CN112427777A - 用于船舶中组立的机器人自适应智能焊接系统及焊接方法 - Google Patents

用于船舶中组立的机器人自适应智能焊接系统及焊接方法 Download PDF

Info

Publication number
CN112427777A
CN112427777A CN202011371717.9A CN202011371717A CN112427777A CN 112427777 A CN112427777 A CN 112427777A CN 202011371717 A CN202011371717 A CN 202011371717A CN 112427777 A CN112427777 A CN 112427777A
Authority
CN
China
Prior art keywords
welding
robot
moving mechanism
axis moving
laser scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011371717.9A
Other languages
English (en)
Inventor
甘露
沈鹏
刘鹏
于津伟
秦左铭
王正强
喻天祥
王浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Lingang Shipbuilding Equipment Ltd Corp Cssc
Shipbuilding Technology Research Institute of CSSC No 11 Research Institute
Original Assignee
Shanghai Lingang Shipbuilding Equipment Ltd Corp Cssc
Shipbuilding Technology Research Institute of CSSC No 11 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Lingang Shipbuilding Equipment Ltd Corp Cssc, Shipbuilding Technology Research Institute of CSSC No 11 Research Institute filed Critical Shanghai Lingang Shipbuilding Equipment Ltd Corp Cssc
Priority to CN202011371717.9A priority Critical patent/CN112427777A/zh
Publication of CN112427777A publication Critical patent/CN112427777A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/126Controlling the spatial relationship between the work and the gas torch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Abstract

用于船舶中组立的机器人自适应智能焊接系统,包括上位机、门架、轨道、行走小车、焊接机器人、激光位移传感器、传感器挡板、点激光扫描器、3D线激光扫描器、智能焊接控制系统;门架和轨道上分别安装有激光位移传感器和传感器挡板,焊接机器人和3D线激光扫描器安装于行走小车的Z轴移动机构上,点激光扫描器安装于焊接机器人上;智能焊接控制系统包括离线编程模块、焊缝自适应寻位模块、焊接工艺数据库模块、电弧跟踪模块。本发明可以适应船舶生产的特点,实现焊接机器人无需示教,自动寻找焊缝,而且在焊接过程中,能根据焊缝实际情况自动纠偏,保证焊接轨迹的精准,极大程度地节省了时间,提高了焊接的稳定性。

Description

用于船舶中组立的机器人自适应智能焊接系统及焊接方法
技术领域
本发明属于船舶焊接领域,具体涉及一种用于船舶中组立的机器人自适应智能焊接系统及焊接方法。
背景技术
目前国内几个主要国有大型船厂的平面分段流水线基本上是早些年日本新日铁公司或挪威TTS提供整条生产线总成,其存在售后响应慢,售后服务不及时,购买价格及日常维护成本高,流水线老化,国外技术保护导致的改造升级困难等现实困难,终其原因是因为船舶制造装备核心先进技术被国外供应商把持和封锁,我国没有掌握自主核心的先进技术,无法实现产品装备的自主研发制造导致的。
对标欧美、日韩等造船强国,我国造船装备的数字化、自动化与智能化方面差距依然巨大。我国目前只是在某些作业环节的单机方面达到数字化,大多作业环节仍靠手工作业,特别是在生产线方面,我国基本停留在一站式、刚性方式,离数字化、智能化有着很大的距离。
面对我国在造船装备上存在的技术短板,急需自主研发,坚持创新驱动,大力提升造船装备的自主设计水平和系统集成水平,形成相关制造装备的配套能力,以此来满足海洋经济发展和国家重大战略的需求。
发明内容
本发明针对上述问题,提供一种用于船舶中组立的机器人自适应智能焊接系统及焊接方法。
本发明的目的可以通过下述技术方案来实现:
一种用于船舶中组立的机器人自适应智能焊接系统,包括上位机、门架、轨道、行走小车、焊接机器人、激光位移传感器、传感器挡板、点激光扫描器、3D线激光扫描器、智能焊接控制系统;
所述门架安装于轨道上,门架和轨道上分别安装有相配合的激光位移传感器和传感器挡板;
所述行走小车包括X轴移动机构、Y轴移动机构、Z轴移动机构,所述Y轴移动机构安装于门架上,所述X轴移动机构安装于Y轴移动机构上,所述Z轴移动机构安装于X轴移动机构上;
所述焊接机器人和3D线激光扫描器安装于Z轴移动机构上,所述点激光扫描器安装于焊接机器人上;
所述上位机根据激光位移传感器的反馈信号控制门架沿轨道移动,上位机根据3D线激光扫描器的扫描反馈控制X轴移动机构、Y轴移动机构、Z轴移动机构移动焊接机器人,所述焊接机器人根据点激光扫描器的扫描反馈确定工作位置;
所述智能焊接控制系统包括离线编程模块、焊缝自适应寻位模块、焊接工艺数据库模块、电弧跟踪模块,所述离线编程模块、焊缝自适应寻位模块、焊接工艺数据库模块通过上位机统一调控实现各自的功能,所述电弧跟踪模块对焊接机器人在焊接作业过程中的焊缝轨迹实时纠偏。
进一步地,所述门架为双梁结构,包括横梁、立柱、底梁、端梁、轮组机构、夹轨器、同步驱动电机,两根横梁的一端安装于两根立柱上,两根立柱的下端安装于底梁上,两根横梁的另一端安装有端梁,底梁和端梁上均安装有轮组机构和夹轨器,底梁上安装有驱动其上轮组机构的同步驱动电机,同步驱动电机均与上位机连接。更进一步地,所述轨道包括底梁轨道、端梁轨道,底梁轨道与底梁上的轮组机构和夹轨器相配合,端梁轨道与端梁上的轮组机构和夹轨器相配合。所述激光位移传感器和传感器挡板分别安装于门架的底梁和底梁轨道上。
进一步地,所述行走小车的X轴移动机构、Y轴移动机构、Z轴移动机构均采用精密齿轮齿条传动实现精密运动。
进一步地,所述行走小车和焊接机器人的数量均为两个。
一种用于船舶中组立的机器人自适应智能焊接方法,采用上述机器人自适应智能焊接系统,包括如下步骤:
S1、离线编程模块对待焊工件模型信息提取,并梳理焊缝信息及进行整体规划,再根据焊缝信息生成焊接轨迹,从焊接工艺数据库模块提取相对应的焊接参数信息进行匹配,生成离线作业程序后下发至上位机;
S2、上位机根据焊缝自适应寻位模块,结合离线作业程序提供的门架位置信息、现场工件摆放位置、激光位移传感器测量的到传感器挡板的距离,控制门架移动;
S3、上位机根据焊缝自适应寻位模块控制3D线激光扫描器对工件自动扫描,完成对工件特征点位置信息的获取,再对实际门架位置信息及工件特征点位置信息整合,完成离线作业程序中对应信息的数据偏移,生成新的离线作业程序后下发至焊接机器人;
S4、上位机控制焊接机器人与行走小车协同作业,焊接机器人按照新的离线作业程序进行轨迹运行,在焊接机器人到达焊缝起始点之前,焊接机器人根据焊缝自适应寻位模块控制点激光扫描器对工件自动寻位扫描,完成对焊缝起始点位置及焊缝末点位置的精检,并将获得的焊缝准确位置数据与新的离线作业程序中的理论数据进行置换赋值,在焊接作业过程中,焊接机器人根据电弧跟踪模块对焊缝轨迹进行实时纠偏。
本发明中的智能焊接控制系统:
(1)离线编程模块的功能为:采用基于工件模型离线编程的方式,实现从工件模型中获取生产数据,通过离线编程及仿真验证生成焊接机器人的离线作业程序。
(2)焊缝自适应寻位模块的功能为:通过及时读取传感器数据来感知工件位置和工况情况,进行分析、判断,为焊接机器人的动作做出决策;采用3D线激光扫描器扫描工件,使离线作业程序接收工件坐标信息后生成新的路径程序来指导焊接机器人进行焊前移动;焊接前,采用点激光扫描器进行焊缝寻位来指导焊接机器人进行准确焊接作业。
(3)焊接工艺数据库模块的功能为:依据船厂的焊接工艺规范,针对船企焊接对象的材质、厚度、形式、焊材、焊脚、装配间隙所构建;匹配焊接规程信息,如焊接电压、焊接电流,供离线编程模块生成焊接轨迹的过程中调用相应焊接工艺数据。
(4)电弧跟踪模块的功能为:在焊接作业过程中对焊接机器人的焊缝轨迹进行实时纠偏。
与现有技术相比,本发明具有以下有益效果:可以适应船舶生产的特点,实现焊接机器人无需示教,自动寻找焊缝,而且在焊接过程中,能根据焊缝实际情况自动纠偏,保证焊接轨迹的精准,极大程度地节省了时间,并提高了焊接的稳定性。
附图说明
图1为本发明的整体结构示意图。
图2为本发明中底梁上的激光位移传感器和底梁轨道上的传感器挡板的结构示意图。
图3为本发明对工件焊接时的结构示意图。
图4为本发明中焊接机器人对工件焊接的结构示意图。
图5为本发明对工件焊接的流程图。
图中部件标号如下:
1门架
101横梁
102立柱
103底梁
104端梁
2底梁轨道
3行走小车
301 X轴移动机构
302 Y轴移动机构
303 Z轴移动机构
4焊接机器人
5激光位移传感器
6传感器挡板
7点激光扫描器
8 3D线激光扫描器
9工件
a焊缝起始点
b焊缝末点。
具体实施方式
以下结合附图详细说明本发明的具体实施方式,使本领域的技术人员更清楚地理解如何实践本发明。尽管结合其优选的具体实施方案描述了本发明,但这些实施方案只是阐述,而不是限制本发明的范围。
参见图1,一种用于船舶中组立的机器人自适应智能焊接系统,包括上位机、门架1、轨道、行走小车3、焊接机器人4、智能焊接控制系统。
参见图1,所述门架1包括横梁101、立柱102、底梁103、端梁104、轮组机构、夹轨器、同步驱动电机,所述轨道包括底梁轨道2、端梁轨道。所述门架1为双梁结构,两根所述横梁101的一端安装于两根立柱102上,两根所述立柱102的下端安装于底梁103上,两根横梁101的另一端安装有端梁104,所述底梁103和端梁104上均安装有轮组机构和夹轨器,底梁103上安装有驱动其上轮组机构的同步驱动电机,底梁103上的轮组机构和夹轨器与底梁轨道2相配合,端梁104上的轮组机构和夹轨器与端梁轨道相配合,同步驱动电机与上位机连接。
其中,参见图1和图2,所述底梁103上安装有激光位移传感器5,所述底梁轨道2上安装有与激光位移传感器5相配合的传感器挡板6,所述激光位移传感器5与上位机连接。激光位移传感器5实时检测其到传感器挡板6的距离,并反馈给上位机,上位机根据激光位移传感器5的实时反馈控制同步驱动电机启停,保证门架1运动到中组立部件的指定焊接区域。同时停止运行后,夹轨器工作确保门架1的位置精准稳固,如此可保证焊接机器人4焊接过程的稳定性。
参见图1和图3,所述行走小车3包括X轴移动机构301、Y轴移动机构302、Z轴移动机构303,所述Y轴移动机构302安装于门架1的横梁101上,所述X轴移动机构301安装于Y轴移动机构302上,并由Y轴移动机构302带动沿Y轴方向移动,所述Z轴移动机构303安装于X轴移动机构301上,并由X轴移动机构301带动沿X轴方向移动,所述焊接机器人4安装于Z轴移动机构303上,并由Z轴移动机构303带动沿Z轴方向移动。X轴移动机构301、Y轴移动机构302、Z轴移动机构303均采用精密齿轮齿条传动实现精密运动,使得焊接机器人4实现大范围的精密运动,并确保了焊接覆盖率;X轴移动机构301、Y轴移动机构302、Z轴移动机构303均为焊接机器人4外部轴联动机构,焊接机器人4与上位机连接,实现了X轴移动机构301、Y轴移动机构302、Z轴移动机构303、焊接机器人4之间的联动控制。
其中,参见图1、图3、图4,所述焊接机器人4上安装有点激光扫描器7,所述Z轴移动机构303上安装有3D线激光扫描器8,所述点激光扫描器7与焊接机器人4的系统连接,3D线激光扫描器8与上位机连接。点激光扫描器7检测确定焊缝位置,并反馈给焊接机器人4,3D线激光扫描器8检测确定工件位置,并反馈给上位机,上位机根据3D线激光扫描器8的扫描反馈,控制X轴移动机构301、Y轴移动机构302、Z轴移动机构303移动焊接机器人4,焊接机器人4根据点激光扫描器7的扫描反馈,确定焊接机器人4的工作位置,实现了智能化焊接。
本实施例中,行走小车3和焊接机器人4的数量均为两个。
所述智能焊接控制系统包括离线编程模块、焊缝自适应寻位模块、焊接工艺数据库模块、电弧跟踪模块。
各个模块的功能及本系统的工作步骤如下:
S1、参见图5,所述离线编程模块通过船厂提供所需焊接的工件模型进行信息提取,目的是为了梳理焊缝信息及进行整体规划,再根据焊缝信息生成焊接轨迹,并从焊接工艺数据库模块提取相对应的焊接参数信息进行匹配,从而生成完整的离线作业程序,离线编程模块将离线作业程序下发至上位机,进而由上位机进行统一调控。
S2、上位机根据焊缝自适应寻位模块,结合离线作业程序提供的门架位置信息、现场工件9摆放位置、激光位移传感器5测量的到传感器挡板6的距离,控制门架1的同步驱动电机工作,使门架1实现定长移动,直至实际门架位置与离线作业程序提供的门架位置信息相同。
S3、上位机根据焊缝自适应寻位模块控制3D线激光扫描器8对工件9自动扫描,完成对工件特征点位置信息的获取,上位机对实际门架1位置信息及工件特征点位置信息整合,完成离线作业程序中对应信息的数据偏移,生成新的离线作业程序,并下发至焊接机器人4。
S4、上位机控制焊接机器人4与行走小车3高度协同作业,保证了大面积、长距离焊接的稳定性。同时,焊接电源、送丝机构、焊枪、清枪剪丝机构、点激光扫描器7与焊接机器人4进行实时通讯。焊接机器人4按照新的离线作业程序进行轨迹运行,在焊接机器人4到达焊缝起始点a之前,焊接机器人4根据焊缝自适应寻位模块控制点激光扫描器7对工件9自动寻位扫描,焊接机器人4配合点激光扫描器7完成焊缝起始点a位置及焊缝末点b位置的精检,见图4,从而得到焊缝的准确位置数据,并将该数据与新的离线作业程序中理论的焊缝起始点a位置及焊缝末点b位置的数据进行置换赋值,如此大大地提高了焊接轨迹的精度。在焊接作业过程中,焊接机器人根据电弧跟踪模块对焊缝轨迹进行实时纠偏,保证了焊缝轨迹的高度吻合,提高了稳定性,确保了焊接质量。
应当指出,对于经充分说明的本发明来说,还可具有多种变换及改型的实施方案,并不局限于上述实施方式的具体实施例。上述实施例仅仅作为本发明的说明,而不是对本发明的限制。总之,本发明的保护范围应包括那些对于本领域普通技术人员来说显而易见的变换或替代以及改型。

Claims (7)

1.一种用于船舶中组立的机器人自适应智能焊接系统,其特征在于,包括上位机、门架、轨道、行走小车、焊接机器人、激光位移传感器、传感器挡板、点激光扫描器、3D线激光扫描器、智能焊接控制系统;
所述门架安装于轨道上,门架和轨道上分别安装有相配合的激光位移传感器和传感器挡板;
所述行走小车包括X轴移动机构、Y轴移动机构、Z轴移动机构,所述Y轴移动机构安装于门架上,所述X轴移动机构安装于Y轴移动机构上,所述Z轴移动机构安装于X轴移动机构上;
所述焊接机器人和3D线激光扫描器安装于Z轴移动机构上,所述点激光扫描器安装于焊接机器人上;
所述上位机根据激光位移传感器的反馈信号控制门架沿轨道移动,上位机根据3D线激光扫描器的扫描反馈控制X轴移动机构、Y轴移动机构、Z轴移动机构移动焊接机器人,所述焊接机器人根据点激光扫描器的扫描反馈确定工作位置;
所述智能焊接控制系统包括离线编程模块、焊缝自适应寻位模块、焊接工艺数据库模块、电弧跟踪模块,所述离线编程模块、焊缝自适应寻位模块、焊接工艺数据库模块通过上位机统一调控实现各自的功能,所述电弧跟踪模块对焊接机器人在焊接作业过程中的焊缝轨迹实时纠偏。
2.根据权利要求1所述的用于船舶中组立的机器人自适应智能焊接系统,其特征在于,所述门架为双梁结构,包括横梁、立柱、底梁、端梁、轮组机构、夹轨器、同步驱动电机,两根横梁的一端安装于两根立柱上,两根立柱的下端安装于底梁上,两根横梁的另一端安装有端梁,底梁和端梁上均安装有轮组机构和夹轨器,底梁上安装有驱动其上轮组机构的同步驱动电机,同步驱动电机均与上位机连接。
3.根据权利要求2所述的用于船舶中组立的机器人自适应智能焊接系统,其特征在于,所述轨道包括底梁轨道、端梁轨道,底梁轨道与底梁上的轮组机构和夹轨器相配合,端梁轨道与端梁上的轮组机构和夹轨器相配合。
4.根据权利要求3所述的用于船舶中组立的机器人自适应智能焊接系统,其特征在于,所述激光位移传感器和传感器挡板分别安装于门架的底梁和底梁轨道上。
5.根据权利要求1所述的用于船舶中组立的机器人自适应智能焊接系统,其特征在于,所述行走小车的X轴移动机构、Y轴移动机构、Z轴移动机构均采用精密齿轮齿条传动实现精密运动。
6.根据权利要求1所述的用于船舶中组立的机器人自适应智能焊接系统,其特征在于,所述行走小车和焊接机器人的数量均为两个。
7.一种用于船舶中组立的机器人自适应智能焊接方法,其特征值在于,采用权利要求1~6任一项所述用于船舶中组立的机器人自适应智能焊接系统,包括如下步骤:
S1、离线编程模块对待焊工件模型信息提取,并梳理焊缝信息及进行整体规划,再根据焊缝信息生成焊接轨迹,从焊接工艺数据库模块提取相对应的焊接参数信息进行匹配,生成离线作业程序后下发至上位机;
S2、上位机根据焊缝自适应寻位模块,结合离线作业程序提供的门架位置信息、现场工件摆放位置、激光位移传感器测量的到传感器挡板的距离,控制门架移动;
S3、上位机根据焊缝自适应寻位模块控制3D线激光扫描器对工件自动扫描,完成对工件特征点位置信息的获取,再对实际门架位置信息及工件特征点位置信息整合,完成离线作业程序中对应信息的数据偏移,生成新的离线作业程序后下发至焊接机器人;
S4、上位机控制焊接机器人与行走小车协同作业,焊接机器人按照新的离线作业程序进行轨迹运行,
在焊接机器人到达焊缝起始点之前,焊接机器人根据焊缝自适应寻位模块控制点激光扫描器对工件自动寻位扫描,完成对焊缝起始点位置及焊缝末点位置的精检,并将获得的焊缝准确位置数据与新的离线作业程序中的理论数据进行置换赋值,
在焊接作业过程中,焊接机器人根据电弧跟踪模块对焊缝轨迹进行实时纠偏。
CN202011371717.9A 2020-11-30 2020-11-30 用于船舶中组立的机器人自适应智能焊接系统及焊接方法 Pending CN112427777A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011371717.9A CN112427777A (zh) 2020-11-30 2020-11-30 用于船舶中组立的机器人自适应智能焊接系统及焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011371717.9A CN112427777A (zh) 2020-11-30 2020-11-30 用于船舶中组立的机器人自适应智能焊接系统及焊接方法

Publications (1)

Publication Number Publication Date
CN112427777A true CN112427777A (zh) 2021-03-02

Family

ID=74697991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011371717.9A Pending CN112427777A (zh) 2020-11-30 2020-11-30 用于船舶中组立的机器人自适应智能焊接系统及焊接方法

Country Status (1)

Country Link
CN (1) CN112427777A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669831A (zh) * 2022-05-11 2022-06-28 法孚低温设备(苏州)有限公司 一种应用于板翅式换热器的自动焊接系统及方法
CN114769973A (zh) * 2022-06-01 2022-07-22 中国核工业第五建设有限公司 自动焊接设备
CN114888814A (zh) * 2022-06-30 2022-08-12 中船黄埔文冲船舶有限公司 一种基于中组立分段的焊接机器人控制方法及系统
CN115194182A (zh) * 2022-06-30 2022-10-18 中船重工信息科技有限公司 电弧增材制造随形扫描喷嘴高度测控装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669831A (zh) * 2022-05-11 2022-06-28 法孚低温设备(苏州)有限公司 一种应用于板翅式换热器的自动焊接系统及方法
CN114769973A (zh) * 2022-06-01 2022-07-22 中国核工业第五建设有限公司 自动焊接设备
CN114888814A (zh) * 2022-06-30 2022-08-12 中船黄埔文冲船舶有限公司 一种基于中组立分段的焊接机器人控制方法及系统
CN115194182A (zh) * 2022-06-30 2022-10-18 中船重工信息科技有限公司 电弧增材制造随形扫描喷嘴高度测控装置及方法

Similar Documents

Publication Publication Date Title
CN112427777A (zh) 用于船舶中组立的机器人自适应智能焊接系统及焊接方法
KR101982433B1 (ko) 로봇 용접 시스템 및 그 용접방법
CN112059363B (zh) 一种基于视觉测量的无人爬壁焊接机器人及其焊接方法
CN102009275B (zh) 用于船用柴油机机架机座的自动焊接系统
CN104999188A (zh) 大型罐体机器人自动化焊接工作站及利用该装置焊接的方法
CN104785958B (zh) 一种低温罐外件机器人焊接工作站
CN106216927A (zh) 跨龙门罐体机器人焊接系统
CN104942459A (zh) 一种大型罐体机器人自动化焊接工作站
CN205342175U (zh) 一种机器人焊接系统
CN107498152A (zh) 一种分级定位的大面积钣金工装结构自动焊接装置
CN106737688A (zh) 一种基于多传感器的集箱管座机器人自动装配系统和方法
CN103722278A (zh) 一种焊接机械手坡口焊缝轨迹的激光寻址方法及系统
CN106891111A (zh) 一种用于膜式水冷壁销钉焊接的机器人闭环加工系统
CN212329961U (zh) 一种基于视觉测量的无人爬壁焊接机器人
CN104551351A (zh) T型接头双缝双弧tig焊接集成系统及方法
CN111633364A (zh) 单面焊双面成型焊接机器人
CN114789448A (zh) 一种钢构件焊接装置及其焊接方法
CN106271369B (zh) 铁路辙岔智能焊补机器人
CN215468709U (zh) 一种用于船舶中组立的机器人自适应智能焊接系统
CN105425721A (zh) 一种闭环式控制的智能示教方法及其装置
CN112355439A (zh) 一种用于集装箱波纹焊的专机自动焊接工艺
CN112388124A (zh) 一种激光追踪伺服控制的内纵焊缝埋弧设备
CN202356770U (zh) 全数字t型管自动焊接机
CN110303223A (zh) 一种龙门式焊接机器人及工艺
CN105149770A (zh) 一种机械式激光焊接自动跟踪系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination