WO2024114161A1 - 一种催化氧化硫醚制备亚砜化合物的方法 - Google Patents

一种催化氧化硫醚制备亚砜化合物的方法 Download PDF

Info

Publication number
WO2024114161A1
WO2024114161A1 PCT/CN2023/125594 CN2023125594W WO2024114161A1 WO 2024114161 A1 WO2024114161 A1 WO 2024114161A1 CN 2023125594 W CN2023125594 W CN 2023125594W WO 2024114161 A1 WO2024114161 A1 WO 2024114161A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compound
reaction
equiv
nmr
Prior art date
Application number
PCT/CN2023/125594
Other languages
English (en)
French (fr)
Inventor
姜雪峰
刘凯
Original Assignee
华东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东师范大学 filed Critical 华东师范大学
Publication of WO2024114161A1 publication Critical patent/WO2024114161A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B45/00Formation or introduction of functional groups containing sulfur
    • C07B45/04Formation or introduction of functional groups containing sulfur of sulfonyl or sulfinyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/02Preparation of sulfones; Preparation of sulfoxides by formation of sulfone or sulfoxide groups by oxidation of sulfides, or by formation of sulfone groups by oxidation of sulfoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/04Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/10Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/14Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/16Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C317/18Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/16Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C317/22Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/24Sulfones; Sulfoxides having sulfone or sulfoxide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/44Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/28Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/24Benzimidazoles; Hydrogenated benzimidazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D235/30Nitrogen atoms not forming part of a nitro radical
    • C07D235/32Benzimidazole-2-carbamic acids, unsubstituted or substituted; Esters thereof; Thio-analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/34[b, e]-condensed with two six-membered rings with hetero atoms directly attached to the ring sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/08Six-membered rings

Definitions

  • the invention belongs to the technical field of organic compound process application and relates to a novel method for preparing sulfoxide compounds by catalytic oxidation of sulfide.
  • Sulfoxide compounds are widely found in pesticides and medicines, such as the insecticide fipronil and omeprazole and rabeprazole for treating gastrointestinal diseases.
  • the global sales of omeprazole alone reached 17 billion US dollars in 2007.
  • Bulk chemical products such as dimethyl sulfoxide (DMSO) can not only be used as a solvent, but also have applications in many fields, such as medicine and electronics.
  • DMSO dimethyl sulfoxide
  • the global annual production is expected to be around 120,000 tons in 2020.
  • sulfides such as mercaptans, sulfides, disulfides and heterocyclic sulfides present in fuel oil need to be desulfurized before entering the market. Converting these sulfides into sulfoxide compounds through oxidation and then removing them in a targeted manner is an effective desulfurization method.
  • waste oil is a renewable resource that can be recycled as high-quality fuel, but it also needs to be desulfurized before use. Converting residual sulfides into sulfoxide compounds and then removing them in a targeted manner is also an important approach.
  • oxygen O 2
  • H 2 O 2 hydrogen peroxide
  • UHP urea peroxide
  • NaOCl sodium hypochlorite
  • tBuOOH tert-butyl peroxide
  • DDO peroxyacetone
  • iodobenzene oxide PhIO
  • iodobenzene acetate PhI(OAc) 2
  • HNO 3 nitric acid
  • mCPBA meta-chloroperbenzoic acid
  • Fe(NO 3 ) 3 ferric nitrate
  • oxone sodium bromate
  • NaBrO 3 manganese dioxide
  • MnO 2 manganese dioxide
  • O2 is the clean oxidant with the lowest cost, so in recent years, the conversion of sulfide into sulfoxide compounds by catalytic oxidation of O2 has gradually become the focus of research, such as the use of nitrogen dioxide ( NO2 ), nitrogen tetroxide ( N2O4 ), 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO), iron nitrate nonahydrate composite iron bromide (Fe( NO3 ) 3.9H2O / FeBr3 ), organic photocatalysts and metal photocatalysis.
  • NO2 nitrogen dioxide
  • N2O4 nitrogen tetroxide
  • TEMPO 2,2,6,6-tetramethylpiperidinyl oxide
  • Fe( NO3 ) 3.9H2O / FeBr3 iron nitrate nonahydrate composite iron bromide
  • organic photocatalysts and metal photocatalysis.
  • the present invention aims to provide a novel catalytic oxidation of sulfide to prepare sulfoxide Compound method.
  • the present invention can realize the oxidation of sulfide by oxygen under very mild conditions without solvent by screening new catalysts and additives.
  • the sulfide may include alkyl-alkyl, alkyl-aryl, aryl-aryl sulfide and heterocyclic sulfur-containing compounds.
  • the present invention provides a novel method for preparing sulfoxide compounds by catalytic oxidation of sulfide.
  • the reaction equation is as follows:
  • the oxygen comes from air or pure oxygen, preferably pure oxygen.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Fe(NO 3 ) 3 , including Fe(NO 3 ) 3 hydrate.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Al(NO 3 ) 3 , including Al(NO 3 ) 3 hydrate.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Cu(NO 3 ) 3 , including Cu(NO 3 ) 3 hydrate.
  • nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Cu(NO 3 ) 3 , including Cu(NO 3 ) 3 hydrate.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Se(NO 3 ) 3 , including Se(NO 3 ) 3 hydrate.
  • nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Se(NO 3 ) 3 , including Se(NO 3 ) 3 hydrate.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Cu(NO 3 ) 3 , including Cu(NO 3 ) 3 hydrate.
  • nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Cu(NO 3 ) 3 , including Cu(NO 3 ) 3 hydrate.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, In(NO 3 ) 3 , including In(NO 3 ) 3 hydrate.
  • nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, In(NO 3 ) 3 , including In(NO 3 ) 3 hydrate.
  • the catalyst is one or more of nitrates such as Fe(NO 3 ) 3 , Al(NO 3 ) 3 , KNO 3 , NaNO 3 , Cu(NO 3 ) 2 , Ce(NO 3 ) 4 , Se(NO 3 ) 3 , In(NO 3 ) 3 , and Bi(NO 3 ) 3 ; preferably, it is Bi(NO 3 ) 3 , including Bi(NO 3 ) 3 hydrate.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, trifluoroacetic acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is acetic acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is propionic acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is butyric acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is trifluoromethanesulfonic acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is hydrochloric acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is sulfuric acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, methanesulfonic acid.
  • the additive is one or more of trifluoroacetic acid, acetic acid, propionic acid, butyric acid, trifluoromethanesulfonic acid, hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid; preferably, it is p-toluenesulfonic acid.
  • the temperature of the oxidation reaction is room temperature (rt)-120°C; preferably, it is room temperature 50°C.
  • the oxidation reaction time is 2-36 hours; preferably, it is 3 hours.
  • the molar amount of the catalyst is 5-10 mol% of the thioether; preferably, 10 mol%.
  • the molar amount of the additive is 3-20 equiv. of the thioether, preferably, 10.0 equiv.
  • R 1 and R 2 are selected from one or more of hydrogen, alkyl and aryl, and their structural formula is shown in formula (1);
  • R1 is selected from hydrogen, alkyl, aryl and heterocycle, preferably, hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, other alkyl, phenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl, 4-formylphenyl, 4-formylphenyl, Phenyl, other phenyl groups, as well as thiophene, thiazole, benzothiophene, benzothiazole, benzisothiazole, dibenzothiophene, phenoxathiol, phenothiazine, and thianthrene.
  • R 2 is selected from hydrogen, alkyl, aryl and heterocycle, preferably, hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, other alkyl, phenyl, 4-chlorophenyl, 4-bromophenyl, 4-iodophenyl, 4-formylphenyl, 4-formylphenyl, other phenyl groups and thiophene, thiazole, benzothiophene, benzothiazole, benzisothiazole, dibenzothiophene, phenoxathiol, phenothiazine and thianthrene.
  • the thioether, the structure of formula (1) includes but is not limited to the following parts:
  • the structural formula of the sulfoxide compound includes the following:
  • the beneficial effects of the present invention include: mild reaction conditions, simple reaction operation, use of oxygen as an oxidant, low catalyst price, no need to use a solvent, large-scale (kilogram level) preparation of sulfoxide compounds, reduced overall cost, and prospects for industrial application.
  • Dibenzothiophene (1.9 g, 10.0 mol, 1.0 equiv.), Fe(NO 3 ) 3. 9H 2 O (404 mg, 1.0 mmol, 10 mol%) and acetic acid (4 mL, 70.0 mmol, 7 equiv.) were added to a 25 mL reaction tube, and the oxygen was replaced at 80° C. for 36 hours. The reaction was stopped, the solvent was dried, washed with saturated sodium chloride aqueous solution, extracted with ethyl acetate, and separated by organic phase column chromatography to obtain 130.76 g (3.6 mmol, 36% yield) of a white solid compound.
  • Albendazole (1.1 g, 4.0 mol, 1.0 equiv.), Fe(NO 3 ) 3.9H 2 O (162 mg, 0.4 mmol, 10 mol%) and acetic acid (4 mL, 70.0 mmol, 18 equiv.) were added to a 25 mL reaction tube, oxygen was replaced, the reaction was carried out at 80°C for 12 hours, and the TLC was performed. The reaction of the starting material was complete, the solvent was dried, the mixture was washed with saturated sodium chloride aqueous solution, extracted with ethyl acetate, and separated by organic phase column chromatography to obtain 161.02 g (3.6 mmol, 89% yield) of a white solid compound.
  • Triclabendazole (1.4 g, 4.0 mol, 1.0 equiv.), Fe(NO 3 ) 3. 9H 2 O (162 mg, 0.4 mmol, 10 mol%) and trifluoroacetic acid (4 mL, 51.0 mmol, 11 equiv.) were added to a 25 mL reaction tube, oxygen was replaced, and the reaction was carried out at room temperature for 3 hours. TLC detected that the reaction of the raw material was complete. The solvent was spin-dried, the product was washed with saturated sodium chloride aqueous solution, extracted with ethyl acetate, and the organic phase was separated by column chromatography to obtain 171.42 g (3.8 mmol, 95% yield) of a white solid compound.
  • N-Methyldibenzothiazine 1.0 g, 4.7 mol, 1.0 equiv.
  • Fe(NO 3 ) 3. 9H 2 O 188 mg, 0.47 mmol, 10 mol
  • acetic acid 4 mL, 70 mmol, 14 equiv.
  • Fenbendazole (1.0 g, 3.3 mol, 1.0 equiv.), Fe(NO 3 ) 3. 9H 2 O (132 mg, 0.33 mmol, 10 mol%) and trifluoroacetic acid (4 mL, 51.0 mmol, 14 equiv.) were added to a 25 mL reaction tube, oxygen was replaced, and the reaction was carried out at room temperature for 3 hours.
  • TLC detected that the reaction of the raw material was complete, the solvent was spin-dried, the product was washed with saturated sodium chloride aqueous solution, extracted with ethyl acetate, and the organic phase was separated by column chromatography to obtain viscous liquid compound 211.0 g (3.2 mmol, 96% yield).
  • N-acetyldibenzothiazine (1.0 g, 4.1 mol, 1.0 equiv.), Fe(NO 3 ) 3. 9H 2 O (164 mg, 0.41 mmol, 10 mol%) and acetic acid (4 mL, 70.0 mmol, 17 equiv.) were added to a 25 mL reaction tube, oxygen was replaced, and the reaction was carried out at room temperature for 3 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种新型催化氧化硫醚制备亚砜化合物的方法,所述方法通过催化剂和溶剂的筛选,在非常温和的条件下,有溶剂或无溶剂的条件下实现硫醚公斤级的氧化合成亚砜类化合物。本发明方法兼容烷基-烷基、烷基-芳基、芳基-芳基硫醚及含硫杂环化合物。本发明制备方法具有广泛应用前景。

Description

一种催化氧化硫醚制备亚砜化合物的方法 技术领域
本发明属于有机化合物工艺应用技术领域,涉及一种新型催化氧化硫醚制备亚砜化合物的方法。
背景技术
亚砜类化合物广泛存在于农药、医药当中,如杀虫剂氟虫腈和治疗肠胃疾病的奥美拉唑、雷贝拉唑等,只奥美拉唑在2007年的全球销售额就达到了170亿美元。而如二甲基亚砜(DMSO)这样的大宗化学产品,其不仅可以作为溶剂使用,同时在很多领域都有应用,如医药、电子行业等,2020年全球年产量预计就在12W吨左右。
此外,由于硫化物燃烧产生的酸性气体或液体会对机器腐蚀和大气产生污染,所以燃油中存在的硫醇、硫醚、二硫及杂环硫化物等硫化物需要在进入市场前进行脱硫处理,而通过氧化手段将这些硫化物转化为亚砜类化合物随后在针对性的脱除是一种有效的脱硫手段。
最后,废弃油脂是一类可以回收利用作为高质量燃油的可再生资源,而在利用之前同样需要进行脱硫处理,将残留的硫化物转化为亚砜类化合物然后再进行针对性脱除也是一种重要的途径。
所以开发一种廉价金属催化氧化将硫化物氧化成亚砜类化合物的合成方法不仅能够大幅降低亚砜类化合物的生产成本,同样能够低成本地实现燃油和废弃油脂的脱硫处理,意义十分重大,所以一直备受广大材料和有机化学家的关注。将硫化物氧化成亚砜的方法非常之多,以氧化剂记,已知报道的就超过14种,如氧气(O2)、双氧水(H2O2)、过氧化脲(UHP)、次氯酸钠(NaOCl)、过氧叔丁醇(tBuOOH)、过氧丙酮(DDO)、氧化碘苯(PhIO)、醋酸碘苯(PhI(OAc)2)、硝酸(HNO3)、间氯过氧苯甲酸(mCPBA)、硝酸铁(Fe(NO3)3)、过氧单磺酸钾(oxone)、溴酸钠(NaBrO3)、二氧化锰(MnO2)等。从工业成本的角度考虑,O2是成本最低的清洁氧化剂,所以近年来通过催化实现O2氧化硫化物转化为亚砜类化合物逐渐成为研究的重点,如使用二氧化氮(NO2)、四氧化氮(N2O4)、2,2,6,6-四甲基哌啶氧化物(TEMPO)、九水合硝酸铁复合溴化铁(Fe(NO3)3.9H2O/FeBr3)、有机光催化剂及金属光催化等。但是这些方法在工业放大的时候,往往会出现催化剂价值高,溶剂较贵,或者装备难以放大等因素中一个或者两个,限制了其在工业上的应用,所以开发一种条件温和催化剂低廉无溶剂的O2氧化的方法,意义重大,工业前景巨大。
发明内容
为了解决现有技术存在的不足,本发明的目的是提供一种新型催化氧化硫醚制备亚砜 化合物的方法。
本发明通过新型催化剂和添加剂的筛选,在非常温和的条件下就能够实现氧气对硫醚的氧化,无需溶剂,硫醚可以包括烷基-烷基、烷基-芳基、芳基-芳基硫醚及杂环含硫化合物。
本发明提供了提供一种新型催化氧化硫醚制备亚砜化合物的方法。反应方程式如下所示:
具体步骤如下:
以硫醚为原料,在催化剂、添加剂的作用下与氧气发生氧化反应选择性地得到亚砜类化合物。
本发明中,所述氧气来源于空气或纯氧,优选地为纯氧。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Fe(NO3)3,包含Fe(NO3)3的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Al(NO3)3,包含Al(NO3)3的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Cu(NO3)3,包含Cu(NO3)3的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Ce(NO3)4,包含Ce(NO3)4的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Se(NO3)3,包含Se(NO3)3的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Cu(NO3)3,包含Cu(NO3)3的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为In(NO3)3,包含In(NO3)3 的水合物。
本发明中,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2、Ce(NO3)4、Se(NO3)3、In(NO3)3、Bi(NO3)3等硝酸盐中的一种或几种;优选地,为Bi(NO3)3,包含Bi(NO3)3的水合物。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为三氟乙酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为醋酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为丙酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为丁酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为三氟甲磺酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为盐酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为硫酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为甲磺酸。
本发明中,所述添加剂是三氟乙酸、醋酸、丙酸、丁酸、三氟甲磺酸、盐酸、硫酸、甲磺酸、对甲苯磺酸的一种或几种;优选地,为对苯甲苯磺酸。
本发明中,所述氧化反应的温度为室温(rt)-120℃;优选地,为室温50℃。
本发明中,所述氧化反应的时间为2-36h;优选地,为3h。
本发明中,所述催化剂的摩尔用量为硫醚的5-10mol%;优选地,为10mol%。
本发明中,所述添加剂的摩尔用量为硫醚的3-20equiv.,优选地,为10.0equiv.
其中R1、R2选自氢、烷基、芳基的一种或几种,其结构式如式(1)所示;
其中,R1选自氢、烷基、芳基以及杂环,优选地,为氢、甲基、乙基、正丙基、异丙基、正丁基、叔丁基、其他烷基、苯基、4-氯苯基、4-溴苯基、4-碘苯基、4-醛基苯基、4-甲酰基 苯基、其他苯基以及噻吩、噻唑、苯并噻吩、苯并噻唑、苯并异噻唑、二苯并噻吩、吩恶噻、吩噻嗪、噻蒽。
其中,R2自氢、烷基、芳基以及杂环,优选地,为氢、甲基、乙基、正丙基、异丙基、正丁基、叔丁基、其他烷基、苯基、4-氯苯基、4-溴苯基、4-碘苯基、4-醛基苯基、4-甲酰基苯基、其他苯基以及噻吩、噻唑、苯并噻吩、苯并噻唑、苯并异噻唑、二苯并噻吩、吩恶噻、吩噻嗪、噻蒽。
所述硫醚,式(1)结构包括但不限于如下部分:

所述亚砜化合物的结构式包括如下:

本发明的有益效果包括:本发明反应条件温和,反应操作简单,使用氧气作为氧化剂,催化剂价格低廉,无需使用溶剂,可以规模化(公斤级)制备亚砜类化合物,总体成本降低,有工业化应用的前景。
具体实施方式
结合以下具体实施例,对本发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
本发明下述实施例关于亚砜化合物的制备参考下述反应式:
实施例1
化合物1的合成:
向1000mL单口烧瓶中加入二甲基硫醚(124g,2.0mol,1.0equiv.)、Fe(NO3)3.9H2O(40.4g,0.1mol,5mol%)和醋酸(340mL,6.0mol,3.0equiv.),置换氧气,rt,反应6小时,红色消失,壁温恢复常温,停止反应,旋干溶剂,抽滤,得到淡黄色液体化合物1137.3g(1.76mmol,88%yield)。
化合物1的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ2.63(s,6H).13C NMR(100MHz,CDCl3)δ40.8.
实施例2
化合物2的合成:
向25mL反应管中加入二叔丁基硫醚(1.5g,10.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(404mg,1mmol,10mol%)和醋酸(6mL,100.0mmol,10equiv.),置换氧气,rt,反应24小时,停止反应,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到无色液体化合物21.18g(7.3mmol,73%yield)。
化合物2的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ2.70–2.53(m,4H),1.79–1.62(m,4H),1.55–1.32(m,4H),0.89–0.94(m,6H).13C NMR(100MHz,CDCl3)δ52.0,24.5,22.0,13.5.
实施例3
化合物3的合成:
向25mL反应管中加入二苄基硫醚(1.0g,5.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(202mg,0.5mmol,10mol%)和醋酸(4mL,70.0mmol,14equiv.),置换氧气,50℃,反应5小时,停止反应,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物30.92g(4.0mmol,79%yield)。
化合物3的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.35-7.40(m,10H),7.28-7.30(m,4H),3.90(q,J=13Hz,4H).13C NMR(125MHz,CDCl3)δ130.1,128.9,128.3,57.3.
实施例4
化合物4的合成:
向25mL反应管中加入苯甲硫醚(1.2g,10.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(404mg,1.0mmol,10mol%)和醋酸(4mL,70.0mmol,7equiv.),置换氧气,50℃,反应2小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物41.20g(8.6mmol,86%yield)。
化合物4的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.59-7.61(m,2H),7.43-7.50(m,3H),2.68(s,3H).13C NMR(125MHz,CDCl3)δ145.4,130.9,129.2,123.3,43.7.
实施例5
化合物5的合成:
向25mL反应管中加入苯乙硫醚(1.0g,7.2mmol,1.0equiv.)、Fe(NO3)3.9H2O(291mg,0.72mmol,10mol%)和醋酸(4mL,72.0mmol,10equiv.),置换氧气,50℃,反应2小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物51.02g(6.6mmol,92%yield)。
化合物5的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.47-7.57(m,5H),2.73–2.86(m,2H),1.15(s,3H).13C NMR(125MHz,CDCl3)δ143.1,130.8,129.0,124.0,50.1,5.8.
实施例6
化合物6的合成:
向25mL反应管中加入4-氯苯甲硫醚(1.6g,10.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(404mg,1.0mmol,10mol%)和醋酸(4mL,70.0mmol,7equiv.),置换氧气,50℃,反应4小时, TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物61.62g(9.2mmol,92%yield)。
化合物6的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.50-7.60(m,4H),2.71(s,3H).13C NMR(125MHz,CDCl3)δ144.2,137.2,129.6,124.9,44.1.
实施例7
化合物7的合成:
向25mL反应管中加入4-溴苯甲硫醚(1.0g,5.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(202mg,0.5mmol,10mol%)和醋酸(4mL,70.0mmol,14equiv.),置换氧气,50℃,反应2小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物71.05g(4.8mmol,95%yield)。
化合物7的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ7.50-7.67(m,4H),2.69–2.71(m,3H).13C NMR(100MHz,CDCl3)δ144.8,132.5,125.4,125.1,44.0.
实施例8
化合物8的合成:
向25mL反应管中加入4-碘苯甲硫醚(1.0g,4.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(162mg,0.4mmol,10mol%)和醋酸(4mL,70.0mmol,18equiv.),置换氧气,50℃,反应4小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物80.96g(3.6mmol,90%yield)。
化合物8的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ7.83-7.87(m,2H),7.33-7.37(m,2H),2.66–2.72(m,3H).13C NMR(100MHz,CDCl3)δ145.7,138.5,125.2,97.4,44.0.
实施例9
化合物9的合成:
向25mL反应管中加入4-醛基苯甲硫醚(1.5g,10.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(404mg,1.0mmol,10mol%)和醋酸(4mL,70.0mmol,7equiv.),置换氧气,50℃,反应6小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物91.31g(7.9mmol,79%yield)。
化合物9的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ10.07(s,1H).8.03(d,J=8Hz,2H),7.80(d,J=8.5Hz,2H),2.76(s,3H).13C NMR(125MHz,CDCl3)δ191.1,152.4,138.1,130.3,124.1,43.7.
实施例10
化合物10的合成:
向25mL反应管中加入4-甲酰基苯甲硫醚(1.0g,6.0mmol,1.0equiv.)、Fe(NO3)3.9H2O(242mg,0.6mmol,10mol%)和醋酸(4mL,70.0mmol,12equiv.),置换氧气,50℃,反应6小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物100.76g(4.2mmol,70%yield)。
化合物10的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ8.08(d,J=7.5Hz,2H),7.73(d,J=7.5Hz,2H),2.74(s,3H),2.62–2.63(m,3H).13C NMR(125MHz,CDCl3)δ197.0,150.9,139.0,129.1,123.7,43.8,26.7.
实施例11
化合物11的合成:
向25mL反应管中加入4-氰基苯甲硫醚(1.0g,6.7mmol,1.0equiv.)、Fe(NO3)3.9H2O(283mg,0.7mmol,10mol%)和醋酸(4mL,70.0mmol,10equiv.),置换氧气,50℃,反应5小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物110.98g(5.9mmol,88%yield)。
化合物11的相关表征结果如下:
1H NMR(300MHz,CDCl3)δ7.74–7.84(m,4H),2.74–2.76(m,3H).13C NMR(75MHz,CDCl3)δ151.4,133.0,124.3,117.7,114.8,43.8.
实施例12
化合物12的合成:
向25mL反应管中加入二苯基硫醚(1.9g,10.0mol,1.0equiv.)、Fe(NO3)3.9H2O(404mg,1.0mmol,10mol%)和醋酸(4mL,70.0mmol,7equiv.),置换氧气,80℃,反应9小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物121.57g(7.5mmol,75%yield)。
化合物12的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.63–7.64(m,4H),7.42–7.44(m,6H).13C NMR(125MHz,CDCl3)δ145.5,130.9,129.2,124.7.
实施例13
化合物13的合成:
向25mL反应管中加入二苯并噻吩(1.9g,10.0mol,1.0equiv.)、Fe(NO3)3.9H2O(404mg,1.0mmol,10mol%)和醋酸(4mL,70.0mmol,7equiv.),置换氧气,80℃,反应36小时,停止反应,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物130.76g(3.6mmol,36%yield)。
化合物13的相关表征结果如下:
1H NMR(500MHz,CDCl3)7.98(d,J=7.5Hz,2H),7.82(d,J=7.5Hz,2H),7.57–7.61(m,2H),7.49–7.53(m,2H).13C NMR(125MHz,CDCl3)δ145.2,137.1,132.5,129.6,127.5,121.9.
实施例14
化合物14的合成:
向25mL反应管中加入吩恶噻(1.0g,5.0mol,1.0equiv.)、Fe(NO3)3.9H2O(202mg,0.5mmol,10mol%)和醋酸(4mL,70.0mmol,14equiv.),置换氧气,50℃,反应2小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物141.00g(4.7mmol,93%yield)。
化合物14的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ7.93(dt,J=8.0,2.0Hz,2H),7.66–7.58(m,2H),7.47–7.34(m,4H).13C NMR(125MHz,CDCl3)δ149.4,133.7,131.0,124.8,123.6,118.8.
实施例15
化合物15的合成:
向25mL反应管中加入噻蒽(1.1g,5.0mol,1.0equiv.)、Fe(NO3)3.9H2O(202mg,0.5mmol,10mol%)和醋酸(4mL,70.0mmol,14equiv.),置换氧气,50℃,反应1小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物151.10g(4.8mmol,95%yield)。
化合物15的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.93(d,J=7.5Hz,2H),7.62(d,J=8.0Hz,2H),7.55(t,J=7.5Hz,2H),7.42(t,J=7.5Hz,2H).13C NMR(125MHz,CDCl3)δ141.4,129.8,129.0,128.4,124.5.
实施例16
化合物16的合成:
向25mL反应管中加入阿苯达唑(1.1g,4.0mol,1.0equiv.)、Fe(NO3)3.9H2O(162mg,0.4mmol,10mol%)和醋酸(4mL,70.0mmol,18equiv.),置换氧气,80℃,反应12小时,TLC检 测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物161.02g(3.6mmol,89%yield)。
化合物16的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ13.83(s,1H),10.77(s,1H),7.33–8.03(m,3H),4.03(s,3H),2.77–2.89(m,2H),1.63–1.85(m,2H),1.05(t,J=7.5Hz,3H).13C NMR(125MHz,CDCl3)δ155.5,149.6,134.9,117.4,113.5,111.0,59.8,53.4,16.0,13.3.
实施例17
化合物17的合成:
向25mL反应管中加入三氯苯达唑(1.4g,4.0mol,1.0equiv.)、Fe(NO3)3.9H2O(162mg,0.4mmol,10mol%)和三氟乙酸(4mL,51.0mmol,11equiv.),置换氧气,常温,反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到白色固体化合物171.42g(3.8mmol,95%yield)。
化合物17的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ8.68(s,2H),7.58(s,1H),7.18(dd,J=8.0,1.0Hz,1H),7.14(s,1H),7.05(t,J=8.5Hz,1H),6.60(dd,J=8.0,1.0Hz,1H),2.74(s,3H).13C NMR(125MHz,CDCl3)δ154.6,154.0,146.8,138.3,136.3,134.3,127.4,124.7,123.2,120.9,115.6,115.2,106.3,14.7.
实施例18
化合物18的合成:
向25mL反应管中加入4-氯甲基二苯基硫醚(1.0g,4.3mol,1.0equiv.)、Fe(NO3)3.9H2O(162mg,0.43mmol,10mol%)和醋酸(4mL,70.0mmol,17equiv.),置换氧气,常温,反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物180.91g(3.7mmol,85%yield)。
化合物18的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.69–7.61(m,4H),7.50–7.40(m,5H),4.56(s,2H).13C NMR(125MHz,CDCl3)δ145.8,145.3,140.4,131.2,129.4,125.1,124.7,45.2.
实施例19
化合物19的合成:
向25mL反应管中加入2-甲基二苯并噻吩(1.0g,4.8mol,1.0equiv.)、Fe(NO3)3.9H2O(192mg,0.48mmol,10mol%)和三氟乙酸(4mL,51.0mmol,11equiv.),置换氧气,常温,反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物190.77g(3.6mmol,75%yield)。
化合物19的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ8.00(d,J=10.0Hz,1H),7.77(d,J=10.0Hz,1H),7.64–7.56(m,2H),7.50(dt,J=15.0,10.0Hz,2H),2.79(s,3H).13C NMR(126MHz,CDCl3)δ144.2,142.6,138.8,136.8,132.4,132.0,130.6,129.0,126.9,121.6,119.1,18.3.
实施例20
化合物20的合成:
向25mL反应管中加入N-甲基二苯并噻嗪(1.0g,4.7mol,1.0equiv.)、Fe(NO3)3.9H2O(188mg,0.47mmol,10mol%)和乙酸(4mL,70mmol,14equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物200.98g(4.3mmol,91%yield)。
化合物20的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.94(dd,J=7.5,1.0Hz,2H),7.62(dd,J=14.5,7.0Hz,2H),7.39(d,J=8.5Hz,2H),7.26(dd,J=7.5,1.0Hz,2H),3.76(s,3H).13C NMR(125MHz,CDCl3)δ139.9,132.7,131.0,124.6,121.8,115.5,35.3.
实施例21
化合物21的合成
向25mL反应管中加入芬苯达唑(1.0g,3.3mol,1.0equiv.)、Fe(NO3)3.9H2O(132mg,0.33mmol,10mol%)和三氟乙酸(4mL,51.0mmol,14equiv.),置换氧气,常温反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物211.0g(3.2mmol,96%yield)。
化合物21的相关表征结果如下:
1H NMR(500MHz,DMSO)δ7.71(d,J=5.0Hz,1H),7.65–7.60(m,2H),7.51–7.41(m,4H),7.35(dd,J=10.0,1.5Hz,1H),3.72(s,3H).13C NMR(125MHz,DMSO)δ156.1,154.11(s),147.5,137.6,129.9,129.2,123.9,120.7,117.6,38.8.
实施例22
化合物22的合成
向25mL反应管中加入奋乃静(1.0g,2.5mol,1.0equiv.)、Fe(NO3)3.9H2O(100mg,0.25mmol,10mol%)和乙酸(4mL,70.0mmol,28equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物220.89g(2.1mmol,85%yield)。
化合物22的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.87(dd,J=7.5,1.0Hz,1H),7.79(d,J=8.0Hz,1H),7.58(dd,J=8.0,1.0Hz,1H),7.49(d,J=11.5Hz,2H),7.22(t,J=7.5Hz,1H),7.15(dd,J=8.0,1.0Hz,1H),4.36–4.20(m,2H),3.58(t,J=5.0Hz,2H),3.00(s,1H),2.67–2.25(m,12H),2.00(dd,J=14.0,5.0Hz,2H).
13C NMR(125MHz,CDCl3)δ139.2,138.7,137.7,132.8,132.6,131.4,124.2,122.4,122.1,121.7,115.93,59.3,57.7,54.4,53.1,52.8,45.3,23.6.
实施例23
化合物23的合成
向25mL反应管中加入2-氯乙基苯基硫醚(1.7g,10.0mol,1.0equiv.)、Fe(NO3)3.9H2O(400mg,1.0mmol,10mol%)和乙酸(4mL,70.0mmol,7equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物231.5g(7.9mmol,79%yield)。
化合物23的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.64(dt,J=4.5,2.0Hz,2H),7.59–7.51(m,3H),4.01–3.93(m,1H),3.69–3.62(m,1H),3.21–3.13(m,2H).13C NMR(125MHz,CDCl3)δ142.8,131.4,129.5,123.9,59.4,36.7.
实施例24
化合物24的合成
向25mL反应管中加入4-甲氧基苯甲硫醚(1.0g,6.5mol,1.0equiv.)、Fe(NO3)3.9H2O(260mg,0.65mmol,10mol%)和乙酸(4mL,70.0mmol,11equiv.),置换氧气,常温反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物240.94g(5.5mmol,85%yield)。
化合物24的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ7.61–7.51(m,2H),7.05–6.92(m,2H),3.87–3.78(m,3H),2.67(d,J=0.8Hz,3H).13C NMR(100MHz,CDCl3)δ161.9,136.5,125.4,114.8,55.4,43.9.
实施例25
化合物25的合成
向25mL反应管中加入4-硝基苯甲硫醚(1.7g,10.0mol,1.0equiv.)、Fe(NO3)3.9H2O(400mg,1.0mmol,10mol%)和乙酸(4mL,70.0mmol,7equiv.),置换氧气,50℃反应3小时,TLC 检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物251.4g(7.6mmol,76%yield)。
化合物25的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ8.36(d,J=8.8Hz,2H),7.82(d,J=8.8Hz,2H),2.77(s,3H).13C NMR(100MHz,CDCl3)δ153.2,149.4,124.6,124.4,43.8.
实施例26
化合物26的合成
向25mL反应管中加入二辛基硫醚(1.6g,6.2mol,1.0equiv.)、Fe(NO3)3.9H2O(248mg,0.62mmol,10mol%)和乙酸(4mL,70.0mmol,11equiv.),置换氧气,常温反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物261.4g(5.8mmol,94%yield)。
化合物26的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ2.74–2.51(m,4H),1.74(m,4H),1.56–1.37(m,4H),1.28(m,16H),0.87(t,J=6.8Hz,6H).13C NMR(100MHz,CDCl3)δ52.4,31.69,3.13,29.0,28.9,22.6,14.0.
实施例27
化合物27的合成
向25mL反应管中加入4-甲基苯基苯硫醚(1.0g,5.0mol,1.0equiv.)、Fe(NO3)3.9H2O(200mg,0.50mmol,10mol%)和乙酸(4mL,70.0mmol,14equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物271.0g(4.7mmol,93%yield)。
化合物27的相关表征结果如下:
1H NMR(400MHz,CDCl3)δ7.66–7.59(m,2H),7.52(d,J=8.0Hz,2H),7.47–7.37(m,3H),7.24(t,J=6.4Hz,2H),2.34(s,3H).13C NMR(100MHz,CDCl3)δ145.7,142.4,141.5,130.8,129.9,129.1,124.9,124.6,21.3.
实施例28
化合物28的合成
向25mL反应管中加入环丙嗪(1.4g,4.4mol,1.0equiv.)、Fe(NO3)3.9H2O(176mg,0.44mmol,10mol%)和乙酸(4mL,70.0mmol,16equiv.),置换氧气,常温反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物281.3g(3.9mmol,88%yield)。
化合物28的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.89(dd,J=7.5,1.5Hz,1H),7.81(d,J=8.0Hz,1H),7.66–7.57(m,1H),7.48(d,J=8.5Hz,2H),7.27(dd,J=9.5,5.0Hz,1H),7.20(dd,J=8.0,1.5Hz,1H),4.43–4.28(m,2H),2.77(t,J=7.5Hz,2H),2.41(s,6H),2.20(d,J=6.5Hz,2H).13C NMR(125MHz,CDCl3)δ139.7,139.1,138.0,133.1,132.2,131.1,125.5,123.8,122.7,122.4,116.6,116.6,55.0,45.1,43.5,23.3.
实施例29
化合物29的合成
向25mL反应管中加入4-醛基苯基苯硫醚(1.0g,4.7mol,1.0equiv.)、Fe(NO3)3.9H2O(187mg,0.47mmol,10mol%)和乙酸(4mL,70.0mmol,15equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物290.86g(3.8mmol,80%yield)。
化合物29的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ10.03(s,1H),7.96(d,J=8.5Hz,2H),7.82(d,J=8.5Hz,2H),7.70–7.62(m,2H),7.48(dd,J=5.0,1.5Hz,3H).13C NMR(125MHz,CDCl3)δ191.1,152.2,144.9,137.9,131.7,130.4,129.6,125.0,124.9.
实施例30
化合物30的合成
向25mL反应管中加入N-乙酰基二苯并噻嗪(1.0g,4.1mol,1.0equiv.)、Fe(NO3)3.9H2O(164mg,0.41mmol,10mol%)和乙酸(4mL,70.0mmol,17equiv.),置换氧气,常温反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物300.86g(3.8mmol,80%yield)。
化合物30的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.81(dd,J=7.5,1.5Hz,2H),7.63(d,J=8.0Hz,2H),7.40–7.48(m,4H),2.29(s,3H).13C NMR(125MHz,CDCl3)δ168.0,139.8,133.5,130.2,127.3,126.3,124.2,23.1.
实施例31
化合物31的合成
向25mL反应管中加入4-氯甲基苯基苯硫醚(1.0g,4.3mol,1.0equiv.)、Fe(NO3)3.9H2O(172mg,0.43mmol,10mol%)和乙酸(4mL,70.0mmol,16equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物310.91g(3.7mmol,85%yield)。
化合物31的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.67–7.60(m,4H),7.51–7.42(m,5H),4.56(s,2H).13C NMR(125MHz,CDCl3)δ145.8,145.3,140.4,131.2,129.4,129.4,125.1,124.7,45.2.
实施例32
化合物32的合成
向25mL反应管中加入4,6-二甲基二苯并噻吩(1.0g,4.7mol,1.0equiv.)、Fe(NO3)3.9H2O(188mg,0.47mmol,10mol%)和三氟乙酸(4mL,51.0mmol,11equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物320.86g(3.8mmol,80%yield)。
化合物32的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.60(d,J=7.5Hz,2H),7.46(t,J=7.5Hz,2H),7.23(d,J=7.5Hz,2H),2.74(s,6H).13C NMR(125MHz,CDCl3)δ142.7,139.1,137.6,132.6,130.9,119.4,18.6.
实施例33
化合物33的合成
向25mL反应管中加入4-氨基苯甲硫醚(1.4g,10.0mol,1.0equiv.)、Fe(NO3)3.9H2O(400mg,1.0mmol,10mol%)和乙酸(4mL,70.0mmol,7equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物330.85g(4.3mmol,43%yield)。
化合物33的相关表征结果如下:
1H NMR(500MHz,CDCl3)δ7.50–7.39(m,3H),7.22(d,J=8.5Hz,2H),2.45(s,3H),2.16(s,3H).13C NMR(125MHz,CDCl3)δ168.4,135.5,133.6,127.9,120.6,24.5,16.6.
实施例34
化合物34的合成
向25mL反应管中加入3-甲基(2-苯氧基)乙基硫醚(3.0g,12.3mol,1.0equiv.)、Fe(NO3)3.9H2O(480mg,1.2mmol,10mol%)和乙酸(4mL,70.0mmol,6equiv.),置换氧气,50℃反应3小时,TLC检测原料反应完全,旋干溶剂,饱和氯化钠水溶液水洗,乙酸乙酯萃取,有机相柱层析分离得到粘稠液体化合物332.9g(11.3mmol,92%yield)。
化合物34的相关表征结果如下:
1H NMR(300MHz,CDCl3)δ7.41(s,1H),7.39–7.27(m,2H),7.17–7.22(m,3H),6.89(t,J=7.5Hz,1H),6.84–6.75(m,2H),4.44–4.29(m,1H),4.11(dt,J=10.2,5.1Hz,1H),3.04–3.13(m,2H),2.31(s,3H).13C NMR(75MHz,CDCl3)δ157.5,143.1,139.1,131.5,129.1,128.7,123.7,120.9,120.6,114.2,60.2,56.6,20.9.
本发明的保护内容不局限于以上实施例。在不背离本发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (8)

  1. 一种催化氧化硫醚制备亚砜化合物的方法,其特征在于,以硫醚为原料,在催化剂、添加剂的作用下与氧气发生氧化反应选择性地得到亚砜类化合物,所述方法的反应过程如下所示:
    其中,R1、R2选自氢、烷基、芳基的一种或几种,以及含硫杂环化合物。
  2. 如权利要求1所述的方法,其特征在于,所述氧气的来源是空气或者纯氧。
  3. 如权利要求1所述的方法,其特征在于,所述催化剂是Fe(NO3)3、Al(NO3)3、KNO3、NaNO3、Cu(NO3)2中的一种或几种。
  4. 如权利要求1所述的方法,其特征在于,所述添加剂是三氟乙酸、醋酸、甲磺酸、对甲苯磺酸的一种或几种。
  5. 如权利要求1所述的方法,其特征在于,所述反应的温度为室温-120℃。
  6. 如权利要求1所述的方法,其特征在于,所述反应的时间为2-36h。
  7. 如权利要求1所述的方法,其特征在于,所述硫醚的结构式包括如下:

  8. 如权利要求1所述的方法,其特征在于,所述亚砜化合物的结构式包括如下:

PCT/CN2023/125594 2022-11-29 2023-10-20 一种催化氧化硫醚制备亚砜化合物的方法 WO2024114161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211506303.1A CN115772103A (zh) 2022-11-29 2022-11-29 一种催化氧化硫醚制备亚砜化合物的方法
CN202211506303.1 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024114161A1 true WO2024114161A1 (zh) 2024-06-06

Family

ID=85390878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125594 WO2024114161A1 (zh) 2022-11-29 2023-10-20 一种催化氧化硫醚制备亚砜化合物的方法

Country Status (2)

Country Link
CN (1) CN115772103A (zh)
WO (1) WO2024114161A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117247373B (zh) * 2023-11-16 2024-02-20 湖南九典宏阳制药有限公司 一种通过催化氧化制备泮托拉唑钠关键中间体2的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134209A (zh) * 2011-01-18 2011-07-27 扬州大学 氧化硫醚合成亚砜的方法
EP2383245A2 (de) * 2010-04-20 2011-11-02 Bayer Technology Services GmbH Verfahren zur kontinuierlichen Oxidation von Thioethern
CN104311459A (zh) * 2014-09-10 2015-01-28 王晓伟 一种氧化不对称硫醚制备亚砜的方法
CN112608257A (zh) * 2020-12-24 2021-04-06 新疆大学 一种亚砜类化合物的合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104311458A (zh) * 2014-09-10 2015-01-28 王晓伟 氧化对称硫醚制备亚砜的方法
CN106905202B (zh) * 2017-02-28 2018-10-02 温州大学 一种芳基亚砜化合物的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383245A2 (de) * 2010-04-20 2011-11-02 Bayer Technology Services GmbH Verfahren zur kontinuierlichen Oxidation von Thioethern
CN102134209A (zh) * 2011-01-18 2011-07-27 扬州大学 氧化硫醚合成亚砜的方法
CN104311459A (zh) * 2014-09-10 2015-01-28 王晓伟 一种氧化不对称硫醚制备亚砜的方法
CN112608257A (zh) * 2020-12-24 2021-04-06 新疆大学 一种亚砜类化合物的合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, XUEDONG ET AL.: "Fe(NO3)3·9H2O-catalyzed aerobic oxidation of sulfides to sulfoxides under mild conditions with the aid of trifluoroethanol", CHINESE CHEMICAL LETTERS, vol. 26, 17 December 2014 (2014-12-17), XP029168150, DOI: 10.1016/j.cclet.2014.12.010 *
LIU KAI, MENG JIAOLONG; JIANG XUEFENG: "Gram-Scale Synthesis of Sulfoxides via Oxygen Enabled by Fe(NO 3 ) 3 ·9H 2 O", ORGANIC PROCESS RESEARCH & DEVELOPMENT, AMERICAN CHEMICAL SOCIETY, US, vol. 27, no. 7, 21 July 2023 (2023-07-21), US , pages 1198 - 1202, XP093175995, ISSN: 1083-6160, DOI: 10.1021/acs.oprd.2c00390 *
MARTIN SANDRA E.; ROSSI LAURA I.: "An efficient and selective aerobic oxidation of sulfides to sulfoxides catalyzed by Fe(NO3)3–FeBr3", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 42, no. 41, 1 January 1900 (1900-01-01), Amsterdam , NL , pages 7147 - 7151, XP085009186, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(01)01490-3 *

Also Published As

Publication number Publication date
CN115772103A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024114161A1 (zh) 一种催化氧化硫醚制备亚砜化合物的方法
Shi et al. Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles
Patel et al. Cyanation: a photochemical approach and applications in organic synthesis
WO2017012379A1 (zh) 草酸酰胺类配体及其在铜催化芳基卤代物偶联反应中的用途
Das et al. New polymer-immobilized peroxotungsten compound as an efficient catalyst for selective and mild oxidation of sulfides by hydrogen peroxide
CN109972165A (zh) 一种β-三氟甲基酰胺类化合物的电化学制备方法
Deng et al. External‐Oxidant‐Free Electrochemical Oxidative Trifluoromethylation of Arenes Using CF3SO2Na as the CF3 Source
Ogbu et al. Oxamic acids: useful precursors of carbamoyl radicals
Cazorla et al. Oxidative nucleophilic substitution: transformation of alkylboronic derivatives
CN108912062A (zh) 一种三唑硫酮衍生物的制备方法
Dissanayake et al. Electrochemical anion pool synthesis of amides with concurrent benzyl ester synthesis
CN105330600A (zh) 一种瑞戈菲尼的制备方法
JP4465048B2 (ja) N−置換3−ヒドロキシピラゾールの製造方法
CN111072498B (zh) 一种化工中间体n-异丙基对氟苯胺的制备方法
CN115197108B (zh) 一种γ-酮砜类化合物的制备方法
CN111099975A (zh) 一种5-溴-2-氯-4’-乙氧基二苯甲酮的制备方法
WO2021114424A1 (zh) 三氟烃基砜类化合物的制备方法
CN107721886A (zh) 一种1‑芳基乙磺酸及其衍生物的制备方法
CN103980200A (zh) 制备取代吡唑碳酰氯的方法
CN102731386B (zh) 一种仲二酰亚胺衍生物的制备方法
CN109503472B (zh) 一种杂环砜或杂环磺酰胺化合物的制备方法
CN106588767B (zh) 一种在水相中催化串联反应合成异喹啉酮衍生物的方法
CN101186591A (zh) 一种合成对称二苄基二硫醚类化合物的方法
JP5306336B2 (ja) 置換ヘテロ芳香族化合物の製造方法
CN105001176A (zh) 一种2-噁唑啉酮衍生物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896316

Country of ref document: EP

Kind code of ref document: A1