values) of the powdered cement-containing material is shown in Table 7.
  • the chemical composition of the powdered cement-containing material was measured in accordance with JIS R 5204:2019 (X-ray fluorescence analysis method for cement).
  • the mineral composition was measured in the same manner as for the pulverized product of the fired material.
  • the Blaine specific surface area of the powdered cement-containing material was 3,300 cm2 /g.
  • the types of amines shown in Table 8, fine aggregate, and water in the amounts shown in Table 8 (“Water/powdered cement-containing material” in Table 8 indicates the mass ratio of water to the powdered cement-containing material)
  • a test specimen was prepared in accordance with "JIS R 5201:2015 (Physical Testing Methods for Cement)" and demolded after one day. Carbonation curing was performed in a curing tank at a temperature of 65°C, a relative humidity of 60%, and a carbon dioxide concentration of 80% by volume.
  • the specimens were prepared in the same manner as in the measurement of compressive strength and bending strength described above, and after demolding, they were subjected to carbonation curing in a curing tank at a temperature of 65°C, a relative humidity of 60%, and a carbon dioxide concentration of 20 % by volume.
  • the specimens at the ages of 3, 7, and 14 days were crushed, and the amount of carbon in the specimens was measured using a carbon/sulfur analyzer. The measured values were converted to CO2 to determine the amount of carbon dioxide (A) in the specimens.
  • the amount of carbon dioxide (B) contained in the specimens before carbonation curing was determined based on the amount of carbon contained in each specimen (hardened body of hydraulic composition) measured using a carbon/sulfur analyzer and the blending ratio of the hydraulic composition, and the amount of carbon dioxide fixed in the specimens was calculated from the difference (A-B) between the amount of carbon dioxide before carbonation curing and the amount of carbon dioxide after curing.
  • the amount of fixed carbon dioxide (kg/ton) was calculated by dividing the amount of fixed carbon dioxide in the test specimen by the amount of cement used in the test specimen.
  • test specimens were removed from the curing tank and further cured for 4 days in a constant temperature and humidity room at a temperature of 20° C. and a relative humidity of 60% (shown as "3 days + 4 days” in Table 8).
  • the amount of carbon dioxide fixation of the test specimens was measured in the same manner.
  • Examples 4 to 8 The powdered cement-containing material prepared in Example 1 and the alkaline earth metal-containing material of the type shown in Table 10 were mixed in the amounts shown in Table 10 to obtain a cement composition.
  • content of alkaline earth metal is the content of alkaline earth metal in the cement composition (oxide equivalent).
  • derived from f ⁇ CaO means f ⁇ CaO contained in the cement composition.
  • composition shown as “composition” in Table 10
  • water/composition indicates the mass ratio of water to the cement composition
  • a test specimen was prepared in accordance with "JIS R 5201:2015 (physical test method for cement)" and, after demolding, carbonation curing was performed in a curing tank at a temperature of 30°C, a relative humidity of 60%, and a carbon dioxide concentration of 80% by volume. While performing carbonation curing, the compressive strength and flexural strength of the test specimen (hardened body of hydraulic composition) at material ages of 3 days and 7 days were measured in accordance with "JIS R 5201:2015 (Physical testing methods for cement)".
  • Example 9 to 12 and 14 A mixture of the pulverized calcined product and dehydrated gypsum prepared in Example 1 and a mixture of ordinary Portland cement (corresponding to the powdered cement-containing material of Example 1: shown as "powder raw material” in Table 12) was mixed with an amine of the type and amount shown in Table 12 to obtain a cement composition.
  • composition shown as “composition” in Table 12
  • water/composition indicates the mass ratio of water to the cement composition
  • a test specimen was prepared in accordance with "JIS R 5201:2015 (Physical Testing Methods for Cement)" and, after demolding, carbonation curing was performed in a curing tank at a temperature of 30°C, a relative humidity of 60%, and a carbon dioxide concentration of 80% by volume. While performing carbonation curing, the compressive strength of the test specimen (hardened body of hydraulic composition) at a material age of 7 days was measured in accordance with "JIS R 5201:2015 (Physical Testing Methods for Cement)".
  • Specimens were prepared in the same manner as in the measurement of compressive strength described above, and after demolding, they were subjected to carbonation curing in a curing tank at a temperature of 30° C., a relative humidity of 60%, and a carbon dioxide concentration of 20% by volume.
  • the amount of carbon dioxide fixed (kg/ton) was calculated for the specimens at 3 and 7 days of age in the same manner as in Example 1.
  • "-" indicates that no measurement was performed.
  • Example 13 A powdered cement-containing material was obtained by mixing the mixture of the pulverized calcined product and dehydrated gypsum prepared in Example 1, the mixture of ordinary Portland cement, and the amount of an alkaline earth metal-containing material shown in Table 12.
  • a cement composition was obtained by mixing the obtained powdered cement-containing material with an amine of the type and amount shown in Table 12.
  • "derived from f.CaO" means f.CaO contained in the powdered cement-containing material.
  • Example 13 (containing an amine and an alkaline earth metal) had the highest compressive strength (74.8 N/mm 2 ) at 7 days of age.
  • Example 13 material age 3 days: 11.8 N/mm 2 , material age 7 days: 16.6 N/mm 2 ) is greater than the bending strength of Comparative Example 2 (material age 3 days: 9.8 N/mm 2 , 11.7 N/mm 2 ). From the carbonation depth of Example 13, it can be seen that the test specimen was carbonated to its inside at the age of 7 days.
  • Example 15 to 16 A cement composition was obtained by mixing the mixture of the pulverized calcined product and dehydrated gypsum prepared in Example 1 with a mixture of ordinary Portland cement (corresponding to the powdered cement-containing material in Example 1: shown as "powdered raw material” in Table 14) with an alkaline earth metal-containing material of the type and amount shown in Table 14.
  • a mixture of ordinary Portland cement corresponding to the powdered cement-containing material in Example 1: shown as "powdered raw material” in Table 14
  • an alkaline earth metal-containing material of the type and amount shown in Table 14.
  • two types of alkaline earth metal-containing materials were mixed.
  • Alkaline earth metal content is the content of alkaline earth metals in the cement composition (converted into oxide).
  • composition shown as “composition” in Table 14
  • fine aggregate and water in the amounts shown in Table 14
  • water/composition indicates the mass ratio of water to the cement composition
  • a test specimen was prepared in accordance with "JIS R 5201:2015 (Physical Test Methods for Cement)" and, after demolding, carbonation curing was performed in a curing tank at a temperature of 30°C, a relative humidity of 60%, and a carbon dioxide concentration of 80% by volume.

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

セメント混和材として焼成物の粉砕物を含み、強度発現性に優れ、かつ、養生過程において多量の二酸化炭素を吸収、固定化することにより、排出される二酸化炭素の総量を低減することができるセメント組成物及び該セメント組成物を含む水硬性組成物を提供する。 (A)(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、(ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物の粉砕物であって、以下の(1)~(2)の条件を満たす焼成物の粉砕物、を含む粉末状セメント含有物、並びに、(B)(iii)アミンを含むセメント組成物。 (1)上記2CaO・SiO100質量部に対する上記2CaO・Al・SiOの量が10~100質量部であること (2)上記焼成物が3CaO・Alを含まない、又は、上記2CaO・SiO100質量部に対して15質量部以下の量で含むこと

Description

セメント組成物及び水硬性組成物
 本発明は、セメント組成物及び該セメント組成物を含む水硬性組成物に関する。
 現在、地球温暖化の抑制のため、二酸化炭素の排出量の低減が重要な課題になっている。
 セメント質硬化体の製造における、二酸化炭素の排出量を低減する方法として、セメント質硬化体の養生過程において二酸化炭素を吸収させることにより、セメント質硬化体を得るまでに排出される二酸化炭素の総量を低減する方法が知られている。
 養生過程において多量の二酸化炭素を吸収することにより、排出される二酸化炭素の総量を大幅に低減することができるセメント質硬化体として、特許文献1には、(A)ムライトとアノーサイトのいずれか一方または両方を含むセメント混合用粉末、及び、ポルトランドセメントを含む粉末状セメント組成物、(B)水、及び、(C)骨材、を含むセメント混練物の硬化体を、炭酸化してなることを特徴とするセメント質硬化体が記載されている。
 また、特許文献2には、養生過程において多量の二酸化炭素を吸収することにより、排出される二酸化炭素の総量を大幅に低減することができ、かつ、粉末材料の全量がポルトランドセメントからなる場合を基準にしたとき、圧縮強さの低下の割合が小さいセメント質硬化体として、(A)CS100質量部に対して、CASを10~200質量部含有し、かつ、CAの含有量が20質量部以下である焼成物の粉砕物と、ポルトランドセメントを含む粉末状セメント組成物と、(B)水と、(C)骨材、の各材料を含むセメント混練物の硬化体を、炭酸化してなることを特徴とするセメント質硬化体が記載されている。
 一方、セメント混和材として、焼成物の粉砕物(セメントクリンカ粉砕物に該当しないもの)を用いたセメント組成物が知られている。
 例えば、セメントの水和熱を低下させ、かつ流動性を良好にすることができる焼成物(セメント混和材)として、特許文献3には、CS100重量部に対して、CASを10~100重量部含有し、かつ、CAの含有量が20重量部以下であることを特徴とする焼成物が記載されている。
特開2016-153357号公報 特開2016-47788号公報 特開2004-2155号公報
 本発明の目的は、セメント混和材として焼成物の粉砕物(セメントクリンカ粉砕物に該当しないもの)を含み、強度発現性に優れ、かつ、養生過程において多量の二酸化炭素を吸収、固定化することにより、排出される二酸化炭素の総量を低減することができるセメント組成物及び該セメント組成物を含む水硬性組成物を提供することである。
 本発明者は、上記課題を解決するために鋭意検討した結果、(A)(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、(ii)2CaO・SiO及び2CaO・Al・SiOを含み特定の条件を満たす焼成物の粉砕物を含む粉末状セメント含有物、並びに、(B)(iii)アミンを含むセメント組成物によれば、上記目的を達成できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[15]を提供するものである。
[1] (A)(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、(ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物の粉砕物であって、以下の(1)~(2)の条件を満たす焼成物の粉砕物、を含む粉末状セメント含有物、並びに、(B)(iii)アミンを含むことを特徴とするセメント組成物。
(1)上記2CaO・SiO100質量部に対する上記2CaO・Al・SiOの量が10~100質量部であること
(2)上記焼成物が3CaO・Alを含まない、又は、上記2CaO・SiO100質量部に対して15質量部以下の量で含むこと
[2] 上記粉末状セメント含有物が、(iv)アルカリ土類金属含有物を含み、上記粉末状セメント含有物中のアルカリ土類金属(ただし、上記アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率が、酸化物換算で0.1~10質量%である前記[1]に記載のセメント組成物。
[3] 上記粉末状セメント含有物100質量部に対する上記アミンの量が0.001~5.0質量部である前記[1]又は[2]に記載のセメント組成物。
[4] 上記アミンが、アルカノールアミンである前記[1]~[3]のいずれかに記載のセメント組成物。
[5] 上記粉末状セメント含有物中の上記焼成物の粉砕物の含有率が10~90質量%である前記[1]~[4]のいずれかに記載のセメント組成物。
[6](i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物、(ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物であって、以下の(1)~(2)の条件を満たす焼成物の粉砕物、並びに(iv)アルカリ土類金属含有物、を含むセメント組成物であって、上記セメント組成物中のアルカリ土類金属(ただし、上記アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率が、酸化物換算で0.1~10質量%であることを特徴とするセメント組成物。
(1)上記2CaO・SiO100質量部に対する上記2CaO・Al・SiOの量が10~100質量部であること
(2)上記焼成物が3CaO・Alを含まない、又は、上記2CaO・SiO100質量部に対して15質量部以下の量で含むこと
[7] 上記セメント組成物中の上記焼成物の粉砕物の含有率が10~90質量%である前記[6]に記載のセメント組成物。
[8] 上記アルカリ土類金属が、マグネシウム(Mg)である前記[6]又は[7]に記載のセメント組成物。
[9] 上記アルカリ土類金属が、カルシウム(Ca)である前記[6]~[8]のいずれか記載のセメント組成物。
[10] 前記[1]~[5]のいずれかに記載のセメント組成物、水、及び骨材を含む水硬性組成物であって、上記粉末状セメント含有物100質量部に対する上記水の量が25~70質量部である水硬性組成物。
[11] 上記水硬性組成物が、炭酸化養生を行ってなる炭酸化硬化体である前記[10]に記載の水硬性組成物。
[12] 前記[6]~[9]のいずれかに記載のセメント組成物、水、及び骨材を含む水硬性組成物であって、上記セメント組成物100質量部に対する上記水の量が25~70質量部である水硬性組成物。
[13] 上記水硬性組成物が、炭酸化養生を行ってなる炭酸化硬化体である前記[12]に記載の水硬性組成物。
[14] 前記[11]に記載の水硬性組成物を製造するための方法であって、上記セメント組成物を構成する各材料、上記水、及び上記骨材を用いて、これらの混合物である混練物を調製する混練物調製工程と、上記混練物を型枠内に打設する打設工程と、上記型枠内の上記混練物が硬化した後に、上記混練物の硬化体を上記型枠から脱型する脱型工程と、上記型枠から脱型した上記混練物の硬化体を炭酸化養生して、上記炭酸化硬化体を得る炭酸化養生工程を含む、水硬性組成物の製造方法。
[15] 前記[13]に記載の水硬性組成物を製造するための方法であって、上記セメント組成物を構成する各材料、上記水、及び上記骨材を用いて、これらの混合物である混練物を調製する混練物調製工程と、上記混練物を型枠内に打設する打設工程と、上記型枠内の上記混練物が硬化した後に、上記混練物の硬化体を上記型枠から脱型する脱型工程と、上記型枠から脱型した上記混練物の硬化体を炭酸化養生して、上記炭酸化硬化体を得る炭酸化養生工程を含む、水硬性組成物の製造方法。
 本発明のセメント組成物は、水を加えて硬化体とするときに、強度発現性に優れたものである。
 また、本発明のセメント組成物は、水を加えて硬化物とする際の養生過程において炭酸化養生等を行うことによって、多量の二酸化炭素を吸収、固定化することにより、排出される二酸化炭素の総量を低減することができる。
 さらに、本発明のセメント組成物を構成する(ii)焼成物の粉砕物の原料組成を調整し、ポルトランドセメントに比べて、CaOの含有率を小さくすることによって、製造時の二酸化炭素の排出量を削減することができる。また、上記焼成物の製造時の焼成温度を、ポルトランドセメントの製造時の焼成温度に比べて低くすることによって、焼成用の燃料から生じる二酸化炭素の排出量を削減することができる。
[セメント組成物A]
 本発明のセメント組成物の一例は、(A)(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、(ii)2CaO・SiO(以下、「CS」ともいう。)及び2CaO・Al・SiO(以下、「CAS」ともいう。)を含む焼成物の粉砕物であって、以下の(1)~(2)の条件を満たす焼成物の粉砕物、を含む粉末状セメント含有物、並びに、(B)(iii)アミンを含むものである(以下、「セメント組成物A」ともいう)。
(1)上記2CaO・SiO100質量部に対する上記2CaO・Al・SiOの量が10~100質量部であること
(2)上記焼成物が3CaO・Al(以下、「CA」ともいう。)を含まない、又は、上記2CaO・SiO100質量部に対して15質量部以下の量で含むこと
 以下、詳しく説明する。
[(A)成分:粉末状セメント含有物]
 粉末状セメント含有物は、(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、(ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物の粉砕物であって、上記(1)~(2)の条件を満たす焼成物の粉砕物を含むものである。
〔(i)成分:ポルトランドセメント又はポルトランドセメントクリンカ粉砕物〕
 ポルトランドセメントの例としては、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントが挙げられる。
 また、ポルトランドセメントクリンカ粉砕物の例としては、上述の各種ポルトランドセメントのクリンカの粉砕物が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、コストや汎用性等の観点から、普通ポルトランドセメントまたは普通ポルトランドセメントクリンカの粉砕物が好ましい。ポルトランドセメント又はポルトランドセメントクリンカ粉砕物のブレーン比表面積は、好ましくは2,500~5,000cm/g、より好ましくは3,000~4,500cm/gである。上記ブレーン比表面積が2,500cm/g以上であれば、セメント組成物の強度発現性がより向上する。上記ブレーン比表面積が5,000cm/g以下であれば、セメント組成物の硬化前の流動性がより向上する。
 粉末状セメント含有物中のポルトランドセメント又はポルトランドセメントクリンカ粉砕物の含有率は、好ましくは10~70質量%、より好ましくは15~60質量%、さらに好ましくは20~50質量%、特に好ましくは25~40質量%である。上記含有率が10質量%以上であれば、水硬性組成物の硬化体の強度をより大きくすることができる。上記含有率が60質量%以下であれば、(ii)焼成物の粉砕物の含有率がより大きくなるため、上述の二酸化炭素の排出量の削減をより一層実現することができる。
 セメント組成物A中のポルトランドセメント又はポルトランドセメントクリンカ粉砕物の含有率は、好ましくは10~70質量%、より好ましくは15~60質量%、さらに好ましくは20~50質量%、特に好ましくは25~40質量%である。上記含有率が10質量%以上であれば、硬化体の強度をより大きくすることができる。上記含有率が60質量%以下であれば、(ii)焼成物の粉砕物の含有率がより大きくなるため、上述の二酸化炭素の排出量の削減をより一層実現することができる。
〔(ii)成分:CSとCASを含む焼成物の粉砕物〕
 CSとCASを含む焼成物(以下、単に「焼成物」ともいう。)において、CS100質量部に対するCASの量は10~100質量部、好ましくは20~80質量部、より好ましくは25~70質量部、特に好ましくは30~60質量部である。上記量が10質量部未満である焼成物は、炭酸化養生時の水硬性組成物(例えば、モルタル)の炭酸化が進みにくくなり、初期材齢における二酸化炭素の吸収量が少なくなる。上記量が100質量部を超える場合、相対的にCSの量が少なくなるため、セメント組成物の強度発現性が低下するともに、長期材齢における水硬性組成物の二酸化炭素の吸収量が少なくなる。
 焼成物がCAを含む場合、CS100質量部に対するCAの量は15質量部以下、好ましくは0.1~10質量部、より好ましくは0.5~5質量部、特に好ましくは1~3質量部である。上記量が15質量部を超える焼成物は製造が困難である。また、上記量が15質量部以下であれば、水硬性組成物の硬化前の流動性がより向上する。
 焼成物は4CaO・Al・Fe(以下、「CAF」ともいう。)を含んでいてもよい。
 CS100質量部に対するCAFの量は、好ましくは30質量部以下、より好ましくは0.1~20質量部、さらに好ましくは0.5~15質量部、特に好ましくは1.0~10質量部である。上記量が30質量部以下であれば、水硬性組成物の初期材齢の水和活性をより向上させることができる。
 CS100質量部に対するCAF及びCASの合計量は、好ましくは10~100質量部、より好ましくは20~90質量部、特に好ましくは30~80質量部である。上記量が10質量部以上である焼成物は、炭酸化養生時の水硬性組成物(例えば、モルタル)の炭酸化が進みやすくなり、初期材齢における二酸化炭素の吸収量がより多くなる。上記量が100質量部以下であると、相対的にCSの量が多くなるため、セメント組成物の強度発現性がより向上するともに、長期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。
 CAS100質量部に対するCAFの量は、好ましくは210質量部以下、より好ましくは100質量部以下、さらに好ましくは50質量部以下、特に好ましくは20質量部以下である。上記量が210質量部以下であれば、水硬性組成物の初期材齢の水和活性をより向上させることができる。
 焼成物中のCS(ビーライト)の含有率は、好ましくは50~80質量%、より好ましくは55~75質量%、特に好ましくは60~70質量%である。上記含有率が50質量%以上であれば、セメント組成物の長期強度発現性がより向上する。上記含有率が80質量%以下であれば、セメント組成物の初期強度発現性がより向上する。
 焼成物中のCASの含有率は、好ましくは10~60質量%、より好ましくは20~50質量%、特に好ましくは25~40質量%である。上記含有率が10質量%以上であれば、水硬性組成物の炭酸化が進みやすくなり、初期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。上記含有率が60質量%以下であれば、相対的にCSの量が多くなるため、セメント組成物の強度発現性がより向上するともに、長期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。
 焼成物中のCA(アルミネート相)の含有率は、好ましくは10質量%以下、より好ましくは0.1~5質量%、特に好ましくは0.5~3.5質量%である。上記含有率が10質量%以下であれば、水硬性組成物の硬化前の流動性がより向上する。
 焼成物中のCAF(フェライト相)の含有率は、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下である。上記含有率が20質量%以下であれば、水硬性組成物の初期材齢の水和活性をより向上することができる。
 焼成物中のCS(エーライト;3CaO・SiO)の含有率は、好ましくは5質量%以下、より好ましくは3質量%以下、特に好ましくは1質量%以下である。上記含有率が5質量%以下であれば、水硬性組成物の硬化前の流動性をより向上することができる。
 焼成物(特に、石灰石を原料として用いた場合)中のCaOの含有率は、好ましくは50~59質量%、より好ましくは52~58質量%、特に好ましくは53~57質量%である。上記割合が50質量%以上であればセメント組成物の強度発現性が向上する。上記含有率が59質量%以下であれば、焼成時の二酸化炭素の排出量をより低減することができる。
 焼成物中のSiOの含有率は、好ましくは15~45質量%、より好ましくは20~40質量%、特に好ましくは25~35質量%である。
 焼成物中のAlの含有率は、好ましくは1~10質量%、より好ましくは3~9質量%、特に好ましくは4~8質量%である。
 焼成物中のFeの含有率は、好ましくは1~8質量%、より好ましくは2~6質量%、特に好ましくは3~5質量%である。
 焼成物の鉱物組成(CS、CAS、CA、及びCAF等の含有率)は、焼成物に対してX線回折(XRD)/リートベルト法等を用いて定量することができる。具体的には、各鉱物の理論プロファイルを、焼成物の粉末X線回折チャート(実測プロファイル)にフィッティングしてリートベルト解析により定量できる。該定量には、市販の解析ソフトを使用することができる。また、顕微鏡観察や電子線後方散乱回折を用いたポイントカウンティング等によっても上記鉱物組成を定量することができる。
 上述した焼成物は、例えば、産業廃棄物、一般廃棄物、および建設発生土等から選ばれる1種以上を原料として、目標とする焼成物の鉱物組成、化学組成等となるように原料を調製した後、この原料を、例えば1,000~1,400℃(好ましくは1,200~1,400℃、さらに好ましくは1,300~1400℃)で焼成することで製造することができる。
 また、上記原料だけでは、焼成物の鉱物組成が目標とする数値になるように調製することが難しい場合は、カルシウム原料(例えば、石灰石)、ケイ素原料、アルミニウム原料、および鉄原料等の原料を用いてもよい。
 得られた焼成物は、例えば、ボールミルやロッドミル等の粉砕機を用いて適宜粉砕される。粉末状セメント含有物が石膏を含む場合、焼成物と石膏を同時に粉砕し混合してもよい。焼成物のブレーン比表面積は、好ましくは2,500~5,000cm/g、より好ましくは3,000~4,500cm/gである。上記ブレーン比表面積が2,500cm/g以上であれば、水和反応がより促進され、二酸化炭素の吸収量がより増大し、セメント組成物の強度発現性がより向上する。上記ブレーン比表面積が5,000cm/g以下であれば、水硬性組成物の硬化前の流動性がより向上する。
 粉末状セメント含有物中の焼成物の粉砕物の含有率は、好ましくは10~90質量%、より好ましくは30~85質量%、さらに好ましくは40~80質量%、さらに好ましくは50~80質量%、特に好ましくは60~80質量%である。上記含有率が10質量%以上であれば、初期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。上記量が90質量%以下であれば、ポルトランドセメント又はポルトランドセメントクリンカ粉砕物の量が相対的に少なくなることによるセメント組成物の強度発現性の低下が起こりにくくなる。
 ポルトランドセメント又はポルトランドセメントクリンカ粉砕物100質量部に対する、焼成物の粉砕物の量は、好ましくは65~500質量部、より好ましくは100~400質量部、さらに好ましくは150~350質量部、特に好ましくは200~320質量部である。上記量が65質量部以上であれば、初期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。上記量が500質量部以下であれば、ポルトランドセメント又はポルトランドセメントクリンカ粉砕物の量が相対的に少なくなることによるセメント組成物の強度発現性の低下が起こりにくくなる。
 また、セメント組成物中の焼成物の粉砕物の含有率は、好ましくは10~90質量%、より好ましくは30~85質量%、さらに好ましくは40~80質量%、さらに好ましくは50~80質量%、特に好ましくは60~80質量%である。上記含有率が10質量%以上であれば、初期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。上記量が90質量%以下であれば、ポルトランドセメント又はポルトランドセメントクリンカ粉砕物の量が相対的に少なくなることによるセメント組成物の強度発現性の低下が起こりにくくなる。
 (A)粉末状セメント含有物中の(i)成分と(ii)成分の合計量の割合は、セメント組成物の強度発現性の向上及び二酸化炭素の吸収量をより大きくする観点から、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上である。
 〔(iv)成分:アルカリ土類金属含有物〕
 粉末状セメント含有物は、(iv)アルカリ土類金属含有物を含んでいてもよい。粉末状セメント含有物が、アルカリ土類金属含有物を含むことで、セメント組成物の強度発現性をより向上することができる。
 アルカリ土類金属含有物に含まれるアルカリ土類金属の例としては、カルシウム(Ca)、マグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、及びベリリウム(Be)等が挙げられる。これらは一種が単独で含まれていてもよく、2種以上が含まれていてもよい。
 中でも、セメント組成物の強度発現性、及び、入手の容易性等の観点から、カルシウム(Ca)、マグネシウム(Mg)が好ましく、マグネシウム(Mg)がより好ましい。
 また、セメント組成物に含まれるアルカリ土類金属の形態は、セメント組成物の強度発現性向上の観点から、アルカリ土類金属の酸化物、アルカリ土類金属の水酸化物が好ましく、アルカリ土類金属の酸化物がより好ましい。
 アルカリ土類金属含有物が、アルカリ土類金属として、マグネシウムを含む場合のマグネシウム源(マグネシウム含有物質)としては、酸化マグネシウム、水酸化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、及び塩化マグネシウム等が挙げられる。中でも、セメント組成物の強度発現性がより向上する観点から、酸化マグネシウム、水酸化マグネシウムが好ましく、酸化マグネシウムがより好ましい。
 これらは、試薬であってもよいが、ペリクレース(酸化マグネシウムを含む鉱物)、軽焼マグネシア(MgO)、軽焼マグネシアの部分水和物、軽焼ドロマイト(CaO・MgO)、及び軽焼ドロマイトの部分水和物等のマグネシウム含有物質であってもよい。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アルカリ土類金属含有物が、アルカリ土類金属として、カルシウムを含む場合のカルシウム源(カルシウム含有物質)としては、酸化カルシウム、水酸化カルシウム、硝酸カルシウム、及び塩化カルシウム等が挙げられる。これらは、試薬であってもよいが、生石灰、消石灰、生コンクリートスラッジ、及び廃コンクリート等のカルシウム含有物質であってもよい。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、セメント組成物の強度発現性がより向上する観点から、酸化カルシウム、水酸化カルシウムが好ましく、酸化カルシウムがより好ましい。
 なお、生コンクリートスラッジは、生コンクリート工場やコンクリート製品工場において、コンクリートの製造工程で発生するスラッジを、ふるい等を用いてふるい分けすることにより、セメント水和物やセメント未水和物を含む微粉として採取された粉末状のものが好ましい。生コンクリートスラッジは、炭酸化が容易なものであり、また、CaOの含有率が、通常、30質量%以上のものである。
 また、廃コンクリートは、コンクリート構造物等を解体する際に発生するコンクリート廃棄物を破砕した後、該破砕物から骨材を除去した、セメント水和物やセメント未水和物を含む微粉末状のものが好ましい。廃コンクリートの微粉末は炭酸化が容易であり、また、CaOの含有率が、通常、15質量%以上のものである。
 また、アルカリ土類金属含有物は、水硬性組成物の強度発現性の向上等の観点から、通常、粉末状のものである。
 粉末状セメント含有物中のアルカリ土類金属(ただし、アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属(換言すると、粉末状セメント含有物に含まれるアルカリ土類金属含有物以外の材料に含まれているアルカリ土類金属)としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率は、酸化物換算で0.1~10質量%、より好ましくは0.2~8質量%、特に好ましくは0.5~6質量%である。上記含有率が0.1質量%未満であると、セメント組成物の強度発現性が低下する。上記含有率が10質量%を超えると、セメント組成物の初期強度発現性(例えば、材齢1日)が低下する場合がある。
 なお、粉末状セメント含有物が複数のアルカリ土類金属(ただし、アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)を含む場合、上記含有率は、その合計の含有率である。
 上述した(i)~(ii)成分、及び、(v)~(vi)成分(後述)等には、ペリクレース(MgO)、水酸化マグネシウム(Mg(OH))、酸化カルシウム(CaO;特に遊離酸化カルシウム)、水酸化カルシウム(Ca(OH))等が含まれる場合がある。上記アルカリ土類金属の含有率には、アルカリ土類金属含有物に含まれるアルカリ土類金属以外に、これらのアルカリ土類金属も含まれるものとする。
 なお、(i)~(iii)成分、及び、(v)~(vi)成分に含まれる、ケイ酸塩鉱物(例えば、ビーライト、エーライト)、アルミネート相、フェライト相に固溶しているアルカリ土類金属(例えば、カルシウム)や、石膏(CaSO)、炭酸カルシウム等のアルカリ土類金属(酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウム以外のアルカリ土類金属)は、本願発明の効果に影響を及ぼすものではないか、ごく少量であるため本発明の効果にほとんど影響を及ぼさないものである。
 (i)~(ii)成分、及び、(v)~(vi)成分等に含まれるペリクレース(MgO)、水酸化マグネシウム(Mg(OH))の含有率は、X線回折(XRD)/リートベルト法等によって測定することができる。
 (i)~(ii)成分、及び、(v)~(vi)成分等に含まれる酸化カルシウム(CaO)又は水酸化カルシウム(Ca(OH))の含有率は、X線回折(XRD)/リートベルト法等や、「JCAS I-01-1997(遊離酸化カルシウムの定量方法)」に準拠して測定することができる。
 また、アルカリ土類金属としてマグネシウムを含む場合、粉末状セメント含有物中のマグネシウムの含有率は、酸化物換算で、好ましくは1.0~10質量%、より好ましくは2.5~8.0質量%、特に好ましくは4.0~6.0質量%である。上記含有率が1.0質量%以上であれば、セメント組成物の強度発現性がより向上する。上記含有率が10質量%を超えると、セメント組成物の初期強度発現性(例えば、材齢1日)が低下する場合がある。
 また、アルカリ土類金属としてカルシウムを含む場合、粉末状セメント含有物中のカルシウムの含有率は、酸化物換算で、好ましくは0.8~10質量%、より好ましくは1.0~4.0質量%、さらに好ましくは1.2~3.0質量%、特に好ましくは1.5~2.0質量%である。上記含有率が0.8質量%以上であれば、セメント組成物の強度発現性がより向上する。上記含有率が10.0質量%を超えると、セメント組成物の初期強度発現性(例えば、材齢1日)が低下する場合がある。
〔(v)成分:石膏〕
 粉末状セメント組成物中のSOの含有率は、好ましくは6.0質量%以下、より好ましくは0.5~5.0質量%、さらに好ましくは1.0~4.5質量%、特に好ましくは1.5~4.0質量%である。上記含有率が6.0質量%以下であれば、セメント組成物の強度発現性をより向上することができる。
 (i)成分としてポルトランドセメントクリンカを用いた場合や、(ii)成分のSOの含有率が少ない場合等、粉末状セメント含有物中のSOの含有率が、所望の数値範囲内にならない場合には、粉末状セメント含有物中のSOの含有率を上述した数値範囲内になるように調整する目的で、粉末状セメント組成物の材料として、(i)~(ii)、及び(iv)成分の他に、石膏を用いることができる。
 石膏の種類の例としては、特に限定されるものではなく、例えば、天然二水石膏、排脱石膏(排煙脱硫石膏)、リン酸石膏、チタン石膏、フッ酸石膏等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。石膏の形態(水和物であるか否か)の例としては、二水石膏、半水石膏及び無水石膏が挙げられる。これらは1種の形態のみからなるものであってもよく、2種以上の形態を含むものであってもよい。
 また、粉末状セメント含有物は、(i)成分がポルトランドセメントクリンカ粉砕物である場合、(i)~(ii)、及び(iv)成分に加えて、好ましくは石膏を含む。
〔(vi)成分:その他〕
 粉末状セメント含有物は、本発明の目的を阻害しない範囲内で、必要に応じて、上述の各成分((i)~(ii)、及び(iv)成分)以外に、他の材料を配合してもよい。必要に応じて配合される他の材料としては、フライアッシュ、シリカフューム、高炉スラグ微粉末等の各種混和材や、粉末状の各種混和剤が挙げられる。また、粉末状セメント含有物は、アルカリ金属を含んでいてもよい。
 粉末状セメント含有物中の他の材料の含有率は、粉末状セメント含有物の強度発現性等の観点から、好ましくは30質量%以下、より好ましくは20質量%以下である。
[(B)成分]
 セメント組成物Aは、(B)成分として、(iii)アミンを含む。
〔(iii)成分:アミン〕
 アミンの例としては、アルカノールアミン、アルキルアミン、ポリアミン、及びヒドロキシルアミン等の鎖状アミン、並びに、環状アミン等の水溶性アミン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、強度発現性の向上、及び、二酸化炭素の固定化量をより大きくする観点から、鎖状アミンが好ましく、アルカノールアミンがより好ましい。
 ここで、アルカノールアミンとは、分子内にアミノ基とヒドロキシル基を有するアミンである。
 アルカノールアミンの例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、メチルジエタノールアミン、2-アミノ-2-メチル-1-プロパノール、メチルジイソプロパノールアミン、ジエタノールイソプロパノールアミン、ジイソプロパノールエタノールアミン、テトラヒドロキシエチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、トリス(2-ヒドロキシブチル)アミン、ジグリコールアミン、等が挙げられる。中でも、入手の容易性や、強度発現性向上の観点から、モノエタノールアミン、ジエタノール、トリイソプロパノールアミンが好ましい。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 アルカノールアミンの一部がポリマーと結合している構造のアルカノールアミンを用いてもよい。
 また、アルカノールアミンとして、二酸化炭素回収装置から得た使用済みのアルカノールアミンを用いてもよい。工場等の排ガスから二酸化炭素を回収するためのアミン系二酸化炭素回収装置では、通常、劣化したアルカノールアミンを含む液は廃棄されている。しかし、本発明では、上記廃液を有効に利用することができる。
 なお、アルカノールアミンは、粉砕助剤として知られており、粉砕助剤の用途も兼ねて使用してもよい。
 上述した(A)粉末状セメント含有物100質量部に対する(B)アミンの量は、好ましくは0.001~5.0質量部、より好ましくは0.005~4.0質量部、さらに好ましくは0.02~2.0質量部、さらに好ましくは0.05~1.8質量部、さらに好ましくは0.1~1.6質量部、さらに好ましくは0.5~1.4質量部、特に好ましくは0.8~1.2質量部である。上記量が0.001質量部以上であれば。二酸化炭素の固定化量をより多くし、強度発現性をより向上することができる。上記量が5.0質量部以下であれば、水硬性組成物の硬化前の流動性が、悪化することを防ぐことができる。
 また、セメント組成物Aは、運搬及び水硬性組成物の製造の容易性等の観点から、好ましくは粉末状である。
[セメント組成物Aの製造方法]
 セメント組成物Aの製造方法としては、特に限定されるものではなく、例えば、上述した(i)~(vi)成分等の各材料を混合して、セメント組成物を調製する方法が挙げられる。
 各材料を混合する順番は特に限定されるものではなく、例えば、(a-1)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、CSとCASを含む焼成物の粉砕物と、アミンを同時に混合する方法、(a-2)ポルトランドセメント又はポルトランドセメントクリンカと、CSとCASを含む焼成物を同時に粉砕し混合した後、得られた混合物とアミンを混合する方法、(a-3)ポルトランドセメント又はポルトランドセメントクリンカと、CSとCASを含む焼成物と、アミンを同時に粉砕し混合する方法等が挙げられる。
 特に、(a-3)ポルトランドセメント又はポルトランドセメントクリンカと、CSとCASを含む焼成物と、アミンを同時に粉砕し混合する方法では、アミンは粉砕助剤としての効果も有する。
 セメント組成物が、さらに、アルカリ土類金属含有物等の材料を含む場合、該材料は、通常、ポルトランドセメント又はポルトランドセメントクリンカ、CSとCASを含む焼成物と同時に混合される。
 また、(i)~(ii)成分を予め混合してなる粉末状セメント含有物、(iii)成分、水、及び骨材を混練(混合)して水硬性組成物(後述)を製造する方法において、(iii)成分は、水と予め混合され、水溶液とすることが好ましい。特に、(iii)成分として、二酸化炭素回収装置から得た使用済みのアルカノールアミン(アルカノールアミンを含む廃液)を用いる場合、上記方法において、水と予め混合することが好ましい。
 各材料の配合量は、セメント組成物の各材料の含有率が、目標の数値範囲内となるように定められる。例えば、アルカリ土類金属含有物の量は、予め、各材料に含まれるアルカリ土類金属の含有率を測定等によって求めたうえで、セメント組成物中のアルカリ土類金属(ただし、上記アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率(酸化物換算)が、目標とする数値範囲内になるように、定められる。
[セメント組成物B]
 本発明のセメント組成物の他の例は、(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物、(ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物であって、上述した(1)~(2)の条件を満たす焼成物の粉砕物、並びに(iv)アルカリ土類金属含有物、を含むセメント組成物(以下、「セメント組成物B」ともいう。)であって、セメント組成物中のアルカリ土類金属(ただし、アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属(換言すると、セメント組成物に含まれるアルカリ土類金属含有物以外の材料に含まれているアルカリ土類金属)としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率が、酸化物換算で0.1~10質量%であるものである。
 なお、セメント組成物Bは、上述した(iii)成分を含まないものである。
 セメント組成物Bにおいて、(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物、(ii)2CaO・SiOと2CaO・Al・SiOを含む焼成物であって、上述した(1)~(2)の条件を満たす焼成物の粉砕物、及び(iv)アルカリ土類金属含有物は、各々、セメント組成物Aで使用した、(i)成分、(ii)成分、及び(iv)成分と同様のものを使用することができる。
 セメント組成物B中のポルトランドセメント又はポルトランドセメントクリンカ粉砕物の含有率は、好ましくは10~60質量%、より好ましくは15~50質量%、特に好ましくは20~40質量%である。上記含有率が10質量%以上であれば、硬化体の強度をより大きくすることができる。上記含有率が60質量%以下であれば、(ii)焼成物の粉砕物の含有率がより大きくなるため、上述の二酸化炭素の排出量の削減をより一層実現することができる。
 セメント組成物Bにおいて、ポルトランドセメント又はポルトランドセメントクリンカ粉砕物100質量部に対する、焼成物の粉砕物の量は、好ましくは30~500質量部、より好ましくは65~450質量部、さらに好ましくは100~400質量部、さらに好ましくは150~350質量部、特に好ましくは200~320質量部である。上記量が65質量部以上であれば、初期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。上記量が500質量部以下であれば、ポルトランドセメント又はポルトランドセメントクリンカ粉砕物の量が相対的に少なくなることによるセメント組成物の強度発現性の低下が起こりにくくなる。
 また、セメント組成物B中の焼成物の粉砕物の含有率は、好ましくは10~90質量%、より好ましくは30~85質量%、さらに好ましくは40~80質量%、さらに好ましくは50~80質量%、特に好ましくは60~80質量%である。上記含有率が10質量%以上であれば、初期材齢における水硬性組成物の二酸化炭素の吸収量がより多くなる。上記量が90質量%以下であれば、ポルトランドセメント又はポルトランドセメントクリンカ粉砕物の量が相対的に少なくなることによるセメント組成物の強度発現性の低下が起こりにくくなる。
 セメント組成物B中の(i)成分と(ii)成分の合計量の割合は、セメント組成物の強度発現性の向上及び二酸化炭素の吸収量をより大きくする観点から、好ましくは80質量%以上、より好ましくは90質量%以上、特に好ましくは95質量%以上である。
 セメント組成物B中のアルカリ土類金属(ただし、アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属(換言すると、セメント組成物Bに含まれるアルカリ土類金属含有物以外の材料に含まれているアルカリ土類金属)としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率は、酸化物換算で0.1~10質量%、より好ましくは0.2~8質量%、特に好ましくは0.5~6質量%である。上記含有率が0.1質量%未満であると、セメント組成物の強度発現性が低下する。上記含有率が10質量%を超えると、セメント組成物の初期強度発現性(例えば、材齢1日)が低下する場合がある。
 なお、セメント組成物Bが複数のアルカリ土類金属(ただし、アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)を含む場合、上記含有率は、その合計の含有率である。
 上述した(i)~(ii)成分、(v)成分(後述)、及び(vi)成分(後述)等には、ペリクレース(MgO)、水酸化マグネシウム(Mg(OH))、酸化カルシウム(CaO;特に遊離酸化カルシウム)、水酸化カルシウム(Ca(OH))等が含まれる場合がある。上記アルカリ土類金属の含有率には、アルカリ土類金属含有物に含まれるアルカリ土類金属以外に、これらのアルカリ土類金属も含まれるものとする。
 なお、(i)~(ii)成分、及び、(v)~(vi)成分に含まれる、ケイ酸塩鉱物(例えば、ビーライト、エーライト)、アルミネート相、フェライト相に固溶しているアルカリ土類金属(例えば、カルシウム)や、石膏(CaSO)、炭酸カルシウム等のアルカリ土類金属(酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウム以外のアルカリ土類金属)は、本願発明の効果に影響を及ぼすものではないか、ごく少量であるため本発明の効果にほとんど影響を及ぼさないものである。
 セメント組成物Bが、アルカリ土類金属としてマグネシウムを含む場合、セメント組成物B中のマグネシウムの含有率は、酸化物換算で、好ましくは1.0~10質量%、より好ましくは2.5~8質量%、特に好ましくは4.0~6質量%である。上記含有率が1.0質量%以上であれば、セメント組成物の強度発現性がより向上する。上記含有率が10質量%を超えると、セメント組成物の初期強度発現性(例えば、材齢1日)が低下する場合がある。
 また、セメント組成物Bが、アルカリ土類金属としてカルシウムを含む場合、セメント組成物B中のカルシウムの含有率は、酸化物換算で、好ましくは0.8~10質量%、より好ましくは1.0~4.0質量%、さらに好ましくは1.2~3.0質量%、特に好ましくは1.5~2.0質量%である。上記含有率が0.8質量%以上であれば、セメント組成物の強度発現性がより向上する。上記含有率が10.0質量%を超えると、セメント組成物の初期強度発現性(例えば、材齢1日)が低下する場合がある。
 セメント組成物B中のSOの含有率は、好ましくは6.0質量%以下、より好ましくは0.5~5.0質量%、さらに好ましくは1.0~4.5質量%、特に好ましくは1.5~4.0質量%である。上記含有率が6.0質量%以下であれば、セメント組成物の強度発現性をより向上することができる。
 (i)成分としてポルトランドセメントクリンカを用いた場合や、(ii)成分のSOの含有率が少ない場合等、セメント組成物B中のSOの含有率が、所望の数値範囲内にならない場合には、セメント組成物B中のSOの含有率を上述した数値範囲内になるように調整する目的で、セメント組成物Bの材料として、(i)~(ii)及び(iv)成分の他に、(v)成分として、石膏を用いることができる。
 セメント組成物Bにおいて、(v)石膏としては、セメント組成物Aで使用した、(v)成分と同様のものを使用することができる。
 セメント組成物Bの(i)成分がポルトランドセメントクリンカ粉砕物である場合、(i)~(ii)及び(iv)成分に加えて、石膏を含むことが好ましい。
 セメント組成物Bは、本発明の目的を阻害しない範囲内で、必要に応じて、上述の各成分((i)、(ii)、(iv)、(v)成分)以外に、他の材料((vi)成分)を配合してもよい。
 必要に応じて配合される他の材料としては、フライアッシュ、シリカフューム、高炉スラグ微粉末等の各種混和材や、粉末状の各種混和剤が挙げられる。また、セメント組成物Bはアルカリ土類金属の他に、アルカリ金属を含んでいてもよい。
 セメント組成物B中の他の材料の含有率は、セメント組成物の強度発現性等の観点から、好ましくは30質量%以下、より好ましくは20質量%以下である。
 また、セメント組成物Bは、運搬及び水硬性組成物の製造の容易性等の観点から、好ましくは粉末状である。
[セメント組成物Bの製造方法]
 セメント組成物Bの製造方法としては、特に限定されるものではなく、例えば、上述した(i)~(ii)、(iv)~(vi)成分等の各材料を混合して、セメント組成物を調製する方法が挙げられる。
 各材料を混合する順番は特に限定されるものではなく、例えば、(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、CSとCASを含む焼成物の粉砕物と、粉末状のアルカリ土類金属含有物を同時に混合する方法、(ii)ポルトランドセメント又はポルトランドセメントクリンカと、CSとCASを含む焼成物と、塊状のアルカリ土類金属含有物を同時に粉砕し混合する方法、(iii)ポルトランドセメント又はポルトランドセメントクリンカと、CSとCASを含む焼成物を同時に粉砕し混合した後、得られた混合物と粉末状のアルカリ土類金属含有物を混合する方法等が挙げられる。
 また、ポルトランドセメント又はポルトランドセメントクリンカと、CSとCASを含む焼成物を粉砕する場合、粉砕助剤を用いてもよい。
 各材料の配合量は、セメント組成物の各材料の含有率が、目標の数値範囲内となるように定められる。例えば、アルカリ土類金属含有物の量は、予め、各材料に含まれるアルカリ土類金属の含有率を測定等によって求めたうえで、セメント組成物中のアルカリ土類金属(ただし、上記アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率(酸化物換算)が、目標とする数値範囲内になるように、定められる。
[水硬性組成物]
 上述したセメント組成物A又はBは、水を含むことで、硬化させることができる。
 本発明の水硬性組成物の一例は、上述したセメント組成物A、水、及び骨材を含み、粉末状セメント含有物100質量部に対する水の量が25~70質量部であるものである(以下、「水硬性組成物A」ともいう。)。
 本発明の水硬性組成物の他の例は、上述したセメント組成物B、水、及び骨材を含み、セメント組成物100質量部に対する水の量が25~70質量部であるものである(以下、「水硬性組成物B」ともいう。)
 なお、本明細書中、「水硬性組成物」とは、硬化前の流動性を有する形態および硬化後の形態を包含するものである。
 水としては、特に限定されるものではなく、水道水、「JIS A 5308:2019(レディーミクストコンクリート)」に規定される回収水等が挙げられる。
 水硬性組成物Aにおいて、粉末状セメント含有物100質量部に対する水の量は、25~70質量部、好ましくは30~65質量部、より好ましくは40~60質量部、特に好ましくは45~55質量部である。上記量が25質量部未満であると、水硬性組成物の硬化前の流動性が低下する。上記量が70質量部を超えると、水硬性組成物の硬化体の強度が低下する。
 水硬性組成物Bにおいて、セメント組成物B100質量部に対する水の量は、25~70質量部、好ましくは30~65質量部、より好ましくは40~60質量部、特に好ましくは45~55質量部である。上記量が25質量部未満であると、水硬性組成物の硬化前の流動性が低下する。上記量が70質量部を超えると、水硬性組成物の硬化体の強度が低下する。
 骨材としては、細骨材のみ、または、細骨材と粗骨材の組み合わせが挙げられる。また、天然骨材、人工骨材、再生骨材のいずれも用いることができる。
 細骨材としては、特に限定されず、例えば、川砂、山砂、陸砂、海砂、砕砂、珪砂、石灰石細骨材、スラグ細骨材、軽量細骨材、クリンカ細骨材、ガラス骨材、及びCCU細骨材(再生骨材、廃コンクリート、高炉スラグ、および製鋼スラグから選ばれる1種以上に二酸化炭素を固定した細骨材)等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 粗骨材としては、特に限定されず、例えば、川砂利、山砂利、陸砂利、海砂利、砕石、石灰石粗骨材、スラグ粗骨材、軽量粗骨材、クリンカ粗骨材、ガラス骨材、及びCCU粗骨材(再生骨材、廃コンクリート、高炉スラグ、および製鋼スラグから選ばれる1種以上に二酸化炭素を固定した粗骨材)等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 水硬性組成物が粗骨材を含む場合、細骨材率(細骨材/(細骨材+粗骨材)の体積比を100分率で表したもの)は、好ましくは5~70%、より好ましくは10~60%、特に好ましくは20~50%である。細骨材率が前期範囲内であれば、水硬性組成物の硬化前のワーカビリティや成型のし易さが向上する。
 水硬性組成物A中の骨材の含有量(細骨材と粗骨材を併用する場合はその合計量)は、粉末状セメント含有物100質量部に対して、好ましくは200~750質量部、より好ましくは300~650質量部である。
 水硬性組成物B中の骨材の含有量(細骨材と粗骨材を併用する場合はその合計量)は、セメント組成物B100質量部に対して、好ましくは200~750質量部、より好ましくは300~650質量部である。
 上記含有量が前記数値範囲内であれば、水硬性組成物の硬化体の強度がより大きくなり、また、硬化体の収縮率がより小さくなる。
 水硬性組成物は、本発明の目的を阻害しない範囲内で、必要に応じて、セメント分散剤(減水剤、AE減水剤、高性能減水剤または高性能AE減水剤)、AE剤、消泡剤、収縮低減剤等の各種混和剤や、有機繊維や、ガラス繊維等を含んでいてもよい。
 本発明の水硬性組成物が、炭酸化してなる炭酸化硬化体(特に、炭酸化養生を行ってなる硬化体)である場合、水硬性組成物の強度をより大きくすることができる。
 炭酸化硬化体は、例えば、水硬性組成物に対して炭酸化養生を行うことで得ることができる。炭酸化養生によって、水硬性組成物に二酸化炭素が固定化され、水硬性組成物の組織が緻密化することで、水硬性組成物の強度をより大きくすることができる。
 炭酸化養生の方法としては、特に限定されないが、例えば、水硬性組成物を二酸化炭素に晒して炭酸化養生する方法や、水硬性組成物の混練時に、該水硬性組成物中に二酸化炭素を吹き込む方法(この場合、二酸化炭素をより多く吸収させることができる。)等が挙げられる。
 なお、水硬性組成物の炭酸化(炭酸化養生以外のもの)には、コンクリート製品、コンクリート構造物、またはコンクリート舗装等の形態で、長期間にわたり空気中の二酸化炭素を吸収して自然に炭酸化が行われる態様も含まれるものとする。
 セメント組成物1トンあたりの二酸化炭素の固定量は、好ましくは80~400kg/トン、より好ましくは100~350kg/トン、さらに好ましくは150~330kg/トン、さらに好ましくは200~315kg/トン、特に好ましくは250~300kg/トンである。上記固定化量が80kg/トン以上であれば、排出される二酸化炭素の総量をより低減することができる。上記固定化量が400kg/トン以下であれば、生産性をより向上することができる。
[水硬性組成物の製造方法]
 炭酸化養生を行ってなる水硬性組成物の硬化体を製造するための方法の一例としては、セメント組成物を構成する各材料、水、及び骨材を用いて、これらの混合物である混練物を調製する混練物調製工程と、混練物を型枠内に打設する打設工程と、型枠内の混練物が硬化した後に、混練物の硬化体を型枠から脱型する脱型工程と、型枠から脱型した混練物の硬化体を炭酸化養生して、炭酸化硬化体を得る炭酸化養生工程を含む方法が挙げられる。
 以下、工程ごとに詳しく説明する。
[混練物調製工程]
 本工程は、セメント組成物を構成する各材料、水、及び骨材を用いて、これらの混合物である混練物を調製する工程である。
 水硬性組成物Aにおいて、セメント組成物Aを構成する各材料、水、及び骨材を用いて、これらの混合物である混練物を調製する方法としては、特に限定されるものではなく、例えば、(a-1)予め調製されたセメント組成物Aと、水と、骨材を同時に混練(混合)する方法、(a-2)(A)成分を構成する(i)~(ii)成分を予め混合してなる(A)粉末状セメント含有物と、(B)成分と、水と、骨材を同時に混練(混合)する方法等が挙げられる。
 水硬性組成物Bにおいて、セメント組成物Bを構成する各材料、水、及び骨材を用いて、これらの混合物である混練物を調製する方法としては、特に限定されるものではなく、例えば、(b-1)予め調製されたセメント組成物Bと、水と、骨材を同時に混合する方法、(b-2)予め混合された(i)~(ii)成分の混合物と、(iv)成分と、水と、骨材を同時に混合する方法等が挙げられる。
 各材料を混練する方法は、特に限定されるものではない。また、混練に用いる装置も特に限定されるものではなく、例えば、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等の慣用のミキサを使用することができる。
[打設工程]
 本工程は、前工程で得られた混練物を型枠内に打設する工程である。
 打設方法としては、特に限定されるものではなく、流し込み成形等の慣用の方法を使用することができる。
 混練物を型枠内に打設した後、脱型するまでの養生方法としては、特に限定されるものではなく、例えば、気中養生、湿空養生、水中養生、封かん養生、及び蒸気養生等の一般的な養生方法を採用することができる。
[脱型工程]
 本工程は、型枠内の混練物が硬化した後に、混練物が硬化してなる水硬性組成物の硬化体を型枠から脱型する工程である。
[炭酸化養生工程]
 本工程は、型枠から脱型した水硬性組成物の硬化体を炭酸化養生して、水硬性組成物の硬化体を、炭酸化してなる炭酸化硬化体を得る工程である。
 また、炭酸化養生における二酸化炭素ガスの濃度は、炭酸化養生における二酸化炭素の吸収をより多くする観点からは、好ましくは1体積%以上、より好ましくは10体積%以上、さらに好ましくは50体積%以上、特に好ましくは60体積%以上である。また、養生設備費等にかかるコストを低減する等の観点からは、二酸化炭素ガスの濃度は、好ましくは95体積%以下、より好ましくは85体積%以下、さらに好ましくは80体積%以下である。
 炭酸化養生における温度は、好ましくは5~100℃、より好ましくは10~90℃、さらに好ましくは15~80℃、さらに好ましくは20~75℃、さらに好ましくは25~70℃、さらに好ましくは30~65℃、さらに好ましくは30~50℃、特に好ましくは30~40℃である。上記温度が5℃以上であれば、炭酸化の効率がより向上し、硬化体の強度がより大きくなる。上記温度が100℃以下であれば、炭酸化養生にかかるエネルギーコストをより小さくすることができる。
 また、炭酸化養生における相対湿度は、好ましくは20~90%、より好ましくは30~80%、特に好ましくは40~70%である。上記相対湿度が20%以上であれば、炭酸化の効率がより向上し、硬化体の強度がより大きくなる。上記相対湿度が90%以下であれば、養生設備等にかかるコストをより低減することができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[A.(ii)成分である焼成物の製造]
 下水汚泥、建設発生土、石灰石、及び粘土を原料に用いて、表1に示す化学組成(実施例での実測値)を含む目標の化学組成範囲内となるように、各原料を混合し、焼成用原料に調製した後、ロータリーキルンを用いて1,370℃で、この焼成用原料を焼成して、焼成物を得た。なお、焼成の際の燃料としては、重油のほかに、廃油や廃プラスチックを使用した。
 次いで、焼成物を粉砕した後、得られた粉砕物について、X線回折装置(ブルカージャパン社製、商品名「D8 ADVANCE A-25型」)を用いて、粉砕物の粉末X線回折(XRD)パターンを取得した。粉末X線回折の測定条件は、ターゲット:CuKα、管球条件:40kV-40mA、走査範囲:2θ=5~65°、ステップ幅:0.023°/step、及び測定時間:0.13秒/stepとした。得られた粉末XRDパターンを、解析ソフトウェア(ブルカージャパン社製、商品名「DIFFRAC.EVA」)を用いて定性分析したところ、CS(β-CS)、CAS、CA、及びCAのピークが認められた。一方、MgO(ペリクレース)のピークは認められなかった。
 解析ソフトウェア(ブルカージャパン社製、商品名「DIFFRAC.TOPAS ver.6」を用いて、リートベルト法によって、CS(β-CS)、CAS、CA、及びCAの各鉱物の理論プロファイルを、粉末XRDの結果から得られた実測プロファイルにフィッティングすることにより、粉砕物の鉱物組成を測定した。結果を表2に示す。
 「JCAS I-01-1997(遊離酸化カルシウムの定量方法)」に準拠して、焼成物中のf.CaOの含有率を測定したところ、0.3質量%であった。
 焼成物には、Mg(OH)、Ca(OH)は含まれていなかった。
 焼成物の粉砕物のブレーン比表面積は、3,310cm/gであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[B.水硬性組成物の調製]
[使用材料]
(1)セメント:普通ポルトランドセメント(ブレーン比表面積:3,290cm/g);太平洋セメント社製;表3に示す化学組成を有しかつ表4に示す鉱物組成を有するもの;セメントの化学組成は、「JIS R 5204:2019(セメントの蛍光X線分析方法)」に準拠して測定した。X線回折において、ペリクレース(MgO)のピークは認められなかった。セメントの鉱物組成は、解析ソフトウェアの鉱物の設定を、表4に示す種類の鉱物に変更した以外は、上述の焼成物の粉砕物と同様にして測定した。セメントの「JCAS I-01-1997(遊離酸化カルシウムの定量方法)」に準拠して測定されたf.CaOの含有率は0.2質量%であった。セメントには、Mg(OH)、Ca(OH)は含まれていなかった。
(2)焼成物:上述したもの
(3)石膏:排脱二水石膏
(4)アミンA:モノエタノールアミン(2-アミノエタノール)
(5)アミンB:ジエタノールアミン(2,2´‐イミノジエタノール)
(6)アミンC:トリイソプロパノールアミン水溶液(トリイソプロパノールアミンの含有率:85質量%)
(7)アミンD:2-アミノ-2-メチル-1-プロパノール
(8)MgO:ペリクレース(工業試薬、MgO含有率:95.0質量%以上)
(9)MgSO4・7HO:試薬
(10)CaO:硬焼生石灰(工業試薬、CaO含有率:93.0質量%以上)
(11)生コンクリートスラッジ:前処理として生コンクリートスラッジを105℃で乾燥した後、粉砕したもの、BET比表面積14.71m/g、平均粒径(頻度基準)46.9μm、50%体積累積粒径(D50)20.4μm、表5に示す化学組成(「JIS R 5204:2019(セメントの蛍光X線分析方法)」に準拠して測定したもの)を有するもの、水酸化カルシウム量15.8質量%
(12)細骨材:セメント協会標準砂
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[実施例1~3]
 焼成物と排脱二水石膏を、質量比が95.67:4.33となる量で混合粉砕して、焼成物の粉砕物及び排脱二水石膏の混合物を得た。
 上記混合物と普通ポルトランドセメントを、質量比が75:25(混合物:普通ポルトランドセメント)となる量で混合して、粉末状セメント含有物を得た。粉末状セメント含有物について、化学組成(実測値)を表6に、鉱物組成(計算値)を表7にそれぞれ示す。なお、粉末状セメント含有物の化学組成は、「JIS R 5204:2019(セメントの蛍光X線分析方法)」に準拠して測定した。鉱物組成は焼成物の粉砕物と同様にして測定した。粉末状セメント含有物のブレーン比表面積は、3,300cm/gであった。
 得られた粉末状セメント含有物と、表8に示す種類のアミンと、細骨材と、水を、表8に示す各量(表8中の「水/粉末状セメント含有物」は、粉末状セメント含有物に対する水の質量比を示す。)で用いて、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して供試体を作製して1日経過後に脱型し、温度65℃、相対湿度60%、二酸化炭素濃度80体積%の養生槽内で、炭酸化養生を行った。炭酸化養生を行いつつ、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して、材齢7日(供試体を作製後、脱型するまでの1日を除く。)の時点における供試体(水硬性組成物の硬化体)の圧縮強さ及び曲げ強さを測定した。
 上述の圧縮強さ及び曲げ強さの測定と同様にして供試体を作製し、脱型後、温度65℃、相対湿度60%、二酸化炭素濃度20体積%の養生槽内で、炭酸化養生を行った。材齢3日、7日、14日の各時点の供試体を粉砕した後、炭素・硫黄分析装置にて供試体中の炭素量を測定し、得られた測定値をCOに換算することで供試体中の二酸化炭素量(A)を求めた。次いで、炭素硫黄分析装置で測定した各供試体(水硬性組成物の硬化体)に含まれる炭素量と水硬性組成物の配合に基づき、炭酸化養生前の供試体に含まれる二酸化炭素量(B)を求め、供試体の二酸化炭素量の固定化量を、炭酸化養生前の二酸化炭素量と養生後の二酸化炭素量の差(A-B)から算出した。
 二酸化炭素の固定化量(kg/トン)は、供試体の二酸化炭素の固定化量を供試体に使用されるセメントの量で除すことで算出した。
 また、炭酸化養生を材齢3日まで行った後、養生槽から供試体を取り出して、温度20℃、相対湿度60%の恒温恒湿室においてさらに4日間養生した供試体(表8中、「3日+4日」と示す。)の二酸化炭素の固定化量について、同様にして測定した。
[比較例1]
 アミンを使用しない以外は実施例1と同様にして、材齢7日における水硬性組成物の圧縮強さ及び曲げ強さ等を測定した。
 結果を表9に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表9から、実施例1~3の圧縮強さ(55.9~68.2N/mmは、比較例1の圧縮強さ(55.6N/mm)よりも大きいことがわかる。
 また、実施例1~3の材齢7日の曲げ強さ(10.4~12.2N/mm)は、比較例1の材齢7日の曲げ強さ(10.4N/mm)と同様以上であることがわかる。
 さらに、実施例1~3の二酸化炭素の固定量(材齢3日:232~236kg/トン、材齢7日:237~240kg/トン、材齢14日:239~247kg/トン、材齢3日+4日:236~238kg/トン)は、比較例1の二酸化炭素の固定量(材齢3日:227kg/トン、材齢7日:231kg/トン、材齢14日:234kg/トン、材齢3日+4日:233g/トン)よりも大きいことがわかる。
[実施例4~8]
 実施例1で調製した粉末状セメント含有物と表10に示す種類のアルカリ土類金属含有物を、表10に示す配合量で混合して、セメント組成物を得た。なお、表10中、「アルカリ土類金属の含有率」は、セメント組成物中のアルカリ土類金属の含有率(酸化物換算)である。また、表10中、「f・CaO由来」は、セメント組成物に含まれるf・CaOを意味する。得られたセメント組成物(表10中、「組成物」と示す。)と、細骨材と、水を、表10に示す各量(表10中の「水/組成物」は、セメント組成物に対する水の質量比を示す。)で用いて、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して供試体を作製し、脱型後、温度30℃、相対湿度60%、二酸化炭素濃度80体積%の養生槽内で、炭酸化養生を行った。炭酸化養生を行いつつ、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して、材齢3日及び7日の各時点における供試体(水硬性組成物の硬化体)の圧縮強さ及び曲げ強さを測定した。
 また、曲げ強さの測定と同様にして炭酸化養生を行った材齢1日、3日、7日の各時点における供試体について、曲げ試験後の供試体の破壊断面に、フェノールフタレイン1%エタノール溶液を噴霧し、ノギスを用いて、供試体側面(4面)からの中性化深さ(フェノールフタレイン1%エタノール溶液の噴霧によって、呈色した領域)を測定し、その平均値を中性化深さ(炭酸化深さ)の値とした。なお、表11中、「20.0mm」は、完全に中性化されたことを示す。
[比較例2]
 アルカリ土類金属含有物を使用しない以外は実施例4と同様にして、材齢3日及び7日の各時点における水硬性組成物の圧縮強さ及び曲げ強さを測定した。
 結果を表11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表11から、実施例4~8の圧縮強さ(材齢3日:48.9~58.0N/mm、材齢7日:58.3~72.7N/mm)は、比較例2の圧縮強さ(材齢3日:45.1N/mm、材齢7日:52.8N/mm)よりも大きいことがわかる。
 また、実施例4~6及び8の材齢3日の曲げ強さ(10.1~12.5N/mm)は、比較例2の材齢3日の曲げ強さ(9.8N/mm)よりも大きいことがわかる。
 さらに、実施例4~8の材齢7日の曲げ強さ(12.1~14.8N/mm)は、比較例2の材齢7日の曲げ強さ(11.7N/mm)よりも大きいことがわかる。
 さらに、実施例4~8の中性化深さから、材齢3日において、供試体がその内部にまで炭酸化されていることがわかる。
[実施例9~12、14]
 実施例1で調製した、焼成物の粉砕物及び排脱二水石膏の混合物と普通ポルトランドセメントの混合物(実施例1の粉末状セメント含有物に該当するもの:表12中、「粉体原料」と示す。)と、表12に示す種類及び配合量のアミンを混合して、セメント組成物を得た。
 得られたセメント組成物(表12中、「組成物」と示す。)と、細骨材と、水を、表12に示す各量(表12中の「水/組成物」は、セメント組成物に対する水の質量比を示す。)で用いて、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して供試体を作製し、脱型後、温度30℃、相対湿度60%、二酸化炭素濃度80体積%の養生槽内で、炭酸化養生を行った。炭酸化養生を行いつつ、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して、材齢7日における供試体(水硬性組成物の硬化体)の圧縮強さを測定した。
 上述の圧縮強さの測定と同様にして供試体を作製し、脱型後、温度30℃、相対湿度60%、二酸化炭素濃度20体積%の養生槽内で、炭酸化養生を行った。材齢3日、7日の各時点の供試体について、実施例1と同様にして、二酸化炭素の固定化量(kg/トン)を算出した。
 なお、表13中、「―」は測定を行わなかったことを示す。
[実施例13]
 実施例1で調製した、焼成物の粉砕物及び排脱二水石膏の混合物と普通ポルトランドセメントの混合物と、表12に示す量のアルカリ土類金属含有物を混合して、粉末状セメント含有物を得た。得られた粉末状セメント含有物と、表12に示す種類及び配合量のアミンを混合して、セメント組成物を得た。なお、表12中、「f・CaO由来」は、粉末状セメント含有物に含まれるf・CaOを意味する。
 得られたセメント組成物を用いて、実施例9と同様にして供試体を作製し、供試体の材齢7日の圧縮強さを、実施例9と同様に測定した。
 また、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して、材齢3日及び7日の各時点の供試体の曲げ強さを測定した。
 曲げ強さの測定と同様にして炭酸化養生を行った材齢3日、7日の各時点における供試体について、実施例4と同様にして、供試体側面(4面)からの中性化深さを測定し、その平均値を中性化深さ(炭酸化深さ)の値とした。なお、表13中、「20.0mm」は、完全に中性化されたことを示す。
 結果を表13に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表9、表13から、実施例9~12、14の材齢7日の二酸化炭素の固定量(292~315kg/トン)は、実施例1~3(温度65℃、相対湿度60%、二酸化炭素濃度20体積%の養生槽内で、炭酸化養生を行ったもの)の材齢7日の二酸化炭素の固定量(237~240kg/トン)よりも大きいことがわかる。
 表11、表13から、実施例9~14の材齢7日の圧縮強さ(60.6~74.8N/mm)は、比較例2(アミン及びアルカリ土類金属含有物のいずれも使用しておらず、かつ、実施例9~14と養生条件が同じもの)の圧縮強さ(材齢7日:52.8N/mm)よりも大きいことがわかる。
 特に、実施例13(アミン及びアルカリ土類金属含有物を使用したもの)の材齢7日の圧縮強さ(74.8N/mm)は、最も大きいことがわかる。
 実施例13の曲げ強さ(材齢3日:11.8N/mm、材齢7日:16.6N/mm)は、比較例2の曲げ強さ(材齢3日:9.8N/mm、11.7N/mm)より大きいことがわかる。
 実施例13の中性化深さから、材齢7日において、供試体がその内部にまで炭酸化されていることがわかる。
[実施例15~16]
 実施例1で調製した、焼成物の粉砕物及び排脱二水石膏の混合物と普通ポルトランドセメントの混合物(実施例1の粉末状セメント含有物に該当するもの:表14中、「粉体原料」と示す。)と、表14に示す種類及び配合量のアルカリ土類金属含有物を混合して、セメント組成物を得た。なお、実施例16では、2種類のアルカリ土類金属含有物を混合した。
 なお、表14中、「アルカリ土類金属の含有率」は、セメント組成物中のアルカリ土類金属の含有率(酸化物換算)である。
 得られたセメント組成物(表14中、「組成物」と示す。)と、細骨材と、水を、表14に示す各量(表14中の「水/組成物」は、セメント組成物に対する水の質量比を示す。)で用いて、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して供試体を作製し、脱型後、温度30℃、相対湿度60%、二酸化炭素濃度80体積%の養生槽内で、炭酸化養生を行った。炭酸化養生を行いつつ、「JIS R 5201:2015(セメントの物理試験方法)」に準拠して、材齢7日における供試体(水硬性組成物の硬化体)の圧縮強さ、並びに、材齢3日及び7日の各時点における曲げ強さを測定した。
 曲げ強さの測定と同様にして炭酸化養生を行った材齢3日、7日の各時点における供試体について、実施例4と同様にして、供試体側面(4面)からの中性化深さを測定し、その平均値を中性化深さ(炭酸化深さ)の値とした。なお、表13中、「20.0mm」は、完全に中性化されたことを示す。
 結果を表15に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表11、表15から、実施例15~16の材齢7日の圧縮強さ(53.5~56.9N/mm)は、比較例2(アミン及びアルカリ土類金属含有物のいずれも使用しておらず、かつ、実施例15~16と養生条件が同じもの)の圧縮強さ(材齢7日:52.8N/mm)よりも大きいことがわかる。
 実施例15~16曲げ強さ(材齢3日:10.3~11.5N/mm、材齢7日:11.6~13.1N/mm)は、比較例2の曲げ強さ(材齢3日:9.8N/mm、11.7N/mm)と同等か、より大きいことがわかる。
 実施例15~16の中性化深さから、供試体がその内部にまで炭酸化されていることがわかる。

 

Claims (15)

  1.  (A)(i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物と、(ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物の粉砕物であって、以下の(1)~(2)の条件を満たす焼成物の粉砕物、を含む粉末状セメント含有物、並びに、
     (B)(iii)アミンを含むことを特徴とするセメント組成物。
    (1)上記2CaO・SiO100質量部に対する上記2CaO・Al・SiOの量が10~100質量部であること
    (2)上記焼成物が3CaO・Alを含まない、又は、上記2CaO・SiO100質量部に対して15質量部以下の量で含むこと
  2.  上記粉末状セメント含有物が、(iv)アルカリ土類金属含有物を含み、
     上記粉末状セメント含有物中のアルカリ土類金属(ただし、上記アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率が、酸化物換算で0.1~10質量%である請求項1に記載のセメント組成物。
  3.  上記粉末状セメント含有物100質量部に対する上記アミンの量が0.001~5.0質量部である請求項1又は2に記載のセメント組成物。
  4.  上記アミンが、アルカノールアミンである請求項1又は2に記載のセメント組成物。
  5.  上記粉末状セメント含有物中の上記焼成物の粉砕物の含有率が10~90質量%である請求項1又は2に記載のセメント組成物。
  6.  (i)ポルトランドセメント又はポルトランドセメントクリンカ粉砕物、
     (ii)2CaO・SiO及び2CaO・Al・SiOを含む焼成物であって、以下の(1)~(2)の条件を満たす焼成物の粉砕物、並びに
     (iv)アルカリ土類金属含有物、を含むセメント組成物であって、
     上記セメント組成物中のアルカリ土類金属(ただし、上記アルカリ土類金属含有物に含まれるアルカリ土類金属以外のアルカリ土類金属としては、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、及び水酸化カルシウムのみが含まれるものとする。)の含有率が、酸化物換算で0.1~10質量%であることを特徴とするセメント組成物。
    (1)上記2CaO・SiO100質量部に対する上記2CaO・Al・SiOの量が10~100質量部であること
    (2)上記焼成物が3CaO・Alを含まない、又は、上記2CaO・SiO100質量部に対して15質量部以下の量で含むこと
  7.  上記セメント組成物中の上記焼成物の粉砕物の含有率が10~90質量%である請求項6に記載のセメント組成物。
  8.  上記アルカリ土類金属が、マグネシウム(Mg)である請求項6又は7に記載のセメント組成物。
  9.  上記アルカリ土類金属が、カルシウム(Ca)である請求項6又は7に記載のセメント組成物。
  10.  請求項1又は2に記載のセメント組成物、水、及び骨材を含む水硬性組成物であって、
     上記粉末状セメント含有物100質量部に対する上記水の量が25~70質量部である水硬性組成物。
  11.  上記水硬性組成物が、炭酸化養生を行ってなる炭酸化硬化体である請求項10に記載の水硬性組成物。
  12.  請求項6又は7に記載のセメント組成物、水、及び骨材を含む水硬性組成物であって、
     上記セメント組成物100質量部に対する上記水の量が25~70質量部である水硬性組成物。
  13.  上記水硬性組成物が、炭酸化養生を行ってなる炭酸化硬化体である請求項12に記載の水硬性組成物。
  14.  請求項11に記載の水硬性組成物を製造するための方法であって、
     上記セメント組成物を構成する各材料、上記水、及び上記骨材を用いて、これらの混合物である混練物を調製する混練物調製工程と、
     上記混練物を型枠内に打設する打設工程と、
     上記型枠内の上記混練物が硬化した後に、上記混練物の硬化体を上記型枠から脱型する脱型工程と、
     上記型枠から脱型した上記混練物の硬化体を炭酸化養生して、上記炭酸化硬化体を得る炭酸化養生工程を含む、水硬性組成物の製造方法。
  15.  請求項13に記載の水硬性組成物を製造するための方法であって、
     上記セメント組成物を構成する各材料、上記水、及び上記骨材を用いて、これらの混合物である混練物を調製する混練物調製工程と、
     上記混練物を型枠内に打設する打設工程と、
     上記型枠内の上記混練物が硬化した後に、上記混練物の硬化体を上記型枠から脱型する脱型工程と、
     上記型枠から脱型した上記混練物の硬化体を炭酸化養生して、上記炭酸化硬化体を得る炭酸化養生工程を含む、
    水硬性組成物の製造方法。
PCT/JP2023/044385 2022-12-13 2023-12-12 セメント組成物及び水硬性組成物 WO2024128216A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022198715 2022-12-13
JP2022-198715 2022-12-13
JP2022-200929 2022-12-16
JP2022200929 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024128216A1 true WO2024128216A1 (ja) 2024-06-20

Family

ID=91485818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044385 WO2024128216A1 (ja) 2022-12-13 2023-12-12 セメント組成物及び水硬性組成物

Country Status (1)

Country Link
WO (1) WO2024128216A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267766A (ja) * 2002-03-15 2003-09-25 Denki Kagaku Kogyo Kk セメント硬化体の製法及びそのセメント硬化体
JP2011219341A (ja) * 2010-03-24 2011-11-04 Taiheiyo Cement Corp 水硬性組成物
JP2013040826A (ja) * 2011-08-12 2013-02-28 Jfe Steel Corp 分析方法及び分析装置
JP2016047788A (ja) * 2014-08-28 2016-04-07 太平洋セメント株式会社 セメント質硬化体およびその製造方法
JP2017222541A (ja) * 2016-06-16 2017-12-21 大成建設株式会社 水硬性組成物
US20200290925A1 (en) * 2017-12-13 2020-09-17 Hconnect 2 Gmbh Method for simultaneous exhaust gas cleaning and manufacturing of supplementary cementitous material
JP2021138574A (ja) * 2020-03-05 2021-09-16 太平洋セメント株式会社 セメント混合材、混合セメントおよび炭酸ガス吸着材の製造方法
JP2023049167A (ja) * 2021-09-29 2023-04-10 太平洋セメント株式会社 炭酸化硬化体およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267766A (ja) * 2002-03-15 2003-09-25 Denki Kagaku Kogyo Kk セメント硬化体の製法及びそのセメント硬化体
JP2011219341A (ja) * 2010-03-24 2011-11-04 Taiheiyo Cement Corp 水硬性組成物
JP2013040826A (ja) * 2011-08-12 2013-02-28 Jfe Steel Corp 分析方法及び分析装置
JP2016047788A (ja) * 2014-08-28 2016-04-07 太平洋セメント株式会社 セメント質硬化体およびその製造方法
JP2017222541A (ja) * 2016-06-16 2017-12-21 大成建設株式会社 水硬性組成物
US20200290925A1 (en) * 2017-12-13 2020-09-17 Hconnect 2 Gmbh Method for simultaneous exhaust gas cleaning and manufacturing of supplementary cementitous material
JP2021138574A (ja) * 2020-03-05 2021-09-16 太平洋セメント株式会社 セメント混合材、混合セメントおよび炭酸ガス吸着材の製造方法
JP2023049167A (ja) * 2021-09-29 2023-04-10 太平洋セメント株式会社 炭酸化硬化体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG RUNXIAO, PANESAR DAMAN K.: "Carbonated binder systems containing reactive MgO and Portland cement: Strength, chemical composition and pore structure", JOURNAL OF CLEANER PRODUCTION, ELSEVIER, AMSTERDAM, NL, vol. 271, 1 October 2020 (2020-10-01), AMSTERDAM, NL , pages 122021, XP093182114, ISSN: 0959-6526, DOI: 10.1016/j.jclepro.2020.122021 *

Similar Documents

Publication Publication Date Title
Carballosa et al. Influence of expansive calcium sulfoaluminate agent dosage on properties and microstructure of expansive self-compacting concretes
RU2513572C2 (ru) Гидравлическое вяжущее на основе сульфоглиноземистого клинкера и портландцементного клинкера
CA3072126C (en) Method for manufacturing binders hardening by hydration and carbonation
Liu et al. Utilization of the sludge derived from dyestuff-making wastewater coagulation for unfired bricks
EP3995470A1 (en) Concrete elements and method for manufacturing them
Wang et al. Development and optimization of phosphogypsum-based geopolymer cement
CA2991148A1 (en) Method for binding carbon dioxide
TWI545100B (zh) Cement mix and cement composition
JP7037879B2 (ja) 二次製品用早強混和材および二次製品用早強コンクリート
JP2007126294A (ja) 高硫酸塩スラグセメント・早強スラグセメントおよびこれらの製造方法
WO2024128216A1 (ja) セメント組成物及び水硬性組成物
WO2021246288A1 (ja) セメント混和材およびセメント組成物
JP2023049167A (ja) 炭酸化硬化体およびその製造方法
WO2021215509A1 (ja) セメント混和材、膨張材、及びセメント組成物
US10011526B2 (en) Hydraulic binder and hydraulic composition comprising same
Zhang et al. Improving mechanical properties of hemihydrate phosphogypsum via alkali-activated mineral admixtures
JP4522815B2 (ja) 強度補償用高強度セメント混和材およびそれを用いたセメント組成物
JP7260705B1 (ja) 水硬性材料用硬化促進材、セメント組成物、及び硬化体
JP2024093298A (ja) 炭酸化埋設型枠用セメント組成物、炭酸化埋設型枠用結合材、炭酸化埋設型枠用水硬性組成物、および炭酸化埋設型枠
EP4112589A1 (en) Performance enhancer for composite cements
JP7181355B1 (ja) セメント混和材、セメント混和材の製造方法及びセメント組成物
JP2023049176A (ja) 炭酸化硬化体およびその製造方法
JP2023182440A (ja) 二酸化炭素排出低減セメント、セメント組成物、およびセメント質硬化体
JP2024073140A (ja) 炭酸化・積層造形用セメント組成物、炭酸化・積層造形用結合材、炭酸化・積層造形用モルタル組成物、炭酸化積層体、および炭酸化積層体の製造方法
Reiterman et al. X-Ray Diffraction Study of Hardening Kinetics of Natural Hydraulic Lime