WO2024111496A1 - シート状放熱部材及び熱伝導性複合体 - Google Patents

シート状放熱部材及び熱伝導性複合体 Download PDF

Info

Publication number
WO2024111496A1
WO2024111496A1 PCT/JP2023/041218 JP2023041218W WO2024111496A1 WO 2024111496 A1 WO2024111496 A1 WO 2024111496A1 JP 2023041218 W JP2023041218 W JP 2023041218W WO 2024111496 A1 WO2024111496 A1 WO 2024111496A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
heat dissipation
mass
thermally conductive
heat
Prior art date
Application number
PCT/JP2023/041218
Other languages
English (en)
French (fr)
Inventor
崇則 伊藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024111496A1 publication Critical patent/WO2024111496A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a sheet-shaped heat dissipation member and a thermally conductive composite.
  • thermosoftening materials that are easy to handle in a solid form at room temperature and soften or melt when exposed to heat generated by electronic components.
  • thermosoftening materials are thermally conductive components that have both the easy-to-handle properties of a low-hardness thermally conductive sheet and the low thermal resistance of a thermally conductive grease.
  • Silicone is known as a material that has excellent heat resistance, weather resistance, and flame retardancy, which are required particularly for heat dissipation materials, and many silicone-based heat-softening materials have been proposed.
  • Patent Document 1 proposes a composition consisting of a thermoplastic silicone resin, a wax-like modified silicone resin, and a thermally conductive filler.
  • Patent Document 2 proposes a thermally conductive sheet consisting of a binder resin such as silicone gel, a wax, and a thermally conductive filler.
  • Patent Document 3 proposes a heat-softening heat-dissipating sheet consisting of a polymer gel such as silicone, a compound that becomes liquid when heated, such as modified silicone or wax, and a thermally conductive filler.
  • Patent Document 4 discloses a heat-softening heat dissipation material that does not contain organic substances such as wax or modified silicone wax, but contains a silicone resin as a matrix, and specifies the particle size of the heat-conductive filler.
  • the heat-conductive filler uses conductive copper powder, it cannot be used for insulation purposes, and copper is easily oxidized, so there were issues with stable production management.
  • examples of ceramic-based thermally conductive fillers that can ensure insulation include aluminum nitride, boron nitride, alumina, magnesia, and silicon nitride.
  • aluminum nitride itself has a high thermal conductivity of 170 W/mK, and is expected to have high thermal conductivity.
  • aluminum nitride has poor filling properties with silicone, and high filling reduces the fluidity of the silicone binder when it is thermally softened.
  • alumina has a relatively good compatibility with silicone, and even if it is highly filled, it is easy to maintain the fluidity of the silicone binder and the contact resistance is easy to decrease.
  • alumina has a poor thermal conductivity of 20 W/mK by itself, and even if it is mixed with the above-mentioned heat-softening material, it is difficult to increase the thermal conductivity. Therefore, there has been a demand for the development of a heat dissipation material that can be made highly thermally conductive by increasing the filler loading, that has both good handling properties and insulating properties, and that also has excellent reliability under high temperature and high humidity conditions.
  • the object of the present invention is therefore to provide a heat dissipation member that has good adhesion to heat-generating electronic components and heat dissipation components, good thermal conductivity and insulation properties, and is highly reliable.
  • the present inventors have found that the following sheet-shaped heat dissipating member and thermally conductive composite can achieve the above objects, and have completed the present invention. That is, the present invention provides the following sheet-shaped heat dissipating member and thermally conductive composite.
  • A 100 parts by mass of a silicone resin which is solid at 25° C.
  • the heat-softenable thermally conductive composition further comprises: (D) The sheet-like heat dissipation member according to ⁇ 1> or ⁇ 2>, which contains 1 to 30 parts by mass of a linear organopolysiloxane having a viscosity of 0.1 to 100 Pa ⁇ s at 25°C and having one or more aryl groups having 6 to 12 carbon atoms in one molecule, per 100 parts by mass of the component (A).
  • the heat-softenable thermally conductive composition further comprises: (C) a compound represented by the following general formula (1): R2aR3bSi ( OR4 ) 4 - ab (1) (In formula (1), R2 is an alkyl group having 6 to 15 carbon atoms, R3 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R4 is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, with the proviso that a+b is an integer of 1 to 3.)
  • the sheet-shaped heat dissipation member according to any one of ⁇ 1> to ⁇ 4> comprising 1 to 20 parts by mass of an alkylalkoxysilane represented by the following formula (1) relative to 100 parts by mass of the component (
  • ⁇ 6> The sheet-shaped heat dissipating member according to any one of ⁇ 1> to ⁇ 5>, wherein the thermal conductivity of the cured product of the heat-softening thermally conductive composition is 4.0 W/mK or more.
  • ⁇ 7> The sheet-like heat dissipating member according to any one of ⁇ 1> to ⁇ 6>, wherein the composition layer has a thickness of 50 to 300 ⁇ m.
  • ⁇ 8> The sheet-like heat dissipation member according to any one of ⁇ 1> to ⁇ 7>, having a breakdown voltage of 1 kV or more as measured by the method described in JIS K6249:2003.
  • thermoplastic resin is any one of an aromatic polyimide resin, a polyamide resin, a polyamideimide resin, a polyester resin, and a fluororesin.
  • thermoplastic resin is any one of an aromatic polyimide resin, a polyamide resin, a polyamideimide resin, a polyester resin, and a fluororesin.
  • room temperature refers to a range of 15 to 30°C
  • non-fluid refers to a state in which the substance is in a state in which it is difficult to flow, specifically, a state in which the substance does not deform even when 50 g of a sample is placed in a 100 ml glass bottle and placed horizontally, and then the glass bottle is tilted at a 45° angle and held for one hour.
  • the sheet-shaped heat dissipation member of the present invention has a composition layer made of a heat-softening heat-conductive composition in which a silicone resin that is solid at 25° C. is combined with specific aluminum nitride and alumina as heat-conductive fillers, and the blending ratio and filling amount are optimized.
  • the sheet-shaped heat dissipation member of the present invention has good thermal conductivity and insulation properties, good adhesion to heat-generating electronic components and heat-dissipating components, and can achieve high heat dissipation. Furthermore, since it has excellent reliability, it can be applied to vehicle applications that require high durability.
  • the sheet-shaped heat dissipation member of the present invention can be used, for example, for heat dissipation from general power sources, electronic devices, etc., heat dissipation from integrated circuit elements such as LSIs and CPUs used in electronic devices such as personal computers and digital video disk drives, and heat dissipation from IGBT modules, DCDC converters, LED fog lamps, etc. in automotive applications.
  • Component (A) is a silicone resin that forms the matrix of the sheet-shaped heat dissipation member of the present invention, and is also a factor that causes thermal softening of the sheet-shaped heat dissipation member of the present invention, and also serves as a binder that imparts processability and workability to the thermally conductive filler, which is component (B).
  • Component (A) is characterized as being a silicone resin that is solid at 25°C and contains 20 mol% or more of one or more siloxane units selected from R1SiO3 /2 units (wherein R1 is a monovalent hydrocarbon having 1 to 10 carbon atoms) and SiO4 /2 units.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 1 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, cyclohexyl, octyl, nonyl, and decyl; aryl groups such as phenyl, tolyl, xylyl, and naphthyl; aralkyl groups such as benzyl, phenylethyl, and phenylpropyl; and alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, hexenyl, cyclohexynyl, and octenyl.
  • R 1 may be a hydrocarbon group in which some or all of the hydrogen atoms present in the hydrocarbon group have been substituted with halogen atoms such as fluorine atoms.
  • halogen atoms such as fluorine atoms.
  • methyl, phenyl, and vinyl groups are particularly preferred.
  • silicone resin of component (A) that is solid at 25°C and contains one or more siloxane units selected from R1SiO3 /2 units (hereinafter also referred to as T units) and SiO4 /2 units (hereinafter also referred to as Q units)
  • T units R1SiO3 /2 units
  • Q units SiO4 /2 units
  • silicone resin composed of M units and Q units a silicone resin composed of M units, T units and Q units.
  • the combined proportion of T units and Q units is at least 20 mol %, preferably from 20 to 98 mol %, and more preferably from 30 to 96 mol %.
  • silicone resins having T units are preferred because they can increase toughness, which improves brittleness when solid at room temperature and prevents breakage during handling.
  • the (A) component may have a D unit (R 1 2 SiO 2/2 unit) as a constituent unit.
  • silicone resins also having D units include silicone resins consisting of T units and D units; silicone resins consisting of M units, T units and D units; and silicone resins consisting of M units, Q units and D units.
  • the substituents (R 1 ) of the T units are preferably methyl groups and phenyl groups
  • the substituents of the D units are preferably methyl groups, phenyl groups and vinyl groups.
  • component (A) include the following silicone resins.
  • the sheet-shaped heat dissipation member of the present invention is substantially solid at 25°C, and can be thermally softened, reduced in viscosity, or melted and fluidized at a certain temperature or higher, preferably 40°C or higher, but below the maximum temperature reached by heat generation of the heat-generating electronic component, specifically in a temperature range of about 40 to 150°C, and particularly about 40 to 120°C.
  • the temperature at which the silicone resin is thermally softened, viscous or melted is the temperature at which the silicone resin acts as a heat dissipating member, and the silicone resin (A) itself may have a melting point below 40°C.
  • the component (A) may use one type alone, or two or more types in combination.
  • the silicone resin of the component (A) only needs to cause a certain degree of viscosity reduction when heated, and also needs to be able to act as a binder for the thermally conductive filler.
  • the weight average molecular weight of the component (A) is preferably 500 to 20,000, particularly preferably 1,000 to 10,000, as calculated in terms of polystyrene by GPC analysis.
  • the component (A) is preferably one that imparts flexibility and tackiness to the heat dissipation member of the present invention.
  • a polymer of a single molecular weight may be used, but a mixture of two or more polymers having different molecular weights may also be used.
  • the thermally conductive filler, component (B), is characterized by containing alumina, component (B-1), having a specific average particle size, and aluminum nitride, component (B-2), having a specific surface area of 4.0 m2 /g or less, in a specific compounding ratio.
  • the average particle size of the alumina of component (B-1) is 0.1 to 70 ⁇ m, preferably 0.5 to 60 ⁇ m, and more preferably 1.0 to 50 ⁇ m. When the average particle size is within this range, it is easy to achieve close packing when component (B) is highly packed, which is advantageous for achieving high thermal conductivity, and the handleability of the molded product is also excellent.
  • the average particle size is a volume average particle size, and is a value measured using a Microtrac particle size distribution measuring device MT3300EX (Nikkiso Co., Ltd.).
  • the shape of the alumina of component (B-1) may be spherical, rounded, crushed, etc., with spherical being particularly preferred.
  • spherical refers to a state in which the aspect ratio of the particle shape is 1.5 or less.
  • the amount of alumina in component (B-1) is 120 to 1750 parts by mass, preferably 300 to 1,600 parts by mass, and more preferably 400 to 1,500 parts by mass, per 100 parts by mass of component (A), provided that the blending ratio with component (B-2) and the total blending amount of component (B) satisfy the ranges described below.
  • the average particle size of the aluminum nitride of component (B-2) is 0.1 to 70 ⁇ m, preferably 0.5 to 60 ⁇ m, and more preferably 1.0 to 50 ⁇ m. When the average particle size is within this range, close packing is easily achieved when component (B) is highly packed, which is advantageous for achieving high thermal conductivity and excellent handleability of the molded product.
  • the specific surface area of the aluminum nitride of component (B-2) is 4.0 m 2 /g or less, preferably 3.5 m 2 /g or less, and more preferably 3.2 m 2 /g or less.
  • the specific surface area of the aluminum nitride exceeds the upper limit, the composition will have poor extensibility, and even after being molded into a molded product (sheet-like), the thermal conductivity is likely to decrease due to the effects of hydrolysis, etc., when the molded product is placed under high temperature and high humidity for a long period of time.
  • the specific surface area is a value measured by a gas adsorption method, and is measured, for example, by an automatic specific surface area measuring device manufactured by Shimadzu Corporation.
  • the shape of the aluminum nitride of the component (B-2) may be spherical, crushed, rounded, or the like.
  • the amount of aluminum nitride in component (B-2) is 600 to 2,880 parts by mass, preferably 800 to 2,600 parts by mass, and more preferably 1,000 to 2,400 parts by mass, per 100 parts by mass of component (A), provided that the blending ratio with component (B-1) and the total blending amount of component (B) satisfy the ranges described below.
  • the amount of component (B), i.e., the total amount of components (B-1) and (B-2), must be 1,200 to 3,500 parts by mass, and is preferably 1,500 to 3,000 parts by mass, per 100 parts by mass of component (A). If the amount is less than 1,200 parts by mass, the resulting composition may have poor thermal conductivity and poor storage stability, whereas if it exceeds 3,500 parts by mass, the composition may have poor extensibility and the molded product may have low strength.
  • the ratio of (B-1)/(B-2) is within this range, even when the (B) component is highly filled, the flexibility and conformability of the heat dissipation component are not impaired, and it is possible to efficiently improve the thermal conductivity of the molded product.
  • the component (B) may be subjected to various known surface treatments as long as the effects of the present invention, such as thermal conductivity, are not significantly impaired. Specific examples of such treatments include treatment with a coupling agent such as a silane or titanate type, and plasma treatment.
  • the present invention may further include the following components as required.
  • Component (C) The component (C) is represented by the following general formula (1): R2aR3bSi ( OR4 ) 4 - ab (1) (In formula (1), R2 is an alkyl group having 6 to 15 carbon atoms, R3 is a monovalent hydrocarbon group having 1 to 4 carbon atoms, R4 is an alkyl group having 1 to 6 carbon atoms, a is an integer of 1 to 3, and b is an integer of 0 to 2, with the proviso that a+b is an integer of 1 to 3.)
  • the alkylalkoxysilane represented by the formula: Component (C) is a wetter component and can be blended as an optional component in the heat-softening thermally conductive composition.
  • component (C) By treating the surface of the thermally conductive filler of component (B) with component (C), the wettability between component (B) and component (A) can be improved. As a result, component (C) assists in high loading of the thermally conductive powder of component (B).
  • R2 is an alkyl group having 6 to 15 carbon atoms, specific examples of which include a hexyl group, an octyl group, a nonyl group, a decyl group, a dodecyl group, a tetradecyl group, etc. If the number of carbon atoms is less than 6, the wettability with the thermally conductive filler (component (B)) is likely to be insufficient, and if it is more than 15, component (C) is likely to solidify at room temperature, making handling thereof inconvenient, and the heat resistance and flame retardancy of the resulting composition are likely to decrease.
  • R 3 above is a monovalent hydrocarbon group having 1 to 4 carbon atoms, which may be a saturated monovalent hydrocarbon group or an unsaturated monovalent hydrocarbon group, and the hydrogen atoms in the hydrocarbon group may be substituted with other atomic groups such as halogen atoms.
  • Specific examples thereof include alkyl groups such as methyl, ethyl, propyl, and butyl; alkenyl groups such as vinyl, allyl, and isopropenyl; and halogenated alkyl groups such as 3,3,3-trifluoropropyl, and particularly preferably methyl and ethyl groups.
  • R 4 above is an alkyl group having 1 to 6 carbon atoms, specific examples of which include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, with a methyl group and an ethyl group being particularly preferred.
  • the above a is an integer from 1 to 3, and is particularly preferably 1.
  • the above b is an integer from 0 to 2.
  • a+b is an integer from 1 to 3.
  • component (C) include the following alkylalkoxysilanes, etc.
  • C6H13Si ( OCH3 ) 3 C10H21Si ( OCH3 ) 3 C12H25Si ( OCH3 ) 3 C12H25Si ( OC2H5 ) 3 C10H21Si ( CH3 ) ( OCH3 ) 2 C10H21Si ( C6H5 ) ( OCH3 ) 2 C10H21Si ( CH3 ) ( OC2H5 ) 2 C10H21Si ( CH CH2 )( OCH3 ) 2 C10H21Si ( CH2CH2CF3 ) ( OCH3 ) 2
  • the amount of component (C) is preferably 1 to 20 parts by mass, and more preferably 2 to 15 parts by mass, per 100 parts by mass of the silicone resin of component (A). When the amount is within this range, the incorporation of component (C) is effective, allowing the thermally conductive filler to be efficiently filled, and the sheet is easy to handle.
  • the heat-softenable thermally conductive composition used in the sheet-shaped heat dissipation member of the present invention preferably contains, in addition to the components (A) to (C), a linear organopolysiloxane having a viscosity of 0.1 to 100 Pa s at 25° C. and having one or more aryl groups having 6 to 12 carbon atoms per molecule as component (D).
  • the toughness of the resin can be improved by introducing D units into the (A) silicone resin. It has also been found that the same effect can be obtained by blending a linear organopolysiloxane having D units separately without introducing D units into the (A) silicone resin. Therefore, when toughness is to be imparted to the heat-softening thermally conductive composition, it is preferable to blend a linear organopolysiloxane having one or more aryl groups having 6 to 12 carbon atoms in one molecule as the (D) component.
  • the (D) component is preferably oily or gum-like, and when it is oily, it is preferable that the viscosity is 0.1 to 100 Pa ⁇ s. Within this range, it is possible to increase toughness and improve brittleness.
  • the blend amount of the component (D) is preferably 1 to 30 parts by mass, and more preferably 2 to 15 parts by mass, per 100 parts by mass of the component (A).
  • the heat-softening heat-conductive composition used in the sheet-shaped heat dissipation member of the present invention may further contain additives or fillers that are usually used in synthetic rubber as optional components, within the scope of the present invention.
  • additives or fillers that are usually used in synthetic rubber as optional components, within the scope of the present invention.
  • silicone oil, fluorine-modified silicone surfactant, etc. as a mold release agent
  • platinum catalyst, iron oxide, titanium oxide, cerium oxide, etc. as a flame retardant imparting agent, metal oxide or metal hydroxide
  • process oil, reactive titanate catalyst, reactive aluminum catalyst, etc. as a processability improver.
  • fine powder silica such as precipitated silica or calcined silica, thixotropy improver, etc. as an agent to prevent the heat-conductive filler from settling at high temperatures.
  • the heat-softenable thermally conductive composition used in the sheet-shaped heat dissipation member of the present invention can be easily produced by blending and kneading the above-mentioned components using a rubber kneader such as a dough mixer (kneader), a gate mixer, or a planetary mixer.
  • a rubber kneader such as a dough mixer (kneader), a gate mixer, or a planetary mixer.
  • the sheet-like heat dissipation member of the present invention has a composition layer produced by forming the heat-softening thermally conductive composition into a sheet.
  • the term sheet is used to include film and tape.
  • Methods for forming into a sheet include, for example, forming the kneaded composition by extrusion molding, calendar molding, roll molding, press molding, etc., and coating the composition dissolved in a solvent.
  • the thickness of the composition layer of the sheet-like heat dissipation member produced in this manner is preferably 50 to 300 ⁇ m, more preferably 50 to 250 ⁇ m, and particularly preferably 50 to 200 ⁇ m. If the thickness is within this range, it is easy to maintain good handling and heat dissipation performance.
  • the sheet-like heat dissipating member of the present invention may further have a substrate surface-treated with a release agent as a separator film (hereinafter, sometimes referred to as a release-treated film). That is, a separator film may be laminated on both sides of the composition layer of the sheet-like heat dissipating member so that the release-treated surfaces of the substrate are in contact with each other.
  • a separator film By having the sheet-like heat dissipating member have a separator film, handling such as transportation and cutting to a fixed length can be facilitated. In this case, it is also possible to adjust the peel strength of the two separator films laminated on both sides by changing the amount and type of release agent and the material of the film.
  • the separator film is preferably a paper or PET film that has been subjected to a release treatment with a non-dimethyl silicone polymer.
  • the non-dimethyl silicone polymer include non-reactive fluorosilicone release agents (hereinafter referred to as fluorine-modified silicone separators) in which fluorine substituents such as perfluoroalkyl groups and perfluoropolyether groups are bonded to the main chain.
  • the perfluoropolyether groups can be represented by the following formulas (2) to (4). (p is a number from 1 to 5, and q is a number from 3 to 10)
  • non-reactive fluorosilicone release agents include, for example, X-70-201, X-70-258, and X-41-3035 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Methods for applying the material onto the substrate include, but are not limited to, applying a liquid material onto the substrate using a bar coater, knife coater, comma coater, spin coater, or the like, followed by heating and curing.
  • the thermal conductivity of the composition layer of the sheet-shaped heat dissipation member of the present invention i.e., the cured product of the heat-softenable thermally conductive composition
  • the thermal conductivity is preferably 4.0 W/m K or more, and more preferably 6.0 to 20.0 W/m K.
  • the thermal conductivity is a value calculated from the thermal resistance measured by a laser flash method and the thickness of the cured product.
  • the heat-softenable thermally conductive composition used in the sheet-shaped heat dissipation member of the present invention preferably has a viscosity at 80° C. in the range of 0.5 ⁇ 10 2 to 1 ⁇ 10 5 Pa ⁇ s, and more preferably in the range of 1.5 ⁇ 10 2 to 5 ⁇ 10 4 Pa ⁇ s. If the viscosity is within this range, the heat dissipation member is less likely to flow out from between the electronic component and the heat dissipation component such as a heat sink, and the gap between the electronic component and the heat dissipation component can be easily reduced, making it easier to achieve sufficient heat dissipation performance.
  • the viscosity at 80° C. is a value measured by a dynamic viscoelasticity measuring device RDA3 (manufactured by TA Instruments).
  • the sheet-shaped heat dissipation member of the present invention can be laminated with any reinforcing layer (X) to form a heat conductive composite having improved handling properties and insulating properties.
  • the reinforcing layer is preferably a synthetic resin film layer having excellent heat resistance and electrical insulation properties, as well as flexibility and high mechanical strength, and can be appropriately selected from known substrates.
  • the synthetic resin film layer usually has a thickness of 2 to 20 ⁇ m, preferably in the range of 5 to 15 ⁇ m. If the synthetic resin film layer is too thick, the thermal conductivity of the composite of the present invention will be impaired.
  • the synthetic resin film layer is preferably a film layer without holes that would reduce the withstand voltage characteristics.
  • the synthetic resin include aromatic polyimide resin, polyamide resin, polyamideimide resin, polyester resin such as polyethylene naphthalate, and fluororesin such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, etc.
  • the synthetic resin film is particularly preferably a heat-resistant film having a melting point of 200° C. or more, preferably 250° C. or more.
  • Kapton registered trademark
  • MT product name, manufactured by Toray DuPont Co., Ltd.
  • the method for producing the thermally conductive composite of the present invention is to laminate the above-mentioned sheet-like heat dissipating member as an outer layer on both sides of the reinforcing layer (X) by room temperature compression or hot compression.
  • the lamination method is not particularly limited, and may be appropriately performed according to a conventionally known method for producing a composite.
  • room temperature pressure bonding for example, a sheet-like heat dissipation member formed in advance on the separator film may be transferred to both sides of the reinforcing layer (X).
  • the press tool is heated to 40 to 80°C and pressure-bonded and transferred in the same manner.
  • roll bonding or the like may be used for pressure bonding.
  • a composite may be produced by applying a composition of the heat dissipation member diluted with a solvent to both sides of the reinforcing layer (X) and drying it.
  • the sheet-like heat dissipation member or thermally conductive composite of the present invention is placed between a heat-generating electronic component that can reach a temperature higher than room temperature when in operation, and a heat dissipation component; it is non-fluid at room temperature, but becomes fluid when the electronic component generates heat while in operation, or when heat is actively applied when the electronic component is placed, allowing it to fill the boundary between the electronic component and the heat dissipation component with virtually no voids.
  • D represents a dimethylsiloxane unit (i.e., ( CH3 ) 2SiO2 /2 )
  • T ⁇ represents a phenylsiloxane unit (i.e., ( C6H5 )SiO3 /2 )
  • (A-2) M 2 T ⁇ 50 weight average molecular weight: 3,100 in polystyrene equivalent, solid at 25°C, softening point: 40-50°C
  • M represents a trimethylsiloxane unit (i.e., (CH 3 ) 3 SiO 1/2 )
  • T ⁇ represents a phenylsiloxane unit (i.e., (C 6 H 5 )SiO 3/2 ).
  • M represents a trimethylsiloxane unit (i.e., ( CH3 ) 3SiO1 /2 )
  • D represents a dimethylsiloxane unit (i.e., ( CH3 ) 2SiO2/2 )
  • Q represents SiO4/2
  • B Thermally conductive filler (B-1-1) Spherical alumina with an average particle size of 2 ⁇ m (B-1-2) Spherical alumina with an average particle size of 50 ⁇ m (B-2-1) Crushed aluminum nitride with an average particle size of 2 ⁇ m (specific surface area: 3.2 m 2 /g) (B-2-2) Crushed aluminum nitride with an average particle size of 30 ⁇ m (specific surface area: 2.0 m 2 /g) (B-2-3) Aluminum nitride in a crushed form with an average particle size of 0.5 ⁇ m (specific surface area: 5.6 m 2 /g, for comparison)
  • Alkylalkoxysilane (wetter component) Alkylalkoxysilane represented by the formula C10H21Si ( OCH3 ) 3
  • Silicone oil Phenyl-containing linear silicone oil having a viscosity of 0.4 Pa ⁇ s at 25° C. (product name: KF-54, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Handling ease was evaluated based on whether a desired degree of adhesion was obtained when the sheet or composite was attached to a heat dissipation member (aluminum heat sink).
  • the separator film on one side was peeled off, and the composition layer of the sheet or composite was attached to an aluminum heat sink.
  • the evaluation was made as to whether the attached sheet or composite was fixed in place without slipping or breaking from the heat sink. Those which were fixed without any shifting or tearing were marked with an ⁇ , and those which were shifted or torn were marked with an ⁇ , and these are recorded in the table.
  • the molded products (sheets or composites) were easy to handle (closely attached to heat dissipating parts), and showed good thermal conductivity and breakdown voltage as heat dissipating materials. Furthermore, the thermal conductivity after high temperature and high humidity did not change significantly from the initial value, making them heat dissipating materials with excellent reliability.
  • the total amount of the thermally conductive filler, which is the (B) component was less than 1,200 parts by mass relative to 100 parts by mass of the (A) component, so the molded product (sheet) could not obtain the desired thermal conductivity.
  • the total amount of the thermally conductive filler, which is the (B) component was as large as more than 3,500 parts by mass relative to 100 parts by mass of the (A) component, so the molded product (sheet) became brittle and difficult to handle, and evaluation of anything other than handleability was not possible.
  • Comparative Example 5 aluminum nitride having a specific surface area exceeding 4.0 m 2 /g was used, and therefore when the molded product was aged for a long period of time under high temperature and high humidity, a decrease in thermal conductivity was observed, resulting in a decrease in reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

発熱性電子部品及び放熱部品との密着性がよく、良好な熱伝導性及び絶縁性を有し、信頼性に優れる放熱部材の提供。 (A)R1SiO3/2単位(式中、R1は炭素原子数1~10の1価炭化水素基である。)及びSiO4/2単位から選ばれる1種以上のシロキサン単位を有する25℃で固体のシリコーン樹脂:100質量部、並びに、 (B)下記(B-1)及び(B-2)から構成される熱伝導性充填材:1,200~3,500質量部 (B-1)平均粒径が0.1~70μmであるアルミナ:120~1750質量部 (B-2)平均粒径が0.1~70μmであり、比表面積が4.0m2/g以下である窒化アルミニウム:600~2880質量部 を含有してなり、質量比(B―1)/(B―2)=1/9~1/1である熱軟化性熱伝導性組成物からなる組成物層を有するシート状放熱部材。

Description

シート状放熱部材及び熱伝導性複合体
 本発明は、シート状放熱部材及び熱伝導性複合体に関する。
 近年、電子機器等において電子部品の温度上昇を抑えるために、室温では取り扱い性のよい固体状であり、電子部品から発生する熱により軟化又は溶融する熱軟化性材料が注目を集めている。この熱軟化性材料は、低硬度熱伝導性シートの取り扱い性の良さと熱伝導性グリースの熱抵抗の低さの両方の特性を有する熱伝導性部材である。
 特に放熱材料に求められる耐熱性、耐候性、難燃性に優れる材料として、シリコーンが知られており、シリコーンをベースにした熱軟化性材料が多数提案されている。
 特許文献1では、熱可塑性シリコーン樹脂とワックス状変性シリコーン樹脂と熱伝導性フィラーからなる組成物が提案されている。特許文献2では、シリコーンゲル等のバインダ樹脂とワックスと熱伝導性充填材からなる熱伝導性シートが提案されている。特許文献3では、シリコーン等の高分子ゲルと、変性シリコーン、ワックス等の、加熱すると液体になる化合物と、熱伝導性フィラーとからなる熱軟化放熱シートが提案されている。
 しかし、これらはシリコーン以外にワックス等の有機物やシリコーンを変性したワックスを用いているため、シリコーン単独より難燃性、耐熱性に劣るという欠点があった。
 さらに近年の高い放熱性が求められる用途においては、熱伝導性に乏しく、十分な効果が得られなかった。
 そこで特許文献4では、ワックス等の有機物及びシリコーンを変性したワックスを含有せず、マトリックスとしてシリコーン樹脂を含有し、熱伝導性充填材の粒径を規定した熱軟化性放熱材料が開示されている。しかし、熱伝導性充填材は導電性の銅粉末を使用しているため、絶縁用途では使用できず、また銅が酸化されやすい性質を持つため、安定的な製造管理において課題があった。
 一方、絶縁性を確保できるようなセラミックス系の熱伝導性充填材としては、窒化アルミ、窒化ホウ素、アルミナ、マグネシア、窒化ケイ素などが挙げられる。
 放熱材料を高熱伝導化するには、熱伝導性充填材をいかに高充填するかが重要であり、充填材もできるだけ熱伝導性の高い材料が必要となる。
 この観点においては、窒化アルミニウムは単体の熱伝導率が170W/mKと高く、高熱伝導化が期待できる。
 しかし、窒化アルミニウムはシリコーンに対する充填性に乏しく、高充填によりシリコーンバインダの熱軟化時の流動性が低下する。それゆえに、電子部品やヒートシンク表面の微細な凹凸に追従できず、接触熱抵抗が大きくなり、実効の熱伝導率が低下する課題があった。
 また窒化アルミニウムは耐水性に課題があり、高湿環境下においては、自身の加水分解反応ならびに、シリコーンのクラッキングを促進することから、系内にボイドが生じて熱伝導性が低下してしまう懸念もあった。
 一方、アルミナはシリコーンに対する馴染みが比較的良好であり、高充填してもシリコーンバインダの流動性を保ちやすく、接触抵抗が下がりやすい。しかし、アルミナは単体の熱伝導率が20W/mKと乏しく、前記熱軟化性材料に配合しても、高熱伝導化が困難であった。
 したがって、フィラー高充填化による高熱伝導化可能な放熱材料であって、良好な取り扱い性と絶縁性を兼ね備え、さらに高温高湿下における信頼性にも優れる放熱材料の開発が求められていた。
特開2000-327917号公報 特開2001-291807号公報 特開2002-234952号公報 特開2007-059877号公報
 したがって、本発明の目的は、発熱性電子部品及び放熱部品との密着性がよく、良好な熱伝導性及び絶縁性を有し、信頼性に優れる放熱部材を提供することである。
 本発明者は、上記課題を解決するために鋭意研究した結果、下記シート状放熱部材及び熱伝導性複合体が上記目的を達成できることを見出し、本発明を完成した。
 即ち、本発明は、下記のシート状放熱部材及び熱伝導性複合体を提供するものである。
<1>
(A)R1SiO3/2単位(式中、R1は炭素原子数1~10の1価炭化水素基である。)及びSiO4/2単位から選ばれる1種以上のシロキサン単位を20モル%以上有する25℃で固体のシリコーン樹脂:100質量部、並びに、
(B)下記(B-1)及び(B-2)から構成される熱伝導性充填材:1,200~3,500質量部
(B-1)平均粒径が0.1~70μmであるアルミナ:120~1750質量部
(B-2)平均粒径が0.1~70μmであり、比表面積が4.0m2/g以下である窒化アルミニウム:600~2880質量部
を含有してなり、前記(B-1)及び(B-2)の配合比が、質量比で(B-1)/(B-2)=1/9~1/1である熱軟化性熱伝導性組成物からなる組成物層を有するシート状放熱部材。
<2>
 前記(A)成分がさらにR1 2SiO2/2単位(式中、R1は炭素原子数1~10の1価炭化水素基である。)を有する<1>に記載のシート状放熱部材。
<3>
 前記熱軟化性熱伝導性組成物が、さらに、
(D)25℃における粘度が0.1~100Pa・sであり、1分子中に1個以上の炭素数6~12のアリール基を有する直鎖状オルガノポリシロキサンを前記(A)成分100質量部に対し、1~30質量部含む<1>又は<2>に記載のシート状放熱部材。
<4>
 前記(B-1)成分が球状アルミナである<1>~<3>のいずれか1項に記載のシート状放熱部材。
<5>
 前記熱軟化性熱伝導性組成物が、さらに、
(C)下記一般式(1):
   R2 a3 bSi(OR44-a-b (1)
(式(1)中、R2は炭素原子数6~15のアルキル基であり、R3は炭素原子数1~4の1価炭化水素基であり、R4は炭素原子数1~6のアルキル基であり、aは1~3の整数であり、bは0~2の整数であり、ただし、a+bは1~3の整数である。)
で表されるアルキルアルコキシシランを前記(A)成分100質量部に対し、1~20質量部含む<1>~<4>のいずれか1項に記載のシート状放熱部材。
<6>
 前記熱軟化性熱伝導性組成物の硬化物の熱伝導率が4.0W/mK以上である<1>~<5>のいずれか1項に記載のシート状放熱部材。
<7>
 組成物層の厚さが50~300μmである<1>~<6>のいずれか1項に記載のシート状放熱部材。
<8>
 JIS K6249:2003記載の方法で測定した際の絶縁破壊電圧が1kV以上である<1>~<7>のいずれか1項に記載のシート状放熱部材。
<9>
 <1>~<8>のいずれか1項に記載のシート状放熱部材を熱可塑性樹脂製の補強層(X)の両面に配置してなる熱伝導性複合体。
<10>
 前記熱可塑性樹脂が、芳香族ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂及びフッ素樹脂のいずれかである<9>に記載の熱伝導性複合体。
<11>
 前記補強層(X)の厚さが、2~20μmである<9>又は<10>に記載の熱伝導性複合体。
 なお、本明細書中において、「室温」とは15~30℃の範囲を指し、「非流動性」とは、当該物質が流れづらい状態にあること、具体的には体積100mlのガラス瓶に試料を50g入れて水平に静置し、そこからガラス瓶を45°傾けて1時間保持しても変形しないような状態を指す。
 本発明のシート状放熱部材は、25℃で固体のシリコーン樹脂と、熱伝導性充填材として特定の窒化アルミニウムとアルミナを組み合わせ、その配合比率と充填量を最適化した熱軟化性熱伝導性組成物からなる組成物層を有するものである。これにより、本発明のシート状放熱部材は、熱伝導性及び絶縁性が良好であり、発熱性電子部品及び放熱部品との密着性がよく、高放熱化を達性できる。さらに、信頼性にも優れるため、高い耐久性が要求される車載用途にも適用が可能である。
 本発明のシート状放熱部材は、例えば、一般の電源、電子機器等の放熱、パーソナルコンピューター、デジタルビデオディスクドライブ等の電子機器に用いられるLSI、CPU等の集積回路素子の放熱、車載用途におけるIGBTモジュール、DCDCコンバータ、LEDフォグランプ等の放熱に用いることができる。
 以下、本発明について詳細に説明する。
[(A)成分]
 (A)成分は、シリコーン樹脂であり、本発明のシート状放熱部材のマトリックスを形成する成分である。また、(A)成分は、本発明のシート状放熱部材が熱軟化を起こす因子であり、(B)成分である熱伝導性充填材に加工性や作業性を与えるバインダとしての役割も果たす成分である。
 (A)成分としては、R1SiO3/2単位(式中、R1は炭素原子数1~10の1価炭化水素である。)及びSiO4/2単位から選ばれる1種以上のシロキサン単位を20モル%以上有する25℃で固体のシリコーン樹脂であることを特徴とする。
 ここで、上記R1は、炭素原子数1~10の1価炭化水素基であり、好ましくは炭素原子数1~6の1価炭化水素基である。R1の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキシニル基、オクテニル基等のアルケニル基等が挙げられる。なお、上記R1は、これらの炭化水素基中に存在する水素原子の一部又は全部をフッ素原子等のハロゲン原子で置換したものであってもよい。これらの中でも、特にメチル基、フェニル基及びビニル基が好ましい。
 (A)成分の、R1SiO3/2単位(以下、T単位とも記載する))及びSiO4/2単位(以下、Q単位とも記載する)から選ばれる1種以上のシロキサン単位を含む25℃で固体のシリコーン樹脂として、例えば、M単位(R1 3SiO1/2単位)及びT単位からなるシリコーン樹脂;M単位及びQ単位からなるシリコーン樹脂;並びに、M単位、T単位及びQ単位からなるシリコーン樹脂が挙げられる。
 (A)成分中の全シロキサン単位中、T単位及びQ単位の合計の割合は、20モル%以上であり、20~98モル%であることが好ましく、30~96モル%であることがより好ましい。
 中でも、T単位を有するシリコーン樹脂は、靭性を高めることができるので好ましい。これにより、室温で固形時の脆さを改善して取り扱い時の破損等を防止することができる。
 また、室温での靭性の向上には(A)成分は、その構成単位としてD単位(R1 2SiO2/2単位)を有していてもよい。D単位も有するシリコーン樹脂の例として、T単位及びD単位からなるシリコーン樹脂;M単位、T単位及びD単位からなるシリコーン樹脂;並びに、M単位、Q単位及びD単位からなるシリコーン樹脂が挙げられる。ここで、T単位の置換基(R1)としては、メチル基及びフェニル基が好ましく、D単位の置換基としては、メチル基、フェニル基及びビニル基が好ましい。また、M単位、T単位及びD単位からなるシリコーン樹脂では、T単位とD単位との比率(モル比)は、T:D=10:90~90:10であることが好ましく、特に20:80~80:20であることがより好ましい。
 (A)成分のより具体的な例としては、下記のシリコーン樹脂を挙げることができる。
mTΦpVi n
(ここで、Dはジメチルシロキサン単位(即ち、(CH32SiO2/2)、TΦはフェニルシロキサン単位(即ち、(C65)SiO3/2)、DViはメチルビニルシロキサン単位(即ち、(CH3)(CH2=CH)SiO2/2)を表わし、(m+n)/p(モル比)=0.25~4.0、(m+n)/m(モル比)=1.0~4.0である。)

LTΦp
(ここで、Mはトリメチルシロキサン単位(即ち、(CH33SiO1/2)、TΦはフェニルシロキサン単位(即ち、(C65)SiO3/2)を表わし、L/p(モル比)=0.02~3.0である。)

LmTΦpVi n
(ここで、Mはトリメチルシロキサン単位(即ち、(CH33SiO1/2)を表わし、D、TΦ及びDViは上記のとおりであり、(m+n)/p(モル比)=0.25~4.0、(m+n)/m(モル比)=1.0~4.0、L/(m+n)(モル比)=0.001~0.1である)

LmqVi n
(ここで、Qは、SiO4/2を表わし、M、D及びDViは上記のとおりであり、(m+n)/q(モル比)=0.25~4.0、(m+n)/m(モル比)=1.0~4.0、L/(m+n)(モル比)=0.001~0.1である)
 (A)成分がこのような構造であれば、本発明のシート状放熱部材が、実質的に25℃で固体であり、一定温度以上、好ましくは40℃以上で、発熱性電子部品の発熱による最高到達温度以下、具体的には40~150℃程度、特に40~120℃程度の温度範囲において、熱軟化、低粘度化又は融解して流動化できる。
 ここで、熱軟化、低粘度化又は融解する温度は放熱部材としての温度であり、(A)成分のシリコーン樹脂自体は40℃未満に融点をもつものであってもよい。
 (A)成分は、1種単独で使用しても、2種以上を併用してもよい。
 上記したように、(A)成分のシリコーン樹脂は、加熱時にある程度の粘度低下を発生させればよく、また熱伝導性充填材のバインダとなり得ればよい。(A)成分の重量平均分子量はGPC分析によるポリスチレン換算で、好ましくは500~20,000、特に好ましくは1,000~10,000である。該分子量がこの範囲内にあると、得られる組成物の熱軟化時の粘度を適切な範囲内で維持しやすいので、ヒートサイクルによるポンピングアウト(充填材とシリコーン樹脂との分離による気泡の生成又はシリコーン樹脂の流出)を防ぎやすく、得られる放熱部材と電子部品や放熱部品との密着性を維持しやすい。なお、(A)成分は、本発明の放熱部材に柔軟性やタック性を付与するものが好適である。(A)成分としては、単一の分子量の重合体を使用してもよいが、分子量の異なる2種類以上の重合体等を混合して使用してもよい。
[(B)成分]
 (B)成分である熱伝導性充填材は、それぞれ特定の平均粒径を有する(B-1)成分のアルミナ及び(B-2)成分の比表面積が4.0m2/g以下である窒化アルミニウムを特定の配合比で含有することを特徴とする。
 (B-1)成分のアルミナの平均粒径は、0.1~70μmであり、好ましくは、0.5~60μmであり、より好ましくは、1.0~50μmである。平均粒径がこの範囲にある場合、(B)成分を高充填した際に、最密充填化し易く、高熱伝導化に有利であり、成形物の取り扱い性にも優れる。
 なお、本発明において、平均粒径は体積平均粒径であり、マイクロトラック粒度分布測定装置MT3300EX(日機装株式会社)による測定値である。
 (B-1)成分のアルミナの形状は、球状、丸み状、破砕状等が挙げられ、特に球状であることが好ましい。ここで、球状とは、粒子形状におけるアスペクト比が1.5以下となるような様態をいう。
 (B-1)成分のアルミナの配合量は、(A)成分100質量部に対して120~1750質量部であり、好ましくは300~1,600質量部であり、より好ましくは400~1,500質量部である。ただし、(B-2)成分との配合比及び(B)成分全体の配合量に関して後記の範囲を満たすものである。
 (B-2)成分の窒化アルミニウムの平均粒径は、0.1~70μmであり、好ましくは、0.5~60μmであり、より好ましくは、1.0~50μmである。平均粒径がこの範囲にある場合、(B)成分を高充填した際に、最密充填化し易く、高熱伝導化に有利であり、成形物の取り扱い性にも優れる。
 (B-2)成分の窒化アルミニウムの比表面積は4.0m2/g以下であり、好ましくは、3.5m2/g以下であり、より好ましくは、3.2m2/g以下である。窒化アルミニウムの比表面積が上記上限値を超える場合、組成物が伸展性に乏しいものとなり、成形物(シート状)とした後も、高温高湿下に長期間置かれた際に、加水分解等の影響から熱伝導性が低下しやすい。なお本発明において、比表面積はガス吸着法で測定した値であり、例えば島津製作所の自動比表面積測定装置等で測定される。
 (B-2)成分の窒化アルミニウムの形状は、球状、破砕状、丸み状などが挙げられる。
 (B-2)成分の窒化アルミニウムの配合量は、(A)成分100質量部に対して600~2880質量部であり、好ましくは800~2,600質量部であり、より好ましくは1,000~2,400質量部である。ただし、(B-1)成分との配合比及び(B)成分全体の配合量に関して後記の範囲を満たすものである。
 (B)成分の配合量、すなわち、(B-1)成分及び(B-2)成分の合計の配合量は、(A)成分100質量部に対して1,200~3,500質量部であることが必要であり、好ましくは1,500~3,000質量部である。この配合量が1,200質量部未満の場合には、得られる組成物の熱伝導率が悪い上、保存安定性の乏しいものとなることがあり、3,500質量部を超える場合には、組成物の伸展性に乏しく、また強度が弱い成形物となることがある。
 また、(B-1)及び(B-2)の配合比が、質量比で(B-1)/(B-2)=1/9~1/1であり、好ましくは、(B-1)/(B-2)=1.5/8.5~1/1であり、さらに好ましくは、(B-1)/(B-2)=1/4~1/1である。
 (B-1)/(B-2)の比率がこの範囲にある場合、(B)成分を高充填した際にも、放熱部材の柔軟性・追従性が損なわれることなく、効率的に成形物の熱伝導性を向上させることが可能である。
 なお(B)成分は、熱伝導性などの本発明の効果を著しく損なわない範囲で、公知である種々の表面処理が施されてもよい。具体的には、例えば、シラン系、チタネート系などのカップリング剤処理及びプラズマ処理等が挙げられる。
 本発明は、上記必須成分に加え、必要により次の成分を用いることができる。
[(C)成分]
 (C)成分は、下記一般式(1):
   R2 a3 bSi(OR44-a-b (1)
(式(1)中、R2は炭素原子数6~15のアルキル基であり、R3は炭素原子数1~4の1価炭化水素基であり、R4は炭素原子数1~6のアルキル基であり、aは1~3の整数であり、bは0~2の整数であり、ただし、a+bは1~3の整数である。)
で表されるアルキルアルコキシシランである。(C)成分は、ウェッター成分であり、任意成分として前記熱軟化性熱伝導性組成物に配合することができる。上記(B)成分の熱伝導性充填材の表面を(C)成分で処理することにより、(B)成分と(A)成分との濡れ性をよくすることができる。結果として、(C)成分は、(B)成分の熱伝導性粉末の高充填化を補助する。
 上記R2は炭素原子数6~15のアルキル基であり、その具体例としては、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。該炭素原子数が6より小さいと、熱伝導性充填材((B)成分)との濡れ性が不充分となりやすく、15より大きいと、(C)成分が常温で固化しやすいのでその取り扱いが不便になりやすい上、得られる組成物の耐熱性及び難燃性が低下しやすい。
 上記R3は炭素原子数1~4の1価炭化水素基であり、飽和1価炭化水素基であっても、不飽和1価炭化水素基であってもよく、該炭化水素基中の水素原子はハロゲン原子等の他の原子団によって置換されていてもよく、その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;ビニル基、アリル基、イソプロペニル基等のアルケニル基;3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基が挙げられ、特にメチル基、エチル基が好ましい。
 上記R4は炭素原子数1~6のアルキル基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられ、特にメチル基、エチル基が好ましい。
 上記aは、1~3の整数であるが、特に好ましくは1である。上記bは0~2の整数である。ただし、a+bは1~3の整数である。
 (C)成分の具体例としては、以下のアルキルアルコキシシラン等が挙げられる。
   C613Si(OCH33
   C1021Si(OCH33
   C1225Si(OCH33
   C1225Si(OC253
   C1021Si(CH3)(OCH32
   C1021Si(C65)(OCH32
   C1021Si(CH3)(OC252
   C1021Si(CH=CH2)(OCH32
   C1021Si(CH2CH2CF3)(OCH32
 (C)成分の配合量は、(A)成分のシリコーン樹脂100質量部に対して、好ましくは1~20質量部、より好ましくは2~15質量部である。該配合量がこの範囲内にあると、(C)成分配合の効果があり、熱伝導性充填材を効率的に充填できるとともに、シートの取り扱い性も良好となる。
[(D)成分]
 本発明のシート状放熱部材に用いる熱軟化性熱伝導性組成物は、前記(A)~(C)成分の他に(D)成分として、25℃における粘度が0.1~100Pa・sであり、1分子中に1個以上の炭素数6~12のアリール基を有する直鎖状オルガノポリシロキサンを含むことが好ましい。
 前記(A)成分でも述べた通り、(A)シリコーン樹脂にD単位を導入することで樹脂の靭性を改善できることがわかっている。また、(A)シリコーン樹脂にD単位を導入しなくても別途D単位を有する直鎖状オルガノポリシロキサンを配合しても同様の効果が得られることを見出した。したがって、熱軟化性熱伝導性組成物に靭性を付与したい場合は、(D)成分として1分子中に1個以上の炭素数6~12のアリール基を有する直鎖状オルガノポリシロキサンを配合することが好ましい。前記(D)成分はオイル状又はガム状であることが好ましく、オイル状である場合は、粘度が0.1~100Pa・sであることが好ましい。この範囲内であれば、靭性を高め、脆さを改良することが可能となる。
 (D)成分の配合量は、前記(A)成分100質量部に対し、1~30質量部が好ましく、2~15質量部がより好ましい。
[その他の添加剤]
 本発明のシート状放熱部材に用いる熱軟化性熱伝導性組成物には、本発明の目的を損なわない範囲で、任意成分として、合成ゴムに、通常、使用される添加剤又は充填材等を更に添加することができる。具体的には、離型剤としてシリコーンオイル、フッ素変性シリコーン界面活性剤;着色剤としてカーボンブラック、二酸化チタン、ベンガラなど;難燃性付与剤として白金触媒、酸化鉄、酸化チタン、酸化セリウムなどの金属酸化物又は金属水酸化物;加工性向上剤としてプロセスオイル、反応性チタネート触媒、反応性アルミニウム触媒などを添加してもよい。更に、熱伝導性充填材の高温時での沈降防止剤として、沈降性シリカ又は焼成シリカなどの微粉末シリカ、チクソ性向上剤等を添加することも任意である。
[製造方法]
 本発明のシート状放熱部材に用いられる熱軟化性熱伝導性組成物は、上記の各成分をドウミキサー(ニーダー)、ゲートミキサー、プラネタリーミキサーなどのゴム練機を用いて配合及び混練することによって、容易に製造できる。
 本発明のシート状放熱部材は、熱軟化性熱伝導性組成物をシート状に成形することにより製造される組成物層を有する。ここで、シート状とは、フィルム状、テープ状を包含する意味で用いられる。シート状に成形する方法としては、例えば、上記混練り後の組成物を押し出し成型、カレンダー成型、ロール成型、プレス成型等の方法で成形する方法、溶剤に溶解させた該組成物を塗工する方法等が挙げられる。なお、このようにして製造されるシート状放熱部材の組成物層の厚さは、好ましくは50~300μm、より好ましくは50~250μm、特に好ましくは50~200μmである。該厚さがこの範囲内にあると、取り扱い性及び放熱性能を良好に維持しやすい。
 本発明のシート状放熱部材は、さらに離型剤で表面処理された基材をセパレーターフィルム(以下、離型処理フィルムということもある)として有することができる。即ち、シート状放熱部材の組成物層の両面に前記基材の離型処理面が接するようにセパレーターフィルムを積層してもよい。シート状放熱部材がセパレーターフィルムを有することで、輸送、定尺カット等の取り扱いを容易にすることができる。この際、離型剤の処理量や種類、フィルムの材質を変えて、両面に積層する2つのセパレーターフィルムの剥離力の軽重をつけることも可能である。
 該セパレーターフィルムとしては、紙又はPETフィルムに、非ジメチルシリコーン系ポリマーにて離型処理を施したものが好ましい。非ジメチルシリコーン系ポリマーとしては、パーフロロアルキル基や、パーフロロポリエーテル基等のフッ素置換基が主鎖に結合している非反応性フルオロシリコーン系離型剤(以下、フッ素変性シリコーンセパレーターという)を挙げることができる。上記パーフロロポリエーテル基は、下記式(2)~(4)で表すことができる。
Figure JPOXMLDOC01-appb-C000001
(pは1~5の数であり、qは3~10の数である)
 該非反応性フルオロシリコーン系離型剤の市販品として、例えば、信越化学工業(株)製のX-70-201、X-70-258、X-41-3035などを使用することができる。基材上への塗工方法は、バーコーター、ナイフコーター、コンマコーター、スピンコーターなどを用いて基材上に液状の材料を塗布後、加熱硬化すること等が挙げられるが、上記記載方法に限定されるものではない。
[熱伝導率及び粘度]
 本発明のシート状放熱部材の組成物層、すなわち前記熱軟化性熱伝導性組成物の硬化物の熱伝導率は、4.0W/m・K以上であることが好ましく、6.0~20.0W/m・Kであることがより好ましい。該熱伝導率がこの範囲内にあると、電子部品とヒートシンク等の放熱部品等との熱伝導性を高く維持しやすく、十分な放熱性能が発揮されやすい。
 熱伝導率は、レーザーフラッシュ法で測定される熱抵抗と硬化物の厚さから算出される値である。
 更に、本発明のシート状放熱部材に用いる熱軟化性熱伝導性組成物は、80℃における粘度が、好ましくは0.5×102~1×105Pa・sの範囲内、より好ましくは1.5×102~5×104Pa・sの範囲内である。該粘度がこの範囲内にあると、電子部品とヒートシンク等の放熱部品との間から該放熱部材が流出しにくく、また、電子部品と放熱部品との間隙を小さくしやすく、十分な放熱性能を発現しやすい。
 80℃における粘度は、動的粘弾性装置RDA3(ティー・エイ・インスツルメント社製)により測定される値である。
[熱伝導性複合体の製造方法]
 本発明のシート状放熱部材は、任意の補強層(X)と積層することで、取り扱い性や絶縁性を向上させた熱伝導性複合体とすることができる。補強層としては、耐熱性及び電気絶縁性に優れると共に柔軟で機械的強度が高い合成樹脂フィルム層が好ましく、公知の基材から適宜選択して用いることができる。
 合成樹脂フィルム層は、通常2~20μmの厚さを有し、好ましくは5~15μmの範囲である。合成樹脂フィルム層が厚すぎると、本発明の複合体の熱伝導性に支障が生じることとなる。逆に、薄すぎると補強層として発揮すべき強度が不足し、また、耐電圧特性が劣化して電気絶縁性能が不十分となる場合がある。更に、該合成樹脂フィルム層は、耐電圧特性を低下させるような孔がないフィルム層であるのが好ましい。
 前記合成樹脂としては、例えば、芳香族ポリイミド樹脂;ポリアミド樹脂;ポリアミドイミド樹脂;ポリエチレンナフタレート等のポリエステル樹脂;ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等の、フッ素樹脂を挙げることができる。合成樹脂として上記フッ素樹脂を用いる場合には、使用するフィルムの表面に対し、金属ナトリウム/ナフタレン系の処理液を用いて化学エッチング処理を施すことが、接着性を向上させる観点から好ましい。
 前記合成樹脂フィルムは、熱変形によって機械的強度の低下が生じないように、融点200℃以上、好ましくは250℃以上を有する耐熱性フィルムであることが特に好ましい。融点250℃以上の耐熱性を有する合成樹脂フィルムとしては、例えば、芳香族ポリイミド系フィルムであるカプトン(登録商標)MT(商品名、東レデュポン(株)製)が挙げられる。
 本発明の熱伝導性複合体の製造方法は、補強層(X)の両面に、前述のシート状放熱部材を外層として、室温圧着もしくは熱圧着により積層するものである。積層方法は特に制限されるものでなく、従来公知の複合体の製造方法に従い適宜行えばよい。
 室温圧着の場合、例えば、補強層(X)の両面に、予め上記セパレーターフィルム上に形成されたシート状放熱部材を転写すればよい。熱圧着の場合は、プレス治具を40~80℃に加熱して同様に圧着転写する。圧着はプレス圧着の他、ロール圧着等を用いてもよい。また、放熱部材の組成物を溶剤により希釈したものを補強層(X)の両面に塗布し、乾燥させすることで、複合体を製造してもよい。
 本発明のシート状放熱部材ないし熱伝導性複合体は、動作することで室温より高い温度に到達しうる発熱性電子部品と、放熱部品との間に配置され、室温では非流動性であり、かつ電子部品動作時の発熱により又は電子部品配置時に積極的にかける熱により、流動化することで電子部品と放熱部品との境界に実質的に空隙なく充填可能となる。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。
 下記実施例及び比較例に用いた(A)~(D)成分は以下である。
(A)シリコーン樹脂
(A-1)D25TΦ55Vi 20(重量平均分子量:ポリスチレン換算で3,300、25℃で固体、軟化点:40~50℃)
ここで、Dはジメチルシロキサン単位(即ち、(CH32SiO2/2)、TΦはフェニルシロキサン単位(即ち、(C65)SiO3/2)、DViはメチルビニルシロキサン単位(即ち、(CH3)(CH2=CH)SiO2/2)を表す。
(A-2)M2TΦ50(重量平均分子量:ポリスチレン換算で3,100、25℃で固体、軟化点:40~50℃)
ここで、Mはトリメチルシロキサン単位(即ち、(CH33SiO1/2)、TΦはフェニルシロキサン単位(即ち、(C65)SiO3/2)を表す。
(A-3)M22040Vi 20(重量平均分子量:ポリスチレン換算で3,700、25℃で固体、軟化点:40~50℃)
ここで、Mはトリメチルシロキサン単位(即ち、(CH33SiO1/2)、Dはジメチルシロキサン単位(即ち、(CH32SiO2/2)、Qは、SiO4/2、DViはメチルビニルシロキサン単位(即ち、(CH3)(CH2=CH)SiO2/2)を表す。
(B)熱伝導性充填材
(B-1-1)平均粒径2μmの球状アルミナ
(B-1-2)平均粒径50μmの球状アルミナ
(B-2-1)平均粒径2μmの破砕状窒化アルミニウム(比表面積:3.2m2/g)
(B-2-2)平均粒径30μmの破砕状窒化アルミニウム(比表面積:2.0m2/g)
(B-2-3)平均粒径0.5μmの破砕状窒化アルミニウム(比表面積:5.6m2/g、比較例用)
(C)アルキルアルコキシシラン(ウェッター成分)
下記式で表されるアルキルアルコキシシラン
   C1021Si(OCH33
(D)その他の添加剤:シリコーンオイル
25℃における粘度が0.4Pa・sのフェニル基含有直鎖状シリコーンオイル(商品名:KF-54、信越化学工業株式会社製)
 上記(A)、(B)、(C)、及び(D)成分を下記表1又は2に記載の配合量にてプラネタリーミキサーに仕込み、60分間混合することで、均一な組成物を得た。
[シートの製造]
 上記で得た組成物に対して、トルエンを適量添加して得たトルエン溶液を、フッ素変性シリコーンセパレーター(離型剤X-41-3035(信越化学工業株式会社製)で表面処理したPET基材、以下、セパレーターフィルムという)上に塗工し、80℃に加熱することでトルエンを揮発させ、セパレーターフィルム上に厚さ200μmを有する組成物層を形成し、さらにその組成物層上に別のセパレーターフィルムを離型剤処理面が接するように重ねて保護することで、2つのセパレーターフィルムの間に組成物層を有するシートを得た。尚、厚さ200μmは、組成物層のみの厚さであり、セパレーターフィルムの厚さは含まない。
[補強層との積層(複合体の製造)]
 上記シートの製造と同様にして、組成物のトルエン溶液をセパレーターフィルム上に塗工し、80℃に加熱することでトルエンを揮発させ、セパレーターフィルム上に厚さ100μmを有する組成物層を形成したシートを各例につき2シートずつ作製し、芳香族系ポリイミドフィルム(厚さ:5μm)の両面に、組成物層が接するように該シートをそれぞれ配置し、70℃で圧着して複合体とした。
 複合体中の組成物層の厚さは表1に記載の通りである。複合体のサイズは200×300mmであった。
[評価方法]
(1)取り扱い性:放熱部材(アルミヒートシンク)に対して、シート又は複合体を張り付けた際に、所望の密着性が得られるかにより取り扱い性を評価した。
 片面のセパレーターフィルムを剥がし、シート又は複合体の組成物層をアルミヒートシンクに貼り付けた後に、もう片側のセパレーターフィルムを剥がす際に、貼り付けたシート又は複合体がヒートシンクからズレたり、破れたりしないで固定されるか否かで評価をした。
 ズレや破れがなく固定できていたものを○、ズレや破れが生じたものを×として、表中に記載した。
(2)熱伝導率:両面のセパレーターフィルムを剥がしたシート又は複合体をアルミプレートに挟み込み、50psiで圧着後、150℃/1hrの条件の乾燥機中で加熱硬化させ、得られた硬化物についてレーザーフラッシュ法で熱抵抗を測定した。硬化物の厚さと熱抵抗の関係から、熱伝導率を算出した。
(3)信頼性(高温高湿後の熱伝導率):上記熱伝導率測定に供した試験サンプルを85℃/85%Rhの高温高湿下で500時間エージングした後、再度レーザーフラッシュ法で熱抵抗測定を行い、熱伝導率を算出した。
(4)絶縁破壊電圧:JIS K6249:2003記載の方法に基づき、両面のセパレーターフィルムを剥がしたシート又は複合体の絶縁破壊電圧を測定した。
 以上の評価結果を表1~2に記載した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~12については、成形物(シート又は複合体)の取り扱い性(放熱部品との密着性)に優れ、かつ放熱部材として良好な熱伝導率と絶縁破壊電圧を示し、さらに高温高湿後の熱伝導率も熱伝導率の初期値から大きく変化することなく、信頼性にも優れる放熱部材であった。
 一方、比較例1では、(B)成分である熱伝導性充填材の合計量が(A)成分100質量部に対し1,200質量部未満と少ないため、成形物(シート)は所望の熱伝導率を得ることができなかった。
 比較例2では、(B)成分である熱伝導性充填材の合計量が、(A)成分100質量部に対し3,500質量部超と多いために、成形物(シート)が脆くなり、取り扱いが困難であり、取り扱い性以外の評価が行なえなかった。
 比較例3では、(B)成分である(B-1)/(B-2)成分の比率が、1/1の範囲を超えるため、成形物(シート)の熱伝導率が低下した。
 比較例4では、(B)成分である(B-1)/(B-2)成分の比率が、1/9の範囲を下回り(B-1)成分を含有しないため、実施例1と比較して、効率的に熱伝導性を向上することができず、成形物(シート)の熱伝導率が低下した。
 比較例5では、比表面積が4.0m2/gを超える窒化アルミニウムを用いたため、成形物を高温高湿下で長期エージングした際に、熱伝導率の低下が見られ、信頼性が低下した。

Claims (11)

  1. (A)R1SiO3/2単位(式中、R1は炭素原子数1~10の1価炭化水素基である。)及びSiO4/2単位から選ばれる1種以上のシロキサン単位を20モル%以上有する25℃で固体のシリコーン樹脂:100質量部、並びに、
    (B)下記(B-1)及び(B-2)から構成される熱伝導性充填材:1,200~3,500質量部
    (B-1)平均粒径が0.1~70μmであるアルミナ:120~1750質量部
    (B-2)平均粒径が0.1~70μmであり、比表面積が4.0m2/g以下である窒化アルミニウム:600~2880質量部
    を含有してなり、前記(B-1)及び(B-2)の配合比が、質量比で(B-1)/(B-2)=1/9~1/1である熱軟化性熱伝導性組成物からなる組成物層を有するシート状放熱部材。
  2.  前記(A)成分がさらにR1 2SiO2/2単位(式中、R1は炭素原子数1~10の1価炭化水素基である。)を有する請求項1に記載のシート状放熱部材。
  3.  前記熱軟化性熱伝導性組成物が、さらに、
    (D)25℃における粘度が0.1~100Pa・sであり、1分子中に1個以上の炭素数6~12のアリール基を有する直鎖状オルガノポリシロキサンを前記(A)成分100質量部に対し、1~30質量部含む請求項1又は2に記載のシート状放熱部材。
  4.  前記(B-1)成分が球状アルミナである請求項1に記載のシート状放熱部材。
  5.  前記熱軟化性熱伝導性組成物が、さらに、
    (C)下記一般式(1):
       R2 a3 bSi(OR44-a-b (1)
    (式(1)中、R2は炭素原子数6~15のアルキル基であり、R3は炭素原子数1~4の1価炭化水素基であり、R4は炭素原子数1~6のアルキル基であり、aは1~3の整数であり、bは0~2の整数であり、ただし、a+bは1~3の整数である。)
    で表されるアルキルアルコキシシランを前記(A)成分100質量部に対し、1~20質量部含む請求項1に記載のシート状放熱部材。
  6.  前記熱軟化性熱伝導性組成物の硬化物の熱伝導率が4.0W/mK以上である請求項1に記載のシート状放熱部材。
  7.  組成物層の厚さが50~300μmである請求項1に記載のシート状放熱部材。
  8.  JIS K6249:2003記載の方法で測定した際の絶縁破壊電圧が1kV以上である請求項1に記載のシート状放熱部材。
  9.  請求項1に記載のシート状放熱部材を熱可塑性樹脂製の補強層(X)の両面に配置してなる熱伝導性複合体。
  10.  前記熱可塑性樹脂が、芳香族ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂及びフッ素樹脂のいずれかである請求項9に記載の熱伝導性複合体。
  11.  前記補強層(X)の厚さが、2~20μmである請求項9又は10に記載の熱伝導性複合体。
PCT/JP2023/041218 2022-11-22 2023-11-16 シート状放熱部材及び熱伝導性複合体 WO2024111496A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022186289 2022-11-22
JP2022-186289 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024111496A1 true WO2024111496A1 (ja) 2024-05-30

Family

ID=91195661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041218 WO2024111496A1 (ja) 2022-11-22 2023-11-16 シート状放熱部材及び熱伝導性複合体

Country Status (1)

Country Link
WO (1) WO2024111496A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038137A (ja) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
WO2016088435A1 (ja) * 2014-12-04 2016-06-09 信越化学工業株式会社 熱伝導性シート
JP2020180200A (ja) * 2019-04-24 2020-11-05 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物
JP2021195499A (ja) * 2020-06-18 2021-12-27 信越化学工業株式会社 シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038137A (ja) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd 熱伝導性シリコーングリース組成物およびその硬化物
WO2016088435A1 (ja) * 2014-12-04 2016-06-09 信越化学工業株式会社 熱伝導性シート
JP2020180200A (ja) * 2019-04-24 2020-11-05 信越化学工業株式会社 熱伝導性シリコーン組成物及びその製造方法、並びに熱伝導性シリコーン硬化物
JP2021195499A (ja) * 2020-06-18 2021-12-27 信越化学工業株式会社 シリコーン組成物、及び高熱伝導性を有する熱伝導性シリコーン硬化物

Similar Documents

Publication Publication Date Title
TWI474923B (zh) Thermal conductive laminate and method of manufacturing the same
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP6136952B2 (ja) 熱伝導性複合シリコーンゴムシート
JP4572056B2 (ja) 熱伝導性シリコーンゴム複合シート
JP2008260798A (ja) 熱伝導性硬化物及びその製造方法
TW201803920A (zh) 固化性矽酮組成物、獲得導熱性固化物的方法、以及包含所述固化物的黏著帶及黏著膜
JP2006096986A (ja) 熱伝導性シリコーンエラストマー、熱伝導媒体および熱伝導性シリコーンエラストマー組成物
JP2013086433A (ja) 熱伝導性シリコーン複合シート
WO2018025600A1 (ja) 熱伝導性シリコーンゴム複合シート
JP7139281B2 (ja) 熱伝導性複合テープ
CN113396055A (zh) 具有热传导性粘着层的热传导性硅酮橡胶片
WO2019198424A1 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP6669258B2 (ja) 熱伝導性シート
JP2007150349A (ja) 熱軟化性熱伝導性部材
TWI761435B (zh) 熱傳導性薄片
TWI724156B (zh) 熱傳導性複合薄片
TWI343936B (ja)
WO2024111496A1 (ja) シート状放熱部材及び熱伝導性複合体
JP2016219732A (ja) 熱伝導性複合シリコーンゴムシート
TW201940657A (zh) 熱傳導性薄膜狀硬化物及其製造方法,以及熱傳導性構件
TW202328391A (zh) 導熱性矽酮接著劑組成物及導熱性複合體
WO2024053440A1 (ja) 熱伝導性ミラブル型シリコーンゴム組成物及び熱伝導性シート
CN117355570A (zh) 热传导性硅酮组合物
JP2023167358A (ja) 熱伝導性シリコーン接着テープ用組成物及び熱伝導性シリコーン接着テープ