WO2024125025A1 - 三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜 - Google Patents

三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜 Download PDF

Info

Publication number
WO2024125025A1
WO2024125025A1 PCT/CN2023/120785 CN2023120785W WO2024125025A1 WO 2024125025 A1 WO2024125025 A1 WO 2024125025A1 CN 2023120785 W CN2023120785 W CN 2023120785W WO 2024125025 A1 WO2024125025 A1 WO 2024125025A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
general formula
preparation
pyridine
trifluoromethyl ketone
Prior art date
Application number
PCT/CN2023/120785
Other languages
English (en)
French (fr)
Inventor
张秋根
易贵钦
马溢昌
Original Assignee
嘉庚创新实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉庚创新实验室 filed Critical 嘉庚创新实验室
Publication of WO2024125025A1 publication Critical patent/WO2024125025A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the technical field of compound synthesis, and in particular to a preparation method of a trifluoromethyl ketone compound, a trifluoromethyl ketone compound and an ion exchange membrane.
  • Trifluoromethyl ketone compounds are a class of organic compounds containing trifluoromethyl and carbonyl groups. Trifluoromethyl ketone compounds can be used as enzyme inhibitors, as monomers for new polymer materials, and as important intermediates for organic compounds such as fluorinated functional polymers and fluorinated drugs. Trifluoromethyl ketone compounds are widely used in the fields of membrane materials and medicines.
  • trifluoromethyl ketone compounds are mainly prepared by chemical synthesis, which has the disadvantages of more by-products and difficult separation and purification, resulting in a low yield of the target product. Therefore, optimizing the preparation and purification methods of trifluoromethyl ketone compounds and reducing the generation of by-products are of great significance to the application and development of trifluoromethyl ketone compounds.
  • the present application provides a preparation method of trifluoromethyl ketone compounds, trifluoromethyl ketone compounds and ion exchange membranes to reduce the generation of by-products during the preparation process of trifluoromethyl ketone compounds.
  • the present application provides a method for preparing a trifluoromethyl ketone compound, wherein the trifluoromethyl ketone compound has a structure shown in the general formula (I), and the preparation method comprises the steps of:
  • the compound is used as a catalyst, and the compound of the structure represented by the general formula (II) reacts with trifluoroacetic anhydride to obtain a product, wherein the product comprises the compound of the structure represented by the general formula (I);
  • the molar ratio of the compound represented by the general formula (II) to the pyridine compound is 1:
  • R 1 is selected from -(CH 2 ) n -, n is 3 to 20;
  • R 2 is selected from unsubstituted or substituted alkyl, or halogen group;
  • the pyridine compound is selected from unsubstituted or substituted pyridine.
  • n is 3-10.
  • n is 3-5.
  • said R 2 is selected from -Cl, -Br, -I, -CH 3 , -CH(CH 3 ) 2 or -C(CH 3 ) 3 .
  • the substituted pyridine is a compound obtained by replacing the hydrogen atom located at the position opposite to the nitrogen atom in the pyridine ring with a substituent, and the substituent is selected from an electron-donating group.
  • the electron donating group is selected from dimethylamino or pyrrolidinyl.
  • the pyridine compound is selected from one or more of anhydrous pyridine, 4-pyrrolidinopyridine and 4-dimethylaminopyridine.
  • the compound represented by the general formula (I) is selected from:
  • the compound represented by the general formula (II) is selected from:
  • the reaction of the compound with the structure shown in the general formula (II) and trifluoroacetic anhydride using a pyridine compound as a catalyst comprises the steps of: providing a solution containing the compound with the structure shown in the general formula (II) and trifluoroacetic anhydride, adding the pyridine compound to the solution, and mixing.
  • the solvent of the solution is selected from one or more of dichloromethane, chloroform and carbon tetrachloride.
  • the concentration of the compound having the structure represented by the general formula (II) is 0.5 mol/L to 5 mol/L.
  • the reaction is carried out at an ambient temperature of 0°C to 30°C, and the reaction time is 1 h to 4 h.
  • the preparation method further comprises the steps of: mixing the product with an acid solution, washing and extracting, collecting the organic phase, then removing the solvent of the organic phase, and distilling to obtain a purified compound having the structure represented by the general formula (I).
  • the acid in the acid solution is selected from one or more of acetic acid, hydrochloric acid, nitric acid and sulfuric acid.
  • the acid concentration in the acid solution is 0.01 mol/L to 2 mol/L.
  • the molar ratio of the compound having the structure represented by the general formula (II) to the trifluoroacetic anhydride is 1:(4-6).
  • the molar ratio of the pyridine compound to the trifluoroacetic anhydride is 1:(1-3).
  • the present application provides a trifluoromethyl ketone compound, wherein the trifluoromethyl ketone compound has a structure shown in general formula (I), and the trifluoromethyl ketone compound is prepared by the following preparation method:
  • a compound of the structure represented by the general formula (II) and trifluoroacetic anhydride react to obtain a product, wherein the product comprises a compound of the structure represented by the general formula (I); wherein the molar ratio of the compound of the structure represented by the general formula (II) to the pyridine compound is 1:(1-8);
  • R 1 is selected from -(CH 2 ) n -, n is 3 to 20;
  • R 2 is selected from unsubstituted or substituted alkyl, or halogen group;
  • the pyridine compound is selected from unsubstituted or substituted pyridine.
  • the present application provides an ion exchange membrane, wherein the ion exchange membrane is prepared using a trifluoromethyl ketone compound, wherein the trifluoromethyl ketone compound has a structure shown in general formula (I), and the trifluoromethyl ketone compound is prepared using the following preparation method:
  • a compound of the structure represented by the general formula (II) and trifluoroacetic anhydride react to obtain a product, wherein the product comprises a compound of the structure represented by the general formula (I); wherein the molar ratio of the compound of the structure represented by the general formula (II) to the pyridine compound is 1:(1-8);
  • R 1 is selected from -(CH 2 ) n -, n is 3 to 20;
  • R 2 is selected from unsubstituted or substituted alkyl, or halogen group;
  • the pyridine compound is selected from unsubstituted or substituted pyridine.
  • the trifluoromethyl ketone compound is selected from:
  • a compound with a structure represented by general formula (II) and trifluoroacetic anhydride are used as reaction raw materials, and a pyridine compound is used as a catalyst. Under the catalytic action of the catalyst, the reaction raw materials react to generate trifluoromethyl ketone compounds.
  • the reaction raw materials react to generate trifluoromethyl ketone compounds.
  • the trifluoromethyl ketone compound prepared by the preparation method of the trifluoromethyl ketone compound can be used to prepare ion exchange membranes.
  • the trifluoromethyl ketone compound is used as one of the polymerization monomers, and is condensed or copolymerized with a biphenyl aromatic compound to form a polyfluoroketone biphenyl polymer resin, and then the ion exchange membrane is prepared by polymer processing techniques such as tape casting.
  • Figure 1 is a thin layer chromatogram of the crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone) in Example 1, Example 5, Example 6 and the comparative example, wherein A0 represents the standard sample of 7-bromo-1,1,1-trifluoro-2-heptanone, A1 represents the crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone) in the comparative example, A2 represents the crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone) in Example 1, A3 represents the crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone) in Example 5, and A4 represents the crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone) in Example 6.
  • A0 represents the standard sample of 7-bromo-1,1,
  • the present application embodiment provides a method for preparing a trifluoromethyl ketone compound, a trifluoromethyl ketone compound and an ion exchange membrane, which are described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments. In addition, in the description of the present application, the term “including” means “including but not limited to”. The terms first, second, third, etc. are used only as labels, and no numerical requirements or order are imposed.
  • a and/or B can represent three situations: the first situation is that A exists alone; the second situation is that A and B exist at the same time; the third situation is that B exists alone, where A and B can be singular or plural, respectively.
  • the term "at least one” means one or more, and “multiple” means two or more.
  • the terms “at least one”, “at least one of the following” or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • “at least one of a, b or c” or “at least one of a, b and c” can be expressed as: a, b, c, a-b (i.e. a and b), a-c, b-c or a-b-c, where a, b and c can be single or multiple, respectively.
  • the present application provides a method for preparing a trifluoromethyl ketone compound, wherein the trifluoromethyl ketone compound has a structure shown in the general formula (I):
  • R 1 is selected from -(CH 2 ) n -, n is 3-20, for example, n is 3-5, 3-8, 3-10, 3-15, 3-18, 4-6, 4-8, 4-10, 4-15, 4-20, 5-8, 5-10, 5-15, 5-20, 10-15, 10-20, or 15-20, and n is exemplified as 3, 5, 8, 10, 12, 15, 17, 20 or a value between any two of the foregoing values.
  • R 2 is selected from unsubstituted or substituted alkyl groups, or halogen groups, and R 2 is, for example, selected from -Cl, -Br, -I, -CH 3 , -CH(CH 3 ) 2 or -C(CH 3 ) 3 .
  • the preparation method of trifluoromethyl ketone compounds comprises the steps of: using a pyridine compound as a catalyst, reacting a compound of the structure represented by the general formula (II) with trifluoroacetic anhydride to obtain a product, wherein the product comprises a compound of the structure represented by the general formula (I), wherein the molar ratio of the compound of the structure represented by the general formula (II) to the pyridine compound is 1:(1-8), for example, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 or a value between any two of the foregoing ratios.
  • reaction raw materials a compound with a structure represented by general formula (II) and trifluoroacetic anhydride are used as reaction raw materials, and a pyridine compound is used as a catalyst. Under the catalytic action of the catalyst, the reaction raw materials react to generate a product containing a compound with a structure represented by general formula (I).
  • R1 and R2 are the same as those described in the general formula (I).
  • the compound represented by the general formula (I) is selected from:
  • the compound represented by the general formula (II) is selected from:
  • the pyridine compound is selected from unsubstituted or substituted pyridine.
  • the substituted pyridine is a compound obtained by replacing the hydrogen atom located at the position opposite to the nitrogen atom in the pyridine ring with a substituent, and the substituent is selected from an electron donating group, and the electron donating group is selected from dimethylamino or pyrrolidinyl.
  • Examples of pyridine compounds are selected from one or more of anhydrous pyridine, 4-pyrrolidinylpyridine and 4-dimethylaminopyridine.
  • the molar ratio of the compound of the structure represented by the general formula (II) to the pyridine compound is 1: (1-2), 1: (1-3), 1: (1-4), 1: (2-3), 1: (2-4), 1: (2-5), 1: (3-4), 1: (3-5), or 1: (4-5), exemplified by 1: 1, 1: 2, 1: 3, 1: 4, 1: 5 or a value between any two of the foregoing ratios.
  • the pyridine compound is used as a catalyst, and the compound of the structure shown in the general formula (II) reacts with trifluoroacetic anhydride, including the steps of: providing a solution containing the compound of the structure shown in the general formula (II) and trifluoroacetic anhydride, adding the pyridine compound to the solution, and mixing.
  • the addition method of the pyridine compound includes but is not limited to dropwise addition, uniform flow addition, etc. In order to prevent the reaction phenomenon from being violent and to ensure the safety of the experiment and production process, the pyridine compound needs to be added slowly to the solution.
  • the solvent of the solution is selected from solvents in which the compound of the structure represented by the general formula (II) and trifluoroacetic anhydride have good dissolution performance, including but not limited to one or more of dichloromethane, chloroform and carbon tetrachloride.
  • the concentration of the compound of the structure represented by general formula (II) is 0.5 mol/L to 5 mol/L, for example, it can be 0.5 mol/L to 1 mol/L, 1 mol/L to 2 mol/L, 2 mol/L to 3 mol/L, 3 mol/L to 4 mol/L, or 4 mol/L to 5 mol/L.
  • the reaction is carried out at an ambient temperature of 0°C to 30°C, for example, 0°C to 10°C, 10°C to 15°C, 10°C to 20°C, 10°C to 25°C, 15°C to 20°C, 15°C to 25°C, 20°C to 25°C or 10°C to 30°C, exemplified by 0°C, 5°C, 10°C, 15°C, 20°C, 25°C, 30°C or a value between any two of the foregoing temperature values.
  • the reaction time is 1h to 4h, for example, 1h to 2h, 1h to 3h, 2h to 3h, 2h to 4h, or 3h to 4h, exemplified by 1h, 2h, 3h, or 4h.
  • the reaction of the compound of the structure shown in the general formula (II) and trifluoroacetic anhydride using a pyridine compound as a catalyst comprises the steps of: dissolving the compound of the structure shown in the general formula (II) and trifluoroacetic anhydride in a solvent, stirring for 5 min to 60 min at an ambient temperature of 10°C to 25°C to mix to obtain a solution containing the compound of the structure shown in the general formula (II) and trifluoroacetic anhydride, maintaining the ambient temperature of 10°C to 25°C unchanged, slowly adding the pyridine compound to the solution, mixing, and reacting for 2h to 4h.
  • the molar ratio of the compound of the structure represented by the general formula (II) to trifluoroacetic anhydride is 1: (4-6), for example, 1: (4-4.5), 1: (4-5), 1: (4-5.5), 1: (5-5.5), or 1: (5-6), exemplified by 1: 4, 1: 5 or 1: 6.
  • the molar ratio of the pyridine compound to trifluoroacetic anhydride is 1:(1-3), for example, 1:(1-1.5), 1:(1-2), 1:(1-2.5), 1:(2-2.5), or 1:(2-3), exemplified by 1:1, 1:2, or 1:3.
  • the method for preparing trifluoromethyl ketone compounds also includes the steps of: mixing the product with an acid solution for washing and extraction, collecting the organic phase, and then removing the solvent of the organic phase, and distilling to obtain a purified compound of the structure shown in general formula (I).
  • the method for preparing trifluoromethyl ketone compounds before the step of mixing the product with the acid solution, further comprises the step of adding a quencher to the product to perform a quenching reaction.
  • the quencher may be, for example, deionized water, and the quenching reaction may be performed at a temperature of, for example, 0°C.
  • the acid solution is used as a washing agent and an extractant to transfer impurities in the product to the aqueous phase, while the target product is retained in the organic phase
  • the acid in the acid solution includes but is not limited to one or more of acetic acid, hydrochloric acid, nitric acid, and sulfuric acid.
  • the concentration of the acid in the acid solution is 0.01 mol/L to 2 mol/L, and 1 mol/L is exemplified.
  • the method of "removing the solvent of the organic phase” is mainly evaporation concentration
  • the evaporation concentration method includes but is not limited to one or more of rotary evaporation, vortex evaporation or falling film evaporation.
  • the “distillation” method includes but is not limited to one or more of vacuum distillation, short-path distillation, molecular distillation and membrane distillation. It should be noted that in the preparation method of the embodiment of the present application, due to the small amount of pyridine compounds used, Therefore, the salt-forming reaction between the pyridine compound and the product is effectively avoided, thereby reducing the types of reaction by-products and reducing the difficulty of separating and purifying the product.
  • the present application also provides a trifluoromethyl ketone compound, which is prepared by any preparation method described in the present application.
  • the trifluoromethyl ketone compound has a structure shown in general formula (I).
  • the present application also provides an application of a trifluoromethyl ketone compound prepared by a preparation method as described in any one of the embodiments of the present application in the preparation of an ion exchange membrane.
  • the trifluoromethyl ketone compound is used as one of the polymerization monomers, and is polycondensed or copolymerized with a biphenyl aromatic compound to form a polyfluoroketone biphenyl polymer resin, and then the ion exchange membrane is prepared by a polymer processing process such as tape casting.
  • step S1.2 at an ambient temperature of 25°C, slowly add 0.4 mol of anhydrous pyridine to the mixed solution of step S1.1, mix, react for 2 h, then cool the entire reaction system to 0°C, add 100 mL of deionized water Water is added to quench the reaction to obtain a crude product mixture containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone);
  • step S1.3 adding 300 mL of hydrochloric acid solution (the solvent is water, and the hydrochloric acid concentration is 1 mol/L) to the crude product mixture obtained in step S1.2, after washing and extraction, collecting the organic phase, and rotary evaporating the organic phase to obtain a crude product;
  • step S1.4 The crude product of step S1.3 is subjected to reduced pressure distillation to obtain 7-bromo-1,1,1-trifluoro-2-heptanone.
  • This embodiment provides a method for preparing a trifluoromethyl ketone compound and the trifluoromethyl ketone compound (6-bromo-1,1,1-trifluoro-2-hexanone) prepared therefrom.
  • the trifluoromethyl ketone compound in this embodiment has a structure shown in the following formula (2.1):
  • step S2.2 at an ambient temperature of 25°C, slowly add 2 mol of 4-dimethylaminopyridine to the mixed solution of step S2.1, mix, and react for 3 hours, then cool the entire reaction system to 0°C, add 0.5 L of deionized water to quench the reaction, and obtain a crude product mixed solution containing the target product (6-bromo-1,1,1-trifluoro-2-hexanone);
  • step S2.4 The crude product of step S2.3 is subjected to molecular distillation to obtain 6-bromo-1,1,1-trifluoro-2-hexanone.
  • the yield of 6-bromo-1,1,1-trifluoro-2-hexanone prepared by the preparation method of this embodiment is 76% and the purity is 98%.
  • the nuclear magnetic resonance detection data of the prepared 6-bromo-1,1,1-trifluoro-2-hexanone are: 1 H-NMR (500MHz, CDCl 3 ) ⁇ 3.47(t,2H),2.40(t,2H),1.83(m,2H),1.53(m,2H).
  • This embodiment provides a method for preparing a trifluoromethyl ketone compound and the trifluoromethyl ketone compound (5-bromo-1,1,1-trifluoro-2-pentanone) prepared therefrom.
  • the trifluoromethyl ketone compound in this embodiment has a structure shown in the following formula (3.1):
  • step S3.2 at an ambient temperature of 25°C, slowly add 1.5 mol of 4-pyrrolidinylpyridine to the mixed solution of step S6.1, mix, and react for 3 hours, then cool the entire reaction system to 0°C, add 0.5 L of deionized water to quench the reaction, and obtain a crude product mixed solution containing the target product (5-bromo-1,1,1-trifluoro-2-pentanone);
  • step S3.3 adding 3 L of sulfuric acid solution (the solvent is water, and the hydrochloric acid concentration is 1 mol/L) to the crude product mixture obtained in step S3.2, washing and extracting, collecting the organic phase, and rotary evaporating the organic phase to obtain a crude product;
  • step S4.2 Slowly add 2.5 mol of anhydrous pyridine to the mixed solution of step S4.1 at an ambient temperature of 20°C, mix, and react for 3.5 hours, then cool the entire reaction system to 0°C, add 1 L of deionized water to quench the reaction, and obtain a crude product mixed solution containing the target product (1,1,1-trifluorooctane-2-one);
  • the yield of 1,1,1-trifluorooctane-2-one prepared by the preparation method of this embodiment is 74% and the purity is
  • the present embodiment provides a method for preparing a trifluoromethyl ketone compound and the trifluoromethyl ketone compound (7-bromo-1,1,1-trifluoro-2-heptanone) prepared therefrom.
  • step S1.2 is replaced by "at an ambient temperature of 25°C, slowly add 0.4 mol of 4-dimethylaminopyridine to the mixed solution of step S1.1, mix, react for 2 hours, then cool the entire reaction system to 0°C, add 100 mL of deionized water to quench the reaction, and obtain a crude product mixed solution containing 7-bromo-1,1,1-trifluoro-2-heptanone".
  • the yield of 7-bromo-1,1,1-trifluoro-2-heptanone prepared by the preparation method of this example is 75% and the purity is 98%.
  • the present embodiment provides a method for preparing a trifluoromethyl ketone compound and the trifluoromethyl ketone compound (7-bromo-1,1,1-trifluoro-2-heptanone) prepared therefrom.
  • step S1.2 is replaced by "slowly adding 0.3 mol of 4-pyrrolidinopyridine to the mixed solution of step S1.1 at an ambient temperature of 25°C, mixing, reacting for 2h, then cooling the entire reaction system to 0°C, adding 100 mL of deionized water to quench the reaction, and obtaining a crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone)".
  • the yield of 7-bromo-1,1,1-trifluoro-2-heptanone prepared by the preparation method of this example is 81% and the purity is 98%.
  • This comparative example provides a method for preparing a trifluoromethyl ketone compound and a trifluoromethyl ketone compound (7-bromo-1,1,1-trifluoro-2-heptanone) prepared therefrom.
  • the method for preparing the trifluoromethyl ketone compound in this comparative example comprises the following steps:
  • step S10.2 at an ambient temperature of 25°C, add 59.8 mmol of anhydrous pyridine dropwise to the mixed solution of step S10.1, mix, react for 2 h, then cool the entire reaction system to 0°C, add 20 mL of deionized water to quench the reaction, and obtain a crude product mixed solution containing the target product (7-bromo-1,1,1-trifluoro-2-heptanone);
  • step S10.3 Add 50 mL of hydrochloric acid solution (the solvent is water and the hydrochloric acid concentration is 1 mol/L) to the crude product mixture obtained in step S10.2. After washing and extraction, collect the organic phase, rotary evaporate the organic phase, and separate and purify it by column chromatography and vacuum distillation respectively. The first product is separated and purified by column chromatography, and the second product is separated and purified by vacuum distillation.
  • hydrochloric acid solution the solvent is water and the hydrochloric acid concentration is 1 mol/L
  • step S10.3 the purity of 7-bromo-1,1,1-trifluoro-2-heptanone in the first product is 95%, and the yield of 7-bromo-1,1,1-trifluoro-2-heptanone is 30%.
  • the purity of 7-bromo-1,1,1-trifluoro-2-heptanone in the second product is 95%, and the yield of 7-bromo-1,1,1-trifluoro-2-heptanone is 41%.
  • TLC Thin layer chromatography
  • substituted pyridine a compound obtained by replacing the hydrogen atom located opposite to the nitrogen atom in the pyridine ring with a substituent, the substituent being an electron-donating group
  • a catalyst can further enhance the catalytic effect, further reduce the amount of catalyst used, and help to further reduce the difficulty of product separation and purification, thereby further improving the yield of the product.

Landscapes

  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请公开一种三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜,采用通式为(II)的化合物和三氟乙酸酐作为反应原料,并以吡啶类化合物作为催化剂,反应生成三氟甲基酮类化合物,前述通式所示结构的化合物与吡啶类化合物的摩尔比为1:(1~8)以减少反应副产物的种类,提高了产物的纯度和产率。

Description

三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜
本申请要求于2022年12月15日在中国专利局提交的、申请号为202211645475.7、申请名称为“三氟甲基酮类化合物的制备方法及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及化合物合成技术领域,具体涉及一种三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜。
背景技术
三氟甲基酮类化合物是一类包含三氟甲基和羰基的有机化合物,三氟甲基酮类化合物能够作为酶抑制剂,还能够作为新型高分子材料的单体,并且是含氟功能高分子聚合物、含氟药物等有机化合物的重要中间体。三氟甲基酮类化合物在膜材料、药物领域应用广泛。
技术问题
目前,三氟甲基酮类化合物主要采用化学合成法制备,存在副产物较多、分离提纯难度大的缺点,导致目标产物的产率较低。因此,优化三氟甲基酮类化合物的制备和提纯方法,减少副产物的生成,对三氟甲基酮类化合物的应用与发展具有重要意义。
技术解决方案
鉴于此,本申请提供了三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜,以在三氟甲基酮类化合物的制备过程中减少副产物的生成。
第一方面,本申请提供了一种三氟甲基酮类化合物的制备方法,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构,所述制备方法包括步骤:以吡啶类 化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物;
其中,所述通式(Ⅱ)所示结构的化合物与所述吡啶类化合物的摩尔比为1:
(1~8);
所述通式(Ⅰ)如下:
所述通式(Ⅱ)如下:
在所述通式(Ⅰ)和所述通式(Ⅱ)中,R1选自-(CH2)n-,n为3~20;R2选自未取代或取代的烷基、或卤素基团;
所述吡啶类化合物选自未取代或取代的吡啶。
可选地,所述n为3~10。
可选地,所述n为3~5。
可选地,所述R2选自-Cl、-Br、-I、-CH3、-CH(CH3)2或-C(CH3)3
可选地,所述取代的吡啶为吡啶环中位于氮原子对位的氢原子被取代基取代而获得的化合物,所述取代基选自给电基团。
可选地,所述给电基团选自二甲氨基或吡咯烷基。
可选地,所述吡啶类化合物选自无水吡啶、4-吡咯烷基吡啶以及4-二甲氨基吡啶中的一种或多种。
可选地,所述通式(Ⅰ)所示结构的化合物选自:
所述通式(Ⅱ)所示结构的化合物选自:
可选地,所述以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,包括步骤:提供包含所述通式(Ⅱ)所示结构的化合物和三氟乙酸酐的溶液,向所述溶液中加入所述吡啶类化合物,混合。
可选地,所述溶液的溶剂选自二氯甲烷、三氯甲烷及四氯化碳的一种或多种。
可选地,在所述溶液中,所述通式(Ⅱ)所示结构的化合物的浓度为0.5mol/L~5mol/L。
可选地,所述反应在0℃~30℃的环境温度下进行,所述反应的时间为1h~4h。
可选地,所述的制备方法还包括步骤:将所述产物与酸溶液混合洗涤萃取,收集有机相,然后去除所述有机相的溶剂,蒸馏获得纯化的所述通式(Ⅰ)所示结构的化合物。
可选地,所述酸溶液中的酸选自乙酸、盐酸、硝酸以及硫酸中的一种或多种。
可选地,所述酸溶液中酸的浓度为0.01mol/L~2mol/L。
可选地,所述通式(Ⅱ)所示结构的化合物与所述三氟乙酸酐的摩尔比为1:(4~6)。
可选地,所述吡啶类化合物与所述三氟乙酸酐的摩尔比为1:(1~3)。
第二方面,本申请提供了一种三氟甲基酮类化合物,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构,所述三氟甲基酮类化合物采用如下制备方法制得:
以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物;其中,所述通式(Ⅱ)所示结构的化合物与所述吡啶类化合物的摩尔比为1:(1~8);
所述通式(Ⅰ)如下:
所述通式(Ⅱ)如下:
在所述通式(Ⅰ)和所述通式(Ⅱ)中,R1选自-(CH2)n-,n为3~20;R2选自未取代或取代的烷基、或卤素基团;
所述吡啶类化合物选自未取代或取代的吡啶。
第三方面,本申请提供了一种离子交换膜,所述离子交换膜采用三氟甲基酮类化合物制备,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构,所述三氟甲基酮类化合物采用如下制备方法制得:
以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物;其中,所述通式(Ⅱ)所示结构的化合物与所述吡啶类化合物的摩尔比为1:(1~8);
所述通式(Ⅰ)如下:
所述通式(Ⅱ)如下:
在所述通式(Ⅰ)和所述通式(Ⅱ)中,R1选自-(CH2)n-,n为3~20;R2选自未取代或取代的烷基、或卤素基团;
所述吡啶类化合物选自未取代或取代的吡啶。
可选地,所述三氟甲基酮类化合物选自:
有益效果
在本申请的三氟甲基酮类化合物的制备方法中,采用通式(Ⅱ)所示结构的化合物和三氟乙酸酐作为反应原料,并以吡啶类化合物作为催化剂,在催化剂的催化作用下,反应原料反应生成三氟甲基酮类化合物,通过将通式(Ⅱ)所示结构的化合物与吡啶类化合物的摩尔比限定在1:(1~8)以控制吡啶类化合物的用量,有效避免吡啶类化合物与产物之间发生成盐反应,从而减少了反应副产物的种类,有效提高了产物的产率。
采用所述三氟甲基酮类化合物的制备方法制得的三氟甲基酮类化合物能够应用于制备离子交换膜,三氟甲基酮类化合物作为聚合单体之一,其与联苯类芳香化合物缩聚或共聚合成聚氟酮联苯类聚合物树脂,再通过流延成型等聚合物加工工艺制备离子交换膜。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1、实施例5、实施例6以及对比例中包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液的薄层色谱图,其中,A0代表7-溴-1,1,1-三氟-2-庚酮的标准样品,A1代表对比例中包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液,A2代表实施例1中包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液,A3代表实施例5中包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液,A4代表实施例6中包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜,以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。用语第一、第二、第三等仅仅作为标示使用,并没有强加数字要求或建立顺序。本发明的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本发明范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所数范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,术语“包括”是指“包括但不限于”。
在本申请中,术语“和/或”用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示三种情况:第一种情况是单独存在A;第二种情况是同时存在A和B;第三种情况是单独存在B的情况,其中,A和B分别可以是单数或者复数。
在本申请中,术语“至少一种”是指一种或多种,“多种”是指两种或两种以上。术语“至少一个”、“以下至少一项(个)”或其类似表达,指的是这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a、b或c中的至少一项(个)”或“a,b和c中的至少一项(个)”均可表示为:a、b、c、a-b(即a和b)、a-c、b-c或a-b-c,其中,a,b和c分别可以是单个或多个。
本申请实施例提供了一种三氟甲基酮类化合物的制备方法,三氟甲基酮类化合物具有通式(Ⅰ)所示的结构:
在通式(Ⅰ)中,R1选自-(CH2)n-,n为3~20,n例如为3~5、3~8、3~10、3~15、3~18、4~6、4~8、4~10、4~15、4~20、5~8、5~10、5~15、5~20、10~15、10~20、或15~20,n示例为3、5、8、10、12、15、17、20或前述任意两个数值之间的值。
在通式(Ⅰ)中,R2选自未取代或取代的烷基、或卤素基团,R2例如选自-Cl、-Br、-I、-CH3、-CH(CH3)2或-C(CH3)3
本申请实施例提供的三氟甲基酮类化合物的制备方法包括步骤:以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物,其中,通式(Ⅱ)所示结构的化合物与吡啶类化合物的摩尔比为1:(1~8),例如为1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8或前述任意两个比值之间的值。
在上述制备方法中,采用通式(Ⅱ)所示结构的化合物和三氟乙酸酐作为反应原料,并以吡啶类化合物作为催化剂,在催化剂的催化作用下,反应原料反应生成包含通式(Ⅰ)所示结构的化合物的产物,通过将通式(Ⅱ)所示结构的化合物与吡啶类化合物的摩尔比限定在1:(1~8)以控制吡啶类化合物的用量,有效避免吡啶类化合物与产物之间发生成盐反应,从而减少了反应副产物的种类,降低了产物分离提纯的难度,进而提升了三氟甲基酮类化合物的产率。
具体的,通式(Ⅱ)所示结构的化合物如下:
通式(Ⅱ)中R1和R2参照通式(Ⅰ)中的描述。
在本申请的一些实施例中,通式(Ⅰ)所示结构的化合物选自:
对应地,通式(Ⅱ)所示结构的化合物选自:
在上述制备方法中,吡啶类化合物选自未取代或取代的吡啶,在本申请的一些实施例中,取代的吡啶为吡啶环中位于氮原子对位的氢原子被取代基取代而获得的化合物,所述取代基选自给电基团,给电基团例如选自二甲氨基或吡咯烷基。吡啶类化合物示例选自无水吡啶、4-吡咯烷基吡啶以及4-二甲氨基吡啶中的一种或多种。
在本申请的一些实施例中,通式(Ⅱ)所示结构的化合物与吡啶类化合物的摩尔比为1:(1~2)、1:(1~3)、1:(1~4)、1:(2~3)、1:(2~4)、1:(2~5)、1:(3~4)、1:(3~5)、或1:(4~5),示例为1:1、1:2、1:3、1:4、1:5或前述任意两个比值之间的值。
在本申请的一些实施例中,所述以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,包括步骤:提供包含通式(Ⅱ)所示结构的化合物和三氟乙酸酐的溶液,向所述溶液中加入吡啶类化合物,混合。其中,吡啶类化合物的加入方式包括但不限于是滴加、匀速流加等,为了防止反应现象剧烈以保证实验、生产过程的安全性,需向所述溶液中缓慢地加入吡啶类化合物。
其中,所述溶液的溶剂选自通式(Ⅱ)所示结构的化合物和三氟乙酸酐均在其中溶解性能良好的溶剂,包括但不限于是自二氯甲烷、三氯甲烷以及四氯化碳中的一种或多种。
在本申请的一些实施例中,在所述溶液中,通式(Ⅱ)所示结构的化合物的浓度为0.5mol/L~5mol/L,例如可以是0.5mol/L~1mol/L、1mol/L~2mol/L、2mol/L~3mol/L、3mol/L~4mol/L、或者4mol/L~5mol/L。
在本申请的一些实施例中,反应在0℃~30℃的环境温度下进行,例如可以是0℃~10℃、10℃~15℃、10℃~20℃、10℃~25℃、15℃~20℃、15℃~25℃、20℃~25℃或10℃~30℃,示例为0℃、5℃、10℃、15℃、20℃、25℃、30℃或前述任意两个温度值之间的值。反应的时间为1h~4h,例如为1h~2h、1h~3h、2h~3h、2h~4h、或3h~4h,示例为1h、2h、 3h、或4h。
在本申请的至少一个实施例中,所述以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,包括步骤:将通式(Ⅱ)所示结构的化合物和三氟乙酸酐溶解于溶剂中,在10℃~25℃的环境温度下搅拌5min~60min以混合获得包含通式(Ⅱ)所示结构的化合物和三氟乙酸酐的溶液,保持10℃~25℃的环境温度不变,向溶液中缓慢地加入吡啶类化合物,混合,反应2h~4h。
为了兼顾控制原料成本以及提高产物收率,在本申请的一些实施例中,通式(Ⅱ)所示结构的化合物与三氟乙酸酐的摩尔比为1:(4~6),例如为1:(4~4.5)、1:(4~5)、1:(4~5.5)、1:(5~5.5)、或者1:(5~6),示例为1:4、1:5或1:6。
为了兼顾控制催化剂的用量以及提升反应的催化效果,在本申请的一些实施例中,吡啶类化合物与三氟乙酸酐的摩尔比为1:(1~3),例如为1:(1~1.5)、1:(1~2)、1:(1~2.5)、1:(2~2.5)、或1:(2~3),示例为1:1、1:2、或1:3。
为了提高产物的纯度,在本申请的一些实施例中,三氟甲基酮类化合物的制备方法还包括步骤:将产物与酸溶液混合洗涤萃取,收集有机相,然后去除所述有机相的溶剂,蒸馏获得纯化的通式(Ⅰ)所示结构的化合物。
在本申请的一些实施例中,在所述将产物与酸溶液混合的步骤之前,三氟甲基酮类化合物的制备方法还包括步骤:向产物中加入淬灭剂以进行淬灭反应。淬灭剂例如可以是去离子水,淬灭反应例如可以在0℃的温度下进行。
具体的,酸溶液用作洗涤剂和萃取剂,以将产物中的杂质转移至水相,而目标产物保留于有机相中,酸溶液中的酸包括但不限于是乙酸、盐酸、硝酸以及硫酸中的一种或多种。为了进一步地提高目标产物的纯度,在本申请的一些实施例中,酸溶液中酸的浓度为0.01mol/L~2mol/L,示例为1mol/L。
具体的,“去除所述有机相的溶剂”的方式主要是蒸发浓缩,蒸发浓缩的方式包括但不限于是旋转蒸发、涡旋蒸发或降膜蒸发的一种或多种。“蒸馏”的方式包括但不限于是减压蒸馏、短程蒸馏、分子蒸馏以及膜蒸馏中的一种或多种。需要说明的是,在本申请实施例的制备方法中,由于吡啶类化合物的用量较少, 所以有效避免吡啶类化合物与产物之间发生成盐反应,从而减少了反应副产物的种类,降低了产物分离提纯的难度,在去除有机相的溶剂之后,仅需蒸馏即可获得纯度在98%以上的纯化产物,从而无需柱层析进行分离纯化,有效简化了分离纯化的工序,此外,相较于柱层析,蒸瘤对收率的负面影响较小,提升了产物的收率。
本申请实施例还提供了一种三氟甲基酮类化合物,所述三氟甲基酮类化合物采用如本申请实施例中任一种所述的制备方法制得,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构。
本申请实施例还提供了一种如本申请实施例中任一种所述的制备方法制得的三氟甲基酮类化合物在制备离子交换膜中的应用。具体的,三氟甲基酮类化合物作为聚合单体之一,其与联苯类芳香化合物缩聚或共聚合成聚氟酮联苯类聚合物树脂,再通过流延成型等聚合物加工工艺制备离子交换膜。
下面通过具体实施例、对比例以及实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。需要说明的是,在本申请的实施例和对比例中,产物的收率计算公式为:收率(%)=实际产量/理论产量×100%。
实施例1
本实施例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(7-溴-1,1,1-三氟-2-庚酮),本实施例中三氟甲基酮类化合物具有下式(1.1)所示的结构:
本实施例中三氟甲基酮类化合物的制备方法包括如下步骤:
S1.1、取0.1mol的式(1.2)所示结构的化合物溶解于450mL的无水二氯甲烷中,然后向其中缓慢加入0.43mol的三氟乙酸酐,在25℃的环境温度下搅拌0.5h,获得混合液;
S1.2、在25℃的环境温度下,向步骤S1.1的混合液中缓慢加入0.4mol的无水吡啶,混合,反应2h,然后将整个反应体系降温至0℃,加入100mL去离子 水以进行淬灭反应,获得包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液;
S1.3、向步骤S1.2获得的粗产物混合液中加入300mL的盐酸溶液(溶剂为水,盐酸浓度为1mol/L),洗涤和萃取后,收集有机相,将有机相进行旋转蒸发后获得粗产物;
S1.4、将步骤S1.3的粗产物进行减压蒸馏后获得7-溴-1,1,1-三氟-2-庚酮。
其中,式(1.2)所示结构的化合物如下:
在本实施例的制备方法中,制得的7-溴-1,1,1-三氟-2-庚酮,收率为71%,纯度为98%。1H-NMR(400MHz,CDCl3)δ3.41(t,2H),2.74(t,2H),1.89(m,2H),1.71(m,2H),1.50(m,2H)。
实施例2
本实施例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(6-溴-1,1,1-三氟-2-己酮),本实施例中三氟甲基酮类化合物具有下式(2.1)所示的结构:
本实施例中三氟甲基酮类化合物的制备方法包括如下步骤:
S2.1、取0.9mol的式(2.2)所示结构的化合物溶解于4L的无水二氯甲烷中,然后向其中缓慢加入3.9mol的三氟乙酸酐,在25℃的环境温度下搅拌0.5h,获得混合液;
S2.2、在25℃的环境温度下,向步骤S2.1的混合液中缓慢加入2mol的4-二甲氨基吡啶,混合,反应3h,然后将整个反应体系降温至0℃,加入0.5L去离子水以进行淬灭反应,获得包含目标产物(6-溴-1,1,1-三氟-2-己酮)的粗产物混合液;
S2.3、向步骤S2.2获得的粗产物混合液中加入3L的乙酸溶液(溶剂为水, 盐酸浓度为1mol/L),洗涤和萃取后,收集有机相,将有机相进行旋转蒸发后获得粗产物;
S2.4、将步骤S2.3的粗产物进行分子蒸馏后获得6-溴-1,1,1-三氟-2-己酮。
其中,式(2.2)所示结构的化合物如下:
采用本实施例的制备方法制得的6-溴-1,1,1-三氟-2-己酮,收率为76%,纯度为98%。制得的6-溴-1,1,1-三氟-2-己酮的核磁检测数据为:1H-NMR(500MHz,CDCl3)δ3.47(t,2H),2.40(t,2H),1.83(m,2H),1.53(m,2H)。
实施例3
本实施例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(5-溴-1,1,1-三氟-2-戊酮),本实施例中三氟甲基酮类化合物具有下式(3.1)所示的结构:
本实施例中三氟甲基酮类化合物的制备方法包括如下步骤:
S3.1、取1mol的式(3.2)所示结构的化合物溶解于5L的无水二氯甲烷中,然后向其中缓慢加入4mol的三氟乙酸酐,在25℃的环境温度下搅拌0.5h,获得混合液;
S3.2、在25℃的环境温度下,向步骤S6.1的混合液中缓慢加入1.5mol的4-吡咯烷基吡啶,混合,反应3h,然后将整个反应体系降温至0℃,加入0.5L去离子水以进行淬灭反应,获得包含目标产物(5-溴-1,1,1-三氟-2-戊酮)的粗产物混合液产物;
S3.3、向步骤S3.2获得的粗产物混合液中加入3L的硫酸溶液(溶剂为水,盐酸浓度为1mol/L)中,洗涤和萃取后,收集有机相,将有机相进行旋转蒸发后获得粗产物;
S3.4、将步骤3.3的粗产物进行短程蒸馏后获得5-溴-1,1,1-三氟-2-戊酮。
其中,式(3.2)所示结构的化合物如下:
采用本实施例的制备方法制得的5-溴-1,1,1-三氟-2-戊酮,收率为77%,纯度为98%。制得的5-溴-1,1,1-三氟-2-戊酮的核磁检测数据为:1H-NMR(500MHz,CDCl3)δ3.46(t,2H),2.40(t,2H),2.21(s,2H).。
实施例4
本实施例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(1,1,1-三氟辛烷-2-酮),本实施例中三氟甲基酮类化合物具有下式(4.1)所示的结构:
本实施例中三氟甲基酮类化合物的制备方法包括如下步骤:
S4.1、取1mol的式(4.2)所示结构的化合物溶解于4L的无水二氯甲烷中,然后向其中缓慢加入3.5mol的三氟乙酸酐,在20℃的环境温度下搅拌0.5h,获得混合液;
S4.2、在20℃的环境温度下,向步骤S4.1的混合液中缓慢加入2.5mol的无水吡啶,混合,反应3.5h,然后将整个反应体系降温至0℃,加入1L去离子水以进行淬灭反应,获得包含目标产物(1,1,1-三氟辛烷-2-酮)的粗产物混合液;
S4.3、向步骤S4.2获得的粗产物混合液中加入3L的盐酸溶液(溶剂为水,盐酸浓度为1mol/L)中,洗涤和萃取后,收集有机相,将有机相进行旋转蒸发后获得粗产物;
S4.4、将步骤4.3的粗产物进行短程蒸馏后获得1,1,1-三氟辛烷-2-酮。
其中,式(7.2)所示结构的化合物如下:
采用本实施例的制备方法制得的1,1,1-三氟辛烷-2-酮,收率为74%,纯度 为98%。制得的1,1,1-三氟辛烷-2-酮的核磁检测数据为:1H-NMR(500MHz,CDCl3)δ2.40(t,2H),1.53(m,2H),1.32(m,J=10.0Hz,6H),0.89(t,3H).。
实施例5
本实施例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(7-溴-1,1,1-三氟-2-庚酮),相较于实施例1中三氟甲基酮类化合物的制备方法,本实施例中三氟甲基酮类化合物的制备方法的区别点在于:将步骤S1.2替换为“在25℃的环境温度下,向步骤S1.1的混合液中缓慢加入0.4mol的4-二甲氨基吡啶,混合,反应2h,然后将整个反应体系降温至0℃,加入100mL去离子水以进行淬灭反应,获得包含7-溴-1,1,1-三氟-2-庚酮的粗产物混合液”。
采用本实施例的制备方法制得的7-溴-1,1,1-三氟-2-庚酮,收率为75%,纯度为98%。
实施例6
本实施例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(7-溴-1,1,1-三氟-2-庚酮),相较于实施例1中三氟甲基酮类化合物的制备方法,本实施例中三氟甲基酮类化合物的制备方法的区别点在于:将步骤S1.2替换为“在25℃的环境温度下,向步骤S1.1的混合液中缓慢加入0.3mol的4-吡咯烷基吡啶,混合,反应2h,然后将整个反应体系降温至0℃,加入100mL去离子水以进行淬灭反应,获得包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液”。
采用本实施例的制备方法制得的7-溴-1,1,1-三氟-2-庚酮,收率为81%,纯度为98%。
对比例
本对比例提供了一种三氟甲基酮类化合物的制备方法及其制得的三氟甲基酮类化合物(7-溴-1,1,1-三氟-2-庚酮),本对比例中三氟甲基酮类化合物的制备方法包括如下步骤:
S10.1、取6.53mmol的式(1.2)所示结构的化合物溶解于50mL的无水二氯甲烷中,然后向其中缓慢加入44.8mmol的三氟乙酸酐,在25℃的环境温度下搅拌0.5h,获得混合液;
S10.2、在25℃的环境温度下,向步骤S10.1的混合液中逐滴加入59.8mmol的无水吡啶,混合,反应2h,然后将整个反应体系降温至0℃,加入20mL去离子水以进行淬灭反应,获得包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液;
S10.3、向步骤S10.2获得的粗产物混合液加入50mL的盐酸溶液(溶剂为水,盐酸浓度为1mol/L)中,洗涤和萃取后,收集有机相,将有机相进行旋转蒸后,分别采用柱层析和减压蒸馏两种方式进行分离纯化,采用柱层析方式分离纯化获得第一产物,采用减压蒸馏方式分离纯化获得第二产物。
在步骤S10.3中,第一产物中7-溴-1,1,1-三氟-2-庚酮的纯度为95%,7-溴-1,1,1-三氟-2-庚酮的收率为30%。第二产物中7-溴-1,1,1-三氟-2-庚酮的纯度为95%,7-溴-1,1,1-三氟-2-庚酮的收率为41%,由此可知:当式(1.2)所示结构的化合物与无水吡啶的摩尔比为1:9.2时,由于无水吡啶的用量较多,所以过量的无水吡啶会与产物之间发生成盐反应,增加了反应副产物的种类,从而无论采用柱层析的分离纯化方式,还是采用减压蒸馏的分离纯化方式,产物的收率都比较低。
分析测试
采用薄层色谱法(Thin Layer Chromatography,TLC)检测分析实施例1、实施例5、实施例6和对比例中包含目标产物(7-溴-1,1,1-三氟-2-庚酮)的粗产物混合液,TLC的流动相为正己烷和乙酸乙酯的混合液(正己烷:乙酸乙酯的体积比为5:1),并使用碘熏显色,检测结果如图1所示。
由图1可知,相较于对比例的粗产物混合液中7-溴-1,1,1-三氟-2-庚酮的含量,实施例1、实施例5和实施例6的粗产物混合液中7-溴-1,1,1-三氟-2-庚酮的含量明显更高,并且相较于对比例的粗产物混合液中杂质的含量,实施例1、实施例5和实施例6的粗产物混合液中杂质的含量较低,由此说明:当以吡啶类化合物作为催化剂,采用式(1.2)所示结构的化合物和三氟乙酸酐反应生成7-溴-1,1,1-三氟-2-庚酮时,将式(1.2)所示结构的化合物与吡啶类化合物的摩尔比限定在1:(1~8)的范围内,能够有效提高7-溴-1,1,1-三氟-2-庚酮的产率,并且能够简化产物分离提纯的工序,在去除有机相的溶剂之后,仅需蒸馏即可获得纯度在98%以上的7-溴-1,1,1-三氟-2-庚酮,无需采用柱层析的方式进行分 离纯化,而相较于柱层析,蒸馏对产物收率的负面影响较小,有利于进一步地提高产物的收率,收率可达75%以上。
此外,相较于采用吡啶作为催化剂,采用取代的吡啶(吡啶环中位于氮原子对位的氢原子被取代基取代而获得的化合物,取代基为给电基团)作为催化剂可进一步地提升催化效果,能够进一步地降低催化剂的用量,有利于进一步地降低产物分离纯化的难度,从而进一步地提高了产物的收率。
以上对本申请实施例所提供的一种三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种三氟甲基酮类化合物的制备方法,其中,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构,所述制备方法包括步骤:以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物;
    其中,所述通式(Ⅱ)所示结构的化合物与所述吡啶类化合物的摩尔比为1:(1~8);
    所述通式(Ⅰ)如下:
    所述通式(Ⅱ)如下:
    在所述通式(Ⅰ)和所述通式(Ⅱ)中,R1选自-(CH2)n-,n为3~20;R2选自未取代或取代的烷基、或卤素基团;
    所述吡啶类化合物选自未取代或取代的吡啶。
  2. 根据权利要求1所述的制备方法,其中,所述n为3~10。
  3. 根据权利要求2所述的制备方法,其中,所述n为3~5。
  4. 根据权利要求1所述的制备方法,其中,所述R2选自-Cl、-Br、-I、-CH3、-CH(CH3)2或-C(CH3)3
  5. 根据权利要求1所述的制备方法,其中,所述取代的吡啶为吡啶环中位于氮原子对位的氢原子被取代基取代而获得的化合物,所述取代基选自给电基团。
  6. 根据权利要求5所述的制备方法,其中,所述给电基团选自二甲氨基或吡咯烷基。
  7. 根据权利要求1所述的制备方法,其中,所述吡啶类化合物选自无水 吡啶、4-吡咯烷基吡啶以及4-二甲氨基吡啶中的一种或多种。
  8. 根据权利要求1所述的制备方法,其中,所述通式(Ⅰ)所示结构的化合物选自:
    所述通式(Ⅱ)所示结构的化合物选自:
  9. 根据权利要求1所述的制备方法,其中,所述以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,包括步骤:提供包含所述通式(Ⅱ)所示结构的化合物和三氟乙酸酐的溶液,向所述溶液中加入所述吡啶类化合物,混合。
  10. 根据权利要求9所述的制备方法,其中,所述溶液的溶剂选自二氯甲烷、三氯甲烷及四氯化碳的一种或多种。
  11. 根据权利要求9所述的制备方法,其中,在所述溶液中,所述通式(Ⅱ)所示结构的化合物的浓度为0.5mol/L~5mol/L。
  12. 根据权利要求1所述的制备方法,其中,所述反应在0℃~30℃的环境温度下进行,所述反应的时间为1h~4h。
  13. 根据权利要求1所述的制备方法,其中,所述的制备方法还包括步骤:将所述产物与酸溶液混合洗涤萃取,收集有机相,然后去除所述有机相的溶剂,蒸馏获得纯化的所述通式(Ⅰ)所示结构的化合物。
  14. 根据权利要求13所述的制备方法,其中,所述酸溶液中的酸选自乙酸、盐酸、硝酸以及硫酸中的一种或多种。
  15. 根据权利要求13所述的制备方法,其中,所述酸溶液中酸的浓度为0.01mol/L~2mol/L。
  16. 根据权利要求1所述的制备方法,其中,所述通式(Ⅱ)所示结构的化 合物与所述三氟乙酸酐的摩尔比为1:(4~6)。
  17. 根据权利要求1所述的制备方法,其中,所述吡啶类化合物与所述三氟乙酸酐的摩尔比为1:(1~3)。
  18. 一种三氟甲基酮类化合物,其中,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构,所述三氟甲基酮类化合物采用如下制备方法制得:
    以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物;其中,所述通式(Ⅱ)所示结构的化合物与所述吡啶类化合物的摩尔比为1:(1~8);
    所述通式(Ⅰ)如下:
    所述通式(Ⅱ)如下:
    在所述通式(Ⅰ)和所述通式(Ⅱ)中,R1选自-(CH2)n-,n为3~20;R2选自未取代或取代的烷基、或卤素基团;
    所述吡啶类化合物选自未取代或取代的吡啶。
  19. 一种离子交换膜,其中,所述离子交换膜采用三氟甲基酮类化合物制备,所述三氟甲基酮类化合物具有通式(Ⅰ)所示的结构,所述三氟甲基酮类化合物采用如下制备方法制得:
    以吡啶类化合物作为催化剂,通式(Ⅱ)所示结构的化合物和三氟乙酸酐发生反应,获得产物,所述产物包含通式(Ⅰ)所示结构的化合物;其中,所述通式(Ⅱ)所示结构的化合物与所述吡啶类化合物的摩尔比为1:(1~8);
    所述通式(Ⅰ)如下:
    所述通式(Ⅱ)如下:
    在所述通式(Ⅰ)和所述通式(Ⅱ)中,R1选自-(CH2)n-,n为3~20;R2选自未取代或取代的烷基、或卤素基团;
    所述吡啶类化合物选自未取代或取代的吡啶。
  20. 根据权利要求19所述的离子交换膜,其中,所述三氟甲基酮类化合物选自:
PCT/CN2023/120785 2022-12-15 2023-09-22 三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜 WO2024125025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211645475.7 2022-12-15
CN202211645475.7A CN115974663B (zh) 2022-12-15 2022-12-15 三氟甲基酮类化合物的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2024125025A1 true WO2024125025A1 (zh) 2024-06-20

Family

ID=85967482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120785 WO2024125025A1 (zh) 2022-12-15 2023-09-22 三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜

Country Status (2)

Country Link
CN (1) CN115974663B (zh)
WO (1) WO2024125025A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173456B2 (en) * 2016-03-03 2021-11-16 Xergy Inc. Anion exchange polymers and anion exchange membranes incorporating same
US11213785B2 (en) * 2016-03-03 2022-01-04 Xergy Inc. Carbon dioxide environmental control system
US11286357B2 (en) * 2017-03-03 2022-03-29 Xergy Inc. Composite ion exchange membrane and method of making same
US11476485B1 (en) * 2018-05-31 2022-10-18 Triad National Security, Llc Polyaromatic electrolytes for alkaline membrane fuel cells
EP4272278A1 (en) * 2020-12-31 2023-11-08 Technion Research & Development Foundation Limited Metal-containing polymeric ion conductors

Also Published As

Publication number Publication date
CN115974663A (zh) 2023-04-18
CN115974663B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN103570580B (zh) 一种高纯度碘普罗胺的制备方法
CN111393403B (zh) 一种碳酸亚乙烯酯的制备方法
CN113416150B (zh) 一种洛铂中间体的合成方法
WO2024125025A1 (zh) 三氟甲基酮类化合物的制备方法、三氟甲基酮类化合物及离子交换膜
JP2002193887A (ja) ヨードニウム塩化合物の製造方法
CN112250546B (zh) 一种(e)-3,5-二羟基-4-异丙基二苯乙烯的合成方法
CN109232447A (zh) 1h-1,2,3-三氮唑的制备方法
CN110078622B (zh) 一种4-乙氧基-1,1,2,4,5,6-六氢环丁烷并萘-2-苯甲酸酯的合成方法
CN114057642B (zh) 一种米库氯铵中间体的合成方法
CN110698335A (zh) 一种特布他林中间体的合成方法
CN111925317B (zh) 一种盐酸罗哌卡因杂质及其制备方法
CN115124466A (zh) 一种四氢罂粟碱盐酸盐的合成方法
CN109232544B (zh) 一种普卡必利的制备方法
CN114853689A (zh) 一种高纯布醇锂络合物的制备方法
CN116023342B (zh) 一种高纯度氯硝西泮的制备方法
WO2001083419A1 (fr) Procede de preparation de cetones alicycliques et d'esters alicycliques substitues par alkyle
CN114560868B (zh) 一种生物素标记莪术醇的合成方法
JP2594826B2 (ja) p−またはm−ヒドロキシフェネチルアルコールの製造法
CN114524802B (zh) 一种喹啉化合物的合成方法
CN114773312B (zh) 一种盐酸阿罗洛尔中间体的制备工艺
CN115124430B (zh) 一种2,2'-二(三氟甲基)二氨基联苯的合成工艺
CN109851567B (zh) 吡嗪类化合物及其应用
CN109369357B (zh) 一种催化氧化羰基化制备对称二芳基酮的方法
CN115959631A (zh) 一种蒽醌法生产双氧水工作液溶剂体系
CN117327021A (zh) 一种去除六氢哒嗪合成中粘稠物杂质的方法