WO2024116399A1 - レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム - Google Patents

レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム Download PDF

Info

Publication number
WO2024116399A1
WO2024116399A1 PCT/JP2022/044505 JP2022044505W WO2024116399A1 WO 2024116399 A1 WO2024116399 A1 WO 2024116399A1 JP 2022044505 W JP2022044505 W JP 2022044505W WO 2024116399 A1 WO2024116399 A1 WO 2024116399A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
waveform
excitation coil
signal
sin
Prior art date
Application number
PCT/JP2022/044505
Other languages
English (en)
French (fr)
Inventor
康平 濱崎
Original Assignee
マブチモーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マブチモーター株式会社 filed Critical マブチモーター株式会社
Priority to PCT/JP2022/044505 priority Critical patent/WO2024116399A1/ja
Priority to JP2024501739A priority patent/JP7490906B1/ja
Publication of WO2024116399A1 publication Critical patent/WO2024116399A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature

Definitions

  • the present invention relates to a resolver/digital conversion circuit, a resolver signal processing device, a resolver signal processing method, and a program.
  • Patent document 1 describes a resolver signal processing device that processes signals from a resolver having an excitation coil with first and second coils that are 90° out of phase with each other, and a one-phase detection coil, and in paragraph 0023 it describes that a pulse generating circuit outputs a pulsed excitation signal that is a sine wave signal that has been pulse-width modulated (PWM) and applied to the excitation coil.
  • PWM pulse-width modulated
  • Patent Document 2 Figures 1, 28 to 35, etc., describe an excitation circuit that outputs an excitation signal to the excitation coil of a resolver, and a resolver/digital converter to which the signal output from the SIN detection coil of the resolver and the signal output from the COS detection coil of the resolver are input, and paragraph 0055 describes that a ⁇ type A/D converter is applied to a waveform generation circuit that generates an excitation waveform for the excitation coil. Furthermore, paragraph 0086 of Patent Document 2 describes that a ⁇ type waveform generation circuit is applied to a resolver/digital converter to which the signal output from the detection coil is input.
  • the present invention aims to provide a resolver/digital conversion circuit, a resolver signal processing device, a resolver signal processing method, and a program that can reduce distortion of the excitation waveform that excites the excitation coil, reduce errors in the rotation angle detected by the resolver sensor, and reduce the cost of the circuit configuration.
  • One aspect of the present invention is a resolver/digital conversion circuit that processes signals of a resolver sensor having a SIN excitation coil, a COS excitation coil, and a detection coil, comprising a control device that generates an excitation signal for the SIN excitation coil and an excitation signal for the COS excitation coil, an excitation waveform generation unit that generates an excitation waveform for the SIN excitation coil from the excitation signal for the SIN excitation coil generated by the control device, and generates an excitation waveform for the COS excitation coil from the excitation signal for the COS excitation coil generated by the control device, and a detection signal output from the detection coil.
  • the control device is a resolver/digital conversion circuit that includes a waveform generation unit that generates a PDM (pulse density modulation) waveform corresponding to the excitation signal for the SIN excitation coil and a PDM waveform corresponding to the excitation signal for the COS excitation coil by performing ⁇ modulation, a first waveform memory that stores information for generating a PDM waveform corresponding to the excitation signal for the SIN excitation coil, and a second waveform memory that stores information for generating a PDM waveform corresponding to the excitation signal for the COS excitation coil.
  • PDM pulse density modulation
  • the first waveform memory may store the modulated wave component and the carrier wave component as separate and independent information
  • the second waveform memory may store the modulated wave component and the carrier wave component as separate and independent information
  • the control device includes control logic that causes the waveform generation unit to execute a process for generating a PDM waveform, and the control logic may generate an excitation signal for the SIN excitation coil that corresponds to the PDM waveform stored in the first waveform memory, and generate an excitation signal for the COS excitation coil that corresponds to the PDM waveform stored in the second waveform memory.
  • the waveform generating unit includes a memory unit that stores an amplitude-modulated wave, an amplifier that amplifies the amplitude-modulated wave stored in the memory unit, and a ⁇ modulation unit that performs ⁇ modulation on the amplitude-modulated wave amplified by the amplifier, and the amplifier may amplify the amplitude-modulated wave in response to an amplitude value instruction from the control logic.
  • the waveform generation unit generates a PDM waveform corresponding to the excitation signal for the SIN excitation coil and a PDM waveform corresponding to the excitation signal for the COS excitation coil separately, and the control logic may generate the excitation signal for the SIN excitation coil and the excitation signal for the COS excitation coil at a timing different from the timing at which the waveform generation unit generates the PDM waveform corresponding to the excitation signal for the SIN excitation coil or the PDM waveform corresponding to the excitation signal for the COS excitation coil.
  • control device may include a communication unit that receives, from outside the control device, an instruction on the amplitude value that is transmitted from the control logic to the amplifier.
  • the ⁇ modulation section may be configured by a ⁇ modulator.
  • the resolver sensor includes another SIN excitation coil, another COS excitation coil, and another detection coil
  • the control device generates an excitation signal for the other SIN excitation coil and an excitation signal for the other COS excitation coil
  • the resolver/digital conversion circuit includes an excitation waveform generating unit that generates an excitation waveform for the other SIN excitation coil from the excitation signal for the other SIN excitation coil generated by the control device, and generates an excitation waveform for the other COS excitation coil from the excitation signal for the other COS excitation coil generated by the control device.
  • the waveform generation unit generates a PDM waveform corresponding to the excitation signal for the other SIN excitation coil and a PDM waveform corresponding to the excitation signal for the other COS excitation coil by performing ⁇ modulation
  • the control device may include a third waveform memory that stores information for generating a PDM waveform corresponding to the excitation signal for the other SIN excitation coil, and a fourth waveform memory that stores information for generating a PDM waveform corresponding to the excitation signal for the other COS excitation coil.
  • control logic that causes the waveform generating unit to execute a process for generating a PDM waveform may generate an excitation signal for the other SIN excitation coil that corresponds to the PDM waveform stored in the third waveform memory, and may also generate an excitation signal for the other COS excitation coil that corresponds to the PDM waveform stored in the fourth waveform memory.
  • the waveform generation unit generates a PDM waveform corresponding to the excitation signal for the SIN excitation coil, generates a PDM waveform corresponding to the excitation signal for the COS excitation coil, generates a PDM waveform corresponding to the excitation signal for the other SIN excitation coil, and generates a PDM waveform corresponding to the excitation signal for the other COS excitation coil
  • the control logic may generate the excitation signal for the SIN excitation coil, the excitation signal for the COS excitation coil, the excitation signal for the other SIN excitation coil, and the excitation signal for the other COS excitation coil at a timing different from the timing at which the waveform generation unit generates the PDM waveform corresponding to the excitation signal for the SIN excitation coil, the PDM waveform corresponding to the excitation signal for the COS excitation coil, the PDM waveform corresponding to the excitation signal for the other SIN excitation coil, or the PDM
  • One aspect of the present invention is a resolver signal processing device that includes a resolver/digital conversion circuit and the resolver sensor that includes the SIN excitation coil, the COS excitation coil, and the detection coil.
  • One aspect of the present invention is a resolver signal processing device that includes a resolver/digital conversion circuit and the resolver sensor that includes the SIN excitation coil, the COS excitation coil, the detection coil, the other SIN excitation coil, the other COS excitation coil, and the other detection coil.
  • One aspect of the present invention is a resolver signal processing method in which a control device provided in a resolver/digital conversion circuit that processes signals of a resolver sensor having a SIN excitation coil, a COS excitation coil, and a detection coil includes an excitation signal generation step of generating an excitation signal for the SIN excitation coil and an excitation signal for the COS excitation coil, and the resolver/digital conversion circuit includes an excitation waveform generation unit that generates an excitation waveform for the SIN excitation coil from the excitation signal for the SIN excitation coil generated by the control device, and an excitation waveform generation unit that generates an excitation waveform for the COS excitation coil from the excitation signal for the COS excitation coil generated by the control device, and an excitation waveform generation unit that generates an excitation waveform for the COS excitation coil from the excitation signal for the COS excitation coil generated by the control device based on a detection signal output from the detection coil.
  • the resolver signal processing method further includes a detection unit that generates a signal indicating the rotation angle of the resolver sensor, a waveform generation step in which the control device generates a PDM waveform corresponding to the excitation signal for the SIN excitation coil and a PDM waveform corresponding to the excitation signal for the COS excitation coil by performing ⁇ modulation, a first waveform storage step in which the control device stores information for generating a PDM waveform corresponding to the excitation signal for the SIN excitation coil generated in the waveform generation step, and a second waveform storage step in which the control device stores information for generating a PDM waveform corresponding to the excitation signal for the COS excitation coil generated in the waveform generation step.
  • One aspect of the present invention is a program for causing a computer constituting a control device provided in a resolver/digital conversion circuit that performs signal processing of a resolver sensor having a SIN excitation coil, a COS excitation coil, and a detection coil to execute an excitation signal generation step of generating an excitation signal for the SIN excitation coil and an excitation signal for the COS excitation coil, the resolver/digital conversion circuit comprising an excitation waveform generation unit that generates an excitation waveform for the SIN excitation coil from the excitation signal for the SIN excitation coil generated by the control device, and an excitation waveform generation unit that generates an excitation waveform for the COS excitation coil from the excitation signal for the COS excitation coil generated by the control device;
  • the program further includes a detection unit that generates a signal indicating the rotation angle of the resolver sensor based on the detection signal output from the output coil, a waveform generation step that generates a PDM waveform corresponding to the excitation signal for the
  • the present invention provides a resolver/digital conversion circuit, resolver signal processing device, resolver signal processing method, and program that can reduce distortion of the excitation waveform that excites the excitation coil, reduce errors in the rotation angle detected by the resolver sensor, and reduce the cost of the circuit configuration.
  • FIG. 1 is a diagram illustrating an example of a resolver signal processing device 1 according to a first embodiment.
  • FIG. 2 is a diagram illustrating an example of a configuration of a control device 11G of a resolver signal processing device 1 according to the first embodiment.
  • FIG. 5 is a diagram for explaining a Sin table for generating a PDM waveform according to the first embodiment;
  • FIG. 5 is a diagram for explaining details of a Sin table for generating a PDM waveform according to the first embodiment.
  • FIG. 4A to 4C are diagrams for explaining generation of a PDM waveform according to the first embodiment;
  • 2A to 2C are diagrams illustrating specific examples of a band-pass filter 11A1 of an excitation waveform generating unit 11A of the resolver signal processing device 1 of the first embodiment.
  • FIG. 4 is a flowchart for explaining an example of processing executed by a control device 11G of the resolver signal processing device 1 of the first embodiment.
  • 1 is a diagram comparing the relationship (spectrum) between frequency and signal strength between a resolver signal processing device of a first comparative example using a PWM waveform and the resolver signal processing device 1 of the first embodiment using a PDM waveform.
  • FIG. 13A and 13B are diagrams comparing the presence or absence of distortion in the envelope when a waveform of 250 kHz ⁇ 16 kHz is digitally modulated between a resolver signal processing device of a first comparative example in which a PWM waveform is used and the resolver signal processing device 1 of the first embodiment in which a PDM waveform is used.
  • FIG. 10A and 10B are diagrams for explaining a problem of a resolver signal processing device of a first comparative example in which a PWM waveform is used to generate an excitation waveform.
  • 1A to 1C are diagrams for explaining the effects of the resolver signal processing device 1 according to the first embodiment in which a PDM waveform is used to generate an excitation waveform.
  • FIG. 11 is a diagram illustrating an example of a resolver signal processing device 1 according to a second embodiment.
  • 10 is a flowchart for explaining an example of processing executed by a control device 11G of a resolver signal processing device 1 according to a second embodiment.
  • FIG. 1 is a diagram showing an example of a resolver signal processing device 1 according to a first embodiment.
  • a resolver signal processing device 1 includes a resolver/digital conversion circuit (RDC circuit) 11, a resolver sensor 1A, and an external communication unit 1B.
  • the resolver sensor 1A is a sheet coil type resolver with an axial angle multiplication factor of nX, as described in, for example, International Publication WO2022/124413.
  • the resolver sensor 1A includes a 1X SIN excitation coil 12, a 1X COS excitation coil 13, and a 1X detection coil 14.
  • the resolver sensor 1A also includes an nX SIN excitation coil 15, an nX COS excitation coil 16, and an nX detection coil 17.
  • the 1X detection coils 12-14 and the nX detection coils 15-17 detect the rotational position of the same shaft and are arranged coaxially.
  • the resolver/digital conversion circuit 11 processes signals input to and output from the resolver sensor 1 A.
  • the external communication unit 1B is a user interface or the like with other devices (e.g., a motor control device, etc.) connected to the resolver signal processing device 1.
  • the resolver signal processing device 1 includes the external communication unit 1B, but in other examples, the resolver signal processing device 1 does not need to include the external communication unit 1B. In other words, a function corresponding to the external communication unit 1B may be provided separately from the resolver signal processing device 1.
  • the resolver/digital conversion circuit 11 includes an excitation waveform generating unit 11A, amplifiers 11B1 and 11B2, a detection unit 11C, an excitation waveform generating unit 11D, amplifiers 11E1 and 11E2, a detection unit 11F, and a control device 11G.
  • the control device 11G is configured by an FPGA (Field Programmable Gate Array), but in other examples, the control device 11G may be configured by components other than an FPGA (e.g., a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an LSI (Large Scale Integration) such as an ASIC (Application Specific Integrated Circuit)).
  • FPGA Field Programmable Gate Array
  • the control device 11G may be configured by components other than an FPGA (e.g., a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an LSI (Large Scale Integration) such as an ASIC (Application Specific Integrated Circuit)).
  • the control device 11G generates an excitation signal Sin_1X (see FIG. 3) for the SIN excitation coil 12 and an excitation signal Cos_1X (see FIG. 3) for the COS excitation coil 13.
  • the excitation signal Sin_1X and the excitation signal Cos_1X are digital signals for generating analog signals to be output to the SIN excitation coil 12 and the COS excitation coil 13, respectively.
  • the excitation waveform generating unit 11A generates an analog signal by smoothing the digital signal output from the control device 11G.
  • the excitation waveform generating unit 11A includes a bandpass filter 11A1 and a bandpass filter 11A2.
  • the bandpass filter 11A1 generates an excitation waveform Sin for the SIN excitation coil 12 from an excitation signal Sin_1X for the SIN excitation coil 12 generated by the control device 11G.
  • the bandpass filter 11A2 generates an excitation waveform Cos for the COS excitation coil 13 from an excitation signal Cos_1X for the COS excitation coil 13 generated by the control device 11G.
  • the amplifier 11B1 amplifies the excitation waveform Sin for the SIN excitation coil 12 generated by the bandpass filter 11A1 and supplies the amplified waveform to the SIN excitation coil 12.
  • the amplifier 11B2 amplifies the excitation waveform Cos for the COS excitation coil 13 generated by the bandpass filter 11A2 and supplies the amplified waveform to the COS excitation coil 13.
  • the detection unit 11C includes a detection circuit 11C1 and a phase detection unit 11C2.
  • the detection circuit 11C1 demodulates the detection signal (modulated wave) output from the detection coil 14. As a specific demodulation method, a synchronous detection method may be used.
  • the detection circuit 11C1 performs a process of extracting a signal indicating the rotation angle of the resolver sensor 1A from the modulated wave output from the detection coil 14 by performing synchronous detection.
  • the phase detection unit 11C2 detects a rotation phase indicating the rotation angle of the resolver sensor 1A from the signal extracted by the detection circuit 11C1. That is, the detection unit 11C generates a signal indicating the rotation angle of the resolver sensor 1A based on the detection signal output from the detection coil 14.
  • resolver/digital conversion circuit 11 has a circuit for nX similar to the circuit for 1X described above.
  • the figure shows a case in which the circuit for nX includes excitation waveform generation unit 11D, amplifier 11E1, amplifier 11E2, and detection unit 11F. Note that the configurations of excitation waveform generation unit 11D, amplifier 11E1, amplifier 11E2, and detection unit 11F are similar to those of excitation waveform generation unit 11A, amplifier 11B1, amplifier 11B2, and detection unit 11C, and therefore will not be described.
  • FIG. 2 is a diagram showing an example of the configuration of a control device 11G of the resolver signal processing device 1 of the first embodiment.
  • control device 11G includes phase measurement units 11G1 and 11G2, a PLL (phase locked loop) 11G3, a control unit 11G4, and waveform memories 11G451, 11G452, 11G453, and 11G454.
  • the phase measurement unit 11G1 measures the rotation angle of the resolver sensor 1A based on a signal output from the phase detection unit 11C2 of the detection unit 11C.
  • the phase measurement unit 11G2 measures the rotation angle of the resolver sensor 1A based on a signal output from the phase detection unit 11F2 of the detection unit 11F.
  • the PLL 11G3 outputs a clock to the phase measurement unit 11G1, the control unit 11G4, and the waveform memories 11G451, 11G452, 11G453, and 11G454.
  • PLL 11G3 outputs a 200 MHz clock to phase measurement unit 11G1, outputs a 20 MHz clock to control unit 11G4, and outputs a 100 MHz clock to waveform memories 11G451, 11G452, 11G453, and 11G454.
  • the frequencies of the clocks output from PLL 11G3 to phase measurement unit 11G1, control unit 11G4, and waveform memories 11G451, 11G452, 11G453, and 11G454 may be different from those in the example shown in FIG.
  • the control unit 11G4 includes a control logic 11G41, a waveform generating unit 11G42, a statistical processing unit 11G43, and an SPI (Serial Peripheral Interface) communication unit 11G44.
  • the control logic 11G41 causes the waveform generating unit 11G42 to execute a process of generating a PDM waveform.
  • the waveform generating unit 11G42 performs ⁇ modulation to generate a PDM waveform corresponding to an excitation signal Sin_1X (see Fig. 3) for the SIN excitation coil 12, a PDM waveform corresponding to an excitation signal Cos_1X (see Fig.
  • the statistical processing unit 11G43 performs statistical processing of the rotation angle of the resolver sensor 1A measured by the phase measurement unit 11G2 (e.g., performs processing to quantify a plurality of values).
  • the SPI communication unit 11G44 is, for example, a communication port, and communicates with the external communication unit 1B.
  • the communication method is not limited to SPI communication, and serial communication such as RS485 or I2C, or other communication methods may be used.
  • the SPI communication unit may be simply referred to as a communication unit.
  • the waveform memory 11G451 stores information for generating a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12.
  • the waveform memory 11G451 may store a modulated wave component and a carrier wave component as separate and independent information.
  • the waveform memory 11G452 stores information for generating a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13.
  • the waveform memory 11G452 may store information including a modulated wave component and a carrier wave component as separate and independent information.
  • the waveform memory 11G453 stores information for generating a PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil 15.
  • the waveform memory 11G453 may store information including a modulated wave component and a carrier wave component as separate and independent information.
  • the waveform memory 11G454 stores information for generating a PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16.
  • the waveform memory 11G454 may store information including the modulated wave component and the carrier wave component as separate and independent information.
  • the control logic 11G41 causes the waveform generating unit 11G42 to execute a process of generating a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12.
  • the waveform memory 11G451 stores information for generating a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 generated by the waveform generating unit 11G42.
  • the control logic 11G41 generates an excitation signal Sin_1X for the SIN excitation coil 12 that corresponds to information for generating a PDM waveform stored in the waveform memory 11G451.
  • the control logic 11G41 causes the waveform generating unit 11G42 to execute a process of generating a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13.
  • the waveform memory 11G452 stores information for generating a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13 generated by the waveform generating unit 11G42. Furthermore, the control logic 11G41 generates an excitation signal Cos_1X for the COS excitation coil 13 that corresponds to the information for generating a PDM waveform stored in the waveform memory 11G452.
  • the excitation signal Sin_nX for the SIN excitation coil 15 is generated in the same manner as the excitation signal Sin_1X for the SIN excitation coil 12, and the excitation signal Cos_nX for the COS excitation coil 16 is generated in the same manner as the excitation signal Cos_1X for the COS excitation coil 13, so a description of the excitation signal Sin_nX and the excitation signal Cos_nX will be omitted.
  • FIG. 3 is a diagram showing an example of the relationship between the control logic 11G41, waveform generating unit 11G42, SPI communication unit 11G44, and waveform memories 11G451, 11G452, 11G453, and 11G454 of the control device 11G of the resolver signal processing device 1 of the first embodiment.
  • the waveform generating section 11G42 includes a memory section 11G421, an amplifier 11G422, and a ⁇ modulation section 11G423.
  • the memory unit 11G421 stores an amplitude modulated wave (see FIG. 3).
  • the memory unit 11G421 may store information for generating an amplitude modulated wave, the information including a modulated wave component and a carrier wave component as separate and independent information.
  • the memory unit 11G421 may be included in the waveform memory 11G451.
  • the amplifier 11G422 amplifies the amplitude modulated wave stored in the memory unit 11G421. That is, the amplifier 11G422 amplifies the amplitude modulated wave shown on the left side of the amplifier 11G422 in FIG. 3 to generate the amplitude modulated wave shown on the right side of the amplifier 11G422 in FIG. 3.
  • the amplifier 11G422 amplifies the amplitude modulated wave in response to an amplitude value instruction from the control logic 11G41. More specifically, the control logic 11G41 causes the amplifier 11G422 to execute a process of amplifying the amplitude modulated wave in response to an instruction from the SPI communication unit 11G44.
  • the SPI communication unit 11G44 receives the amplitude value instruction from the external communication unit 1B outside the control device 11G.
  • the ⁇ modulation section 11G423 performs ⁇ modulation on the amplitude modulated wave amplified by the amplifier 11G422.
  • the information for generating the amplitude modulated wave stored in the memory unit 11G421 may be, for example, a sine wave table.
  • the waveform generation unit 11G42 generates a modulated waveform by performing multiplication using one table data. That is, in the example shown in FIG. 3, a modulated wave is generated from a sine wave table as the amplitude modulated wave stored in the memory unit 11G421, and the number of electronic components is reduced. Details of the generation of the modulated wave will be described later.
  • the waveform generation unit 11G42 uses an analog waveform as the original waveform and performs amplitude adjustment by the amplifier 11G422. Furthermore, the maximum value of the intermediate calculation value of the ⁇ modulation is limited to 10 bits.
  • the waveform generation unit 11G42 individually generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12, generates a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13, generates a PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil 15, and generates a PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16.
  • the control logic 11G41 generates the excitation signal Sin_1X for the SIN excitation coil 12, the excitation signal Cos_1X for the COS excitation coil 13, the excitation signal Sin_nX for the SIN excitation coil 15, and the excitation signal Cos_nX for the COS excitation coil 16 at timing different from the timing at which the waveform generation unit 11G42 generates the PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12, the PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13, the PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil 15, or the PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16, and outputs them from the control device 11G.
  • a waveform generation unit R42 that generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12
  • a waveform generation unit R42-2 that generates a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13
  • a waveform generation unit R42-3 that generates a PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil 15
  • a waveform generation unit R42-4 that generates a PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16, as in the first modified example shown in FIG. 4 described later.
  • waveform memory 11G451 stores information for generating a PDM waveform corresponding to excitation signal Sin_1X for SIN excitation coil 12 generated by waveform generation unit 11G42
  • waveform memory 11G452 stores information for generating a PDM waveform corresponding to excitation signal Cos_1X for COS excitation coil 13 generated by waveform generation unit 11G42
  • waveform memory 11G453 stores information for generating a PDM waveform corresponding to excitation signal Sin_nX for SIN excitation coil 15 generated by waveform generation unit 11G42
  • waveform memory 11G454 stores a PDM waveform corresponding to excitation signal Cos_nX for COS excitation coil 16 generated by waveform generation unit 11G42.
  • the control logic 11G41 may read out information for generating a PDM waveform stored in the waveform memory 11G451 in order to generate the excitation signal Sin_1X for the SIN excitation coil 12.
  • the information for generating a PDM waveform is, specifically, information including a modulated wave component and a carrier wave component. Therefore, according to this embodiment, a PDM waveform can be easily obtained based on the modulated wave component and the carrier wave component.
  • the control logic 11G41 may read out information for generating a PDM waveform stored in the waveform memory 11G452 in order to generate the excitation signal Cos_1X for the COS excitation coil 13.
  • the information for generating a PDM waveform is, specifically, information including a modulated wave component and a carrier wave component.
  • a PDM waveform can be easily obtained based on the modulated wave component and the carrier wave component.
  • the control logic 11G41 may read out information for generating a PDM waveform stored in the waveform memory 11G453 in order to generate the excitation signal Sin_nX for the SIN excitation coil 15.
  • the information for generating a PDM waveform is, specifically, information including a modulated wave component and a carrier wave component. Therefore, according to this embodiment, a PDM waveform can be easily obtained based on the modulated wave component and the carrier wave component.
  • the control logic 11G41 only needs to read out the information for generating a PDM waveform stored in the waveform memory 11G454.
  • the information for generating a PDM waveform is, specifically, information including a modulated wave component and a carrier wave component. Therefore, according to this embodiment, a PDM waveform can be easily obtained based on the modulated wave component and the carrier wave component. Therefore, in the example shown in FIG. 3, the maximum operating frequency of the control device 11G is not limited by the signal processing for waveform generation, and the control device 11G can operate up to the operating limit of the built-in memory unit.
  • the waveform generating unit 11G42 may be operated at a low speed, so as described above, the amplitude value of the amplitude modulated wave can be set as a variable and the amplitude value of the amplitude modulated wave can be changed by communication from outside.
  • FIG. 4 is a diagram showing the configuration of waveform generating sections R42, R42-2, R42-3, and R42-4 of the first modified example.
  • a waveform generation unit R42 that generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12
  • a waveform generation unit R42-2 that generates a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13
  • a waveform generation unit R42-3 that generates a PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil
  • a waveform generation unit R42-4 that generates a PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16 are provided separately (in parallel).
  • Each of the waveform generating units R42, R42-2, R42-3, and R42-4 includes a memory unit R42A, a digital filter R42B, an amplifier R42C, and a ⁇ modulation unit R42D.
  • the memory unit R42A stores a PDM waveform (PDM data).
  • the digital filter R42B converts the PDM waveform (PDM data) output from the memory unit R42A into an amplitude modulated wave (analog waveform).
  • the amplifier R42C amplifies the amplitude modulated wave (analog waveform) generated by the digital filter R42B.
  • the ⁇ modulation unit R42D performs ⁇ modulation on the amplitude modulated wave amplified by the amplifier R42C.
  • the waveform is held as PDM data (stored in memory unit R42A)
  • the PDM data is temporarily converted back to an analog waveform by digital filter R42B, and a new PDM waveform is generated by delta-sigma modulation unit R42D.
  • each of the waveform generation units R42, R42-2, R42-3, and R42-4 shown in FIG. 4 must be equipped with a digital filter R42B, resulting in a more redundant configuration than the waveform generation unit 11G42 shown in FIG. 3.
  • the maximum value of the ⁇ modulation processing by the ⁇ modulation unit R42D is large, and 17 bits (17 signals) are required, so the maximum operating frequency of the control device (FPGA) is low.
  • the control device FPGA
  • the amplitude value must be written as a fixed value due to the problem of the maximum operating frequency mentioned above, and if the amplitude value needs to be changed, the software of the control device (FPGA) must be rewritten.
  • the problem of the first modified example shown in FIG. 4 can be solved by adopting the configuration shown in FIG. 3, for example.
  • FIG. 5 is a diagram showing an example of the configuration of a ⁇ modulation unit 11G423 of a waveform generating unit 11G42 of a control device 11G of the resolver signal processing device 1 of the first embodiment.
  • the ⁇ modulation unit 11G423 includes an adder unit 423A, an amplifier 423B, an adder unit 423C, a Z conversion unit 423D, a feedback unit 423E, an adder unit 423F, an amplifier 423G, an adder unit 423H, a Z conversion unit 423I, a feedback unit 423J, a comparator 423K, a feedback unit 423L, an amplifier 423M, and an amplifier 423N.
  • the adder 423A receives an amplitude modulated wave (analog signal) amplified by the amplifier 11G422 (see FIG. 3) and the like.
  • the amplifier 423B receives an output signal from the adder 423A.
  • the amplifier 423B amplifies the signal input from the adder 423A.
  • the adder 423C receives the output signal from the amplifier 423B and the signal fed back by the feedback unit 423E.
  • the adder 423C adds the output signal from the amplifier 423B and the signal fed back by the feedback unit 423E, and outputs the result.
  • the output signal from the adder 423C is input to the Z conversion unit 423D.
  • the Z conversion unit 423D performs Z conversion on the signal input from the adder 423C.
  • the output signal from the Z conversion unit 423D is input to a feedback unit 423E and an adder 423F.
  • the feedback section 423E feeds back the output signal from the Z conversion section 423D to
  • the output signal from the Z conversion unit 423D and the like are input to the addition unit 423F.
  • the output signal from the addition unit 423F is input to the amplifier 423G.
  • the amplifier 423G amplifies the signal input from the addition unit 423F.
  • the adder 423H receives the output signal from the amplifier 423G and the signal fed back by the feedback unit 423J.
  • the adder 423H adds the output signal from the amplifier 423G and the signal fed back by the feedback unit 423J, and outputs the result.
  • the output signal from the adder 423H is input to the Z converter 423I.
  • the Z converter 423I performs Z conversion on the signal input from the adder 423H.
  • the output signal from the Z converter 423I is input to a feedback unit 423J and a comparator 423K.
  • the feedback section 423J feeds back the output signal from the Z conversion section 423I to the addition section 423H.
  • the comparator 423K receives an output signal from the Z conversion unit 423I.
  • the comparator 423K outputs a PDM waveform corresponding to the excitation signal Sin_1X (see FIG. 3) for the SIN excitation coil 12 to the waveform memory 11G451.
  • the comparator 423K also outputs a PDM waveform corresponding to the excitation signal Cos_1X (see FIG. 3) for the COS excitation coil 13 to the waveform memory 11G452.
  • the comparator 423K also outputs a PDM waveform corresponding to the excitation signal Sin_nX (see FIG. 3) for the SIN excitation coil 15 to the waveform memory 11G453, and outputs a PDM waveform corresponding to the excitation signal Cos_nX (see FIG.
  • the feedback section 423L feeds back the output signal from the comparator 423K to the amplifier 423M and the amplifier 423N. That is, the output signal from the comparator 423K fed back by the feedback section 423L is input to the amplifier 423M. The output signal from the comparator 423K fed back by the feedback section 423L is also input to the amplifier 423N.
  • the amplifier 423M amplifies the output signal from the comparator 423K that is fed back by the feedback section 423L.
  • the output signal from the amplifier 423M is input to the adder 423A.
  • the adder 423A adds the output signal (amplitude modulated wave) from the amplifier 11G422 (see FIG. 3) and the output signal from the amplifier 423M.
  • the amplifier 423N amplifies the output signal from the comparator 423K that is fed back by the feedback section 423L.
  • the output signal from the amplifier 423N is input to the adder 423F.
  • the adder 423F adds the output signal from the Z conversion section 423D and the output signal from the amplifier 423N. That is, in the example shown in FIG. 5, the ⁇ modulation unit 11G423 is a second-order ⁇ modulator and is configured by a feedback type ⁇ modulator.
  • Digital operation and sampling frequency require a sufficiently high frequency band compared to the analog signal band. For example, about 100 times higher is required. When a carrier frequency of 250 kHz is used, signal processing at 25 MHz or higher is required. In the examples shown in FIGS. 2 and 5, a 100 MHz clock output by PLL11G3 is used.
  • sine wave data when generating a modulated waveform that is the basis of a PDM signal, sine wave data may be stored as a table.
  • the sine wave data stored as a table may be a single piece of table data, and the modulated waveform may be generated by performing multiplication based on the sine wave data.
  • FIG. 6 is a diagram for explaining a sine table for generating a PDM waveform according to the first embodiment.
  • a sine table one table data for generating a modulated waveform that is the source of a PDM signal
  • the left side of the figure shows a fundamental wave (sine ( ⁇ )) and a waveform (sine (32 ⁇ )) in which the frequency of the fundamental wave is 32 times greater (it can also be said that the wavelength is 1/32).
  • the illustrated example of a graph is an image, and the amplitude, frequency, etc. may differ from the actual waveform.
  • FIG. 7 is a diagram for explaining the details of the Sin table for generating the PDM waveform according to the first embodiment.
  • the details of the Sin table (one table data) for generating the modulated wave waveform that is the source of the PDM signal will be explained.
  • the Sin function has symmetry, the amount of stored data can be reduced to 1/4 by dividing the cases according to the value of the input ⁇ .
  • FIG. 7(A) shows an example of a Sin table that becomes a fundamental wave.
  • FIG. 7(B) shows an example of stored data.
  • the horizontal axis of the diagrams shown in FIG. 7(A) and FIG. 7(B) is the angle, and the vertical axis is the amplitude. As shown in FIG.
  • the data that is actually stored is a part of the fundamental wave (specifically, the section from 0 degrees to 90 degrees).
  • the amount of data can be reduced to one-fourth.
  • a single Sin function table can be used to generate a modulated wave by sequentially reading out the inputs ⁇ and 32 ⁇ and then multiplying them. In this case, one block of EBR is sufficient for the process. If two blocks are used, the memory area can be expanded, and a more precise modulated wave can be generated by setting the resolution to 2 ⁇ 13.
  • FIG. 8 is a diagram for explaining the generation of a PDM waveform according to the first embodiment.
  • Configuration R8 is an example of a specific aspect for performing the PDM waveform generation process as described with reference to FIG. 6.
  • Configuration R8 is composed of components R81 to R89.
  • Component R81 is an amplifier.
  • Component R81 amplifies ⁇ by 32 times and outputs the amplified result.
  • Component R82 is a selector. ⁇ and 32 ⁇ are input to component R82, and component R82, which is a selector, outputs either ⁇ or 32 ⁇ .
  • Component R83 receives the output result of component R82.
  • Component R83 outputs according to the angle of ⁇ or 32 ⁇ input.
  • Component R84 is a storage unit (e.g., a block memory).
  • Component R84 stores a part of the Sin table that is the fundamental wave (e.g., a quarter of one wavelength).
  • Component R84 outputs the stored data to component R85 or component R86.
  • the component R85 is an amplifier.
  • the component R85 which is an amplifier, multiplies the output value of the component R84 by -1 and outputs the result to the component R86.
  • the component R86 is a selector.
  • a part of the Sin table that is the fundamental wave (for example, a quarter of one wavelength) or data obtained by multiplying the part by -1 is input to the component R86.
  • the output of the component R86, which is a selector is controlled by the component R83.
  • the output of the component R86 is stored in the component R87 or the component R88.
  • the components R87 and R88 are registers for storing values.
  • the component R87 stores the waveform of Sin( ⁇ )
  • the component R88 stores the waveform of Sin(32 ⁇ ).
  • the component R89 receives the Sin( ⁇ ) stored in the component R87 and the Sin(32 ⁇ ) stored in the component R88.
  • Component R89 outputs Sin( ⁇ ) ⁇ Sin(32 ⁇ ), which is the result of multiplying the input Sin( ⁇ ) and Sin(32 ⁇ ).
  • FIG. 9A and 9B are diagrams showing a specific example of the bandpass filter 11A1 of the excitation waveform generating unit 11A of the resolver signal processing device 1 of the first embodiment, etc.
  • Fig. 9A shows a specific example of the bandpass filter 11A1 of the excitation waveform generating unit 11A of the resolver signal processing device 1 of the first embodiment
  • Fig. 9B shows a modified example of the excitation waveform generating unit 11A and the amplifier 11B1 of the resolver signal processing device 1 of the first embodiment.
  • the band-pass filter 11A1 of the excitation waveform generating unit 11A of the resolver signal processing device 1 of the first embodiment is configured by a ⁇ -type LC filter.
  • a FET field effect transistor
  • FIG. 10 is a flowchart for explaining an example of processing executed by the control device 11G of the resolver signal processing device 1 of the first embodiment.
  • the waveform generating unit 11G42 of the control device 11G generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 by performing ⁇ modulation.
  • the waveform memory 11G451 of the control device 11G stores the PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 generated in step S1A.
  • step S2A the waveform generating unit 11G42 of the control device 11G generates a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13 by performing ⁇ modulation.
  • step S2B the waveform memory 11G452 of the control device 11G stores a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13 generated in step S2A.
  • step S3A the waveform generating unit 11G42 of the control device 11G generates a PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil 15 by performing ⁇ modulation.
  • step S3B the waveform memory 11G453 of the control device 11G stores the PDM waveform corresponding to the excitation signal Sin_nX for the SIN excitation coil 15 generated in step S3A.
  • step S4A the waveform generating unit 11G42 of the control device 11G generates a PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16 by performing ⁇ modulation.
  • step S4B the waveform memory 11G454 of the control device 11G stores a PDM waveform corresponding to the excitation signal Cos_nX for the COS excitation coil 16 generated in step S4A.
  • step S5 the control logic 11G41 of the control device 11G generates an excitation signal Sin_1X for the SIN excitation coil 12, an excitation signal Cos_1X for the COS excitation coil 13, an excitation signal Sin_nX for the SIN excitation coil 15, and an excitation signal Cos_nX for the COS excitation coil 16, and outputs them from the control device 11G.
  • the present inventor performed an analysis to compare the distortion of the excitation waveform and the associated angle error of the resolver sensor 1A in the resolver signal processing device 1 of the first embodiment, in which a PDM waveform is used to generate excitation waveforms for the SIN excitation coil 12, the COS excitation coil 13, the SIN excitation coil 15, and the COS excitation coil 16, with the distortion of the excitation waveform and the associated angle error of the resolver sensor in the resolver signal processing device of the first comparative example, in which a PWM (pulse width modulation) waveform is used to generate the excitation waveform.
  • a PDM waveform is used to generate excitation waveforms for the SIN excitation coil 12, the COS excitation coil 13, the SIN excitation coil 15, and the COS excitation coil 16
  • a PWM (pulse width modulation) waveform is used to generate the excitation waveform.
  • the angle error of the resolver sensor was ⁇ 2.34°
  • the angle error of the resolver sensor 1A was ⁇ 0.12°, which was a reduction to 1/20.
  • FIG. 11 is a diagram comparing the relationship (spectrum) between frequency and signal strength in a resolver signal processing device of a first comparative example using a PWM waveform and the resolver signal processing device 1 of the first embodiment using a PDM waveform.
  • FIG. 11B is a diagram showing an enlarged view of the vicinity of the frequency of 1000 (kHz) on the horizontal axis of FIG. 11A.
  • the resolver signal processing device of the first comparative example in which a PWM waveform is used there are locations where the signal strength is higher than in the resolver signal processing device 1 of the first embodiment in which a PDM waveform is used.
  • FIGS. 12A and 12B are diagrams comparing the presence or absence of distortion occurring in the envelope when a waveform of 250 kHz ⁇ 16 kHz is digitally modulated between a resolver signal processing device of a first comparative example using a PWM waveform and the resolver signal processing device 1 of the first embodiment using a PDM waveform.
  • Fig. 12A shows a comparison of the presence or absence of distortion occurring in the envelope when a waveform of 250 kHz ⁇ 16 kHz is digitally modulated between a resolver signal processing device of a first comparative example using a PWM waveform and the resolver signal processing device 1 of the first embodiment using a PDM waveform
  • Fig. 12A shows a comparison of the presence or absence of distortion occurring in the envelope when a waveform of 250 kHz ⁇ 16 kHz is digitally modulated between a resolver signal processing device of a first comparative example using a PWM waveform and the resolver signal processing device 1 of the first embodiment using a PDM waveform
  • FIG. 12B shows a comparison of the zero cross times when there is distortion occurring in the envelope and when there is no distortion occurring in the envelope.
  • a waveform of 250 kHz ⁇ 16 kHz is digitally modulated in each of the resolver signal processing device of the first comparative example using a PWM waveform and the resolver signal processing device 1 of the first embodiment using a PDM waveform
  • harmonics of 250 kHz ⁇ 32 kHz and ⁇ 16 kHz ⁇ 2 are generated in the resolver signal processing device of the first comparative example using a PWM waveform, causing distortion in the envelope, whereas no distortion is generated in the resolver signal processing device 1 of the first embodiment using a PDM waveform.
  • a modulated wave type resolver such as the resolver sensor 1A of the resolver signal processing device 1 of the first embodiment
  • a composite signal of Sin/Cos signals is detected, and the rotation angle of the resolver is calculated from the zero cross time of the composite signal.
  • 12B when there is distortion in the envelope, the zero cross time of the composite signal changes, resulting in an error in the angle detected by the resolver.
  • the resolver signal processing device 1 of the first embodiment using the PDM waveform no distortion occurs in the envelope, and therefore the angle error of the resolver sensor 1A can be reduced.
  • FIG. 13 is a diagram for explaining a problem of the resolver signal processing device of the first comparative example in which a PWM waveform is used to generate an excitation waveform.
  • FIG. 13 shows a spectrum of the resolver signal processing device of the first comparative example in which a PWM waveform is used to generate an excitation waveform.
  • Fig. 14 is a diagram for explaining the effect of the resolver signal processing device 1 of the first embodiment in which a PDM waveform is used to generate an excitation waveform.
  • Fig. 11 shows a spectrum of the resolver signal processing device 1 of the first embodiment in which a PDM waveform is used to generate an excitation waveform.
  • waveform distortion and “spectral characteristics” in FIG. 14
  • the harmonics of the modulated wave component ⁇ 16 kHz ⁇ n ( ⁇ 16 kHz, ⁇ 48 kHz, ⁇ 80 kHz, ...) seen in the spectral characteristics of the resolver signal processing device of the first comparative example in which the PWM waveform shown in FIG.
  • the discretized noise is closer to the high frequency side, so in the resolver signal processing device 1 of the first embodiment using the PDM waveform, attenuation by the filter is more effective and the number of filter stages can be reduced.
  • the resolver signal processing device 1 of the first embodiment compared to the case where an excitation signal generated by pulse width modulation is applied, it is possible to reduce distortion of the excitation waveform that excites the excitation coils (SIN excitation coil 12 for 1X, COS excitation coil 13 for 1X, SIN excitation coil 15 for nX, and COS excitation coil 16 for nX), and it is possible to reduce an error in the rotation angle detected by the resolver sensor 1A.
  • the resolver signal processing device 1 of the first embodiment by adopting a circuit manufacturing method in which the PDM waveform generated by performing ⁇ modulation is stored in waveform memories 11G451, 11G452, 11G453, and 11G454, the cost of the circuit configuration can be reduced compared to when ⁇ modulation is applied to a "single-phase excitation two-phase output resolver.”
  • the resolver signal processing device 1 of the second embodiment is configured similarly to the resolver signal processing device 1 of the first embodiment, except for the points described below. Therefore, the resolver signal processing device 1 of the second embodiment can achieve the same effects as the resolver signal processing device 1 of the first embodiment, except for the points described below.
  • FIG. 15 is a diagram showing an example of a resolver signal processing device 1 according to the second embodiment.
  • a resolver signal processing device 1 includes a resolver/digital conversion circuit 11, a resolver sensor 1A, and an external communication unit 1B.
  • the resolver sensor 1A includes a SIN excitation coil 12 for 1X, a COS excitation coil 13 for 1X, a detection coil 14 for 1X, a SIN excitation coil 15 for nX, a COS excitation coil 16 for nX, and a detection coil 17 for nX.
  • FIG. 1 includes a SIN excitation coil 12 for 1X, a COS excitation coil 13 for 1X, a detection coil 14 for 1X, a SIN excitation coil 15 for nX, a COS excitation coil 16 for nX, and a detection coil 17 for nX.
  • the resolver sensor 1A includes a SIN excitation coil 12 for 1X, a COS excitation coil 13 for 1X, and a detection coil 14 for 1X, but does not include a SIN excitation coil 15 for nX (see FIG. 1), a COS excitation coil 16 for nX (see FIG. 1), or a detection coil 17 for nX (see FIG. 1).
  • the resolver/digital conversion circuit 11 includes an excitation waveform generating unit 11A, amplifiers 11B1 and 11B2, a detection unit 11C, an excitation waveform generating unit 11D, amplifiers 11E1 and 11E2, a detection unit 11F, and a control unit 11G.
  • the resolver/digital conversion circuit 11 includes an excitation waveform generating unit 11A, amplifiers 11B1 and 11B2, a detection unit 11C, and a control unit 11G, but does not include an excitation waveform generating unit 11D (see FIG. 1), amplifiers 11E1 and 11E2 (see FIG. 1), or a detection unit 11F (see FIG. 1).
  • the control device 11G is equipped with waveform memories 11G451, 11G452, 11G453, and 11G454, whereas in the resolver signal processing device 1 of the second embodiment, the control device 11G is equipped with waveform memories 11G451 and 11G452, and does not have waveform memories 11G453 and 11G454 (see Figures 2 and 3).
  • control device 11G is equipped with phase measurement units 11G1 and 11G2 and a statistical processing unit 11G43, but in the resolver signal processing device 1 of the second embodiment, the control device 11G is equipped with a phase measurement unit 11G1, and is not equipped with a phase measurement unit 11G2 (see Figure 2) or a statistical processing unit 11G43 (see Figure 2).
  • the waveform generating unit 11G42 performs ⁇ modulation to generate a PDM waveform corresponding to the excitation signal Sin_1X (see FIG. 3) for the SIN excitation coil 12 and a PDM waveform corresponding to the excitation signal Cos_1X (see FIG. 3) for the COS excitation coil 13.
  • the waveform generating unit 11G42 generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 and a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13, respectively.
  • the control logic 11G41 generates an excitation signal Sin_1X for the SIN excitation coil 12 and an excitation signal Cos_1X for the COS excitation coil 13 at a timing different from the timing at which the waveform generation unit 11G42 generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 or a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13, and outputs them from the control device 11G.
  • FIG. 13 is a flowchart for explaining an example of processing executed by the control device 11G of the resolver signal processing device 1 of the second embodiment.
  • the waveform generating unit 11G42 of the control device 11G generates a PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 by performing ⁇ modulation.
  • the waveform memory 11G451 of the control device 11G stores the PDM waveform corresponding to the excitation signal Sin_1X for the SIN excitation coil 12 generated in step S6A.
  • step S7A the waveform generating unit 11G42 of the control device 11G generates a PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13 by performing ⁇ modulation.
  • step S7B the waveform memory 11G452 of the control device 11G stores the PDM waveform corresponding to the excitation signal Cos_1X for the COS excitation coil 13 generated in step S7A.
  • step S8 the control logic 11G41 of the control device 11G generates an excitation signal Sin_1X for the SIN excitation coil 12 and an excitation signal Cos_1X for the COS excitation coil 13, and outputs them from the control device 11G.
  • each unit of the resolver signal processing device 1 in the above-mentioned embodiment may be realized by recording a program for realizing these functions in a computer-readable recording medium, reading the program recorded in the recording medium into a computer system, and executing it.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • “computer-readable recording medium” refers to portable media such as flexible disks, optical magnetic disks, ROMs, and CD-ROMs, and storage units such as hard disks built into computer systems.
  • “computer-readable recording medium” may also include those that dynamically hold a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, and those that hold a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in such cases.
  • the above program may be one that realizes part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • 1...resolver signal processing device 11...resolver/digital conversion circuit, 11A...excitation waveform generating unit, 11A1...bandpass filter, 11A2...bandpass filter, 11B1...amplifier, 11B2...amplifier, 11C...detection unit, 11C1...detection circuit, 11C2...phase detection unit, 11D...excitation waveform generating unit, 11D1...bandpass filter, 11D2...bandpass filter, 11E1...amplifier, 11E2...amplifier, 11F...detection unit, 11F1...detection circuit, 11F2...phase detection unit, 11G...control device, 11G1...phase measurement unit, 11G2...phase measurement unit, 11G3...PLL, 11G4...control unit, 11G41...control logic, 11G42...waveform generating unit, 11G421...memory unit, 11G422...amplifier , 11G423... ⁇ modulation section, 423A...addition section, 423B

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路は、SIN励磁コイル用の励磁信号とCOS励磁コイル用の励磁信号とを生成する制御装置と、SIN励磁コイル用の励磁信号からSIN励磁コイル用の励磁波形を生成すると共にCOS励磁コイル用の励磁信号からCOS励磁コイル用の励磁波形を生成する励磁波形生成部と、検出コイルから出力される検出信号に基づいてレゾルバセンサの回転角度を示す信号を生成する検波部とを備え、制御装置は、ΔΣ変調を行うことによってPDM波形を生成する波形生成部と、SIN励磁コイル用の励磁信号に対応するPDM波形を記憶する第1波形メモリと、COS励磁コイル用の励磁信号に対応するPDM波形を記憶する第2波形メモリとを備える。

Description

レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム
 本発明は、レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラムに関する。
 特許文献1には、位相が90°異なる第1および第2のコイルを有する励磁コイルと、1相の検出コイルとを有するレゾルバの信号処理を行うレゾルバ信号処理装置について記載されており、段落0023には、パルス発生回路がサイン波信号をパルス幅変調(PWM)したパルス状の励磁信号を出力して励磁コイルに印加する旨が記載されている。
 特許文献2の図1、図28~図35等には、レゾルバの励磁コイルに励磁信号を出力する励磁回路、および、レゾルバのSIN検出コイルから出力される信号とレゾルバのCOS検出コイルから出力される信号とが入力されるレゾルバ/デジタル変換器について記載されており、段落0055には、励磁コイル用の励磁波形を生成する波形生成回路に、ΔΣ型のA/D変換器が適用される旨が記載されている。また、特許文献2の段落0086には、検出コイルから出力される信号が入力されるレゾルバ/デジタル変換器に、ΔΣ型波形生成回路が適用される旨が記載されている。
特許第4344991号公報 特開2007-52001号公報
 本発明者は、後で詳細に説明するように、鋭意研究において、特許文献1に記載された技術のようにパルス幅変調(PWM)によって生成された励磁信号が適用される場合、励磁コイルを励磁する励磁波形の歪みが生じ、フィルタ回路によって解消困難であることを確認した。パルス幅変調(PWM)による場合に比べ、パルス密度変調(PDM)(詳細には、ΔΣ変調)によって生成された励磁信号が適用される場合の方が、励磁コイルを励磁する励磁波形の歪みを低減することができ、レゾルバセンサによって検出される回転角度の誤差を低減できることを見い出した。
 また、本発明者は、鋭意研究において、例えば特許文献2に記載されているようなレゾルバにΔΣ変調が適用される場合は、パルス幅変調(PWM)が適用される場合に比べて高いサンプリング周波数が要求されるが、ΔΣ変調を行うことによって生成されるPDM(パルス密度変調)波形をメモリに記憶させる回路構成により、安価な波形生成回路でも高いサンプリング周波数を容易に達成できることを見い出した。
 つまり、本発明は、励磁コイルを励磁する励磁波形の歪みを低減することができ、レゾルバセンサによって検出される回転角度の誤差を低減することができると共に、回路構成のコストダウンをすることができるレゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラムを提供することを目的とする。
 本発明の一態様は、SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路であって、前記SIN励磁コイル用の励磁信号と前記COS励磁コイル用の励磁信号とを生成する制御装置と、前記制御装置によって生成される前記SIN励磁コイル用の励磁信号から前記SIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記COS励磁コイル用の励磁信号から前記COS励磁コイル用の励磁波形を生成する励磁波形生成部と、前記検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する検波部とを備え、前記制御装置は、ΔΣ変調を行うことによって前記SIN励磁コイル用の励磁信号に対応するPDM(パルス密度変調)波形と前記COS励磁コイル用の励磁信号に対応するPDM波形とを生成する波形生成部と、前記SIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第1波形メモリと、前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第2波形メモリとを備える、レゾルバ/デジタル変換回路である。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記第1波形メモリは、変調波成分と搬送波成分とを別個独立した情報として記憶し、前記第2波形メモリは、変調波成分と搬送波成分とを別個独立した情報として記憶してもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記制御装置は、PDM波形を生成する処理を前記波形生成部に実行させる制御ロジックを備え、前記制御ロジックは、前記第1波形メモリに記憶されているPDM波形に対応する前記SIN励磁コイル用の励磁信号を生成すると共に、前記第2波形メモリに記憶されているPDM波形に対応する前記COS励磁コイル用の励磁信号を生成してもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記波形生成部は、振幅変調波を記憶する記憶部と、前記記憶部に記憶されている振幅変調波を増幅する増幅器と、前記増幅器によって増幅された振幅変調波に対するΔΣ変調を行うΔΣ変調部とを備え、前記増幅器は、前記制御ロジックからの振幅値の指示に応じて振幅変調波を増幅してもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記波形生成部は、前記SIN励磁コイル用の励磁信号に対応するPDM波形の生成と、前記COS励磁コイル用の励磁信号に対応するPDM波形の生成とを個別に行い、前記制御ロジックは、前記波形生成部が前記SIN励磁コイル用の励磁信号に対応するPDM波形または前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するタイミングとは異なるタイミングで、前記SIN励磁コイル用の励磁信号および前記COS励磁コイル用の励磁信号を生成してもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記制御装置は、前記制御ロジックから前記増幅器に送信される振幅値の指示を前記制御装置の外部から受信する通信部を備えてもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記ΔΣ変調部は、ΔΣ変調器によって構成されてもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記レゾルバセンサは、他のSIN励磁コイルと他のCOS励磁コイルと他の検出コイルとを備え前記制御装置は、前記他のSIN励磁コイル用の励磁信号と前記他のCOS励磁コイル用の励磁信号とを生成し、前記レゾルバ/デジタル変換回路は、前記制御装置によって生成される前記他のSIN励磁コイル用の励磁信号から前記他のSIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記他のCOS励磁コイル用の励磁信号から前記他のCOS励磁コイル用の励磁波形を生成する他の励磁波形生成部と、前記他の検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する他の検波部とを備え、前記波形生成部は、ΔΣ変調を行うことによって前記他のSIN励磁コイル用の励磁信号に対応するPDM波形と前記他のCOS励磁コイル用の励磁信号に対応するPDM波形とを生成し、前記制御装置は、前記他のSIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第3波形メモリと、前記他のCOS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第4波形メモリとを備えてもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、PDM波形を生成する処理を前記波形生成部に実行させる制御ロジックは、前記第3波形メモリに記憶されているPDM波形に対応する前記他のSIN励磁コイル用の励磁信号を生成すると共に、前記第4波形メモリに記憶されているPDM波形に対応する前記他のCOS励磁コイル用の励磁信号を生成してもよい。
 本発明の一態様のレゾルバ/デジタル変換回路では、前記波形生成部は、前記SIN励磁コイル用の励磁信号に対応するPDM波形の生成と、前記COS励磁コイル用の励磁信号に対応するPDM波形の生成と、前記他のSIN励磁コイル用の励磁信号に対応するPDM波形の生成と、前記他のCOS励磁コイル用の励磁信号に対応するPDM波形の生成とを個別に行い、前記制御ロジックは、前記波形生成部が前記SIN励磁コイル用の励磁信号に対応するPDM波形、前記COS励磁コイル用の励磁信号に対応するPDM波形、前記他のSIN励磁コイル用の励磁信号に対応するPDM波形または前記他のCOS励磁コイル用の励磁信号に対応するPDM波形を生成するタイミングとは異なるタイミングで、前記SIN励磁コイル用の励磁信号、前記COS励磁コイル用の励磁信号、前記他のSIN励磁コイル用の励磁信号および前記他のCOS励磁コイル用の励磁信号を生成してもよい。
 本発明の一態様は、レゾルバ/デジタル変換回路と、前記SIN励磁コイルと前記COS励磁コイルと前記検出コイルとを備える前記レゾルバセンサとを備えるレゾルバ信号処理装置である。
 本発明の一態様は、レゾルバ/デジタル変換回路と、前記SIN励磁コイルと前記COS励磁コイルと前記検出コイルと前記他のSIN励磁コイルと前記他のCOS励磁コイルと前記他の検出コイルとを備える前記レゾルバセンサとを備えるレゾルバ信号処理装置である。
 本発明の一態様は、SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路に備えられる制御装置が、前記SIN励磁コイル用の励磁信号と前記COS励磁コイル用の励磁信号とを生成する励磁信号生成ステップを備えるレゾルバ信号処理方法であって、前記レゾルバ/デジタル変換回路は、前記制御装置によって生成される前記SIN励磁コイル用の励磁信号から前記SIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記COS励磁コイル用の励磁信号から前記COS励磁コイル用の励磁波形を生成する励磁波形生成部と、前記検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する検波部とを備え、前記制御装置が、ΔΣ変調を行うことによって前記SIN励磁コイル用の励磁信号に対応するPDM波形と前記COS励磁コイル用の励磁信号に対応するPDM波形とを生成する波形生成ステップと、前記制御装置が、前記波形生成ステップにおいて生成される前記SIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第1波形記憶ステップと、前記制御装置が、前記波形生成ステップにおいて生成される前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第2波形記憶ステップとを更に備えるレゾルバ信号処理方法である。
 本発明の一態様は、SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路に備えられる制御装置を構成するコンピュータに、前記SIN励磁コイル用の励磁信号と前記COS励磁コイル用の励磁信号とを生成する励磁信号生成ステップを実行させるためのプログラムであって、前記レゾルバ/デジタル変換回路は、前記制御装置によって生成される前記SIN励磁コイル用の励磁信号から前記SIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記COS励磁コイル用の励磁信号から前記COS励磁コイル用の励磁波形を生成する励磁波形生成部と、前記検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する検波部とを備え、ΔΣ変調を行うことによって前記SIN励磁コイル用の励磁信号に対応するPDM波形と前記COS励磁コイル用の励磁信号に対応するPDM波形とを生成する波形生成ステップと、前記波形生成ステップにおいて生成される前記SIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第1波形記憶ステップと、前記波形生成ステップにおいて生成される前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第2波形記憶ステップとを更に実行させるためのプログラムである。
 本発明によれば、励磁コイルを励磁する励磁波形の歪みを低減することができ、レゾルバセンサによって検出される回転角度の誤差を低減することができると共に、回路構成のコストダウンすることができるレゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラムを提供することができる。
第1実施形態のレゾルバ信号処理装置1の一例を示す図である。 第1実施形態のレゾルバ信号処理装置1の制御装置11Gの構成の一例を示す図である。 第1実施形態のレゾルバ信号処理装置1の制御装置11Gの制御ロジック11G41と波形生成部11G42とSPI通信部11G44と波形メモリ11G451、11G452、11G453、11G454との関係の一例を示す図である。 第1変形例の波形生成部R42、R42-2、R42-3、R42-4の構成を示す図である。 第1実施形態のレゾルバ信号処理装置1の制御装置11Gの波形生成部11G42のΔΣ変調部11G423の構成の一例を示す図である。 第1実施形態に係るPDM波形を生成するためのSinテーブルについて説明するための図である。 第1実施形態に係るPDM波形を生成するためのSinテーブルの詳細について説明するための図である。 第1実施形態に係るPDM波形の生成について説明するための図である。 第1実施形態のレゾルバ信号処理装置1の励磁波形生成部11Aのバンドパスフィルタ11A1の具体例などを示す図である。 第1実施形態のレゾルバ信号処理装置1の制御装置11Gによって実行される処理の一例を説明するためのフローチャートである。 周波数と信号強度との関係(スペクトル)をPWM波形が用いられる第1比較例のレゾルバ信号処理装置とPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1とで比較した図である。 250kHz±16kHzの波形をデジタル変調した場合に包絡線に発生する歪みの有無をPWM波形が用いられる第1比較例のレゾルバ信号処理装置とPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1とで比較した図などである。 励磁波形を生成するためにPWM波形が用いられる第1比較例のレゾルバ信号処理装置の課題を説明するための図である。 励磁波形を生成するためにPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1の効果を説明するための図である。 第2実施形態のレゾルバ信号処理装置1の一例を示す図である。 第2実施形態のレゾルバ信号処理装置1の制御装置11Gによって実行される処理の一例を説明するためのフローチャートである。
 以下、本発明のレゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラムの実施形態について、添付図面を参照して説明する。
<第1実施形態>
 図1は第1実施形態のレゾルバ信号処理装置1の一例を示す図である。
 図1に示す例では、レゾルバ信号処理装置1が、レゾルバ/デジタル変換回路(RDC回路)11と、レゾルバセンサ1Aと、外部通信部1Bとを備えている。
 レゾルバセンサ1Aは、例えば国際公開公報WO2022/124413に記載されているような軸倍角がnXのシートコイル型レゾルバである。レゾルバセンサ1Aは、1X用のSIN励磁コイル12と、1X用のCOS励磁コイル13と、1X用の検出コイル14とを備えている。また、レゾルバセンサ1Aは、nX用のSIN励磁コイル15と、nX用のCOS励磁コイル16と、nX用の検出コイル17とを備えている。1X用の検出コイル12~14とnX用の検出コイル15~17は同一の軸の回転位置を検出しており、同軸に配置されている。
 レゾルバ/デジタル変換回路11は、レゾルバセンサ1Aに入力される信号及びレゾルバセンサ1Aから出力される信号の信号処理を行う。外部通信部1Bは、レゾルバ信号処理装置1と接続される他の装置(例えばモータ制御装置等)とのユーザインタフェース等である。
 図1に示す例では、レゾルバ信号処理装置1が外部通信部1Bを備えているが、他の例では、レゾルバ信号処理装置1が外部通信部1Bを備えていなくてもよい。つまり、外部通信部1Bに相当する機能が、レゾルバ信号処理装置1とは別個に設けられてもよい。
 図1に示す例では、レゾルバ/デジタル変換回路11が、励磁波形生成部11Aと、増幅器11B1、11B2と、検波部11Cと、励磁波形生成部11Dと、増幅器11E1、11E2と、検波部11Fと、制御装置11Gとを備えている。
 図1に示す例では、制御装置11GがFPGA(Field Programmable Gate Array)によって構成されているが、他の例では、制御装置11GがFPGA以外の部品(例えばDSP(Digital Signal Processor)、PLD(Programmable Logic Device)又はASIC(Application Specific Integrated Circuit)等のLSI(Large Scale Integration))によって構成されていてもよい。
 図1に示す例では、制御装置11Gが、SIN励磁コイル12用の励磁信号Sin_1X(図3参照)およびCOS励磁コイル13用の励磁信号Cos_1X(図3参照)を生成する。励磁信号Sin_1Xおよび励磁信号Cos_1Xは、それぞれSIN励磁コイル12およびCOS励磁コイル13に出力するためのアナログ信号を生成するためのデジタル信号である。
 励磁波形生成部11Aは、制御装置11Gから出力されたデジタル信号をなまらせることによりアナログ信号を生成する。励磁波形生成部11Aは、バンドパスフィルタ11A1と、バンドパスフィルタ11A2とを備えている。バンドパスフィルタ11A1は、制御装置11Gによって生成されるSIN励磁コイル12用の励磁信号Sin_1XからSIN励磁コイル12用の励磁波形Sinを生成する。バンドパスフィルタ11A2は、制御装置11Gによって生成されるCOS励磁コイル13用の励磁信号Cos_1XからCOS励磁コイル13用の励磁波形Cosを生成する。
 増幅器11B1は、バンドパスフィルタ11A1によって生成されるSIN励磁コイル12用の励磁波形Sinを増幅してSIN励磁コイル12に供給する。増幅器11B2は、バンドパスフィルタ11A2によって生成されるCOS励磁コイル13用の励磁波形Cosを増幅してCOS励磁コイル13に供給する。
 検波部11Cは、検波回路11C1と、位相検出部11C2とを備えている。検波回路11C1は、検出コイル14から出力される検出信号(変調波)の復調を行う。なお、具体的な復調方式としては、同期検波方式を用いてもよい。検波回路11C1は、同期検波を行うことにより検出コイル14から出力される変調波から、レゾルバセンサ1Aの回転角度を示す信号を取り出す処理を行う。位相検出部11C2は、検波回路11C1によって取り出される信号から、レゾルバセンサ1Aの回転角度を示す回転位相を検出する。すなわち、検波部11Cは、検出コイル14から出力される検出信号に基づいて、レゾルバセンサ1Aの回転角度を示す信号を生成する。
 また、図示する一例では、1X用の検出コイル12~14とnX用の検出コイル15~17が備えられるため、レゾルバ/デジタル変換回路11は、上述した1X用の回路と同様の回路をnX用の回路として備える。同図には、nX用の回路として励磁波形生成部11Dと、増幅器11E1と、増幅器11E2と、検波部11Fとを備える場合について示す。なお、励磁波形生成部11D、増幅器11E1、増幅器11E2及び検波部11Fの構成については、励磁波形生成部11A、増幅器11B1、増幅器11B2及び検波部11Cと同様であるため、説明を省略する。
 図2は第1実施形態のレゾルバ信号処理装置1の制御装置11Gの構成の一例を示す図である。
 図2に示す例では、制御装置11Gが、位相計測部11G1、11G2と、PLL(位相同期回路)11G3と、制御部11G4と、波形メモリ11G451、11G452、11G453、11G454とを備えている。
 位相計測部11G1は、検波部11Cの位相検出部11C2から出力される信号に基づいて、レゾルバセンサ1Aの回転角度を計測する。位相計測部11G2は、検波部11Fの位相検出部11F2から出力される信号に基づいて、レゾルバセンサ1Aの回転角度を計測する。PLL11G3は、位相計測部11G1、制御部11G4および波形メモリ11G451、11G452、11G453、11G454にクロックを出力する。
 図2に示す例では、PLL11G3が、位相計測部11G1に200MHzのクロックを出力し、制御部11G4に20MHzのクロックを出力し、波形メモリ11G451、11G452、11G453、11G454に100MHzのクロックを出力する。他の例では、PLL11G3から位相計測部11G1、制御部11G4および波形メモリ11G451、11G452、11G453、11G454に出力されるクロックの周波数が、図2に示す例とは異なっていてもよい。
 図2に示す例では、制御部11G4が、制御ロジック11G41と、波形生成部11G42と、統計処理部11G43と、SPI(Serial Peripheral Interface)通信部11G44とを備えている。制御ロジック11G41は、PDM波形を生成する処理を波形生成部11G42に実行させる。波形生成部11G42は、ΔΣ変調を行うことによって、SIN励磁コイル12用の励磁信号Sin_1X(図3参照)に対応するPDM波形と、COS励磁コイル13用の励磁信号Cos_1X(図3参照)に対応するPDM波形と、SIN励磁コイル15用の励磁信号Sin_nX(図3参照)に対応するPDM波形と、COS励磁コイル16用の励磁信号Cos_nX(図3参照)に対応するPDM波形とを生成する。
 統計処理部11G43は、位相計測部11G2によって計測されるレゾルバセンサ1Aの回転角度の統計処理を行う(例えば複数の値を定量化する処理などを行う)。SPI通信部11G44は、例えば通信ポート等であり、外部通信部1Bとの通信を行う。通信方法はSPI通信に限らず、RS485、I2Cなどのシリアル通信や、その他の通信方式が用いられてもよい。SPI通信部を、単に通信部と記載する場合がある。
 波形メモリ11G451は、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成するための情報を記憶する。波形メモリ11G451は、変調波成分と搬送波成分とを別個独立した情報として記憶してもよい。波形メモリ11G452は、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成するための情報を記憶する。波形メモリ11G452は、変調波成分と搬送波成分とを別個独立した情報として含む情報を記憶してもよい。波形メモリ11G453は、SIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形を生成するための情報を記憶する。波形メモリ11G453は、変調波成分と搬送波成分とを別個独立した情報として含む情報を記憶してもよい。波形メモリ11G454は、COS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を生成するための情報を記憶する。波形メモリ11G454は、変調波成分と搬送波成分とを別個独立した情報として含む情報を記憶してもよい。
 図2示す例では、制御ロジック11G41が、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成する処理を波形生成部11G42に実行させる。波形メモリ11G451は、波形生成部11G42によって生成されるSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成するための情報を記憶する。
 更に、制御ロジック11G41は、波形メモリ11G451に記憶されているPDM波形を生成するための情報に対応するSIN励磁コイル12用の励磁信号Sin_1Xを生成する。
 制御ロジック11G41は、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成する処理を波形生成部11G42に実行させる。波形メモリ11G452は、波形生成部11G42によって生成されるCOS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成するための情報を記憶する。
 更に、制御ロジック11G41は、波形メモリ11G452に記憶されているPDM波形を生成するための情報に対応するCOS励磁コイル13用の励磁信号Cos_1Xを生成する。
 なお、SIN励磁コイル15用の励磁信号Sin_nXについてもSIN励磁コイル12用の励磁信号Sin_1Xと同様に、COS励磁コイル16用の励磁信号Cos_nXについてもCOS励磁コイル13用の励磁信号Cos_1Xと同様に生成されるため、励磁信号Sin_nXと励磁信号Cos_nXについての記載を省略する。
 図3は第1実施形態のレゾルバ信号処理装置1の制御装置11Gの制御ロジック11G41と波形生成部11G42とSPI通信部11G44と波形メモリ11G451、11G452、11G453、11G454との関係の一例を示す図である。
 図3に示す例では、波形生成部11G42が、記憶部11G421と、増幅器11G422と、ΔΣ変調部11G423とを備えている。
 記憶部11G421は、振幅変調波(図3参照)を記憶する。記憶部11G421は、振幅変調波を生成するための情報として、変調波成分と搬送波成分とを別個独立した情報として含む情報を記憶してもよい。記憶部11G421は、波形メモリ11G451に含まれていてもよい。
 増幅器11G422は、記憶部11G421に記憶されている振幅変調波を増幅する。つまり、増幅器11G422は、図3の増幅器11G422の左側に示す振幅変調波を増幅し、図3の増幅器11G422の右側に示す振幅変調波を生成する。詳細には、増幅器11G422は、制御ロジック11G41からの振幅値の指示に応じて振幅変調波を増幅する。更に詳細には、制御ロジック11G41は、SPI通信部11G44からの指示に応じて、振幅変調波を増幅する処理を増幅器11G422に実行させる。SPI通信部11G44は、制御装置11Gの外部の外部通信部1Bから振幅値の指示を受信する。
 ΔΣ変調部11G423は、増幅器11G422によって増幅された振幅変調波に対するΔΣ変調を行う。
 記憶部11G421に記憶される振幅変調波を生成するための情報としては、例えば正弦波テーブルであってもよい。波形生成部11G42は、使用データ量を節約するため、一つのテーブルデータを用いて乗算を行うことにより変調波形を生成する。すなわち、図3に示す例では、記憶部11G421に記憶される振幅変調波として、正弦波テーブルから変調波が生成され、電子部品の素子数が抑制されている。変調波の生成の詳細については後述する。また、波形生成部11G42は、アナログ波形を元波形として、増幅器11G422によって振幅調整が行われる。また、ΔΣ変調の途中計算値の最大値が10bitに抑制されている。
 また、図3に示す例では、波形生成部11G42が、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形の生成と、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形の生成と、SIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形の生成と、COS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形の生成とを個別に行う。
 制御ロジック11G41は、波形生成部11G42がSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形、SIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形またはCOS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を生成するタイミングとは異なるタイミングで、SIN励磁コイル12用の励磁信号Sin_1X、COS励磁コイル13用の励磁信号Cos_1X、SIN励磁コイル15用の励磁信号Sin_nXおよびCOS励磁コイル16用の励磁信号Cos_nXを生成して制御装置11Gから出力する。
 そのため、図3に示す例では、後述する図4に示す第1変形例のようにSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成する波形生成部R42と、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成する波形生成部R42-2と、SIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形を生成する波形生成部R42-3と、COS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を生成する波形生成部R42-4とを別個に(並列に)設ける必要性を排除することができる。
 図3に示す例では、上述したように、波形メモリ11G451が、波形生成部11G42によって生成されたSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成するための情報を記憶し、波形メモリ11G452が、波形生成部11G42によって生成されたCOS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成するための情報を記憶し、波形メモリ11G453が、波形生成部11G42によって生成されたSIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形を生成するための情報を記憶し、波形メモリ11G454が、波形生成部11G42によって生成されたCOS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を記憶する。
 制御ロジック11G41は、SIN励磁コイル12用の励磁信号Sin_1Xを生成するために、波形メモリ11G451に記憶されているPDM波形を生成するための情報を読み出せばよい。PDM波形を生成するための情報とは、具体的には、変調波成分と搬送波成分とを含む情報である。したがって、本実施形態によれば、変調波成分と搬送波成分とに基づきPDM波形を容易に得ることができる。また、制御ロジック11G41は、COS励磁コイル13用の励磁信号Cos_1Xを生成するために、波形メモリ11G452に記憶されているPDM波形を生成するための情報を読み出せばよい。PDM波形を生成するための情報とは、具体的には、変調波成分と搬送波成分とを含む情報である。したがって、本実施形態によれば、変調波成分と搬送波成分とに基づきPDM波形を容易に得ることができる。更に、制御ロジック11G41は、SIN励磁コイル15用の励磁信号Sin_nXを生成するために、波形メモリ11G453に記憶されているPDM波形を生成するための情報を読み出せばよい。PDM波形を生成するための情報とは、具体的には、変調波成分と搬送波成分とを含む情報である。したがって、本実施形態によれば、変調波成分と搬送波成分とに基づきPDM波形を容易に得ることができる。また、制御ロジック11G41は、COS励磁コイル16用の励磁信号Cos_nXを生成するために、波形メモリ11G454に記憶されているPDM波形を生成するための情報を読み出せばよい。PDM波形を生成するための情報とは、具体的には、変調波成分と搬送波成分とを含む情報である。したがって、本実施形態によれば、変調波成分と搬送波成分とに基づきPDM波形を容易に得ることができる。
 そのため、図3に示す例では、制御装置11Gの最大動作周波数は波形生成のための信号処理で律速せず、制御装置11Gの内蔵メモリ部の動作限界まで動作可能となる。
 図3に示す例では、波形生成部11G42を低速で動作させてもよいため、上述したように、振幅変調波の振幅値を変数に設定し、外部からの通信によって振幅変調波の振幅値を変更することができる。
 図4は第1変形例の波形生成部R42、R42-2、R42-3、R42-4の構成を示す図である。
 図4に示す第1変形例では、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成する波形生成部R42と、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成する波形生成部R42-2と、SIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形を生成する波形生成部R42-3と、COS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を生成する波形生成部R42-4とが別個に(並列に)設けられている。
 波形生成部R42、R42-2、R42-3、R42-4のそれぞれは、記憶部R42Aと、デジタルフィルタR42Bと、増幅器R42Cと、ΔΣ変調部R42Dとを備えている。記憶部R42Aは、PDM波形(PDMデータ)を記憶する。デジタルフィルタR42Bは、記憶部R42Aから出力されたPDM波形(PDMデータ)を振幅変調波(アナログ波形)に変換する。増幅器R42Cは、デジタルフィルタR42Bによって生成された振幅変調波(アナログ波形)を増幅する。ΔΣ変調部R42Dは、増幅器R42Cによって増幅された振幅変調波のΔΣ変調を行う。
 つまり、図4に示す第1変形例では、変調波波形をそのまま保持するとメモリが不足する点に鑑み、PDMデータとして波形が保持され(記憶部R42Aに記憶され)、デジタルフィルタR42BによってPDMデータがアナログ波形に一旦戻され、ΔΣ変調部R42Dによって改めてPDM波形が生成される。その結果、図4に示す波形生成部R42、R42-2、R42-3、R42-4のそれぞれは、デジタルフィルタR42Bを備える必要があり、図3に示す波形生成部11G42よりも構成が冗長になってしまう。
 また、図4に示す第1変形例では、波形生成部R42、R42-2、R42-3、R42-4を別個に(並列に)設ける必要があるため、1つの波形生成部11G42のみが備えられる図3に示す例よりも構成が冗長になってしまう。
 更に、図4に示す第1変形例の構成が採用される場合には、ΔΣ変調部R42DによるΔΣ変調処理の数値の最大値が大きく、17bit(信号17本)が必要になるため、制御装置(FPGA)の最大動作周波数が低くなる。振幅値によっては、66MHzの動作を満足することができず、波形乱れが発生してしまう。
 そのため、図4に示す第1変形例では、上述した最大動作周波数の問題から振幅値を固定記述にせざるを得ず、振幅値の変更が必要な場合には、制御装置(FPGA)のソフトの書き換えが必要になってしまう。
 第1実施形態のレゾルバ信号処理装置1では、例えば図3に示す構成を採用することによって、図4に示す第1変形例の問題点を解消することができる。
 図5は第1実施形態のレゾルバ信号処理装置1の制御装置11Gの波形生成部11G42のΔΣ変調部11G423の構成の一例を示す図である。
 図5に示す例では、ΔΣ変調部11G423が、加算部423Aと、増幅器423Bと、加算部423Cと、Z変換部423Dと、帰還部423Eと、加算部423Fと、増幅器423Gと、加算部423Hと、Z変換部423Iと、帰還部423Jと、比較器423Kと、帰還部423Lと、増幅器423Mと、増幅器423Nとを備えている。
 加算部423Aには、増幅器11G422(図3参照)によって増幅された振幅変調波(アナログ信号)等が入力される。増幅器423Bには、加算部423Aからの出力信号が入力される。増幅器423Bは、加算部423Aから入力される信号を増幅する。
 加算部423Cには、増幅器423Bからの出力信号と、帰還部423Eによって帰還させられる信号とが入力される。加算部423Cは、増幅器423Bからの出力信号と、帰還部423Eによって帰還させられる信号とを加算して出力する。
 Z変換部423Dには、加算部423Cからの出力信号が入力される。Z変換部423Dは、加算部423Cから入力される信号のZ変換を行う。Z変換部423Dからの出力信号は、帰還部423Eと加算部423Fとに入力される。
 帰還部423Eは、Z変換部423Dからの出力信号を加算部423Cに帰還させる。
 加算部423Fには、Z変換部423Dからの出力信号などが入力される。増幅器423Gには、加算部423Fからの出力信号が入力される。増幅器423Gは、加算部423Fから入力される信号を増幅する。
 加算部423Hには、増幅器423Gからの出力信号と、帰還部423Jによって帰還させられる信号とが入力される。加算部423Hは、増幅器423Gからの出力信号と、帰還部423Jによって帰還させられる信号とを加算して出力する。
 Z変換部423Iには、加算部423Hからの出力信号が入力される。Z変換部423Iは、加算部423Hから入力される信号のZ変換を行う。Z変換部423Iからの出力信号は、帰還部423Jと比較器423Kとに入力される。
 帰還部423Jは、Z変換部423Iからの出力信号を加算部423Hに帰還させる。
 比較器423Kには、Z変換部423Iからの出力信号が入力される。比較器423Kは、SIN励磁コイル12用の励磁信号Sin_1X(図3参照)に対応するPDM波形を波形メモリ11G451に出力する。また、比較器423Kは、COS励磁コイル13用の励磁信号Cos_1X(図3参照)に対応するPDM波形を波形メモリ11G452に出力する。更に、SIN励磁コイル15用の励磁信号Sin_nX(図3参照)に対応するPDM波形を波形メモリ11G453に出力し、COS励磁コイル16用の励磁信号Cos_nX(図3参照)に対応するPDM波形を波形メモリ11G454に出力する。
 帰還部423Lは、比較器423Kからの出力信号を増幅器423Mと増幅器423Nとに帰還させる。つまり、増幅器423Mには、帰還部423Lによって帰還させられる比較器423Kからの出力信号が入力される。また、増幅器423Nにも、帰還部423Lによって帰還させられる比較器423Kからの出力信号が入力される。
 増幅器423Mは、帰還部423Lによって帰還させられる比較器423Kからの出力信号を増幅する。増幅器423Mからの出力信号は、加算部423Aに入力される。加算部423Aは、増幅器11G422(図3参照)からの出力信号(振幅変調波)と、増幅器423Mからの出力信号とを加算する。
 増幅器423Nは、帰還部423Lによって帰還させられる比較器423Kからの出力信号を増幅する。増幅器423Nからの出力信号は、加算部423Fに入力される。加算部423Fは、Z変換部423Dからの出力信号と、増幅器423Nからの出力信号とを加算する。
 つまり、図5に示す例では、ΔΣ変調部11G423が、2次のΔΣ変調器であって、フィードバック型のΔΣ変調器によって構成される。
 デジタル動作、サンプリング周波数はアナログ信号帯域と比較して十分に高い周波数帯域が必要となる。例えば100倍程度必要である。搬送波の周波数として250kHzが使用される場合には、25MHz以上での信号処理が必要になる。
 図2および図5に示す例では、PLL11G3によって出力される100MHzのクロックが用いられる。
 次に、図6から図8を参照しながら、PDM波形生成の一例について説明する。本実施形態において、PDM信号の元となる変調波波形を生成する際、正弦波データをテーブルとして保持していてもよい。使用データ量を節約するため、テーブルとして保持される正弦波データは一つのテーブルデータであってもよく、当該正弦波データに基づいた乗算を行うことにより変調波形を生成してもよい。
 図6は、第1実施形態に係るPDM波形を生成するためのSinテーブルについて説明するための図である。同図を参照しながら、PDM信号の元となる変調波波形を生成するためのSinテーブル(一つのテーブルデータ)について説明する。同図の左辺には、基本波(Sin(θ))と、基本波の振動数を32倍とした波形(Sin(32θ))(波長が32分の1となっているということもできる。)を示す。本実施形態によれば、これらの波形を乗算することにより、右辺に示したような波形(Sin(θ)×Sin(32θ)=Sin(32θ+θ)+Sin(32θ-θ))を得ることができる。
 なお、図示したグラフの一例は、イメージであり、振幅や周波数等は、実際の波形とは異なる場合がある。
 図7は、第1実施形態に係るPDM波形を生成するためのSinテーブルの詳細について説明するための図である。同図を参照しながら、PDM信号の元となる変調波波形を生成するためのSinテーブル(一つのテーブルデータ)の詳細について説明する。ここで、Sin関数は対称性があるため、入力θの値に応じて場合分けすることにより、記憶されデータ量を1/4とすることができる。図7(A)には、基本波となるSinテーブルの一例を示す。図7(B)には、記憶されるデータの一例を示す。図7(A)及び図7(B)に示す図の横軸は角度であり、縦軸は振幅である。図7(B)に示すように、実際に記憶されるデータは、基本波の一部(具体的には0度から90度の区間)である。8ビットのデータとした場合、図7(B)に示す波形のデータ量は、8[bit]×2^(12-2)=8192[bit]となり、1ブロックのブロックメモリ(ブロックRAM)に収まるデータ量となる。
 なお、変調波を直接テーブル化する場合、変調波には対称性がないためデータ量の低減をすることは困難である。変調波を直接テーブル化する場合のデータ量は、8[bit]×2^12=32[Kbit]となり、4ブロックのEBRが必要なデータ量となる。すなわち、基本波の一部(具体的には0度から90度の区間)を記憶することにより、データ量を4分の1とすることができる。
 PDM波形の生成処理は低速により処理可能なため、Sin関数テーブル一つを使用し、入力θと32θを順に読み出した後に乗算を行うことにより変調波を生成してもよい。この場合、処理に用いられるEBRは1ブロックで足りる。なお、2ブロック用いる場合は、記憶領域を広げることが可能であるため、分解能を2^13とすることにより、より精度の高い変調波を生成することが可能である。
 図8は、第1実施形態に係るPDM波形の生成について説明するための図である。同図を参照しながら、PDM波形の生成について説明する。構成R8は、図6を参照しながら説明したようなPDM波形生成処理を行うための具体的な態様の一例である。構成R8は、構成要素R81から構成要素R89を含んで構成される。構成要素R81は、増幅器である。構成要素R81は、θを32倍に増幅し、増幅した結果を出力する。構成要素R82はセレクタである。構成要素R82には、θ及び32θが入力され、セレクタである構成要素R82は、θ又は32θのいずれかを出力する。構成要素R83には、構成要素R82の出力結果が入力される。構成要素R83は、入力されたθまたは32θの角度に応じた出力を行う。構成要素R84は記憶部(例えばブロックメモリ)である。構成要素R84には、基本波となるSinテーブルの一部(例えば1波長の4分の1)が記憶される。構成要素R84は、記憶されたデータを構成要素R85または構成要素R86に出力する。構成要素R85は増幅器である。増幅器である構成要素R85は、構成要素R84の出力値を-1倍して構成要素R86に出力される。構成要素R86はセレクタである。構成要素R86には、基本波となるSinテーブルの一部(例えば1波長の4分の1)又は、当該一部を-1倍したデータが入力される。セレクタである構成要素R86の出力は、構成要素R83により制御される。構成要素R86の出力は、構成要素R87又は構成要素R88に記憶される。構成要素R87及び構成要素R88は、値を記憶するためのレジスタである。構成要素R87にはSin(θ)の波形が記憶され、構成要素R88にはSin(32θ)の波形が記憶される。構成要素R89には、構成要素R87に記憶されたSin(θ)と、構成要素R88に記憶されたSin(32θ)とが入力される。構成要素R89は、入力されたSin(θ)とSin(32θ)とを乗算した結果であるSin(θ)×Sin(32θ)を出力する。
 図9は第1実施形態のレゾルバ信号処理装置1の励磁波形生成部11Aのバンドパスフィルタ11A1の具体例などを示す図である。詳細には、図9(A)は第1実施形態のレゾルバ信号処理装置1の励磁波形生成部11Aのバンドパスフィルタ11A1の具体例を示しており、図9(B)は第1実施形態のレゾルバ信号処理装置1の励磁波形生成部11Aおよび増幅器11B1の変形例を示している。
 図9(A)に示す例では、第1実施形態のレゾルバ信号処理装置1の励磁波形生成部11Aのバンドパスフィルタ11A1が、π形のLCフィルタによって構成される。
 図9(B)に示す変形例(直接スイッチング方式の例)では、図1に示す励磁波形生成部11Aおよび増幅器11B1の代わりに、FET(電界効果トランジスタ)が用いられる。
 図10は第1実施形態のレゾルバ信号処理装置1の制御装置11Gによって実行される処理の一例を説明するためのフローチャートである。
 図10に示す例では、ステップS1Aにおいて、制御装置11Gの波形生成部11G42が、ΔΣ変調を行うことによって、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成する。
 次いで、ステップS1Bでは、制御装置11Gの波形メモリ11G451が、ステップS1Aにおいて生成されたSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を記憶する。
 また、ステップS2Aにおいて、制御装置11Gの波形生成部11G42が、ΔΣ変調を行うことによって、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成する。
 次いで、ステップS2Bでは、制御装置11Gの波形メモリ11G452が、ステップS2Aにおいて生成されたCOS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を記憶する。
 また、ステップS3Aにおいて、制御装置11Gの波形生成部11G42が、ΔΣ変調を行うことによって、SIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形を生成する。
 次いで、ステップS3Bでは、制御装置11Gの波形メモリ11G453が、ステップS3Aにおいて生成されたSIN励磁コイル15用の励磁信号Sin_nXに対応するPDM波形を記憶する。
 また、ステップS4Aにおいて、制御装置11Gの波形生成部11G42が、ΔΣ変調を行うことによって、COS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を生成する。
 次いで、ステップS4Bでは、制御装置11Gの波形メモリ11G454が、ステップS4Aにおいて生成されたCOS励磁コイル16用の励磁信号Cos_nXに対応するPDM波形を記憶する。
 次いで、ステップS5では、制御装置11Gの制御ロジック11G41が、SIN励磁コイル12用の励磁信号Sin_1X、COS励磁コイル13用の励磁信号Cos_1X、SIN励磁コイル15用の励磁信号Sin_nXおよびCOS励磁コイル16用の励磁信号Cos_nXを生成して制御装置11Gから出力する。
[実施例]
 本発明者は、SIN励磁コイル12、COS励磁コイル13、SIN励磁コイル15およびCOS励磁コイル16用の励磁波形を生成するためにPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1における励磁波形の歪みおよびそれに伴うレゾルバセンサ1Aの角度誤差と、励磁波形を生成するためにPWM(パルス幅変調)波形が用いられる第1比較例のレゾルバ信号処理装置における励磁波形の歪みおよびそれに伴うレゾルバセンサの角度誤差とを比較する解析を行った。
 PWM波形が用いられる第1比較例のレゾルバ信号処理装置では、レゾルバセンサの角度誤差が±2.34°になったのに対し、PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1では、レゾルバセンサ1Aの角度誤差が±0.12°になり、1/20に低減することができた。
 図11は周波数と信号強度との関係(スペクトル)をPWM波形が用いられる第1比較例のレゾルバ信号処理装置とPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1とで比較した図である。詳細には、図11(B)は図11(A)の横軸の周波数1000(kHz)付近を拡大して示した図である。
 図11(B)に2つの矢印で示すように、PWM波形が用いられる第1比較例のレゾルバ信号処理装置では、PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1よりも信号強度が高くなる箇所が生じた。
 図12は250kHz±16kHzの波形をデジタル変調した場合に包絡線に発生する歪みの有無をPWM波形が用いられる第1比較例のレゾルバ信号処理装置とPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1とで比較した図などである。詳細には、図12(A)は250kHz±16kHzの波形をデジタル変調した場合に包絡線に発生する歪みの有無をPWM波形が用いられる第1比較例のレゾルバ信号処理装置とPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1とで比較して示しており、図12(B)は包絡線に発生する歪みがある場合のゼロクロス時刻と包絡線に発生する歪みがない場合とのゼロクロス時刻とを比較して示している。
 図12(A)に示すように、PWM波形が用いられる第1比較例のレゾルバ信号処理装置およびPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1のそれぞれにおいて250kHz±16kHzの波形をデジタル変調した場合、PWM波形が用いられる第1比較例のレゾルバ信号処理装置では、250kHz±32kHzと±16kHz×2倍の高調波が発生し、包絡線に歪みが発生したのに対し、PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1では、包絡線に歪みが発生しなかった。
 第1実施形態のレゾルバ信号処理装置1のレゾルバセンサ1Aのような変調波型レゾルバでは、Sin/Cos信号の合成信号を検出し、合成信号のゼロクロス時刻からレゾルバの回転角度が算出される。
 図12(B)に示すように、包絡線に発生する歪みがある場合には、合成信号のゼロクロス時刻が変化してしまい、レゾルバの検出角度の誤差となる。PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1では、包絡線に歪みが発生しないため、レゾルバセンサ1Aの角度誤差を低減することができた。
 図13は励磁波形を生成するためにPWM波形が用いられる第1比較例のレゾルバ信号処理装置の課題を説明するための図である。詳細には、図13は励磁波形を生成するためにPWM波形が用いられる第1比較例のレゾルバ信号処理装置のスペクトルを示している。
 図13に「波形歪み」で示すように、励磁波形を生成するためにPWM波形が用いられる第1比較例のレゾルバ信号処理装置では、変調波成分の高調波±16kHz×n(±16kHz、±48kHz、±80kHz、…)が、復調した際の16kHzの歪み(図12(A)に示す包絡線の歪み)となり、レゾルバセンサの絶対角度誤差となってしまう。
 図13に「遷移領域」で示すように、励磁波形を生成するためにPWM波形が用いられる第1比較例のレゾルバ信号処理装置では、離散化ノイズを減衰させるためフィルタのカットオフ周波数Fcを搬送波周波数に極力近づけたいものの、遷移領域があり、更にフィルタ定数Lのばらつき(=フィルタのカットオフ周波数Fcのばらつき)もあるため、近づけすぎると主信号まで減衰してしまうという課題がある。
 図14は励磁波形を生成するためにPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1の効果を説明するための図である。詳細には、図11は励磁波形を生成するためにPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1のスペクトルを示している。
 図14に「波形歪み」および「スペクトル特性」で示すように、図10に示すPWM波形が用いられる第1比較例のレゾルバ信号処理装置のスペクトル特性に見られる変調波成分の高調波±16kHz×n(±16kHz、±48kHz、±80kHz、…)が、図14に示すPDM波形が用いられる第1実施形態のレゾルバ信号処理装置1のスペクトル特性では存在しなくなる。
 図14に「遷移領域」で示すように、PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1では、主成分と離散化ノイズスペクトルとが離れているため、フィルタのカットオフ周波数Fcを主成分から離すことができ、フィルタ定数ばらつきの影響を受けづらくすることができる。
 更に、PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1のスペクトル特性では、図13に示すPWM波形が用いられる第1比較例のレゾルバ信号処理装置のスペクトル特性に見られる搬送波成分250kHz±16kHzの高調波成分500kHz、750kHz、1000kHz、…が存在しなくなる。PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1のスペクトル特性では、離散化ノイズが高周波側に寄るため、PDM波形が用いられる第1実施形態のレゾルバ信号処理装置1では、フィルタによる減衰が効きやすく、フィルタの段数を削減することができる。
 上述したように、第1実施形態のレゾルバ信号処理装置1では、パルス幅変調によって生成された励磁信号が適用される場合に比べ、励磁コイル(1X用のSIN励磁コイル12、1X用のCOS励磁コイル13、nX用のSIN励磁コイル15、nX用のCOS励磁コイル16)を励磁する励磁波形の歪みを低減することができ、レゾルバセンサ1Aによって検出される回転角度の誤差を低減することができる。
 更に、第1実施形態のレゾルバ信号処理装置1では、ΔΣ変調を行うことによって生成されるPDM波形を波形メモリ11G451、11G452、11G453、11G454に記憶させる回路製作手法を採用することによって、「1相励磁2相出力レゾルバ」にΔΣ変調が適用される場合に比べて回路構成をコストダウンすることができる。
<第2実施形態>
 以下、本発明のレゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラムの第2実施形態について説明する。
 第2実施形態のレゾルバ信号処理装置1は、後述する点を除き、上述した第1実施形態のレゾルバ信号処理装置1と同様に構成されている。従って、第2実施形態のレゾルバ信号処理装置1によれば、後述する点を除き、上述した第1実施形態のレゾルバ信号処理装置1と同様の効果を奏することができる。
 図15は第2実施形態のレゾルバ信号処理装置1の一例を示す図である。
 図15に示す例では、レゾルバ信号処理装置1が、レゾルバ/デジタル変換回路11と、レゾルバセンサ1Aと、外部通信部1Bとを備えている。
 図1に示す例では、レゾルバセンサ1Aが、1X用のSIN励磁コイル12と、1X用のCOS励磁コイル13と、1X用の検出コイル14と、nX用のSIN励磁コイル15と、nX用のCOS励磁コイル16と、nX用の検出コイル17とを備えているが、図15に示す例では、レゾルバセンサ1Aが、1X用のSIN励磁コイル12と、1X用のCOS励磁コイル13と、1X用の検出コイル14とを備えており、nX用のSIN励磁コイル15(図1参照)と、nX用のCOS励磁コイル16(図1参照)と、nX用の検出コイル17(図1参照)とを備えていない。
 図1に示す例では、レゾルバ/デジタル変換回路11が、励磁波形生成部11Aと、増幅器11B1、11B2と、検波部11Cと、励磁波形生成部11Dと、増幅器11E1、11E2と、検波部11Fと、制御装置11Gとを備えているが、図12に示す例では、レゾルバ/デジタル変換回路11が、励磁波形生成部11Aと、増幅器11B1、11B2と、検波部11Cと、制御装置11Gとを備えており、励磁波形生成部11D(図1参照)と、増幅器11E1、11E2(図1参照)と、検波部11F(図1参照)とを備えていない。
 第1実施形態のレゾルバ信号処理装置1では、制御装置11Gが、波形メモリ11G451、11G452、11G453、11G454を備えているが、第2実施形態のレゾルバ信号処理装置1では、制御装置11Gが、波形メモリ11G451、11G452を備えており、波形メモリ11G453、11G454(図2および図3参照)を備えていない。
 また、第1実施形態のレゾルバ信号処理装置1では、制御装置11Gが、位相計測部11G1、11G2と、統計処理部11G43とを備えているが、第2実施形態のレゾルバ信号処理装置1では、制御装置11Gが、位相計測部11G1を備えており、位相計測部11G2(図2参照)と、統計処理部11G43(図2参照)とを備えていない。
 第2実施形態のレゾルバ信号処理装置1では、波形生成部11G42が、ΔΣ変調を行うことによって、SIN励磁コイル12用の励磁信号Sin_1X(図3参照)に対応するPDM波形と、COS励磁コイル13用の励磁信号Cos_1X(図3参照)に対応するPDM波形とを生成する。詳細には、波形生成部11G42が、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形の生成と、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形の生成とを個別に行う。
 制御ロジック11G41は、波形生成部11G42がSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形またはCOS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成するタイミングとは異なるタイミングで、SIN励磁コイル12用の励磁信号Sin_1XおよびCOS励磁コイル13用の励磁信号Cos_1Xを生成して制御装置11Gから出力する。
 図13は第2実施形態のレゾルバ信号処理装置1の制御装置11Gによって実行される処理の一例を説明するためのフローチャートである。
 図13に示す例では、ステップS6Aにおいて、制御装置11Gの波形生成部11G42が、ΔΣ変調を行うことによって、SIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を生成する。
 次いで、ステップS6Bでは、制御装置11Gの波形メモリ11G451が、ステップS6Aにおいて生成されたSIN励磁コイル12用の励磁信号Sin_1Xに対応するPDM波形を記憶する。
 また、ステップS7Aにおいて、制御装置11Gの波形生成部11G42が、ΔΣ変調を行うことによって、COS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を生成する。
 次いで、ステップS7Bでは、制御装置11Gの波形メモリ11G452が、ステップS7Aにおいて生成されたCOS励磁コイル13用の励磁信号Cos_1Xに対応するPDM波形を記憶する。
 次いで、ステップS8では、制御装置11Gの制御ロジック11G41が、SIN励磁コイル12用の励磁信号Sin_1XおよびCOS励磁コイル13用の励磁信号Cos_1Xを生成して制御装置11Gから出力する。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。上述した各実施形態および各例に記載の構成を適宜組み合わせてもよい。
 なお、上述した実施形態におけるレゾルバ信号処理装置1が備える各部の機能全体あるいはその一部は、これらの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶部のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
1…レゾルバ信号処理装置、11…レゾルバ/デジタル変換回路、11A…励磁波形生成部、11A1…バンドパスフィルタ、11A2…バンドパスフィルタ、11B1…増幅器、11B2…増幅器、11C…検波部、11C1…検波回路、11C2…位相検出部、11D…励磁波形生成部、11D1…バンドパスフィルタ、11D2…バンドパスフィルタ、11E1…増幅器、11E2…増幅器、11F…検波部、11F1…検波回路、11F2…位相検出部、11G…制御装置、11G1…位相計測部、11G2…位相計測部、11G3…PLL、11G4…制御部、11G41…制御ロジック、11G42…波形生成部、11G421…記憶部、11G422…増幅器、11G423…ΔΣ変調部、423A…加算部、423B…増幅器、423C…加算部、423D…Z変換部、423E…帰還部、423F…加算部、423G…増幅器、423H…加算部、423I…Z変換部、423J…帰還部、423K…比較器、423L…帰還部、423M…増幅器、423N…増幅器、11G43…統計処理部、11G44…SPI通信部、11G451…波形メモリ、11G452…波形メモリ、11G453…波形メモリ、11G454…波形メモリ、12…SIN励磁コイル、13…COS励磁コイル、14…検出コイル、15…SIN励磁コイル、16…COS励磁コイル、17…検出コイル、1A…レゾルバセンサ、1B…外部通信部

Claims (14)

  1.  SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路であって、
     前記SIN励磁コイル用の励磁信号と前記COS励磁コイル用の励磁信号とを生成する制御装置と、
     前記制御装置によって生成される前記SIN励磁コイル用の励磁信号から前記SIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記COS励磁コイル用の励磁信号から前記COS励磁コイル用の励磁波形を生成する励磁波形生成部と、
     前記検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する検波部とを備え、
     前記制御装置は、
     ΔΣ変調を行うことによって前記SIN励磁コイル用の励磁信号に対応するPDM(パルス密度変調)波形と前記COS励磁コイル用の励磁信号に対応するPDM波形とを生成する波形生成部と、
     前記SIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第1波形メモリと、
     前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第2波形メモリとを備える、
     レゾルバ/デジタル変換回路。
  2.  前記第1波形メモリは、変調波成分と搬送波成分とを別個独立した情報として記憶し、
     前記第2波形メモリは、変調波成分と搬送波成分とを別個独立した情報として記憶する、
     請求項1に記載のレゾルバ/デジタル変換回路。
  3.  前記制御装置は、
     PDM波形を生成する処理を前記波形生成部に実行させる制御ロジックを備え、
     前記制御ロジックは、
     前記第1波形メモリに記憶されているPDM波形に対応する前記SIN励磁コイル用の励磁信号を生成すると共に、
     前記第2波形メモリに記憶されているPDM波形に対応する前記COS励磁コイル用の励磁信号を生成する、
     請求項1に記載のレゾルバ/デジタル変換回路。
  4.  前記波形生成部は、
     振幅変調波を記憶する記憶部と、
     前記記憶部に記憶されている振幅変調波を増幅する増幅器と、
     前記増幅器によって増幅された振幅変調波に対するΔΣ変調を行うΔΣ変調部とを備え、
     前記増幅器は、前記制御ロジックからの振幅値の指示に応じて振幅変調波を増幅する、
     請求項3に記載のレゾルバ/デジタル変換回路。
  5.  前記波形生成部は、
     前記SIN励磁コイル用の励磁信号に対応するPDM波形の生成と、前記COS励磁コイル用の励磁信号に対応するPDM波形の生成とを個別に行い、
     前記制御ロジックは、
     前記波形生成部が前記SIN励磁コイル用の励磁信号に対応するPDM波形または前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するタイミングとは異なるタイミングで、前記SIN励磁コイル用の励磁信号および前記COS励磁コイル用の励磁信号を生成する、
     請求項3に記載のレゾルバ/デジタル変換回路。
  6.  前記制御装置は、
     前記制御ロジックから前記増幅器に送信される振幅値の指示を前記制御装置の外部から受信する通信部を備える、
     請求項4に記載のレゾルバ/デジタル変換回路。
  7.  前記ΔΣ変調部は、ΔΣ変調器によって構成される、
     請求項4に記載のレゾルバ/デジタル変換回路。
  8.  前記レゾルバセンサは、他のSIN励磁コイルと他のCOS励磁コイルと他の検出コイルとを備え
     前記制御装置は、前記他のSIN励磁コイル用の励磁信号と前記他のCOS励磁コイル用の励磁信号とを生成し、
     前記レゾルバ/デジタル変換回路は、
     前記制御装置によって生成される前記他のSIN励磁コイル用の励磁信号から前記他のSIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記他のCOS励磁コイル用の励磁信号から前記他のCOS励磁コイル用の励磁波形を生成する他の励磁波形生成部と、
     前記他の検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する他の検波部とを備え、
     前記波形生成部は、ΔΣ変調を行うことによって前記他のSIN励磁コイル用の励磁信号に対応するPDM波形と前記他のCOS励磁コイル用の励磁信号に対応するPDM波形とを生成し、
     前記制御装置は、
     前記他のSIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第3波形メモリと、
     前記他のCOS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第4波形メモリとを備える、
     請求項1に記載のレゾルバ/デジタル変換回路。
  9.  PDM波形を生成する処理を前記波形生成部に実行させる制御ロジックは、
     前記第3波形メモリに記憶されているPDM波形に対応する前記他のSIN励磁コイル用の励磁信号を生成すると共に、
     前記第4波形メモリに記憶されているPDM波形に対応する前記他のCOS励磁コイル用の励磁信号を生成する、
     請求項8に記載のレゾルバ/デジタル変換回路。
  10.  前記波形生成部は、
     前記SIN励磁コイル用の励磁信号に対応するPDM波形の生成と、前記COS励磁コイル用の励磁信号に対応するPDM波形の生成と、前記他のSIN励磁コイル用の励磁信号に対応するPDM波形の生成と、前記他のCOS励磁コイル用の励磁信号に対応するPDM波形の生成とを個別に行い、
     前記制御ロジックは、
     前記波形生成部が前記SIN励磁コイル用の励磁信号に対応するPDM波形、前記COS励磁コイル用の励磁信号に対応するPDM波形、前記他のSIN励磁コイル用の励磁信号に対応するPDM波形または前記他のCOS励磁コイル用の励磁信号に対応するPDM波形を生成するタイミングとは異なるタイミングで、前記SIN励磁コイル用の励磁信号、前記COS励磁コイル用の励磁信号、前記他のSIN励磁コイル用の励磁信号および前記他のCOS励磁コイル用の励磁信号を生成する、
     請求項9に記載のレゾルバ/デジタル変換回路。
  11.  請求項1に記載のレゾルバ/デジタル変換回路と、
     前記SIN励磁コイルと前記COS励磁コイルと前記検出コイルとを備える前記レゾルバセンサとを備えるレゾルバ信号処理装置。
  12.  請求項8に記載のレゾルバ/デジタル変換回路と、
     前記SIN励磁コイルと前記COS励磁コイルと前記検出コイルと前記他のSIN励磁コイルと前記他のCOS励磁コイルと前記他の検出コイルとを備える前記レゾルバセンサとを備えるレゾルバ信号処理装置。
  13.  SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路に備えられる制御装置が、前記SIN励磁コイル用の励磁信号と前記COS励磁コイル用の励磁信号とを生成する励磁信号生成ステップを備えるレゾルバ信号処理方法であって、
     前記レゾルバ/デジタル変換回路は、
     前記制御装置によって生成される前記SIN励磁コイル用の励磁信号から前記SIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記COS励磁コイル用の励磁信号から前記COS励磁コイル用の励磁波形を生成する励磁波形生成部と、
     前記検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する検波部とを備え、
     前記制御装置が、ΔΣ変調を行うことによって前記SIN励磁コイル用の励磁信号に対応するPDM波形と前記COS励磁コイル用の励磁信号に対応するPDM波形とを生成する波形生成ステップと、
     前記制御装置が、前記波形生成ステップにおいて生成される前記SIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第1波形記憶ステップと、
     前記制御装置が、前記波形生成ステップにおいて生成される前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第2波形記憶ステップとを更に備えるレゾルバ信号処理方法。
  14.  SIN励磁コイルとCOS励磁コイルと検出コイルとを備えるレゾルバセンサの信号処理を行うレゾルバ/デジタル変換回路に備えられる制御装置を構成するコンピュータに、前記SIN励磁コイル用の励磁信号と前記COS励磁コイル用の励磁信号とを生成する励磁信号生成ステップを実行させるためのプログラムであって、
     前記レゾルバ/デジタル変換回路は、
     前記制御装置によって生成される前記SIN励磁コイル用の励磁信号から前記SIN励磁コイル用の励磁波形を生成すると共に、前記制御装置によって生成される前記COS励磁コイル用の励磁信号から前記COS励磁コイル用の励磁波形を生成する励磁波形生成部と、
     前記検出コイルから出力される検出信号に基づいて、前記レゾルバセンサの回転角度を示す信号を生成する検波部とを備え、
     ΔΣ変調を行うことによって前記SIN励磁コイル用の励磁信号に対応するPDM波形と前記COS励磁コイル用の励磁信号に対応するPDM波形とを生成する波形生成ステップと、
     前記波形生成ステップにおいて生成される前記SIN励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第1波形記憶ステップと、
     前記波形生成ステップにおいて生成される前記COS励磁コイル用の励磁信号に対応するPDM波形を生成するための情報を記憶する第2波形記憶ステップとを更に実行させるためのプログラム。
PCT/JP2022/044505 2022-12-02 2022-12-02 レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム WO2024116399A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/044505 WO2024116399A1 (ja) 2022-12-02 2022-12-02 レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム
JP2024501739A JP7490906B1 (ja) 2022-12-02 2022-12-02 レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044505 WO2024116399A1 (ja) 2022-12-02 2022-12-02 レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2024116399A1 true WO2024116399A1 (ja) 2024-06-06

Family

ID=91194146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044505 WO2024116399A1 (ja) 2022-12-02 2022-12-02 レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム

Country Status (2)

Country Link
JP (1) JP7490906B1 (ja)
WO (1) WO2024116399A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216130A (ja) * 2007-03-06 2008-09-18 Tamagawa Seiki Co Ltd レゾルバ励磁方法
JP2010164450A (ja) * 2009-01-16 2010-07-29 Toyota Motor Corp レゾルバ・デジタル変換器
JP2011089780A (ja) * 2009-10-20 2011-05-06 Toshiba Corp レゾルバデジタルコンバータ
US20150097709A1 (en) * 2013-03-21 2015-04-09 Hamilton Sundstrand Corporation Resolver-to-digital converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216130A (ja) * 2007-03-06 2008-09-18 Tamagawa Seiki Co Ltd レゾルバ励磁方法
JP2010164450A (ja) * 2009-01-16 2010-07-29 Toyota Motor Corp レゾルバ・デジタル変換器
JP2011089780A (ja) * 2009-10-20 2011-05-06 Toshiba Corp レゾルバデジタルコンバータ
US20150097709A1 (en) * 2013-03-21 2015-04-09 Hamilton Sundstrand Corporation Resolver-to-digital converter

Also Published As

Publication number Publication date
JP7490906B1 (ja) 2024-05-27

Similar Documents

Publication Publication Date Title
JP5422401B2 (ja) レゾルバ信号変換装置及び方法
US9564876B2 (en) Digital compensation for a non-linear analog receiver
JP2000088507A (ja) レゾルバからのアナログ出力信号をデジタル評価するための方法
CN101420236B (zh) 本振泄漏检测和消除装置及方法
US7999706B2 (en) Characteristic acquisition device, method and program
JP2007225571A (ja) フラックスゲートセンサの信号処理装置
WO2024116399A1 (ja) レゾルバ/デジタル変換回路、レゾルバ信号処理装置、レゾルバ信号処理方法およびプログラム
JP2015187560A (ja) レゾルバ励磁回路
CN111141267B (zh) 一种机抖激光陀螺仪抖动控制系统抗干扰的方法
JP2773524B2 (ja) ディジタル移動無線受信機
JP2009177835A (ja) 離散時間値を信号処理するための装置
CN118284791A (zh) 旋转变压器/数字转换电路、旋转变压器信号处理装置、旋转变压器信号处理方法以及程序
JP4772382B2 (ja) 任意波形発生器、試験装置、任意波形発生方法、及びプログラム
JP2008091985A (ja) 送信方法および送信装置
JP2003298456A (ja) ソフトウェア無線機及びソフトウェア無線機の信号処理方法
US10230408B2 (en) Measurement receiver harmonic distortion cancellation
JP2007003458A (ja) ディジタル直交ロックイン検出方法及び装置
JP4206249B2 (ja) イメージリジェクションミキサ
JPH06236188A (ja) 周期音の能動消音装置
JP2002374170A (ja) 1ビットd/a変換器
WO2021124624A1 (ja) R/d変換方法及びr/d変換器
JP3454724B2 (ja) 復調回路
TW200427277A (en) Detector, method, program and recording medium
US20030182109A1 (en) Digital audio system and method therefor
EP2319189B1 (en) A device for and a method of processing data signals