WO2024119733A1 - 一种制备高品质木糖醇晶体的系统及其方法 - Google Patents

一种制备高品质木糖醇晶体的系统及其方法 Download PDF

Info

Publication number
WO2024119733A1
WO2024119733A1 PCT/CN2023/096366 CN2023096366W WO2024119733A1 WO 2024119733 A1 WO2024119733 A1 WO 2024119733A1 CN 2023096366 W CN2023096366 W CN 2023096366W WO 2024119733 A1 WO2024119733 A1 WO 2024119733A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylitol
crystals
centrifuge
tank
treatment
Prior art date
Application number
PCT/CN2023/096366
Other languages
English (en)
French (fr)
Inventor
吴强
李勉
张文瑶
杨武龙
徐伟冬
秦淑芳
甄妮
Original Assignee
浙江华康药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华康药业股份有限公司 filed Critical 浙江华康药业股份有限公司
Publication of WO2024119733A1 publication Critical patent/WO2024119733A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/78Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by condensation or crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of xylitol preparation, and particularly relates to a system and a method for preparing high-quality xylitol crystals.
  • xylitol is mainly based on chemical hydrogenation.
  • Agricultural fiber waste containing hemicellulose is hydrolyzed with dilute acid, and then the hydrolyzate is neutralized, decolorized, concentrated, and crystallized to obtain xylose crystals; the xylose crystals are then dissolved into a xylose solution of a certain concentration, which is hydrogenated and reduced to xylitol; finally, xylitol crystals are obtained through ion exchange, vacuum concentration, cooling crystallization, centrifugal drying, etc.
  • the centrifuged mother liquor is often blended with the hydrogenated liquid, which results in 4-6% of miscellaneous sugars and sugar alcohols in the blending liquid.
  • miscellaneous sugars and sugar alcohols have little effect on the crystallization process of xylitol, they will reduce the pH value of the product and ultimately lead to a large difference in product flavor.
  • the technical problem to be solved by the present invention is to provide a system and method for preparing high-quality xylitol crystals, wherein water is added to the first-prepared xylitol crystals according to a certain ratio to dissolve them, thereby obtaining a xylitol solution with higher purity, and the xylitol solution is recrystallized to prepare xylitol crystals with higher pH and better flavor.
  • the system can not only significantly increase the pH of the xylitol crystals and maintain the pH stable for a long time, but also effectively improve the flavor of the xylitol crystals.
  • the present invention is achieved by providing a system and method for preparing high-quality xylitol crystals, comprising a blending tank, a heat exchanger, a decoloring tank, an ion exchange system, a microporous filter, a first evaporator, a first crystallization kettle, a first centrifuge, a fluidized drying bed, a xylitol dissolving tank, a second evaporator, a second crystallization kettle, a second centrifuge, a hot air drying tank, and a cold air fluidized bed, which are sequentially connected through pipelines.
  • the first centrifuge and the second centrifuge are respectively provided with liquid discharge ports.
  • the liquid discharge port of the first centrifuge is connected to a feed port of the blending tank through a pipeline, and the liquid discharge port of the second centrifuge is connected to a feed port of the xylitol dissolving tank through a pipeline.
  • the blending tank is provided with a feed port for a material to be processed
  • the xylitol dissolving tank is also provided with a water inlet for purified water
  • the cold air fluidized bed is provided with a discharge port.
  • the material to be processed is xylitol hydrogenated liquid
  • the material output from the discharge port of the cold air fluidized bed is a xylitol crystal product.
  • the technical problem to be solved by the present invention is to provide a method for preparing high-quality xylitol crystals, comprising the following steps:
  • Step 1 preparation of xylitol concentrated liquid, blending xylitol hydrogenated liquid and the first centrifuged mother liquid transported from the first centrifuge in a certain ratio to obtain a mixed liquid, and the mixed liquid is sequentially subjected to heat exchange treatment in a heat exchanger, decolorization treatment in a decolorization tank, ion exchange treatment in an ion exchange system, filtration treatment in a microporous filter, and evaporation treatment in a first evaporator to obtain a xylitol concentrated liquid; in this step, the concentration of the xylitol concentrated liquid is 1200-1400 g/L and the purity is 94-96%.
  • Step 2 crystallization of xylitol concentrated liquid, cooling and crystallizing the xylitol concentrated liquid in a first crystallization kettle for 8 to 12 hours, separating the obtained xylitol massecuite in a first centrifuge and drying it in a fluidized drying bed to obtain xylitol crude crystals, and returning the first centrifuged mother liquor obtained by the separation treatment in the first centrifuge to a blending tank through a pipeline and then blending it with xylitol hydrogenated liquid for reuse; in this step, the purity of the xylitol crude crystals is 98.5 to 99.8%, the pH value is less than 5.0, and the purity of the first centrifuged mother liquor is 88 to 92%.
  • Step 3 dissolving and recrystallizing the crude xylitol crystals, conveying the crude xylitol crystals to the xylitol dissolving tank, dissolving them in the purified water added, and then blending them with the second centrifuged mother liquor conveyed from the second centrifuge in a certain proportion to obtain a xylitol dissolved mixed solution, and the xylitol dissolved mixed solution is sequentially subjected to concentration treatment in the second evaporator, crystallization treatment in the second crystallization kettle, centrifugal treatment in the second centrifuge, hot air drying treatment in the hot air drying tank, and cold air drying treatment in the cold air fluidized bed to obtain a high-quality xylitol crystal product, and the second centrifuged mother liquor obtained by the separation treatment in the second centrifuge is returned to the xylitol dissolving tank through a pipeline and mixed with the crude xylitol crystal dissolved solution for reuse; in this step, the purity
  • the system and method for preparing high-quality xylitol crystals of the present invention combine the hydrogenated liquid with the first
  • the mother liquors are mixed evenly to obtain a mixed liquid, which is refined and concentrated by a heat exchanger, a decolorizing tank, an ion exchange system, a microporous filter, and a first evaporator to obtain a xylitol concentrate;
  • the xylitol concentrate is crystallized in the first crystallization kettle according to a specific process to obtain xylitol massecuite, the xylitol massecuite is separated by a high-speed first centrifuge, the first centrifuged mother liquor is returned to the blending tank, the obtained xylitol crude crystals are dried by a first fluidized bed, purified water is added to dissolve in a xylitol dissolving tank, and the mixture is mixed evenly with the second centrifuged mother liquor obtained by the second centrifuge and then sent to the second e
  • the purity of the xylitol product prepared by the present invention is further improved, and the pH of the xylitol crystals shows more excellent stability. After being placed for one month, the pH can still be maintained above 6.0; at the same time, the sweetness and sweet aftertaste of the xylitol product prepared by the method are improved, while the tooth-eroding feeling and the numb feeling are reduced, and the flavor of the product is significantly improved.
  • FIG1 is a schematic diagram of the principle of a system for preparing high-quality xylitol crystals according to the present invention
  • FIG. 2 is a schematic diagram of flavor evaluation of xylitol crystals prepared in various embodiments and comparative examples of the present invention.
  • a preferred embodiment of the system for preparing high-quality xylitol crystals of the present invention comprises a blending tank 1, a heat exchanger 2, a decolorizing tank 3, an ion exchange system 4, a microporous filter 5, a first evaporator 6, a first crystallization kettle 7, a first centrifuge 8, a fluidized drying bed 9, a xylitol dissolving tank 10, a second evaporator 11, a second crystallization kettle 12, a second centrifuge 13, a hot air drying tank 14, and a cold air fluidized bed 15, which are sequentially connected through pipelines; the first centrifuge 8 and the second centrifuge 13 are respectively provided with a liquid The liquid material discharge port of the first centrifuge 8 is connected with a feed port of the blending tank 1 through a pipeline, the liquid material discharge port of the second centrifuge 13 is connected with a feed port of the xylitol dissolving tank 10 through a pipeline, the blending tank 1 is provided with a
  • the first centrifuge mother liquor C is output from the liquid outlet of the first centrifuge 8, and the second centrifuge mother liquor D is output from the liquid outlet of the second centrifuge 13.
  • the blending tank 1 is used to mix the xylitol hydrogenated liquid A and the first centrifuge mother liquor C uniformly to obtain a mixed liquid.
  • the present invention also discloses a method for preparing high-quality xylitol crystals, comprising the following steps:
  • Step 1 preparation of xylitol concentrated liquid, blending xylitol hydrogenated liquid A and first centrifuged mother liquid C delivered from the first centrifuge 8 in a certain ratio to obtain a mixed liquid, and the mixed liquid is sequentially subjected to heat exchange treatment in the heat exchanger 2, decolorization treatment in the decolorization tank 3, ion exchange treatment in the ion exchange system 4, filtration treatment in the microporous filter 5, and evaporation treatment in the first evaporator 6 to obtain a xylitol concentrated liquid; in this step, the concentration of the xylitol concentrated liquid is 1200-1400 g/L and the purity is 94-96%.
  • Step 2 crystallization of xylitol concentrated liquid, cooling and crystallizing the xylitol concentrated liquid in the first crystallization kettle 7 for 8 to 12 hours, separating and treating the obtained xylitol massecuite in the first centrifuge 8 and drying in the fluidized drying bed 9 to obtain xylitol crude crystals, and the first centrifuged mother liquor C obtained by the separation treatment in the first centrifuge 8 is returned to the blending tank 1 through a pipeline and blended with the xylitol hydrogenated liquid A for reuse; in this step, the purity of the xylitol crude crystals is 98.5 to 99.8%, the pH value is less than 5.0, and the purity of the first centrifuged mother liquor C is 88 to 92%.
  • Step 3 dissolving and recrystallizing the crude xylitol crystals, transporting the crude xylitol crystals to the xylitol dissolving tank 10, dissolving them in the purified water added, and then blending them with the second centrifuged mother liquor D transported from the second centrifuge 13 in a certain proportion to obtain a xylitol dissolved mixed solution, and the xylitol dissolved mixed solution is sequentially subjected to the concentration treatment of the second evaporator 11, the crystallization treatment of the second crystallization kettle 12, the centrifugation treatment of the second centrifuge 13, the hot air drying treatment of the hot air drying tank 14, and the cold air drying treatment of the cold air fluidized bed 15 to obtain a high-quality xylitol crystal B product.
  • the second centrifuged mother liquor D obtained by the separation treatment of the second centrifuge 13 is returned to the xylitol dissolving tank 10 through a pipeline and mixed with the crude xylitol crystal dissolved solution for reuse; in this step, the purity of the high-quality xylitol crystal B product is >99.8%, and the pH is >6.0.
  • step 1 the temperature of the xylitol concentrated solution is 90-100°C.
  • step 2 during the cooling crystallization process of the first crystallization kettle 7, xylitol seed crystals are added, the addition ratio of xylitol seed crystals is 0.001-0.002%, the mesh size of xylitol seed crystals is 60-120 mesh, and the system temperature is 64-66° C. when xylitol seed crystals are added.
  • step three during the crystallization process of the second crystallization kettle 12, xylitol seed crystals are added, the addition ratio of the xylitol seed crystals is 0.001-0.002%, the mesh size of the xylitol seed crystals is 60-120 meshes, and the system temperature is 64-66° C. when the xylitol seed crystals are added.
  • Step 11 blending the xylitol hydrogenated liquid A and the first centrifuged mother liquid C in a certain proportion, and refining and concentrating the blended liquid through the heat exchanger 2, the decolorizing tank 3, the ion exchange system 4, the microporous filter 5 and the first evaporator 6 in sequence to obtain a temperature of 100°C, Xylitol concentrate with a concentration of 1200g/L and a purity of 94%.
  • Step 12 maintaining the vacuum degree of the first crystallization kettle 7 at a constant -0.095 MPa, further evaporating the xylitol concentrate, adding 0.001% xylitol seed crystals (80-100 mesh) when the temperature of the first crystallization kettle 7 drops to 65°C, and maintaining the system at a constant 65°C for evaporation and crystallization for 8 hours; finally, through centrifugal separation treatment in the first centrifuge 8 and fluidized drying treatment in the fluidized drying bed 9, crude xylitol crystals with a purity of 99.5% and a pH of 4.87 are obtained, and at the same time, the first centrifugal mother liquor C with a purity of 90% obtained by the centrifugal separation treatment of the first centrifuge 8 is returned to the blending tank 1.
  • Step 13 dissolving the above-mentioned crude xylitol crystals with a purity of 99.5% in purified water and blending with the second centrifuged mother liquor D to obtain a second blending liquid with a xylitol content of 98.2%, further concentrating the second blending liquid to a concentration of 1350 g/L through the second evaporator 11, entering the second crystallization kettle 12, maintaining the vacuum degree of the second crystallization kettle 12 at -0.095 MPa and the temperature at 65° C., adding 0.001% of xylitol seed crystals (80-100 meshes) for evaporation and crystallization for 8 hours; finally, subjecting the product to centrifugal separation treatment in the second centrifuge 13, hot air drying treatment in the hot air drying tank 14, and cold air drying treatment in the cold air fluidized bed 15, to obtain a xylitol crystal B product with a purity of 99.97%; and at the same time, returning the second centrifuged mother liquor D obtained by the
  • the acidity of the prepared xylitol crystals B was measured according to the Chinese Pharmacopoeia method, and the xylitol solution was prepared using fresh ultrapure water at a ratio of 10 g crystals to 20 ml water.
  • the pH of the xylitol solution in this example was measured to be 6.06.
  • the pH of the xylitol solution was measured to be 6.03 using the same method; after the xylitol crystals were placed at room temperature for one month, the pH of the xylitol solution was measured to be 6.01 using the same method.
  • Example 1 The xylitol crystals prepared in Example 1 were subjected to flavor evaluation test, and the results were shown in FIG2 .
  • Step 21 blending the xylitol hydrogenated liquid A and the first centrifuged mother liquor C in a certain ratio, and the blended liquid is refined and concentrated in sequence through the heat exchanger 2, the decolorization tank 3, the ion exchange system 4, the microporous filter 5 and the first evaporator 6 to obtain a xylitol concentrate with a temperature of 90° C., a concentration of 1400 g/L and a purity of 94%.
  • Step 22 maintaining the vacuum degree of the first crystallization kettle 7 at a constant -0.095 MPa, further evaporating the xylitol concentrate, adding 0.001% xylitol seed crystals (100-120 mesh) when the temperature of the first crystallization kettle 7 drops to 64°C, and maintaining the system at a constant 64°C for evaporation and crystallization for 12 hours; finally, through centrifugal separation treatment in the first centrifuge 8 and fluidized drying treatment in the fluidized drying bed 9, xylitol crude crystals with a purity of 99.6% and a pH of 4.90 are obtained, and at the same time, the first centrifuged mother liquor C with a purity of 89.5% is obtained by the centrifugal separation treatment of the first centrifuge 8 and is returned to the blending tank 1.
  • Step 23 dissolving the above-mentioned crude xylitol crystals with a purity of 99.6% in purified water and blending with the second centrifuged mother liquor D to obtain a second blending liquid with a xylitol content of 98.4%.
  • the second blending liquid is further concentrated to a concentration of The product is 1380 g/L and enters the second crystallization kettle 12.
  • the vacuum degree of the second crystallization kettle 12 is maintained at -0.095 MPa and the temperature is maintained at 65°C. 0.001% of xylitol seed crystals (100-120 meshes) are added to evaporate and crystallize for 10 hours.
  • the product is centrifuged in the second centrifuge 13, dried with hot air in the hot air drying tank 14, and dried with cold air in the cold air fluidized bed 15 to obtain a xylitol crystal B product with a purity of 99.97%.
  • the second centrifuged mother liquor D obtained by the centrifugal separation in the second centrifuge 13 is returned to the xylitol dissolving tank 10.
  • the acidity of the prepared xylitol crystals B was measured according to the Chinese Pharmacopoeia method, and the xylitol solution was prepared using fresh ultrapure water at a ratio of 10 g crystals to 20 ml water.
  • the pH of the xylitol solution in this example was measured to be 6.12. After the obtained xylitol crystals B were placed at room temperature for one week, the pH of the xylitol solution was measured to be 6.08 using the same method; after the xylitol crystals were placed at room temperature for one month, the pH of the xylitol solution was measured to be 6.05 using the same method.
  • Example 2 The xylitol crystals prepared were subjected to flavor evaluation test, and the results were shown in FIG2 .
  • Step 31 blending the xylitol hydrogenated liquid A and the first centrifuged mother liquor C in a certain proportion to obtain a blending liquid with a xylitol content of 96%, and the blending liquid is refined and concentrated in sequence through a heat exchanger 2, a decolorizing tank 3, an ion exchange system 4, a microporous filter 5 and a first evaporator 6 to obtain a xylitol concentrate with a temperature of 95° C. and a concentration of 1350 g/L.
  • Step 32 maintaining the vacuum degree of the first crystallization kettle 7 at a constant -0.095 MPa, further evaporating the xylitol concentrate, adding 0.002% xylitol seed crystals (60-80 mesh) when the temperature of the first crystallization kettle 7 drops to 66°C, and maintaining the system at a constant 66°C for evaporation and crystallization for 10 hours; finally, through centrifugal separation treatment in the first centrifuge 8 and fluidized drying treatment in the fluidized drying bed 9, crude xylitol crystals with a purity of 99.7% and a pH of 4.99 are obtained, and at the same time, the first centrifugal mother liquor C with a purity of 92% obtained by the centrifugal separation treatment of the first centrifuge 8 is returned to the blending tank 1.
  • Step 33 dissolving the above-mentioned crude xylitol crystals with a purity of 99.7% in purified water and blending with the second centrifuged mother liquor D to obtain a second blending liquid with a xylitol content of 98.4%, further concentrating the second blending liquid to a concentration of 1400 g/L through the second evaporator 11, entering the second crystallization kettle 12, maintaining the vacuum degree of the second crystallization kettle 12 at -0.095 MPa and the temperature at 66° C., adding 0.002% of xylitol seed crystals (60-80 mesh) for evaporation and crystallization for 10 hours; finally, subjecting the xylitol crystals B product with a purity of 100% to centrifugal separation treatment in the second centrifuge 13, hot air drying treatment in the hot air drying tank 14, and cold air drying treatment in the cold air fluidized bed 15; and at the same time, returning the second centrifuged mother liquor D obtained by the centrifugal separation treatment in the
  • the acidity of the prepared xylitol crystals B was measured according to the Chinese Pharmacopoeia method.
  • the xylitol solution was prepared using fresh ultrapure water at a ratio of 10 g crystals to 20 ml water.
  • the pH of the xylitol solution in this example was measured to be 6.09.
  • the pH of the xylitol solution was measured to be 6.07 using the same method.
  • the pH value of the xylitol solution was measured to be 6.05 using the same method.
  • Example 3 The xylitol crystals prepared were subjected to flavor evaluation test, and the results were shown in FIG. 2 .
  • the first comparative example of the method for preparing xylitol crystals of the present invention comprises the following steps:
  • Step D11 blending the xylitol hydrogenated liquid A and the first centrifuged mother liquor C in a certain proportion to obtain a blending liquid with a xylitol content of 94%, and the blending liquid is refined and concentrated in sequence through a heat exchanger 2, a decolorizing tank 3, an ion exchange system 4, a microporous filter 5 and a first evaporator 6 to obtain a xylitol concentrate with a temperature of 95° C. and a concentration of 1300 g/L.
  • Step D12 maintaining the vacuum degree of the first crystallization kettle 7 at a constant -0.095 MPa, further evaporating the xylitol concentrate, adding 0.001% xylitol seed crystals (80-100 mesh) when the temperature of the first crystallization kettle 7 drops to 64°C, and maintaining the system at a constant 64°C for evaporation and crystallization for 10 hours; finally, through centrifugal separation treatment in the first centrifuge 8 and fluidized drying treatment in the fluidized drying bed 9, xylitol crystals with a purity of 99.8% are obtained, and at the same time, the first centrifugal separation treatment in the first centrifuge 8 obtains a first centrifuged mother liquor C with a purity of 90% and is returned to the blending tank 1.
  • the acidity of the prepared xylitol crystals was measured according to the Chinese Pharmacopoeia method, and the xylitol solution was prepared using fresh ultrapure water at a ratio of 10 g crystals to 20 ml water.
  • the pH of the xylitol solution in this example was measured to be 5.02. After the obtained xylitol crystals were placed at room temperature for one week, the pH of the xylitol solution was measured to be 4.85 using the same method; after the xylitol crystals were placed at room temperature for one month, the pH of the xylitol solution was measured to be 4.64 using the same method.
  • the xylitol crystals prepared in Comparative Example 1 were subjected to a flavor evaluation test, and the results shown in FIG2 were obtained.
  • the second comparative example of the method for preparing xylitol crystals of the present invention comprises the following steps:
  • Step D21 blending the xylitol hydrogenated liquid A and the first centrifuged mother liquor C in a certain ratio to obtain a blending liquid with a xylitol content of 94.5%, and the blending liquid is refined and concentrated in sequence through a heat exchanger 2, a decolorizing tank 3, an ion exchange system 4, a microporous filter 5 and a first evaporator 6 to obtain a xylitol concentrate with a temperature of 100° C. and a concentration of 1200 g/L.
  • Step D22 maintaining the vacuum degree of the first crystallization kettle 7 at a constant -0.095 MPa, further evaporating the xylitol concentrate, adding 0.002% xylitol seed crystals (100-120 mesh) when the temperature of the first crystallization kettle 7 drops to 65°C, and maintaining the system at a constant 65°C for evaporation and crystallization for 8 hours; finally, through centrifugal separation treatment in the first centrifuge 8 and fluidized drying treatment in the fluidized drying bed 9, xylitol crystals with a purity of 99.75% are obtained, and at the same time, the first centrifugal separation treatment in the first centrifuge 8 obtains a first centrifuged mother liquor C with a purity of 91%, which is returned to the blending tank 1.
  • the acidity of the prepared xylitol crystals was measured according to the Chinese Pharmacopoeia method.
  • the xylitol solution was prepared using fresh ultrapure water at a ratio of 10 g crystals to 20 ml water.
  • the pH of the xylitol solution in this example was measured to be 5.04. After being placed at room temperature for one week, the pH value of the xylitol solution was measured by the same method to be 4.81; after being placed at room temperature for one month, the pH value of the xylitol solution was measured by the same method to be 4.68.
  • the xylitol crystals prepared in Comparative Example 2 were subjected to a flavor evaluation test, and the results were shown in FIG. 2 .
  • the third comparative example of the method for preparing xylitol crystals of the present invention comprises the following steps:
  • Step D31 blending the xylitol hydrogenated liquid A and the first centrifuged mother liquor C in a certain proportion to obtain a blending liquid with a xylitol content of 96%, and the blending liquid is refined and concentrated in sequence through a heat exchanger 2, a decolorization tank 3, an ion exchange system 4, a microporous filter 5 and a first evaporator 6 to obtain a xylitol concentrate with a temperature of 92° C. and a concentration of 1400 g/L.
  • Step D32 maintaining the vacuum degree of the first crystallization kettle 7 at a constant -0.095 MPa, further evaporating the xylitol concentrate, adding 0.001% xylitol seed crystals (100-120 mesh) when the temperature of the first crystallization kettle 7 drops to 66°C, and maintaining the system at a constant 66°C for evaporation and crystallization for 12 hours; finally, through centrifugal separation treatment in the first centrifuge 8 and fluidized drying treatment in the fluidized drying bed 9, xylitol crystals with a purity of 99.7% are obtained, and at the same time, the first centrifugal separation treatment in the first centrifuge 8 obtains a first centrifuged mother liquor C with a purity of 92%, which is returned to the blending tank 1.
  • the acidity of the prepared xylitol crystals was measured according to the Chinese Pharmacopoeia method, and the xylitol solution was prepared using fresh ultrapure water at a ratio of 10 g crystals to 20 ml water.
  • the pH of the xylitol solution in this example was measured to be 5.03. After the obtained xylitol crystals were placed at room temperature for one week, the pH of the xylitol solution was measured to be 4.90 using the same method; after the xylitol crystals were placed at room temperature for one month, the pH of the xylitol solution was measured to be 4.73 using the same method.
  • the xylitol crystals prepared in Comparative Example 3 were subjected to flavor evaluation test, and the results were shown in FIG. 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种制备高品质木糖醇晶体的系统及其方法,系统包括依次通过管路连通的勾兑罐(1)、换热器(2)、脱色罐(3)、离子交换系统(4)、微孔过滤器(5)、第一蒸发器(6)、第一结晶釜(7)、第一离心机(8)、流化干燥床(9)、木糖醇溶解罐(10)、第二蒸发器(11)、第二结晶釜(12)、第二离心机(13)、热风干燥罐(14)、冷风流化床(15),第一离心机(8)还通过管路与勾兑罐(1)连通,第二离心机(13)还通过管路与木糖醇溶解罐(10)连通,在勾兑罐(1)上设置有木糖醇氢化液的进料口,在木糖醇溶解罐(10)上还设置纯化水的进水口,从冷风流化床(15)输出的物料为木糖醇晶体产品。制备方法包括木糖醇浓缩液制备、木糖醇浓缩液结晶、木糖醇粗晶体溶解重结晶。

Description

一种制备高品质木糖醇晶体的系统及其方法 技术领域
本发明属于木糖醇制备技术领域,特别涉及一种制备高品质木糖醇晶体的系统及其方法。
背景技术
目前,工业上生产木糖醇主要以化学加氢法为主,将含有半纤维素的农业纤维废料用稀酸水解,然后将水解液进行中和、脱色、浓缩、结晶,得到木糖晶体;再将木糖晶体溶解为一定浓度的木糖溶液,将其加氢还原为木糖醇;最后经离子交换、真空浓缩、降温结晶、离心干燥等步骤,得到木糖醇晶体。为了提高木糖醇产品收率,往往将离心母液与氢化液进行勾兑,这就导致勾兑液中存在4~6%的杂糖、糖醇,这部分杂糖、糖醇虽然对木糖醇结晶过程影响较小,但会降低产品的pH值、最终导致产品风味差异较大。
在木糖醇生产过程中,影响产品pH的因素主要有两个:其一是离子交换过程,木糖醇料液经过阳、阴离子交换柱时,会分别将树脂中的H+、OH-交换出来,由于阳、阴离子交换柱交换量的差异,会导致最终制备的木糖醇晶体pH不同;其二是木糖醇浓缩液的组分差异会使得木糖醇晶体pH有较大差别。由于葡萄糖、木糖等杂糖的酸度系数(pKa)比木糖醇更小,如下表1所示。因此当木糖醇浓缩液中存在一定量的杂糖时,会导致制备出的木糖醇晶体pH较低、风味差异较大,如下表2所示。
表1常见糖醇的酸度系数表
表2不同成分的木糖醇浓缩液制备的木糖醇晶体的pH值
目前提高木糖醇晶体pH的方法主要有两种,一种是在离交工序后再加一组强碱树脂或混床树脂,如公开号为CN109438184A、CN110894180A的专利文献;另一种是向离交液中加入少量碱液,如公开号为CN112661796A的专利文献。这两种方式均是通过提高木糖醇浓缩液的pH实现提升木糖醇晶体pH的目的。虽然工艺路线简单清晰,且有相应的技术效果,但并未从本质上解决传统工艺制备的木糖醇pH较低、风味差异较大这一问题。
因此,针对木糖醇传统生产工艺中存在的这一问题,从影响木糖醇晶体pH低、风味差异较大的内在本质出发,寻找一种能够提高木糖醇晶体pH、改善木糖醇产品风味的方法具有重要的意义。
发明内容
本发明所要解决的技术问题在于,提供一种制备高品质木糖醇晶体的系统及其方法,将首次制备的木糖醇晶体按照一定的比例加水进行溶解,得到纯度更高的木糖醇溶液,将此木糖醇溶液进行重结晶能够制备出pH更高、风味更优异的木糖醇晶体。该系统不仅能够明显提高木糖醇晶体的pH并维持pH长时间稳定,同时也有效的改善了木糖醇晶体的风味。
本发明是这样实现的,提供一种制备高品质木糖醇晶体的系统及其方法,包括依次通过管路连通的勾兑罐、换热器、脱色罐、离子交换系统、微孔过滤器、第一蒸发器、第一结晶釜、第一离心机、流化干燥床、木糖醇溶解罐、第二蒸发器、第二结晶釜、第二离心机、热风干燥罐、冷风流化床,第一离心机和第二离心机分别设有液体物出料口,第一离心机的液体物出料口通过管路与勾兑罐的一个进料口连通,第二离心机的液体物出料口通过管路与木糖醇溶解罐的一个进料口连通,在勾兑罐上设置有待处理物料的进料口,在木糖醇溶解罐上还设置纯化水的进水口,在冷风流化床上设置有出料口,待处理物料为木糖醇氢化液,从冷风流化床的出料口输出的物料为木糖醇晶体产品。
本发明所要解决的技术问题在于,还提供一种制备高品质木糖醇晶体的方法,包括如下步骤:
步骤一,木糖醇浓缩液制备,将木糖醇氢化液与从第一离心机输送的第一离心母液按照一定的比例勾兑混匀后得到混合料液,混合料液依次经过换热器的换热处理、脱色罐的脱色处理、离子交换系统的离交处理、微孔过滤器的过滤处理、第一蒸发器的蒸发处理后,得到木糖醇浓缩液;该步骤中木糖醇浓缩液浓度为1200~1400g/L、纯度为94~96%。
步骤二,木糖醇浓缩液结晶,将木糖醇浓缩液于第一结晶釜中降温结晶处理8~12h,得到的木糖醇糖膏经第一离心机的分离处理、流化干燥床的干燥处理后得到木糖醇粗晶体,第一离心机的分离处理得到的第一离心母液通过管路回套到勾兑罐中与木糖醇氢化液勾兑后再利用;该步骤中,木糖醇粗晶体的纯度为98.5~99.8%、pH<5.0,第一离心母液的纯度为88~92%。
步骤三,木糖醇粗晶体溶解重结晶,将木糖醇粗晶体输送到木糖醇溶解罐中被加入的纯化水溶解后按照一定比例与从第二离心机输送的第二离心母液勾兑混匀,得到木糖醇溶解混合液,木糖醇溶解混合液依次经过第二蒸发器的浓缩处理、第二结晶釜的结晶处理、第二离心机的离心处理、热风干燥罐的热风干燥处理以及冷风流化床的冷风干燥处理,得到高品质的木糖醇晶体产品,第二离心机的分离处理得到的第二离心母液通过管路回套到木糖醇溶解罐中与木糖醇粗晶体溶解液混合后再利用;该步骤中,高品质木糖醇晶体产品的纯度>99.8%、pH>6.0。
与现有技术相比,本发明的制备高品质木糖醇晶体的系统及其方法,将氢化液与第一离 心母液混合均匀得到混合料液,混合料液经换热器、脱色罐、离子交换系统、微孔过滤器、第一蒸发器精制提浓,得到木糖醇浓缩液;木糖醇浓缩液在第一结晶釜中按照特定的工艺结晶得到木糖醇糖膏,木糖醇糖膏经高速第一离心机分离,得到的第一离心母液回套至勾兑罐,得到的木糖醇粗晶体经第一流化床干燥后加纯化水在木糖醇溶解罐溶解,并与第二离心机得到的第二离心母液混合均匀后送入第二蒸发器提浓;木糖醇溶解液经第二蒸发器提浓后木糖醇液在第二结晶釜中重结晶,然后经第二离心机分离得到晶体木糖醇和第二离心母液;第二离心母液回套至木糖醇溶解罐,晶体木糖醇则经热风干燥罐、冷风流化床干燥后得到高品质木糖醇晶体产品。本发明制备出的木糖醇产品纯度得到进一步提升,木糖醇晶体pH表现出更优异的稳定性,经过一个月放置后,其pH仍然能够保持在6.0以上;同时采用该方法制备出的木糖醇产品的甜味、甜后味得到提升,而蚀牙感、麻感出现降低,产品的风味得到明显的改善。
附图说明
图1为本发明一种制备高品质木糖醇晶体的系统的原理示意图;
图2为本发明各实施例和对比例制备的木糖醇晶体风味评价示意图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参照图1所示,本发明制备高品质木糖醇晶体的系统的较佳实施例,包括依次通过管路连通的勾兑罐1、换热器2、脱色罐3、离子交换系统4、微孔过滤器5、第一蒸发器6、第一结晶釜7、第一离心机8、流化干燥床9、木糖醇溶解罐10、第二蒸发器11、第二结晶釜12、第二离心机13、热风干燥罐14、冷风流化床15;第一离心机8和第二离心机13分别设有液体物出料口,第一离心机8的液体物出料口通过管路与勾兑罐1的一个进料口连通,第二离心机13的液体物出料口通过管路与木糖醇溶解罐10的一个进料口连通,在勾兑罐1上设置有待处理物料的进料口,在木糖醇溶解罐10上还设置纯化水E的进水口,在冷风流化床15上设置有出料口,待处理物料为木糖醇氢化液A,从冷风流化床15的出料口输出的物料为木糖醇晶体B产品。
从第一离心机8的液体物出料口输出的是第一离心母液C,从第二离心机13的液体物出料口输出的是第二离心母液D。勾兑罐1用于将木糖醇氢化液A与第一离心母液C混合均匀,得到混合料液。
本发明还公开一种制备高品质木糖醇晶体的方法,包括如下步骤:
步骤一,木糖醇浓缩液制备,将木糖醇氢化液A与从第一离心机8输送的第一离心母液C按照一定的比例勾兑混匀后得到混合料液,混合料液依次经过换热器2的换热处理、脱色罐3的脱色处理、离子交换系统4的离交处理、微孔过滤器5的过滤处理、第一蒸发器6的蒸发处理后,得到木糖醇浓缩液;该步骤中木糖醇浓缩液浓度为1200~1400g/L、纯度为94~96%。
步骤二,木糖醇浓缩液结晶,将木糖醇浓缩液于第一结晶釜7中降温结晶处理8~12h,得到的木糖醇糖膏经第一离心机8的分离处理、流化干燥床9的干燥处理后得到木糖醇粗晶体,第一离心机8的分离处理得到的第一离心母液C通过管路回套到勾兑罐1中与木糖醇氢化液A勾兑后再利用;该步骤中,木糖醇粗晶体的纯度为98.5~99.8%、pH<5.0,第一离心母液C的纯度为88~92%。
步骤三,木糖醇粗晶体溶解重结晶,将木糖醇粗晶体输送到木糖醇溶解罐10中被加入的纯化水溶解后按照一定比例与从第二离心机13输送的第二离心母液D勾兑混匀,得到木糖醇溶解混合液,木糖醇溶解混合液依次经过第二蒸发器11的浓缩处理、第二结晶釜12的结晶处理、第二离心机13的离心处理、热风干燥罐14的热风干燥处理以及冷风流化床15的冷风干燥处理,得到高品质的木糖醇晶体B产品。第二离心机13的分离处理得到的第二离心母液D通过管路回套到木糖醇溶解罐10中与木糖醇粗晶体溶解液混合后再利用;该步骤中,高品质木糖醇晶体B产品的纯度>99.8%、pH>6.0。
具体地,在步骤一中,木糖醇浓缩液温度为90~100℃。
具体地,在步骤二中,第一结晶釜7的降温结晶过程,添加木糖醇晶种,木糖醇晶种的添加比例为0.001~0.002%,木糖醇晶种的目数为60~120目,木糖醇晶种加入时体系温度为64~66℃。
具体地,在步骤三中,第二结晶釜12的结晶过程,添加木糖醇晶种,木糖醇晶种的添加比例为0.001~0.002%,木糖醇晶种的目数为60~120目,木糖醇晶种加入时体系温度为64~66℃。
下面通过具体实施例进一步说明本发明的制备高品质木糖醇晶体的系统及其方法。
实施例1
本发明第一个制备高品质木糖醇晶体的方法的实施例,包括如下步骤:
步骤11,将木糖醇氢化液A与第一离心母液C按照一定比例勾兑,勾兑液依次通过换热器2、脱色罐3、离子交换系统4、微孔过滤器5和第一蒸发器6精制提浓,得到温度为100℃、 浓度为1200g/L、纯度为94%的木糖醇浓缩液。
步骤12,维持第一结晶釜7真空度为-0.095MPa恒定,进一步对木糖醇浓缩液进行蒸发,当第一结晶釜7的温度下降至65℃时加入0.001%的木糖醇晶种(80~100目)、并维持体系65℃恒定蒸发结晶8h;最后经第一离心机8的离心分离处理、流化干燥床9的流化干燥处理,得到纯度为99.5%、pH为4.87的木糖醇粗晶体,同时第一离心机8的离心分离处理得到纯度为90%的第一离心母液C回套至勾兑罐1。
步骤13,将上述纯度为99.5%的木糖醇粗晶体加纯化水溶解后与第二离心母液D勾兑,得到木糖醇含量为98.2%的第二勾兑液,第二勾兑液经过第二蒸发器11的进一步浓缩至浓度为1350g/L,进入第二结晶釜12,维持第二结晶釜12真空度-0.095MPa、温度65℃恒定,加入0.001%的木糖醇晶种(80~100目)蒸发结晶8h;最后经第二离心机13的离心分离处理、热风干燥罐14的热风干燥处理、冷风流化床15的冷风干燥处理,得到纯度为99.97%的木糖醇晶体B产品;同时将第二离心机13的离心分离处理得到的第二离心母液D回套至木糖醇溶解罐10。
依据中国药典方法测定制备得到的木糖醇晶体B的酸度,采用新制超纯水,按照10g晶体:20ml水的比例制备木糖醇溶液,测得该实施例木糖醇溶液pH为6.06。得到的木糖醇晶体B常温放置一周后,用相同方法测得木糖醇溶液pH为6.03;木糖醇晶体常温放置一个月后,用相同方法测得木糖醇溶液pH为6.01。
实施例1制备得到木糖醇晶体进行风味评价测试,得到如图2所示结果。
实施例2
本发明第二个制备高品质木糖醇晶体的方法的实施例,包括如下步骤:
步骤21,将木糖醇氢化液A与第一离心母液C按照一定比例勾兑,勾兑液依次通过换热器2、脱色罐3、离子交换系统4、微孔过滤器5和第一蒸发器6精制提浓,得到温度为90℃、浓度为1400g/L、纯度为94%的木糖醇浓缩液。
步骤22,维持第一结晶釜7真空度为-0.095MPa恒定,进一步对木糖醇浓缩液进行蒸发,当第一结晶釜7的温度下降至64℃时加入0.001%的木糖醇晶种(100~120目)、并维持体系64℃恒定蒸发结晶12h;最后经第一离心机8的离心分离处理、流化干燥床9的流化干燥处理,得到纯度为99.6%、pH为4.90的木糖醇粗晶体,同时第一离心机8的离心分离处理得到纯度为89.5%的第一离心母液C回套至勾兑罐1。
步骤23,将上述纯度为99.6%的木糖醇粗晶体加纯化水溶解后与第二离心母液D勾兑,得到木糖醇含量为98.4%的第二勾兑液,第二勾兑液经过第二蒸发器11的进一步浓缩至浓度 为1380g/L,进入第二结晶釜12,维持第二结晶釜12真空度-0.095MPa、温度65℃恒定,加入0.001%的木糖醇晶种(100~120目)蒸发结晶10h;最后经第二离心机13的离心分离处理、热风干燥罐14的热风干燥处理、冷风流化床15的冷风干燥处理,得到纯度为99.97%的木糖醇晶体B产品;同时将第二离心机13的离心分离处理得到的第二离心母液D回套至木糖醇溶解罐10。
依据中国药典方法测定制备得到的木糖醇晶体B的酸度,采用新制超纯水,按照10g晶体:20ml水的比例制备木糖醇溶液,测得该实施例木糖醇溶液pH为6.12。得到的木糖醇晶体B常温放置一周后,用相同方法测得木糖醇溶液pH为6.08;木糖醇晶体常温放置一个月后,用相同方法测得木糖醇溶液pH为6.05。
实施例2制备得到木糖醇晶体进行风味评价测试,得到如图2所示结果。
实施例3
本发明第三个制备高品质木糖醇晶体的方法的实施例,包括如下步骤:
步骤31,将木糖醇氢化液A与第一离心母液C按照一定比例勾兑,得到木糖醇含量为96%的勾兑液,勾兑液依次通过换热器2、脱色罐3、离子交换系统4、微孔过滤器5和第一蒸发器6精制提浓,得到温度为95℃、浓度为1350g/L的木糖醇浓缩液。
步骤32,维持第一结晶釜7真空度为-0.095MPa恒定,进一步对木糖醇浓缩液进行蒸发,当第一结晶釜7的温度下降至66℃时加入0.002%的木糖醇晶种(60~80目)、并维持体系66℃恒定蒸发结晶10h;最后经第一离心机8的离心分离处理、流化干燥床9的流化干燥处理,得到纯度为99.7%、pH为4.99的木糖醇粗晶体,同时第一离心机8的离心分离处理得到纯度为92%的第一离心母液C回套至勾兑罐1。
步骤33,将上述纯度为99.7%的木糖醇粗晶体加纯化水溶解后与第二离心母液D勾兑,得到木糖醇含量为98.4%的第二勾兑液,第二勾兑液经过第二蒸发器11的进一步浓缩至浓度为1400g/L,进入第二结晶釜12,维持第二结晶釜12真空度-0.095MPa、温度66℃恒定,加入0.002%的木糖醇晶种(60~80目)蒸发结晶10h;最后经第二离心机13的离心分离处理、热风干燥罐14的热风干燥处理、冷风流化床15的冷风干燥处理,得到纯度为100%的木糖醇晶体B产品;同时将第二离心机13的离心分离处理得到的第二离心母液D回套至木糖醇溶解罐10。
依据中国药典方法测定制备得到的木糖醇晶体B的酸度,采用新制超纯水,按照10g晶体:20ml水的比例制备木糖醇溶液,测得该实施例木糖醇溶液pH为6.09。得到的木糖醇晶体B常温放置一周后,用相同方法测得木糖醇溶液pH为6.07;木糖醇晶体常温放置一个月 后,用相同方法测得木糖醇溶液pH为6.05。
实施例3制备得到木糖醇晶体进行风味评价测试,得到如图2所示结果。
为了进一步说明本发明的改善效果,进行以下对比实验。
对比例1
本发明制备木糖醇晶体的方法的第一个对比例包括如下步骤:
步骤D11,将木糖醇氢化液A与第一离心母液C按照一定比例勾兑,得到木糖醇含量为94%的勾兑液,勾兑液依次通过换热器2、脱色罐3、离子交换系统4、微孔过滤器5和第一蒸发器6精制提浓,得到温度为95℃、浓度为1300g/L的木糖醇浓缩液。
步骤D12,维持第一结晶釜7真空度为-0.095MPa恒定,进一步对木糖醇浓缩液进行蒸发,当第一结晶釜7的温度下降至64℃时加入0.001%的木糖醇晶种(80~100目)、并维持体系64℃恒定蒸发结晶10h;最后经第一离心机8的离心分离处理、流化干燥床9的流化干燥处理,得到纯度为99.8%木糖醇晶体,同时第一离心机8的离心分离处理得到纯度为90%的第一离心母液C回套至勾兑罐1。
依据中国药典方法测定制备得到的木糖醇晶体的酸度,采用新制超纯水,按照10g晶体:20ml水的比例制备木糖醇溶液,测得该实施例木糖醇溶液pH为5.02。得到的木糖醇晶体常温放置一周后,用相同方法测得木糖醇溶液pH为4.85;木糖醇晶体常温放置一个月后,用相同方法测得木糖醇溶液pH为4.64。
对比例1制备得到木糖醇晶体进行风味评价测试,得到如图2所示结果。
对比例2
本发明制备木糖醇晶体的方法的第二个对比例包括如下步骤:
步骤D21,将木糖醇氢化液A与第一离心母液C按照一定比例勾兑,得到木糖醇含量为94.5%的勾兑液,勾兑液依次通过换热器2、脱色罐3、离子交换系统4、微孔过滤器5和第一蒸发器6精制提浓,得到温度为100℃、浓度为1200g/L的木糖醇浓缩液。
步骤D22,维持第一结晶釜7真空度为-0.095MPa恒定,进一步对木糖醇浓缩液进行蒸发,当第一结晶釜7的温度下降至65℃时加入0.002%的木糖醇晶种(100~120目)、并维持体系65℃恒定蒸发结晶8h;最后经第一离心机8的离心分离处理、流化干燥床9的流化干燥处理,得到纯度为99.75%木糖醇晶体,同时第一离心机8的离心分离处理得到纯度为91%的第一离心母液C回套至勾兑罐1。
依据中国药典方法测定制备得到的木糖醇晶体的酸度,采用新制超纯水,按照10g晶体:20ml水的比例制备木糖醇溶液,测得该实施例木糖醇溶液pH为5.04。得到的木糖醇晶体常 温放置一周后,用相同方法测得木糖醇溶液pH为4.81;木糖醇晶体常温放置一个月后,用相同方法测得木糖醇溶液pH为4.68。
对比例2制备得到木糖醇晶体进行风味评价测试,得到如图2所示结果。
对比例3
本发明制备木糖醇晶体的方法的第三个对比例包括如下步骤:
步骤D31,将木糖醇氢化液A与第一离心母液C按照一定比例勾兑,得到木糖醇含量为96%的勾兑液,勾兑液依次通过换热器2、脱色罐3、离子交换系统4、微孔过滤器5和第一蒸发器6精制提浓,得到温度为92℃、浓度为1400g/L的木糖醇浓缩液。
步骤D32,维持第一结晶釜7真空度为-0.095MPa恒定,进一步对木糖醇浓缩液进行蒸发,当第一结晶釜7的温度下降至66℃时加入0.001%的木糖醇晶种(100~120目)、并维持体系66℃恒定蒸发结晶12h;最后经第一离心机8的离心分离处理、流化干燥床9的流化干燥处理,得到纯度为99.7%木糖醇晶体,同时第一离心机8的离心分离处理得到纯度为92%的第一离心母液C回套至勾兑罐1。
依据中国药典方法测定制备得到的木糖醇晶体的酸度,采用新制超纯水,按照10g晶体:20ml水的比例制备木糖醇溶液,测得该实施例木糖醇溶液pH为5.03。得到的木糖醇晶体常温放置一周后,用相同方法测得木糖醇溶液pH为4.90;木糖醇晶体常温放置一个月后,用相同方法测得木糖醇溶液pH为4.73。
对比例3制备得到木糖醇晶体进行风味评价测试,得到如图2所示结果。
将上述各实施例和对比例所制备的木糖醇晶体pH测定结果及风味评价进行汇总,如表3和图2所示。从表3中可以看出,实施例1~实施例3的pH均在6.0以上,并且经过一个月放置后木糖醇晶体pH下降幅度均在0.1以内;而对比例1~对比例3的pH仅在5.0左右,且经过一个月放置后木糖醇晶体pH下降幅度达到了0.3以上。这些数据表明采用重结晶方式能够明显提高并稳定木糖醇晶体的pH。同时从图2的风味评价雷达图中可以看出,实施例1~3制备的木糖醇晶体产品的甜味、甜后味等这些消费者喜爱的属性均较对比例有所加强,而蚀牙感、麻感等这些不利属性则均较对比例有所减弱,也同样说明采用本发明所述方法所制备的木糖醇晶体风味得到显著的改善。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种制备高品质木糖醇晶体的系统,其特征在于,包括依次通过管路连通的勾兑罐、换热器、脱色罐、离子交换系统、微孔过滤器、第一蒸发器、第一结晶釜、第一离心机、流化干燥床、木糖醇溶解罐、第二蒸发器、第二结晶釜、第二离心机、热风干燥罐、冷风流化床,第一离心机和第二离心机分别设有液体物出料口,第一离心机的液体物出料口通过管路与勾兑罐的一个进料口连通,第二离心机的液体物出料口通过管路与木糖醇溶解罐的一个进料口连通,在勾兑罐上设置有待处理物料的进料口,在木糖醇溶解罐上还设置纯化水的进水口,在冷风流化床上设置有出料口,待处理物料为木糖醇氢化液,从冷风流化床的出料口输出的物料为木糖醇晶体产品。
  2. 一种制备高品质木糖醇晶体的方法,其特征在于,包括如下步骤:
    步骤一,木糖醇浓缩液制备,将木糖醇氢化液与从第一离心机输送的第一离心母液按照一定的比例勾兑混匀后得到混合料液,混合料液依次经过换热器的换热处理、脱色罐的脱色处理、离子交换系统的离交处理、微孔过滤器的过滤处理、第一蒸发器的蒸发处理后,得到木糖醇浓缩液;该步骤中木糖醇浓缩液浓度为1200~1400g/L、纯度为94~96%;
    步骤二,木糖醇浓缩液结晶,将木糖醇浓缩液于第一结晶釜中降温结晶处理8~12h,得到的木糖醇糖膏经第一离心机的分离处理、流化干燥床的干燥处理后得到木糖醇粗晶体,第一离心机的分离处理得到的第一离心母液通过管路回套到勾兑罐中与木糖醇氢化液勾兑后再利用;该步骤中,木糖醇粗晶体的纯度为98.5~99.8%、pH<5.0,第一离心母液的纯度为88~92%;
    步骤三,木糖醇粗晶体溶解重结晶,将木糖醇粗晶体输送到木糖醇溶解罐中被加入的纯化水溶解后按照一定比例与从第二离心机输送的第二离心母液勾兑混匀,得到木糖醇溶解混合液,木糖醇溶解混合液依次经过第二蒸发器的浓缩处理、第二结晶釜的结晶处理、第二离心机的离心处理、热风干燥罐的热风干燥处理以及冷风流化床的冷风干燥处理,得到高品质的木糖醇晶体产品,第二离心机的分离处理得到的第二离心母液通过管路回套到木糖醇溶解罐中与木糖醇粗晶体溶解液混合后再利用;该步骤中,高品质木糖醇晶体产品的纯度>99.8%、pH>6.0。
  3. 如权利要求2所述的制备高品质木糖醇晶体的方法,其特征在于,在步骤一中,木糖醇浓缩液温度为90~100℃。
  4. 如权利要求2所述的制备高品质木糖醇晶体的方法,其特征在于,在步骤二中,降温结晶过程,添加木糖醇晶种,木糖醇晶种的添加比例为0.001~0.002%,木糖醇晶种的目数为60~120目,木糖醇晶种加入时体系温度为64~66℃。
  5. 如权利要求1所述的制备高品质木糖醇晶体的方法,其特征在于,在步骤三中,第二结晶釜的结晶过程,添加木糖醇晶种,木糖醇晶种的添加比例为0.001~0.002%,木糖醇晶种 的目数为60~120目,木糖醇晶种加入时体系温度为64~66℃。
PCT/CN2023/096366 2022-12-09 2023-05-25 一种制备高品质木糖醇晶体的系统及其方法 WO2024119733A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211583786.5 2022-12-09
CN202211583786.5A CN115888165A (zh) 2022-12-09 2022-12-09 一种制备高品质木糖醇晶体的系统及其方法

Publications (1)

Publication Number Publication Date
WO2024119733A1 true WO2024119733A1 (zh) 2024-06-13

Family

ID=86494669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096366 WO2024119733A1 (zh) 2022-12-09 2023-05-25 一种制备高品质木糖醇晶体的系统及其方法

Country Status (2)

Country Link
CN (1) CN115888165A (zh)
WO (1) WO2024119733A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888165A (zh) * 2022-12-09 2023-04-04 浙江华康药业股份有限公司 一种制备高品质木糖醇晶体的系统及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066711A (en) * 1976-03-15 1978-01-03 Suomen Sokeri Osakeyhtio (Finnish Sugar Company) Method for recovering xylitol
CN109438184A (zh) 2018-12-14 2019-03-08 浙江华康药业股份有限公司 一种提高并稳定晶体木糖醇pH的方法
CN110894180A (zh) 2019-12-12 2020-03-20 浙江华康药业股份有限公司 一种使用强碱树脂生产高pH晶体木糖醇的方法
CN111777493A (zh) * 2020-08-29 2020-10-16 浙江华康药业股份有限公司 一种木糖醇母液利用系统及方法
CN112442556A (zh) * 2020-12-07 2021-03-05 浙江华康药业股份有限公司 一种降低木糖醇晶体中还原糖的方法
CN112661796A (zh) 2020-12-29 2021-04-16 浙江华康药业股份有限公司 一种提升晶体木糖醇pH和稳定性的方法
CN115888165A (zh) * 2022-12-09 2023-04-04 浙江华康药业股份有限公司 一种制备高品质木糖醇晶体的系统及其方法
CN218910201U (zh) * 2022-12-09 2023-04-25 浙江华康药业股份有限公司 一种制备高品质木糖醇晶体的系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066711A (en) * 1976-03-15 1978-01-03 Suomen Sokeri Osakeyhtio (Finnish Sugar Company) Method for recovering xylitol
CN109438184A (zh) 2018-12-14 2019-03-08 浙江华康药业股份有限公司 一种提高并稳定晶体木糖醇pH的方法
CN110894180A (zh) 2019-12-12 2020-03-20 浙江华康药业股份有限公司 一种使用强碱树脂生产高pH晶体木糖醇的方法
CN111777493A (zh) * 2020-08-29 2020-10-16 浙江华康药业股份有限公司 一种木糖醇母液利用系统及方法
CN112442556A (zh) * 2020-12-07 2021-03-05 浙江华康药业股份有限公司 一种降低木糖醇晶体中还原糖的方法
CN112661796A (zh) 2020-12-29 2021-04-16 浙江华康药业股份有限公司 一种提升晶体木糖醇pH和稳定性的方法
CN115888165A (zh) * 2022-12-09 2023-04-04 浙江华康药业股份有限公司 一种制备高品质木糖醇晶体的系统及其方法
CN218910201U (zh) * 2022-12-09 2023-04-25 浙江华康药业股份有限公司 一种制备高品质木糖醇晶体的系统

Also Published As

Publication number Publication date
CN115888165A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
EP0820527B1 (en) Method for recovery of xylose from solutions
KR100531965B1 (ko) 용액으로부터 유기화합물의 회수 방법
WO2024119733A1 (zh) 一种制备高品质木糖醇晶体的系统及其方法
CN108618089B (zh) 复配甜味剂及其制备方法
JP7447104B2 (ja) 結晶性2’-フコシルラクトースを得る方法
EP2885434B1 (en) Process for refining impure crystallised sucrose
WO2024124812A1 (zh) 一种高纯度阿拉伯糖晶体的制备方法
JP4423383B2 (ja) 結晶化方法
CN218910201U (zh) 一种制备高品质木糖醇晶体的系统
CN113248551B (zh) 一种利用木糖母液色谱提取液制备精制木糖的系统及方法
CN114213215A (zh) 一种利用木糖母液联产木糖醇和焦糖色素的系统和方法
WO2024119731A1 (zh) 一种木糖醇晶体的制备系统及制备方法
CN110835657A (zh) 一种低寡糖食用葡萄糖生产工艺
CN110621685B (zh) 用于使2’-岩藻糖基乳糖结晶的方法和相关组合物
FI89380B (fi) Foerfarande foer framstaellning av xylos
WO2024139030A1 (zh) 一种赤藓糖醇与高倍甜味剂复配结晶的制备系统及其方法
CN113912475A (zh) 一种赤藓糖醇晶体的制备方法
CN114149304B (zh) 一种多级木糖醇母液的结晶系统及其方法
CN115804966A (zh) 一种赤藓糖醇与高倍甜味剂复配结晶的制备系统及其方法
WO2024014657A1 (ko) D-알룰로스 결정 제조방법
US2116665A (en) Process of recovery of polyhydric alcohols
CN216614473U (zh) 一种利用木糖母液联产木糖醇和焦糖色素的系统
JP2000232900A (ja) 無水結晶ぶどう糖の製造方法
CN114133317A (zh) 一种赤藓糖醇的提取方法
CN113979839A (zh) 一种提升木糖醇母液利用率的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023892744

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023892744

Country of ref document: EP

Effective date: 20240527