WO2024124968A1 - 一种用于窄工位的双梁门架式机器人自动焊接系统 - Google Patents

一种用于窄工位的双梁门架式机器人自动焊接系统 Download PDF

Info

Publication number
WO2024124968A1
WO2024124968A1 PCT/CN2023/115657 CN2023115657W WO2024124968A1 WO 2024124968 A1 WO2024124968 A1 WO 2024124968A1 CN 2023115657 W CN2023115657 W CN 2023115657W WO 2024124968 A1 WO2024124968 A1 WO 2024124968A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
axis
robot
trolley
double
Prior art date
Application number
PCT/CN2023/115657
Other languages
English (en)
French (fr)
Inventor
周文鑫
谢静远
沈文轩
吴治翰
张然
郭海平
Original Assignee
上海船舶工艺研究所(中国船舶集团有限公司第十一研究所)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) filed Critical 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所)
Publication of WO2024124968A1 publication Critical patent/WO2024124968A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • welding technology usually produces parts that have strength exceeding that of the parent material in all directions.
  • welding work runs through the entire process from steel plate marking and point fixing to module assembly.
  • Welding technology is a key process technology for the construction of production platforms, with a large workload, and its quality directly affects the stability and safety of the finished products of offshore oil and gas production platforms.
  • the gantry span is larger and the size restrictions in the material transportation direction are more stringent.
  • the gantry with a larger span is usually much less accurate than the robot's end motion accuracy, and the gantry After long-term operation, slow deformation will occur, which will further affect the operation accuracy. In severe cases, it may cause damage to the equipment, harm the operators and other equipment on site.
  • the technical solution adopted by the present invention is:
  • the width of the main beam in the external axis system of the steel double-beam gantry gradually narrows along the ground beam direction, and safety fences and handrails for hanging safety ropes are provided on both sides of the first pedestrian passage.
  • the dust hood in the welding smoke treatment system is installed at the end of the X-axis lifting trolley in the external axis system of the steel double-beam gantry.
  • the dust hood connects the sheet metal to the second air duct moving trolley through a connecting bracket.
  • the dust hood and the connecting bracket are both designed with two-piece sheet metal bolt connections.
  • Soft dust curtains are hung around the sheet metal.
  • the cross-sectional area of the dust hood covers the movement and working range of the welding robot.
  • the dust hood is provided with a brush at the contact point with the guide rail and the slider.
  • the ground beam and equipment platform of the present invention adopt a compact design in many places, and most of the structures are inward-retracted. Compared with the conventional double-beam design, it has less redundant structures, smaller floor space, larger channel area, and high compatibility for passing workpieces, which is conducive to improving the output per unit area and the coordinated operation of multiple equipments in a streamlined manner;
  • the second improvement of the present invention is that the water-cooled welding gun is equipped with an anti-collision sensor, which automatically stops the welding process when the water-cooled welding gun is subjected to a torsional collision force, thereby effectively protecting the robot body from damage;
  • the third improvement of the present invention is that the gun cleaning station is equipped with a closed oil spraying tank, and the anti-splash agent can be directly sprayed onto the gun head of the water-cooled welding gun, so that the working area of the welding robot will not be polluted, and the amount of anti-splash agent used can be reduced. At the same time, the number of times the nozzle of the water-cooled welding gun is cleaned is effectively reduced, and its service life is extended;
  • the fourth improvement of the present invention is that the welding smoke treatment system can be controlled not only remotely by the robot welding system, but also locally. During the spot welding fixation before work and the manual repair welding of the defective structure of the welding robot after welding, there is no need for external dust removal equipment. The welding smoke treatment system can be directly turned on locally to remove dust during the manual welding process.
  • FIG2 is a schematic diagram of the structure of a mobile trolley in the external axle system of a steel double-beam gantry according to the present invention
  • FIG3 is a schematic diagram of a gun cleaning state in a robot welding system of the present invention.
  • FIG4 is a schematic diagram of an execution structure in a robot welding system of the present invention.
  • FIG5 is a layout diagram (fracture view) of the welding smoke treatment system and the hard air duct of the present invention.
  • FIG6 is a schematic diagram of the connection between the movable air duct and the dust hood of the present invention.
  • FIG7 is a schematic diagram of the structure of the air duct moving vehicle used in conjunction with the air duct when the hard air duct of the present invention is installed upright;
  • a double-beam gantry robot automatic welding system for a narrow workstation as shown in Figures 1 to 7, comprises, and, wherein the and are arranged on the above, the above is arranged on the above, the above is used to move the above to carry out welding on the object to be welded and expand the operating range of the welding robot, the above performs welding by the welding robot, and the above carries out real-time absorption and treatment of the smoke and dust generated during the welding process;
  • the above-mentioned double-beam gantry robot automatic welding system can be applied to gantry robot welding systems with any span that require operational stability and durability under long-term use, especially for usage scenarios that require the length in the vertical span direction.
  • the ground rail 101, the ground beam 102, the equipment platform 103, the legs 104, the main beam 105, the connecting beam 106, the Y-axis moving trolley 107, the drag chain and the gas path placement platform 108 and the first pedestrian passage 109 are included.
  • the ground beam 102, the main beam 105, the connecting beam 106 and the Y-axis moving trolley 107 are all designed with a box beam, and the ground beam 102 cooperates with the ground rail 101, and the equipment platform 103 is installed on the upper surface of the ground beam 102.
  • the ground beam 102 and the ground rail 101 form an inclined ladder through the motor mounting flange, the drag chain and the gas path placement platform 108 are arranged on the inner side of the main beam 105, and the first pedestrian passage 109 is arranged on the main beam 105;
  • the main beam 105 and the Y-axis moving trolley 107 are both designed with double beams;
  • each beam and the mobile trolley adopts a box-type beam design, and the supporting plates are reasonably arranged inside the beam.
  • the main beam and the Y-axis mobile trolley adopt a double-beam design, and the ground track of the matching mechanism is arranged on the upper surface of each beam.
  • the ground track and height can be infinitely adjusted by the track pressure plate.
  • Section, the external axis system of the steel double-beam gantry cooperates with the ground track through the ground beam to provide a wide range of mobility for the welding robot.
  • the equipment platform is installed on the upper surface of the ground beam, and the required host computer, power distribution cabinet, control cabinet, and dust removal machine are installed.
  • the upper surface of the ground beam is provided with an equipment platform. After ensuring the necessary layout of the control cabinet of the robot welding system and the necessary space for operators, the size of the equipment platform is narrowed to the maximum extent to improve the compatibility of the passing workpieces.
  • the ground beam and the main beam are connected by legs.
  • the legs adopt a box-type beam design with a narrow bottom and a wide top.
  • the internal support structure and connecting beams ensure the structural stability and improve the compatibility with the passing workpieces.
  • the connecting beams between the main beams further provide support and tensioning force in the direction of the ground rail.
  • the connecting beams adopt a round tube design, which can reduce stress concentration while ensuring the structural strength, and reduce the interference with the drag chain and the gas path placement platform on the inner side of the main beam.
  • both ends of the ground beam 102 are connected to the main beam 105 through legs 104, the legs 104 are a box beam structure that is narrow at the bottom and wide at the top, and the connecting beam 106 is designed as a round tube;
  • both ends of the ground beam are connected to the main beam through support legs.
  • the support legs are narrow at the bottom and wide at the top, which improves the compatibility with the passing workpiece.
  • the connecting beams adopt a round tube design, which can reduce stress concentration while ensuring the structural strength, and at the same time reduce interference with the drag chain and gas path placement platform on the inner side of the main beam.
  • the width of the main beam 105 gradually narrows along the direction of the ground beam 102, and safety fences and handrails with hanging safety ropes are provided on both sides of the first pedestrian passage 109;
  • the width of the main beam along the ground beam direction is greatly narrowed compared with the conventional design of the same-size gantry.
  • the platforms on both sides are used to ensure the safe distance for the upper surface of the main beam to pass.
  • Safety fences and handrails are provided on both sides of the first pedestrian passage for hanging safety ropes.
  • the internal support structure of the main beam is tighter than the conventional design, and can still maintain a small deformation after narrowing the beam surface.
  • the main beam is designed as a narrow box beam, and the width along the ground track and the ground beam direction is greatly narrowed to adapt to the working environment with high requirements for the ground beam direction.
  • the internal support structure of the main beam is tighter than the conventional design, and can still maintain a small deformation after narrowing the beam surface.
  • the pedestrian passage platforms on both sides of the upper surface are used to ensure the safe passing distance of maintenance personnel when the beam surface is narrowed.
  • Safety fences and handrails are provided on both sides of all paths that construction and users may pass through to facilitate the hanging of safety ropes.
  • the platform for placing the drag chain and hard gas path is set on the inside of the main beam, which does not occupy the length space in the direction of the ground beam and maintains a low floor area.
  • the said also includes a Y-axis trolley crossbeam 201, an X-axis trolley body 202 and An X-axis trolley surround 203, the X-axis trolley body 202 is mounted on the Y-axis trolley crossbeam 201, the X-axis trolley surround 203 is connected to the lower end of the X-axis trolley body 202, two Y-axis moving trolleys 107 and two main beams 105 are provided, the Y-axis moving trolley 107 runs between the two main beams 105, the Y-axis moving trolley 107 and both ends of the guide rail used in conjunction with the Y-axis moving trolley 107 are provided with zero-position labels, a second pedestrian passage 205 is provided on one side of the Y-axis moving trolley 107, the first pedestrian passage 109 on the main beam 105 is connected to the second pedestrian passage 205, both sides of the first pedestrian passage 109 and the second pedestrian passage 205 are provided with safety fences and handrails for hanging
  • the X-axis lifting trolley 207 and the lifting trolley guide rail 208 are also included.
  • the X-axis lifting trolley 207 runs between the two Y-axis trolley cross beams 201. Zero position labels are provided on both sides of the X-axis lifting trolley 207 and the lifting trolley guide rail 208.
  • the X-axis lifting trolley 207 is also equipped with a welding wire barrel and a wire guide rack platform 206 that can move synchronously with the X-axis lifting trolley 207.
  • the welding wire barrel and the wire guide rack platform 206 can be replaced through the main beam 105 and the first pedestrian channel 109 and the second pedestrian channel 205 carried by the Y-axis moving trolley 107;
  • the X-axis lifting trolley 207 and the lifting trolley guide rail 208 are operated in the middle of the frame of the X-axis trolley enclosure 203.
  • the X-axis trolley enclosure 203 and the lifting trolley guide rail 208 are guided by the guide rail slider mechanism on both sides of the frame inside the X-axis trolley enclosure 203.
  • the lifting trolley guide rail 208 is located outside the X-axis lifting trolley 207. Zero position labels are arranged on both sides of the lifting trolley guide rail 208.
  • the X-axis lifting trolley 207 is provided with a support plate, and the support plate is provided with a lifting trolley wiring hole 209.
  • the end of the X-axis lifting trolley 207 is provided with a lifting trolley mounting flange 210 on each side.
  • the X-axis lifting trolley 207 is equipped with the welding robot 401, the gun cleaning station 305 and the dust hood through the lifting trolley mounting flange 210.
  • two Y-axis mobile trolleys run between the two main beams, a side walkway of the Y-axis mobile trolley is connected to the main beam walkway, and the X-axis mobile trolley runs between the double beams of the Y-axis mobile trolley.
  • the welding wire barrel platform and the wire guide rack are mounted on the X-axis mobile trolley and move synchronously with the X-axis mobile trolley.
  • the welding wire barrel can be replaced through the main beam and the walkway carried by the Y-axis mobile trolley.
  • the X-axis mobile trolley and its guide rails run in the middle of the surrounding frame of the X-axis mobile trolley and are guided by the guide rail slider mechanism on both sides of the surrounding frame.
  • the guide rails are located on the outside of the lifting trolley to facilitate straightening after long-term deformation or collision.
  • a hole is opened in the support plate of the X-axis mobile trolley, and the equipment connection line is connected from the inside of the X-axis mobile trolley.
  • Flanges are set on each side of the end of the trolley to facilitate the installation of execution equipment such as welding robots, gun cleaning stations and dust hoods.
  • the device includes a welding robot 401, a robot end execution flange 404, a welding robot body 303, a welding power supply, a wire feeder 304, a gun cleaning station 305, a water-cooled welding gun 403, an industrial camera 301, an industrial camera moving external axis 302, a laser sensor 402 and a robot end execution flange 404, wherein the industrial camera 301 is connected to the industrial camera moving external axis 302, the welding power supply outputs current and voltage in the form of DC or pulse, the wire feeder 304 sends the welding wire to the water-cooled welding gun 403 at a uniform speed, and the center of the water-cooled welding gun 403 outputs the welding wire and sprays out the welding wire.
  • the water-cooled welding gun 403 is provided with an anti-collision sensor and a cooling mechanism
  • the gun cleaning station 305 is installed at the end of the X-axis lifting trolley 207
  • the gun cleaning station 305 is provided with a closed oil spraying tank.
  • the industrial camera 301 adopts active binocular vision technology, which can scan the proposed welding area before welding, generate regional point cloud, and complete reference point recognition and positioning.
  • the laser sensor 402 is arranged beside the water-cooled welding gun 403 to locate the starting point, feature point and end point of the weld.
  • the end of the welding robot 401 is equipped with a laser sensor 402 and a water-cooled welding gun 403 through the robot end execution flange 404;
  • the welding robot has IP54 dust and water resistance.
  • the end effector points to the fixed point in a fixed posture.
  • the welding power supply outputs stable current and voltage in the form of DC or pulse, and controls the wire feeder to uniformly feed the welding wire to the welding gun at the corresponding speed.
  • the center of the water-cooled welding gun outputs the welding wire, and the surrounding welding shielding gas is sprayed to assist welding.
  • the water-cooled welding gun is equipped with an anti-collision sensor, which will automatically shut down in the event of a collision.
  • the water-cooled welding gun is also equipped with a cooling system to prevent overheating from affecting welding.
  • the welding robot After the welding robot welds a fixed distance, it cleans the gun and cuts the wire. It is equipped with a closed oil spray tank, and the anti-splash agent is directly sprayed to the gun head of the water-cooled welding gun without polluting the working area of the welding robot.
  • the industrial camera uses active binocular vision technology to scan the intended welding area before welding, generate a regional point cloud, and complete the reference point recognition and positioning.
  • the laser sensor accurately locates the starting point, feature point and end point of the weld. It is compact and does not affect the welding action of the robot and welding gun.
  • the dust removal machine 501, the hard air duct 502, the first air duct moving trolley 503 and the dust hood are included, the dust removal machine 501 is arranged on the equipment platform 103 in the middle, the dust removal machine 501 is connected to the hard air duct 502 through a hose, the first air duct moving trolley 503 and the hard air duct 502 are connected through a duckbill structure, and the hard air duct 502 is installed inverted A hard duct, slide rails are arranged on both sides of the hard air duct 502, and the slide rails slide in cooperation with the first air duct moving trolley 503 through a slider, and the side of the hard air duct 502 without slide rails is a sealed overlapping rubber strip, and the side of the hard air duct 502 without slide rails and rubber strips is installed in cooperation with the main beam 105 of the external axis system 2 of the steel double-beam gantry, and the dust removal integrated machine 501 absorbs and filters the welding smoke generated by the work through an
  • the hard air duct 502 is connected to the mobile air duct 605 at the external axis of the robot through a connecting pipe 606;
  • the hard air duct is connected to the mobile air duct at the external axis of the robot through a connecting pipe between the mobile air duct and the fixed air duct, and a mobile trolley is also arranged at the external axis to follow the movement, so as to ensure the stability of the connection between the dust hood and the air duct, and at the same time have the ability to follow the movement;
  • the dust removal machine completes the adsorption of welding fumes generated by the remote welding robot through the dust hood, and completes the welding fume filtration through the HEPA filter element.
  • the remaining dust is collected and dumped through the dust box, and the dust removal can be controlled locally or through the robot welding system.
  • the cross-section of the hard air duct is constant and closed at both ends. The farthest opening position can also be selected by the dust removal machine to ensure the dust removal effect.
  • the device also includes a first welding robot external axis 504 and a second welding robot external axis 505, and the first welding robot external axis 504 and the second welding robot external axis 505 are both rigidly connected to the welding robot 401.
  • first welding robot external axis 504 or the second welding robot external axis 505 moves, the welding robot 401 and the first air duct moving trolley 503 can follow the movement of the first air duct moving trolley 503 without external power.
  • the dust hood is installed at the end of the X-axis lifting trolley 207, and the dust hood connects the sheet metal 602 to the second air duct moving trolley 604 through the connecting bracket 603.
  • the dust hood and the connecting bracket 603 are both designed with two-piece sheet metal 602 bolted connection.
  • a soft dust curtain 601 is hung around the sheet metal 602.
  • the cross-sectional area of the dust hood covers the movement and working range of the welding robot 401.
  • the dust hood is provided with a brush at the contact point with the guide rail and the slider.
  • the dust hood connects the sheet metal on the top to the external axis moving trolley through the connecting bracket to ensure that the dust hood and the external axis of the welding robot run synchronously.
  • Dust removal curtains are hung around the parts to ensure that the dust removal system will not affect the normal operation of the welding robot when the hard sheet metal parts connected to the external axis of the welding robot are at any height.
  • the dust collection curtains are made of translucent material to prevent welding arc from hurting people, and it is convenient for operators to observe the working posture of the welding robot in the cover.
  • the sheet metal parts and connecting brackets are designed with two pieces, and the parts are connected by bolts.
  • the disassembly and assembly process does not require the destruction of the existing gantry system structure.
  • the area enclosed by the sheet metal parts can completely cover the movement and working range of the robot, and brushes are provided at the contact interfaces between the hard parts and the guide rails, sliders, etc. in the external axis of the robot, which can maximize the sealing of the movable parts during movement.

Landscapes

  • Manipulator (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种用于窄工位的双梁门架式机器人自动焊接系统,包括钢质双梁门架外部轴系统、机器人焊接系统和焊烟处理系统;钢质双梁门架外部轴系统上设置有机器人焊接系统和焊烟处理系统,焊烟处理系统设置于机器人焊接系统上,钢质双梁门架外部轴系统用以移动机器人焊接系统对待焊接物开展焊接,机器人焊接系统通过焊接机器人执行焊接,焊烟处理系统对机器人焊接系统在焊接过程中产生的烟雾灰尘吸收处理。本焊接系统适用于大型结构件的机器人自动焊接需求,能够处理焊接过程中产生的气体。

Description

一种用于窄工位的双梁门架式机器人自动焊接系统 技术领域
本发明涉及自动化焊接装置的技术领域,具体地说是一种海洋油气生产平台上部模块甲板片体的机器人自动焊接系统。
背景技术
近年来,信息通讯技术、人工智能技术的蓬勃发展带动了制造业的改造和催化,带来了全球制造业格局大变革、大调整,也成为了发达国家实现制造业重振和发展中国家抢占产业高端的着力点。《中国制造2025》将海洋工程装备制造业确定为十大重点领域之一,作为深海战略的基础,海洋工程装备,尤其是海洋油气生产平台上部模块,是先进制造技术、信息技术和新材料技术等高新技术的综合体,投入高、产出高、附加值高,具有较深远的技术影响力和带动力。
焊接工艺作为金属材料加工流程中最常用、最基础、最经济、最有效的金属永久连接方法,得到的部件通常在各向都具有超越母材的强度,在海洋油气生产平台的建造中,焊接工作贯穿着从钢板画线点固到模块总装的全过程。焊接技术是生产平台建造的关键工艺技术,工作量占比大,质量直接影响海洋油气生产平台建造成品的稳定与安全。
目前,海洋油气生产平台的建造过程高度定制化、生产柔性化的特点,片体与片体间架构差异较大,几乎不存在两个同样的结构,传统的示教型机器人运行原理为针对同一种结构的目标件反复重复同一路径进行焊接,无法应用于海洋油气生产平台上部模块甲板片体的生产过程。因此,目前上部模块甲板片体生产过程中的焊接仍需采用人工焊接的形式进行。
同时,采用门架式机器人焊接系统设计时,针对海洋油气生产平台的建造工位的现场实际条件,为适配生产需求,门架跨距较大、物料运输方向尺寸限制较为严格。较大跨距的龙门架通常精度远低于机器人末端运动精度,且门架 在长期运行后会产生缓慢形变,形变会进一步影响运行精度,严重情况下可能导致设备损坏、损害操作人员及现场其余设备。
发明内容
针对现有技术存在的问题,本发明提供了一种用于窄工位的双梁门架式机器人自动焊接系统,使用该双梁门架式机器人自动焊接系统后,适用于大型结构件的机器人自动焊接需求,通过门架式外部轴辅助运动,工业相机识别焊缝类别、焊件位置,焊接机器人依据既定的焊接作业进行施焊,通过激光传感器定位并全程跟踪,确保焊缝精确成型,能够处理对焊接过程中产生的气体。
为解决上述技术问题,本发明采用的技术方案是:
提供一种用于窄工位的双梁门架式机器人自动焊接系统,包括钢质双梁门架外部轴系统、机器人焊接系统和焊烟处理系统;所述钢质双梁门架外部轴系统上设置有所述机器人焊接系统和所述焊烟处理系统,所述机器人焊接系统通过焊接机器人执行焊接,所述焊烟处理系统设置于所述机器人焊接系统上,所述钢质双梁门架外部轴系统用以移动所述机器人焊接系统对待焊接物开展焊接,所述焊烟处理系统对所述机器人焊接系统在焊接过程中产生的烟雾灰尘开展吸收处理。
本发明为了解决其技术问题,所采用的进一步技术方案是:
进一步地说,所述钢质双梁门架外部轴系统包括地面轨道、地梁、设备平台、支腿、主梁、连接梁、Y轴移动小车、拖链及气路摆放平台和第一人行通道,所述地梁、主梁、连接梁及Y轴移动小车均采用箱型梁设计,所述钢质双梁门架外部轴系统通过地梁与地面轨道相配合,所述地梁上表面安装所述设备平台,所述地梁与地面轨道通过电机安装法兰盘形成斜梯,所述主梁内侧设置所述拖链及气路摆放平台,所述主梁上设置所述第一人行通道。
进一步地说,所述钢质双梁门架外部轴系统中的主梁及Y轴移动小车均采用双梁设计。
进一步地说,所述钢质双梁门架外部轴系统中的地梁两端通过支腿与主梁连接,所述支腿为下窄上宽的箱型梁结构,所述连接梁采用圆管设计。
进一步地说,所述钢质双梁门架外部轴系统中的主梁延地梁方向宽度渐窄,所述第一人行通道两侧均设有悬挂安全绳的安全围栏及扶手。
进一步地说,所述钢质双梁门架外部轴系统还包括Y轴小车横梁、X轴小车车体及X轴小车包围,所述X轴小车车体均架设在所述Y轴小车横梁上,所述X轴小车包围连接于所述X轴小车车体的下端,所述Y轴移动小车与所述主梁均设置两个,所述Y轴移动小车运行于两根所述主梁之间,所述Y轴移动小车及与所述Y轴移动小车配合使用的导轨两端均设有零位标签,所述Y轴移动小车的一侧设置有第二人行通道,所述主梁上的第一人行通道与所述第二人行通道联通,所述第一人行通道与所述第二人行通道的两侧均设有悬挂安全绳的安全围栏及扶手,所述Y轴移动小车两端还设有防撞块及接触开关。
进一步地说,所述钢质双梁门架外部轴系统还包括X轴升降小车及升降小车导轨,所述X轴升降小车运行于两根所述Y轴小车横梁之间,所述X轴升降小车及升降小车导轨两侧均设有零位标签,所述X轴升降小车还搭载有能够与所述X轴升降小车同步移动的焊丝桶及导丝架平台,所述焊丝桶及导丝架平台能够通过所述主梁及Y轴移动小车所搭载的第一人行通道及所述第二人行通道开展更换。
进一步地说,所述钢质双梁门架外部轴系统中的X轴升降小车及升降小车导轨运行于所述X轴小车包围的框架中间,X轴小车包围及升降小车导轨通过所述X轴小车包围的框架内部两侧导轨滑块机构导向,所述升降小车导轨位于所述X轴升降小车外侧,所述升降小车导轨两侧设有零位标签,所述X轴升降小车设有支撑板,所述支撑板开设有升降小车走线孔,所述X轴升降小车末端各面均设置有升降小车安装法兰,所述X轴升降小车通过所述升降小车安装法兰搭载机器人焊接系统中的焊接机器人、清枪站及焊烟处理系统中的吸尘罩。
进一步地说,所述机器人焊接系统包括焊接机器人、机器人末端执行法兰、焊接机器人本体、焊接电源、送丝机、清枪站、水冷焊枪、工业相机、工业相机移动外部轴、激光传感器和机器人末端执行法兰,所述工业相机连接于所述工业相机移动外部轴,所述焊接电源以直流或脉冲形式输出电流电压,所述送丝机以匀速方式将焊丝送往所述水冷焊枪,所述水冷焊枪中心输出焊丝并喷出 焊接保护气,所述水冷焊枪设有防碰撞传感器和冷却机构,所述清枪站安装于所述钢质双梁门架外部轴系统中的X轴升降小车的末端,所述清枪站设置有封闭式喷油仓,所述工业相机采用主动双目视觉技术,能够对拟焊接区域进行焊前扫描,生成区域点云,完成基准点识别及定位,所述激光传感器设置于所述水冷焊枪旁侧,用以定位焊缝起始点、特征点与终点,所述焊接机器人末端通过机器人末端执行法兰安装有激光传感器和水冷焊枪。
进一步地说,所述焊烟处理系统包括除尘一体机、硬质风道、第一风道移动小车和吸尘罩,所述除尘一体机设置于所述钢质双梁门架外部轴系统中的设备平台上,所述除尘一体机与所述硬质风道通过软管连接,第一风道移动小车与所述硬质风道之间通过鸭嘴形结构联通,所述硬质风道为倒置安装硬质管道,所述硬质风道两侧设置有滑轨,所述滑轨与所述第一风道移动小车通过滑块配合滑动,所述硬质风道的无滑轨侧为密封搭接的橡胶条,所述硬质风道无滑轨、无橡胶条侧与所述钢质双梁门架外部轴系统的主梁配合安装,所述除尘一体机通过集成除尘风机及吸尘罩对所述机器人焊接系统工作产生的焊烟进行吸附过滤并通过集尘盒收集,所述除尘一体机通过控制面板在本地进行除尘控制或通过机器人焊接系统进行除尘控制。
进一步地说,所述硬质风道通过连接管连接机器人外部轴处的移动风道。
进一步地说,所述焊烟处理系统还包括第一焊接机器人外部轴和第二焊接机器人外部轴,所述第一焊接机器人外部轴和第二焊接机器人外部轴均与焊接机器人刚性连接,当所述第一焊接机器人外部轴或第二焊接机器人外部轴移动时,所述焊接机器人与所述第一风道移动小车在无外部动力作用下能够跟随所述第一风道移动小车运动。
所述焊烟处理系统中的吸尘罩安装于所述钢质双梁门架外部轴系统中的X轴升降小车末端,所述吸尘罩通过连接支架将所述钣金件连接在第二风道移动小车上,所述吸尘罩及所述连接支架均采用两片式钣金件螺栓连接设计,所述钣金件的四周悬挂有软质除尘帘,所述吸尘罩的截面积覆盖焊接机器人的运动及工作范围,所述吸尘罩在与所述导轨、滑块的接触处设有毛刷,当所述钢质双梁门架外部轴系统中的X轴升降小车降至任意低位时,所述吸尘罩不干涉所 述机器人焊接系统的焊接工作,所述软质除尘帘为半透明设计。
相对于现有技术,本发明的技术方案除了整体技术方案的改进,还包括很多细节方面的改进,可适用于海洋油气生产平台甲板片体等大型结构件的机器人自动焊接需求。通过门架式外部轴辅助运动,工业相机自主识别焊缝类别、焊件位置,指导焊接机器人依据既定的焊接作业及参数进行施焊。机器人通过激光传感器进行定位并全程跟踪,确保焊缝精确成型,同时配备除尘系统,对焊接过程中产生的有害气体进行处理,具体而言,具有以下有益效果:
一、本发明主梁及Y轴移动小车均采用双梁设计,且与之配合的机构移动导轨均设置于各梁上表面,较常规的单梁或单面设计而言运行更稳定,长期运行时形变更小,有利于提高下位机构移动时的路径直线度、行走末端的定位精度及系统本身使用寿命,延长维护周期;
二、本发明各轴的导轨均设置于上表面或外表面,在微小形变发生后易于测量、维护,无需对设备进行大规模拆装,通过压板紧固螺丝即可完成调平及校直;
三、本发明地梁及设备平台等多处采用紧凑设计,绝大部分结构内收,较常规的双梁设计而言,冗余结构少、占地面积小,通道面积大,通行工件的兼容性高,有利于提升单位面积的产出及流水线化的多设备协同作业;
四、本发明的改进方案之一在于焊接电源配备精准脉冲模式,相较于普通脉冲模式,在相同电流下,电弧更加集中,电弧更稳定,易于产生更大的熔深,同时配备远程参数调试功能,调试人员及焊接设备操作人员可远程手动设置焊接参数;
五、本发明的改进方案之二在于水冷焊枪配备防碰撞传感器,在水冷焊枪受到扭转碰撞力时,自动停止焊接程序,有效保护机器人本体不受损害;
六、本发明的改进方案之三在于清枪站配有封闭式喷油仓,防飞溅剂可以直接喷射至水冷焊枪的枪头,焊接机器人的工作区不会受到污染,能够降低防飞溅剂使用量,同时,有效地减少水冷焊枪喷嘴的清理次数,延长其使用寿命;
七、本发明的改进方案之四在于,焊烟处理系统不仅可通过机器人焊接系统进行远程控制外,而且还可通过本地进行控制,在焊工针对机器人焊接系统 工作前进行点焊固定、焊接后对焊接机器人不良结构进行人工补焊过程中,无需外接除尘设备,可直接本地开启焊烟处理系统进行人工焊接过程除尘。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明的钢质双梁门架外部轴系统的主要箱型梁及搭载设施示意图(断裂视图);
图2为本发明的钢质双梁门架外部轴系统中的移动小车结构示意图;
图3为本发明的机器人焊接系统中的清枪状态示意图;
图4为本发明的机器人焊接系统中的执行结构示意图;
图5为本发明的焊烟处理系统及硬质风道的布置图(断裂视图);
图6为本发明的移动风道与吸尘罩的连接示意图;
图7为本发明的硬质风道正置安装时风道移动小车与风道配合使用的结构示意;
附图中各部件标号说明:
地面轨道101、地梁102、设备平台103、支腿104、主梁105、连接梁106、
Y轴移动小车107、拖链及气路摆放平台108、第一人行通道109;
Y轴小车横梁201、X轴小车车体202、X轴小车包围203、防撞块及接触开
关204、第二人行通道205、焊丝桶及导丝架平台206、X轴升降小车207、升降小车导轨208、小车走线孔209、升降小车安装法兰210;
工业相机301、工业相机移动外部轴302、焊接机器人本体303、送丝机304、
清枪站305;
升降焊接机器人401、激光传感器402、水冷焊枪403、机器人末端执行法
兰404;
除尘一体机501、硬质风道502、第一风道移动小车503、第一焊接机器人
外部轴504、第二焊接机器人外部轴505;
除尘帘601、钣金件602、连接支架603、第二风道移动小车604、移动风
道605和连接管606。
具体实施方式
以下通过特定的具体实施例说明本发明的具体实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的优点及功效。本发明也可以其它不同的方式予以实施,即,在不背离本发明所揭示的范畴下,能予不同的修饰与改变。
实施例
一种用于窄工位的双梁门架式机器人自动焊接系统,如图1-图7所示,包括、和,所述上设置有所述和所述,所述设置于所述上,所述用以移动所述对待焊接物开展焊接并扩大焊接机器人的运行范围,所述通过焊接机器人执行焊接,所述对所述在焊接过程中产生的烟雾灰尘开展实时吸收处理;
上述双梁门架式机器人自动焊接系统可适用于任何跨距下,对运行稳定性、长期使用下的耐用性有要求的门架式机器人焊接系统,尤其针对对垂直跨距方向长度有要求的使用场景。
在实施例中,优选地,所述包括地面轨道101、地梁102、设备平台103、支腿104、主梁105、连接梁106、Y轴移动小车107、拖链及气路摆放平台108和第一人行通道109,所述地梁102、主梁105、连接梁106及Y轴移动小车107均采用箱型梁设计,所述通过地梁102与地面轨道101相配合,所述地梁102上表面安装所述设备平台103,所述地梁102与地面轨道101通过电机安装法兰盘形成斜梯,所述主梁105内侧设置所述拖链及气路摆放平台108,所述主梁105上设置所述第一人行通道109;
在实施例中,优选地,所述中的主梁105及Y轴移动小车107均采用双梁设计;
上述双梁门架式机器人自动焊接系统中,各梁及移动小车均采用箱型梁设计,梁内部合理设置支撑板件,主梁及Y轴移动小车均采用双梁设计,且配合机构地面轨道均设置于各梁上表面,地面轨道及高度可由轨道压板进行无极调 节,钢质双梁门架外部轴系统通过地梁与地面轨道相配合,为焊接机器人提供大范围移动能力,地梁上表面安装设备平台,安装所需上位机、配电柜、控制柜、除尘一体机,地梁上表面设置有设备平台,在保证所承载机器人焊接系统控制柜等必要布置及操作人员必要空间后,设备平台尺寸最大程度收窄,提高通行工件的兼容性,地梁与主梁间通过支腿连接,支腿采用下窄上宽的箱型梁设计,通过内部支撑结构及连接梁确保结构稳定性,同时提高对通行工件的兼容性,主梁间通过连接梁进一步提供地轨方向的支撑与拉紧力,连接梁采用圆管设计,可在保证结构强度的同时,降低应力集中,同时减小对主梁内侧拖链及气路摆放平台的干涉。
在实施例中,优选地,所述中的地梁102两端通过支腿104与主梁105连接,所述支腿104为下窄上宽的箱型梁结构,所述连接梁106采用圆管设计;
上述双梁门架式机器人自动焊接系统中,地梁两端通过支腿与主梁连接,支腿下窄上宽,提高对通行工件的兼容性,通过内部合理设置支撑结构,主梁间通过连接梁进一步提供支撑与拉紧力,连接梁采用圆管设计,可在保证结构强度的同时,降低应力集中,同时减小对主梁内侧拖链及气路摆放平台的干涉。
在实施例中,优选地,所述中的主梁105延地梁102方向宽度渐窄,所述第一人行通道109两侧均设有悬挂安全绳的安全围栏及扶手;
上述双梁门架式机器人自动焊接系统中,主梁较同尺寸门架常规设计而言,延地梁方向宽度大幅收窄,通过两侧支出平台,保障主梁上表面通过安全距离,第一人行通道两侧均设有便于悬挂安全绳的安全围栏及扶手,主梁内部支撑结构较常规设计而言更为紧密,收窄梁面后仍可保持较小的形变,主梁为窄箱型梁设计,延地面轨道及地梁方向宽度大幅收窄,适应对地梁方向要求较高的工作环境,主梁内部支撑结构较常规设计而言结构更紧密,收窄梁面后仍可保持较小的形变,同时,通过上表面两侧支出人行通道平台,在梁面收窄的情况下保障检修人员安全通过距离。所有施工及使用人员可能经过的路径两侧均设有便于悬挂安全绳的安全围栏及扶手。供拖链及硬质气路摆放的平台设置于主梁内侧,不占用地梁方向长度空间,维持较低的占地面积。
在实施例中,优选地,所述还包括Y轴小车横梁201、X轴小车车体202及 X轴小车包围203,所述X轴小车车体202均架设在所述Y轴小车横梁201上,所述X轴小车包围203连接于所述X轴小车车体202的下端,所述Y轴移动小车107与所述主梁105均设置两个,所述Y轴移动小车107运行于两根所述主梁105之间,所述Y轴移动小车107及与所述Y轴移动小车107配合使用的导轨两端均设有零位标签,所述Y轴移动小车107的一侧设置有第二人行通道205,所述主梁105上的第一人行通道109与所述第二人行通道205联通,所述第一人行通道109与所述第二人行通道205的两侧均设有悬挂安全绳的安全围栏及扶手,所述Y轴移动小车107两端还设有防撞块及接触开关204;
所述还包括X轴升降小车207及升降小车导轨208,所述X轴升降小车207运行于两根所述Y轴小车横梁201之间,所述X轴升降小车207及升降小车导轨208两侧均设有零位标签,所述X轴升降小车207还搭载有能够与所述X轴升降小车207同步移动的焊丝桶及导丝架平台206,所述焊丝桶及导丝架平台206能够通过所述主梁105及Y轴移动小车107所搭载的第一人行通道109及第二人行通道205开展更换;
所述中的X轴升降小车207及升降小车导轨208运行于所述X轴小车包围203的框架中间,X轴小车包围203及升降小车导轨208通过所述X轴小车包围203的框架内部两侧导轨滑块机构导向,所述升降小车导轨208位于所述X轴升降小车207外侧,所述升降小车导轨208两侧设有零位标签,所述X轴升降小车207设有支撑板,所述支撑板开设有升降小车走线孔209,所述X轴升降小车207末端各面均设置有升降小车安装法兰210,所述X轴升降小车207通过所述升降小车安装法兰210搭载中的焊接机器人401、清枪站305及中的吸尘罩;
上述双梁门架式机器人自动焊接系统中,2台Y轴移动小车运行于两根主梁双梁之间,Y轴移动小车一侧走道联通主梁走道,X轴移动小车运行于Y轴移动小车双梁之间,焊丝桶平台及导丝架搭载于X轴移动小车,与X轴移动小车同步移动,焊丝桶可通过主梁及Y轴移动小车所搭载走道进行更换,X轴移动小车及其导轨运行于X轴移动小车包围框架中间,通过包围框架内部两侧导轨滑块机构导向,导轨位于升降小车外侧,便于长期运行变形或发生冲撞后校直,X轴移动小车的支撑板中开孔,设备连接线从,X轴移动小车内部连接,,X轴移动 小车末端各面均设置法兰盘,便于搭载焊接机器人、清枪站及吸尘罩等执行设备。
在实施例中,优选地,所述包括焊接机器人401、机器人末端执行法兰404、焊接机器人本体303、焊接电源、送丝机304、清枪站305、水冷焊枪403、工业相机301、工业相机移动外部轴302、激光传感器402和机器人末端执行法兰404,所述工业相机301连接于所述工业相机移动外部轴302,所述焊接电源以直流或脉冲形式输出电流电压,所述送丝机304以匀速方式将焊丝送往所述水冷焊枪403,所述水冷焊枪403中心输出焊丝并喷出焊接保护气,所述水冷焊枪403设有防碰撞传感器和冷却机构,所述清枪站305安装于所述中的X轴升降小车207的末端,所述清枪站305设置有封闭式喷油仓,所述工业相机301采用主动双目视觉技术,能够对拟焊接区域进行焊前扫描,生成区域点云,完成基准点识别及定位,所述激光传感器402设置于所述水冷焊枪403旁侧,用以定位焊缝起始点、特征点与终点,所述焊接机器人401末端通过机器人末端执行法兰404安装有激光传感器402和水冷焊枪403;
上述双梁门架式机器人自动焊接系统中,焊接机器人具备IP54级防尘防水能力,根据指令将末端执行器以固定位姿指向固定点,焊接电源以直流或脉冲等形式输出稳定的电流电压,同时控制送丝机以相应速度匀速将焊丝送往焊枪,水冷焊枪中心输出焊丝,周围喷出焊接保护气辅助施焊,水冷焊枪配备防碰撞传感器,在发生碰撞时会自动关闭,另外,水冷焊枪还配备冷却系统,避免过热异常影响焊接;在焊接机器人施焊固定距离后进行清枪剪丝,配备封闭式喷油仓,防飞溅剂直接喷射至水冷焊枪的枪头,不污染焊接机器人工作区;工业相机通过主动双目视觉技术对拟焊接区域进行焊前扫描,生成区域点云,完成基准点识别及定位。激光传感器精确定位焊缝起始点、特征点与终点,体积小巧,不影响机器人及焊枪焊接动作。
在实施例中,优选地,所述包括除尘一体机501、硬质风道502、第一风道移动小车503和吸尘罩,所述除尘一体机501设置于所述中的设备平台103上,所述除尘一体机501与所述硬质风道502通过软管连接,第一风道移动小车503与所述硬质风道502之间通过鸭嘴形结构联通,所述硬质风道502为倒置安装 硬质管道,所述硬质风道502两侧设置有滑轨,所述滑轨与所述第一风道移动小车503通过滑块配合滑动,所述硬质风道502的无滑轨侧为密封搭接的橡胶条,所述硬质风道502无滑轨、无橡胶条侧与所述钢质双梁门架外部轴系统2的主梁105配合安装,所述除尘一体机501通过集成除尘风机及吸尘罩对所述工作产生的焊烟进行吸附过滤并通过集尘盒收集,所述除尘一体机501通过控制面板在本地进行除尘控制或通过进行除尘控制;
所述硬质风道502通过连接管606连接机器人外部轴处的移动风道605;
上述双梁门架式机器人自动焊接系统中,硬质风道通过移动风道与固定风道间连接管连接机器人外部轴处移动风道,外部轴处同样设置移动小车跟随运动,确保除尘罩与风道间连接稳定,且同时具备跟随运动能力;除尘一体机通过吸尘罩完成远端焊接机器人工作产生的焊烟的吸附,通过HEPA滤芯完成焊烟过滤,剩余灰尘通过集尘盒收集并倾倒,可通过本地进行除尘控制,也可通过机器人焊接系统进行控制,硬质风道截面恒定、两头封闭,最远端开口位置也可通过除尘一体机选型确保除尘效果。
在实施例中,优选地,所述还包括第一焊接机器人外部轴504和第二焊接机器人外部轴505,所述第一焊接机器人外部轴504和第二焊接机器人外部轴505均与焊接机器人401刚性连接,当所述第一焊接机器人外部轴504或第二焊接机器人外部轴505移动时,所述焊接机器人401与所述第一风道移动小车503在无外部动力作用下能够跟随所述第一风道移动小车503运动。
在实施例中,优选地,所述中的吸尘罩安装于所述中的X轴升降小车207末端,所述吸尘罩通过连接支架603将所述钣金件602连接在第二风道移动小车604上,所述吸尘罩及所述连接支架603均采用两片式钣金件602螺栓连接设计,所述钣金件602的四周悬挂有软质除尘帘601,所述吸尘罩的截面积覆盖焊接机器人401的运动及工作范围,所述吸尘罩在与所述导轨、滑块的接触处设有毛刷,当所述中的X轴升降小车207降至任意低位时,所述吸尘罩不干涉所述的焊接工作,所述软质除尘帘601为半透明设计;
上述双梁门架式机器人自动焊接系统中,吸尘罩通过连接支架,将顶部的钣金件连接外部轴移动小车,确保吸尘罩与焊接机器人外部轴同步运行,钣金 件四周悬挂除尘软帘,可确保与焊接机器人外部轴连接的硬质钣金件处于任意高度时,除尘系统均不会影响焊接机器人正常工作,吸尘帘采用半透明材质,可防止焊接弧光伤人,同时便于操作人员观察罩内焊接机器人工作姿态,此外,钣金件及连接支架均采用两片式设计,部件间采用螺栓连接,拆装过程无需破坏现有门架系统结构,钣金件所围成面积可完全覆盖机器人运动及工作范围,且硬质部分与机器人外部轴中导轨、滑块等接触接口处设有毛刷,可最大限度完成可动部件在运动过程中的密封。
以上所述仅为本发明的实施例,并非因此以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:包括钢质双梁门架外部轴系统、机器人焊接系统和焊烟处理系统;所述钢质双梁门架外部轴系统上设置有所述机器人焊接系统和所述焊烟处理系统,所述焊烟处理系统设置于所述机器人焊接系统上,所述钢质双梁门架外部轴系统用以移动所述机器人焊接系统对待焊接物开展焊接,所述机器人焊接系统通过焊接机器人执行焊接,所述焊烟处理系统对所述机器人焊接系统在焊接过程中产生的烟雾灰尘开展吸收处理。
  2. 根据权利要求1所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述钢质双梁门架外部轴系统包括地面轨道(101)、地梁(102)、设备平台(103)、支腿(104)、主梁(105)、连接梁(106)、Y轴移动小车(107)、拖链及气路摆放平台(108)和第一人行通道(109),所述地梁(102)、主梁(105)、连接梁(106)及Y轴移动小车(107)均采用箱型梁设计,所述钢质双梁门架外部轴系统通过地梁(102)与地面轨道(101)相配合,所述地梁(102)上表面安装所述设备平台(103),所述地梁(102)与地面轨道(101)通过电机安装法兰盘形成斜梯,所述主梁(105)内侧设置所述拖链及气路摆放平台(108),所述主梁(105)上设置所述第一人行通道(109)。
  3. 根据权利要求2所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述钢质双梁门架外部轴系统中的主梁(105)及Y轴移动小车(107)均采用双梁设计。
  4. 根据权利要求2所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述钢质双梁门架外部轴系统中的地梁(102)两端通过支腿(104)与主梁(105)连接,所述支腿(104)为下窄上宽的箱型梁结构,所述连接梁(106)采用圆管设计。
  5. 根据权利要求2所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述钢质双梁门架外部轴系统中的主梁(105)延地梁(102)方向宽度渐窄,所述第一人行通道(109)两侧均设有悬挂安全绳的安全围栏及扶手。
  6. 根据权利要求2所述的一种用于窄工位的双梁门架式机器人自动焊接系 统,其特征在于:所述钢质双梁门架外部轴系统还包括Y轴小车横梁(201)、X轴小车车体(202)及X轴小车包围(203),所述X轴小车车体(202)均架设在所述Y轴小车横梁(201)上,所述X轴小车包围(203)连接于所述X轴小车车体(202)的下端,所述Y轴移动小车(107)与所述主梁(105)均设置两个,所述Y轴移动小车(107)运行于两根所述主梁(105)之间,所述Y轴移动小车(107)及与所述Y轴移动小车(107)配合使用的导轨两端均设有零位标签,所述Y轴移动小车(107)的一侧设置有第二人行通道(205),所述主梁(105)上的第一人行通道(109)与所述第二人行通道(205)联通,所述第一人行通道(109)与所述第二人行通道(205)的两侧均设有悬挂安全绳的安全围栏及扶手,所述Y轴移动小车(107)两端还设有防撞块及接触开关(204)。
  7. 根据权利要求6所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述钢质双梁门架外部轴系统还包括X轴升降小车(207)及升降小车导轨(208),所述X轴升降小车(207)运行于两根所述Y轴小车横梁(201)之间,所述X轴升降小车(207)及升降小车导轨(208)两侧均设有零位标签,所述X轴升降小车(207)还搭载有能够与所述X轴升降小车(207)同步移动的焊丝桶及导丝架平台(206),所述焊丝桶及导丝架平台(206)能够通过所述主梁(105)及Y轴移动小车(107)所搭载的第一人行通道(109)与所述第二人行通道(205)开展更换。
  8. 根据权利要求7所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述钢质双梁门架外部轴系统中的X轴升降小车(207)及升降小车导轨(208)运行于所述X轴小车包围(203)的框架中间,X轴小车包围(203)及升降小车导轨(208)通过所述X轴小车包围(203)的框架内部两侧导轨滑块机构导向,所述升降小车导轨(208)位于所述X轴升降小车(207)外侧,所述升降小车导轨(208)两侧设有零位标签,所述X轴升降小车(207)设有支撑板,所述支撑板开设有升降小车走线孔(209),所述X轴升降小车(207)末端各面均设置有升降小车安装法兰(210),所述X轴升降小车(207)通过所述升降小车安装法兰(210)搭载机器人焊接系统中的焊接机器人(401)、清枪站(305)及焊烟处理系统中的吸尘罩。
  9. 根据权利要求1所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述机器人焊接系统包括焊接机器人(401)、机器人末端执行法兰(404)、焊接机器人本体(303)、焊接电源、送丝机(304)、清枪站(305)、水冷焊枪(403)、工业相机(301)、工业相机移动外部轴(302)、激光传感器(402)和机器人末端执行法兰(404),所述工业相机(301)连接于所述工业相机移动外部轴(302),所述焊接电源以直流或脉冲形式输出电流电压,所述送丝机(304)以匀速方式将焊丝送往所述水冷焊枪(403),所述水冷焊枪(403)中心输出焊丝并喷出焊接保护气,所述水冷焊枪(403)设有防碰撞传感器和冷却机构,所述清枪站(305)安装于所述钢质双梁门架外部轴系统中的X轴升降小车(207)的末端,所述清枪站(305)设置有封闭式喷油仓,所述工业相机(301)采用主动双目视觉技术,能够对拟焊接区域进行焊前扫描,生成区域点云,完成基准点识别及定位,所述激光传感器(402)设置于所述水冷焊枪(403)旁侧,用以定位焊缝起始点、特征点与终点,所述焊接机器人(401)末端通过机器人末端执行法兰(404)安装有激光传感器(402)和水冷焊枪(403)。
  10. 根据权利要求1所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述焊烟处理系统包括除尘一体机(501)、硬质风道(502)、第一风道移动小车(503)和吸尘罩,所述除尘一体机(501)设置于所述钢质双梁门架外部轴系统中的设备平台(103)上,所述除尘一体机(501)与所述硬质风道(502)通过软管连接,第一风道移动小车(503)与所述硬质风道(502)之间通过鸭嘴形结构联通,所述硬质风道(502)为倒置安装硬质管道,所述硬质风道(502)两侧设置有滑轨,所述滑轨与所述第一风道移动小车(503)通过滑块配合滑动,所述硬质风道(502)的无滑轨侧为密封搭接的橡胶条,所述硬质风道(502)无滑轨、无橡胶条侧与所述钢质双梁门架外部轴系统的主梁(105)配合安装,所述除尘一体机(501)通过集成除尘风机及吸尘罩对所述机器人焊接系统工作产生的焊烟进行吸附过滤并通过集尘盒收集,所述除尘一体机(501)通过控制面板在本地进行除尘控制或通过机器人焊接系统进行除尘控制。
  11. 根据权利要求10所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述硬质风道(502)通过连接管(606)连接机器人外部轴处的移动风道(605)。
  12. 根据权利要求10所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述焊烟处理系统还包括第一焊接机器人外部轴(504)和第二焊接机器人外部轴(505),所述第一焊接机器人外部轴(504)和第二焊接机器人外部轴(505)均与焊接机器人(401)刚性连接,当所述第一焊接机器人外部轴(504)或第二焊接机器人外部轴(505)移动时,所述焊接机器人(401)与所述第一风道移动小车(503)在无外部动力作用下能够跟随所述第一风道移动小车(503)运动。
  13. 根据权利要求10所述的一种用于窄工位的双梁门架式机器人自动焊接系统,其特征在于:所述焊烟处理系统中的吸尘罩安装于所述钢质双梁门架外部轴系统中的X轴升降小车(207)末端,所述吸尘罩通过连接支架(603)将所述钣金件(602)连接在第二风道移动小车(604)上,所述吸尘罩及所述连接支架(603)均采用两片式钣金件(602)螺栓连接设计,所述钣金件(602)的四周悬挂有软质除尘帘(601),所述吸尘罩的截面积覆盖焊接机器人(401)的运动及工作范围,所述吸尘罩在与所述导轨、滑块的接触处设有毛刷,当所述钢质双梁门架外部轴系统中的X轴升降小车(207)降至任意低位时,所述吸尘罩不干涉所述机器人焊接系统的焊接工作,所述软质除尘帘(601)为半透明设计。
PCT/CN2023/115657 2022-12-13 2023-08-30 一种用于窄工位的双梁门架式机器人自动焊接系统 WO2024124968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211596389.1A CN115945769A (zh) 2022-12-13 2022-12-13 一种用于窄工位的双梁门架式机器人自动焊接系统
CN202211596389.1 2022-12-13

Publications (1)

Publication Number Publication Date
WO2024124968A1 true WO2024124968A1 (zh) 2024-06-20

Family

ID=87281710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115657 WO2024124968A1 (zh) 2022-12-13 2023-08-30 一种用于窄工位的双梁门架式机器人自动焊接系统

Country Status (2)

Country Link
CN (1) CN115945769A (zh)
WO (1) WO2024124968A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115945769A (zh) * 2022-12-13 2023-04-11 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 一种用于窄工位的双梁门架式机器人自动焊接系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145027A1 (en) * 2003-02-06 2007-06-28 Akinobu Izawa Control system using working robot, and work processing method using this system
CN107695494A (zh) * 2017-11-14 2018-02-16 海安交睿机器人科技有限公司 一种龙门移动式机器人焊接工作站系统
CN109604783A (zh) * 2019-01-30 2019-04-12 北京时代科技股份有限公司 一种基于埋弧焊接的机器人工作站
CN112427777A (zh) * 2020-11-30 2021-03-02 上海中船临港船舶装备有限公司 用于船舶中组立的机器人自适应智能焊接系统及焊接方法
CN114799431A (zh) * 2022-05-07 2022-07-29 燕山大学 具有除尘功能的埋弧焊接装置及其除尘方法
CN115945769A (zh) * 2022-12-13 2023-04-11 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 一种用于窄工位的双梁门架式机器人自动焊接系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070145027A1 (en) * 2003-02-06 2007-06-28 Akinobu Izawa Control system using working robot, and work processing method using this system
CN107695494A (zh) * 2017-11-14 2018-02-16 海安交睿机器人科技有限公司 一种龙门移动式机器人焊接工作站系统
CN109604783A (zh) * 2019-01-30 2019-04-12 北京时代科技股份有限公司 一种基于埋弧焊接的机器人工作站
CN112427777A (zh) * 2020-11-30 2021-03-02 上海中船临港船舶装备有限公司 用于船舶中组立的机器人自适应智能焊接系统及焊接方法
CN114799431A (zh) * 2022-05-07 2022-07-29 燕山大学 具有除尘功能的埋弧焊接装置及其除尘方法
CN115945769A (zh) * 2022-12-13 2023-04-11 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) 一种用于窄工位的双梁门架式机器人自动焊接系统

Also Published As

Publication number Publication date
CN115945769A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024124968A1 (zh) 一种用于窄工位的双梁门架式机器人自动焊接系统
CN106782730B (zh) 一种耐辐照动力机械手
WO2022041763A1 (zh) 一种壳体零件油垢清除设备及工作方法
CN210847380U (zh) 机器人多介质智能清洗系统
CN218253340U (zh) 一种环保型履带行走式智能焊接工作站
CN106735987B (zh) 一种拖拉机驾驶室自动化焊接生产线
CN105817781B (zh) 一种无轨多功能焊接系统
CN111515183A (zh) 一种动车组转向架构架的清洗脱漆一体化设备和方法
JP2905407B2 (ja) 現場溶接後の後処理方法および後処理システム装置
CN216263513U (zh) 一种车床的废料收集装置
CN219818531U (zh) 一种焊接工作站
CN107695494A (zh) 一种龙门移动式机器人焊接工作站系统
CN206519729U (zh) 无钉铆接组装系统
KR100995739B1 (ko) 회전형 작업 로봇
CN105665884A (zh) 吊环加固焊接机器人
JPH04258468A (ja) ロボット式吹付け装置
CN212719151U (zh) 一种拼接结构的升降遮光板
CN213080357U (zh) 一种商用车前防护横梁的双枪直缝焊接装置
CN209969824U (zh) 一种烟尘处理式大型机器人焊接工作站
CN109048143B (zh) 一种工业龙门焊接机三轴机械手
CN107243844A (zh) 大桥钢箱梁自动喷砂机
CN207771140U (zh) 一种补焊台
CN207014206U (zh) 大桥钢箱梁自动喷砂机
FI65178B (fi) Anordning foer fastsvetsning av stag eller liknande vid en platta
CN215089457U (zh) 激光除锈自动线