WO2024109864A1 - 一种夹层玻璃及车辆 - Google Patents

一种夹层玻璃及车辆 Download PDF

Info

Publication number
WO2024109864A1
WO2024109864A1 PCT/CN2023/133516 CN2023133516W WO2024109864A1 WO 2024109864 A1 WO2024109864 A1 WO 2024109864A1 CN 2023133516 W CN2023133516 W CN 2023133516W WO 2024109864 A1 WO2024109864 A1 WO 2024109864A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
layer
glass plate
glass
laminated
Prior art date
Application number
PCT/CN2023/133516
Other languages
English (en)
French (fr)
Inventor
阳欢
张灿忠
蒋炳铭
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2024109864A1 publication Critical patent/WO2024109864A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/08Windows; Windscreens; Accessories therefor arranged at vehicle sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/18Windows; Windscreens; Accessories therefor arranged at the vehicle rear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J7/00Non-fixed roofs; Roofs with movable panels, e.g. rotary sunroofs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions

Definitions

  • the present application relates to the field of glass, and in particular to a laminated glass and a vehicle.
  • the interior space of a vehicle becomes very hot in the summer due to high temperatures and strong direct sunlight, and becomes very cold in the winter due to heat loss from the vehicle caused by low outside temperatures. More and more vehicles are coating the surface of the sunroof glass close to the interior space with a film layer with low emissivity to achieve the effect of "warm in winter and cool in summer".
  • the low emissivity film layer can reduce the long-wave heat radiation emitted by the heated sunroof glass into the interior of the vehicle, and can isolate heat from entering the interior of the vehicle; in the winter, the low emissivity film layer can reduce the heat from the interior of the vehicle to radiate to the external environment, and avoid heat loss from the interior of the vehicle.
  • skylight glass As the size of skylight glass becomes larger and larger, especially the panoramic skylight glass or panoramic skylight glass on electric vehicles, the traditional glass with a low-emissivity film layer as skylight glass is difficult to meet the requirements of thermal comfort in the car. According to research, human skin is most sensitive to heat in the 1000nm to 1250nm band. In actual applications, the heat blocking effect of traditional skylight glass is not good enough to provide passengers with a good enough human body surface sensation. The skylight glass still needs to be used with a sunshade, which cannot meet the requirements of automobile OEMs for lightweighting, increasing roof space and reducing costs.
  • the present application provides a laminated glass and a vehicle, wherein the laminated glass has a good heat blocking effect and can bring a sufficiently good human body surface sensation to passengers.
  • the present application provides a laminated glass, which comprises an outer glass plate, an adhesive layer, an inner glass plate and a low-emissivity layer which are sequentially stacked;
  • the outer glass plate has a first surface and a second surface which are oppositely arranged,
  • the inner glass plate has a third surface and a fourth surface which are oppositely arranged, and the adhesive layer is used to connect the second surface and the third surface;
  • the low-emissivity layer is arranged on the fourth surface of the inner glass plate, and the low-emissivity layer comprises 1 to 3 transparent conductive oxide layers;
  • the laminated glass provided in the present application includes a low-radiative layer, which is arranged on the fourth surface of the inner glass plate.
  • the low-radiative layer can be used to reduce the emissivity of the laminated glass measured from the inside of the vehicle when it is installed on the vehicle, which can effectively block the heat outside the vehicle from being transferred to the space inside the vehicle, and can also block the heat inside the vehicle from being lost to the outside, thereby achieving the effect of heat insulation in summer and heat preservation in winter.
  • the thermal insulation coefficient C of the laminated glass is in the range of 0.008 ⁇ C ⁇ 0.4, so that the laminated glass can have a relatively ideal heat blocking effect, which can bring better human body surface feeling to passengers.
  • the laminated glass When the laminated glass is installed on the vehicle, it can achieve an ideal heat blocking effect without the need for matching with sunshades, etc., and meets the requirements of lightweight, increasing roof space and reducing costs.
  • the material of the transparent conductive oxide layer is indium tin oxide
  • the inner glass plate includes iron oxide.
  • the ratio of the mass of total iron in the inner glass sheet as Fe2O3 to the mass of indium in the transparent conductive oxide layer ranges from 20: 1 to 500:1.
  • the inner glass plate is tinted glass
  • the mass fraction of total iron in the inner glass plate calculated as Fe2O3 is in the range of 0.9% to 2.2%
  • the thickness of the inner glass plate is in the range of 0.7mm to 2.1mm.
  • the transmittance TnIR of the laminated glass for infrared rays with a wavelength of 1000nm to 1250nm is in a reasonable range, so that the laminated glass can effectively block infrared rays with a wavelength of 1000nm to 1250nm from passing through the laminated glass and entering the interior of the vehicle, and the laminated glass has a relatively ideal heat blocking effect, bringing better human body surface sensation to passengers.
  • the thickness of the inner glass plate satisfies the range of 0.7mm to 2.1mm
  • the thickness of the inner glass plate is in a reasonable range, and the inner glass plate is applied to the vehicle after being combined with the outer
  • the total thickness of the transparent conductive oxide layer is in the range of 50 nm to 300 nm.
  • the laminated glass has a lower emissivity.
  • the visible light transmittance of the laminated glass ranges from 0.5% to 10%
  • the emissivity of the laminated glass measured from the side of the low-emissivity layer away from the inner glass plate is less than or equal to 0.25
  • the visible light reflectivity of the laminated glass measured from the side of the low-emissivity layer away from the inner glass plate is less than or equal to 4%.
  • the laminated glass has a lower visible light transmittance, which can protect the privacy of passengers and replace the sunshade, and is suitable for use in the skylight glass, side window glass and rear windshield of the vehicle.
  • the laminated glass When the emissivity of the laminated glass is less than or equal to 0.25, the laminated glass has low emissivity, which can effectively block the heat outside the vehicle from being transferred to the inside of the vehicle in summer, and block the heat inside the vehicle from being lost to the outside in winter, thereby achieving the effect of heat insulation in summer and heat preservation in winter.
  • the visible light reflectivity of the laminated glass measured from the side of the low-emissivity layer away from the inner glass plate is low.
  • the laminated glass When the laminated glass is applied to a vehicle, especially for a skylight glass on the roof of a vehicle, the phenomenon of obvious reflections of passengers and objects in the vehicle on the skylight glass due to mirror reflection can be reduced or even eliminated, thereby avoiding visual interference of the reflection phenomenon to passengers, especially rear passengers, and improving passenger experience.
  • the low-emissivity layer further comprises at least two first dielectric layers, and the first dielectric layers are provided on the opposite surfaces of each transparent conductive oxide layer, and the material of the first dielectric layer is selected from nitrides, oxides, and oxynitrides of at least one element of Zn, Sn, Ti, Si, Al, Mg, and Zr.
  • high-temperature heat treatment and bending processes are required.
  • the first dielectric layer can protect the transparent conductive oxide layer from being corroded or damaged during processing or use, and adjust the optical effect and appearance color of the low-emissivity layer, and can improve the adhesion performance between the low-emissivity layer and the inner glass plate, thereby facilitating the thermal blocking effect of the laminated glass.
  • the laminated glass further comprises an infrared reflection layer, the infrared reflection layer is arranged between the inner glass plate and the outer glass plate, the infrared reflection layer comprises 1 to 5 metal layers, the material of the metal layer is selected from metal or alloy of at least one element of Ag, Au, Cu, Al, Pt.
  • the metal layer is conducive to making the infrared reflection layer have a better effect of reflecting infrared rays.
  • the infrared reflection layer also includes at least two second dielectric layers, and the second dielectric layers are provided on the two opposite surfaces of each metal layer, and the material of the second dielectric layer is selected from the nitride, oxide, and oxynitride of at least one element of Zn, Sn, Ti, Si, Al, Ni, Cr, Nb, Mg, Zr, Ga, Y, In, Sb, V, and Ta.
  • the material of the second dielectric layer is selected from the nitride, oxide, and oxynitride of at least one element of Zn, Sn, Ti, Si, Al, Ni, Cr, Nb, Mg, Zr, Ga, Y, In, Sb, V, and Ta.
  • the second dielectric layer can protect the metal layer from being oxidized or damaged during processing or use, and adjust the optical effect and appearance color of the infrared reflection layer, and can improve the adhesion performance of the infrared reflection layer, so as to facilitate the thermal blocking of the laminated glass. Effect.
  • the outer glass plate is a transparent glass with a visible light transmittance greater than or equal to 80%.
  • the transparent glass can maximize the function of the infrared reflection layer in reflecting infrared rays in sunlight, so as to reflect as much infrared rays in sunlight as possible and absorb as little infrared rays in sunlight as possible, so as to achieve an ideal heat blocking effect.
  • the laminated glass does not include an infrared reflective layer
  • the outer glass plate is tinted glass
  • the mass fraction of total iron in the outer glass plate as Fe2O3 is in the range of 0.7% to 2.2%
  • the thickness of the outer glass plate is in the range of 2.1mm to 4.2mm.
  • the outer glass plate of the present application is tinted glass, which is conducive to making the laminated glass further achieve a visible light transmittance of less than or equal to 10% and a total solar energy transmittance of greater than or equal to 25%.
  • the thermal insulation coefficient C of the laminated glass is in the range of 0.03 ⁇ C ⁇ 0.25.
  • the thermal insulation coefficient C of the laminated glass satisfies the range of 0.03 ⁇ C ⁇ 0.25
  • the laminated glass has a relatively ideal heat blocking effect and can bring better human body surface feeling to passengers.
  • the thermal insulation coefficient C of the laminated glass is in the range of 0.009 ⁇ C ⁇ 0.15.
  • the thermal insulation coefficient C of the laminated glass satisfies the range of 0.009 ⁇ C ⁇ 0.15
  • the laminated glass has a more ideal heat blocking effect and can bring better human body surface feeling to passengers.
  • the adhesive layer is a colored thermoplastic polymer film
  • the thermoplastic polymer film is selected from at least one of polyvinyl butyral, polyurethane, ethylene-vinyl acetate copolymer and ionomer, and the visible light transmittance of the adhesive layer is 1% to 20%.
  • the thermoplastic polymer film can bond the inner glass plate and the outer glass plate, and the thermoplastic polymer film has good bonding performance, which can effectively improve the bonding strength between the inner glass plate and the outer glass plate.
  • the visible light transmittance of the inner glass plate is 34% to 42%
  • the Lab value of the color of the inner glass plate has a value range of L of 65 to 71.5, a of -3.5 to -2, and b of 2 to 3.5.
  • the inner glass plate is gray glass.
  • the visible light transmittance of the inner glass plate is 26% to 34%
  • the L value of the Lab value of the color of the inner glass plate ranges from 58.5 to 65
  • the value of a ranges from -5 to -3.5
  • the value of b ranges from 0.5 to 2.
  • the inner glass plate is gray glass.
  • the laminated glass further comprises a dimming element, which is disposed between the second surface and the third surface, and comprises at least one of a polymer dispersed liquid crystal dimming film, a suspended particle dimming film and an electro-variable dimming film.
  • the dimming element is used to adjust the visible light transmittance of the laminated glass to meet the optical performance in different usage scenarios.
  • the present application also provides a vehicle, the vehicle comprising a vehicle body and the laminated glass provided by the present application, the laminated glass being carried by the vehicle body and serving as at least one of the sunroof glass, side window glass and rear windshield glass of the vehicle.
  • the laminated glass has a low visible light transmittance and a low total solar energy transmittance, so that the laminated glass has a good heat blocking effect; in addition, the laminated glass has a low emissivity, and when the laminated glass is applied to a vehicle, it can provide passengers with a good experience.
  • the laminated glass provided by the present application includes a low-emissivity layer, which is arranged on the fourth surface of the inner glass plate.
  • the low-emissivity layer can be used to reduce the emissivity of the laminated glass measured from the inside of the vehicle when it is installed on the vehicle, which can effectively block the heat outside the vehicle from being transferred to the space inside the vehicle, and block the heat inside the vehicle from being lost to the outside, thereby achieving the effect of heat insulation in summer and heat preservation in winter.
  • the laminated glass by controlling the laminated glass to the wavelength of 1000nm to 1250nm
  • the transmittance TnIR of infrared rays and the reflectivity RIR of infrared rays with a wavelength of 780nm to 2500nm make the thermal insulation coefficient C of the laminated glass range from 0.008 ⁇ C ⁇ 0.4, so that the laminated glass has a relatively ideal heat blocking effect and can bring better human body surface feeling to passengers.
  • the laminated glass When the laminated glass is installed on a vehicle, it can achieve an ideal heat blocking effect without the need for use with sunshades, etc., meeting the requirements of lightweight, increased roof space and reduced costs.
  • FIG1 is a schematic diagram of the structure of a laminated glass in an embodiment of the present application.
  • FIG2 is a cross-sectional view of the laminated glass according to an embodiment of the present application along the direction A-A in FIG1 ;
  • FIG3 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG4 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG5 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG6 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG7 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG8 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG9 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the A-A direction in FIG1 ;
  • FIG10 is a cross-sectional view of a laminated glass according to another embodiment of the present application along the direction A-A in FIG1 ;
  • FIG. 11 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • an embodiment of the present application provides a laminated glass 10, the laminated glass 10 comprising an outer glass plate 15, an adhesive layer 17, an inner glass plate 11 and a low-emissivity layer 13 which are sequentially stacked;
  • the outer glass plate 15 has a first surface 151 and a second surface 152 which are oppositely arranged, the inner glass plate 11 has a third surface 111 and a fourth surface 112 which are oppositely arranged, the adhesive layer 17 is used to connect the second surface 152 and the third surface 111;
  • the low-emissivity layer 13 is arranged on the fourth surface 112 of the inner glass plate 11, and the low-emissivity layer 13 comprises 1 to 3 transparent conductive oxide layers 131;
  • the thermal insulation coefficient of the laminated glass 10 may be, but is not limited to, 0.008, 0.009, 0.01, 0.02, 0.05, 0.06, 0.1, 0.13, 0.15, 0.2, 0.24, 0.27, 0.31, 0.35, 0.37 and 0.4.
  • the number of transparent conductive oxide layers 131 in the low-emissivity layer 13 is 1; in other embodiments, the number of transparent conductive oxide layers 131 in the low-emissivity layer 13 is 2; in other embodiments, the number of transparent conductive oxide layers 131 in the low-emissivity layer 13 is 3.
  • the surface of the outer glass plate 15 facing away from the adhesive layer 17 is the first surface 151, and the surface of the outer glass plate 15 close to the adhesive layer 17 is the second surface 152; the surface of the inner glass plate 11 close to the adhesive layer 17 is the third surface 111, and the surface of the inner glass plate 11 facing away from the adhesive layer 17 is the fourth surface 112.
  • the first surface 151 is the outermost surface of the laminated glass 10 close to the outside of the vehicle
  • the fourth surface 112 is the innermost surface of the laminated glass 10 close to the inside of the vehicle.
  • the laminated glass 10 of the present application can be applied to buildings, vehicles 30, etc.
  • the laminated glass 10 When the laminated glass 10 is applied to the vehicle 30, it can be applied to at least one of the sunroof glass, side window glass, and rear windshield glass of the vehicle 30.
  • the value of the thermal insulation coefficient C is controlled within a certain range, so that the laminated glass 10 can effectively block the heat outside the vehicle 30 from being transferred to the inside of the vehicle 30, and block the heat inside the vehicle 30 from being lost to the outside, and the laminated glass 10 has good low-radiation performance; in addition, the laminated glass 10 has a relatively ideal heat blocking effect, and can further bring better human body surface feeling to passengers.
  • the laminated glass 10 When the laminated glass 10 is installed on the vehicle, it can achieve an ideal heat blocking effect without the need for use with sunshades, etc., which can increase the roof space and meet the requirements of lightweighting the vehicle 30 and reducing costs.
  • the value of the thermal insulation coefficient C of the laminated glass 10 satisfies 0.008 ⁇ C ⁇ 0.4, the laminated glass 10 has a relatively ideal heat blocking effect and can bring a better human body surface feeling to the passengers.
  • the transmittance of the laminated glass 10 for infrared rays with a wavelength of 1000nm to 1250nm is too high and the reflectivity of the laminated glass 10 for infrared rays with a wavelength of 780nm to 2500nm is too low, so that the thermal blocking effect of the laminated glass 10 is poor and the human body surface feeling of the passengers is poor.
  • the value of the thermal insulation coefficient C of the laminated glass 10 is less than 0.008, the laminated glass 10 has an excellent heat blocking effect, but the manufacturing materials and processes of the laminated glass 10 are required to be relatively high, which will further increase the production cost of the laminated glass 10.
  • the thermal insulation coefficient C of the laminated glass 10 is in the range of 0.03 ⁇ C ⁇ 0.25.
  • the thermal insulation coefficient C of the laminated glass 10 may be, but is not limited to, 0.03, 0.05, 0.08, 0.12, 0.13, 0.15, 0.18, 0.19, 0.20, 0.22, 0.24 and 0.25.
  • the thermal insulation coefficient C of the laminated glass 10 satisfies the range of 0.03 ⁇ C ⁇ 0.25
  • the laminated glass 10 has a relatively ideal heat blocking effect and can bring better human body surface feeling to passengers.
  • the thermal insulation coefficient C of the laminated glass 10 is in the range of 0.009 ⁇ C ⁇ 0.15.
  • the thermal insulation coefficient C of the laminated glass 10 may be, but is not limited to, 0.009, 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.11, 0.12, 0.14, and 0.15.
  • the thermal insulation coefficient C of the laminated glass 10 satisfies the range of 0.009 ⁇ C ⁇ 0.15, the laminated glass 10 has a more ideal heat blocking effect and can bring better human body surface feeling to passengers.
  • the visible light transmittance of the laminated glass 10 ranges from 0.5% to 10%.
  • the visible light transmittance of the laminated glass 10 can be, but is not limited to, 0.5%, 1.5%, 2%, 2.5%, 3.3%, 4.8%, 5%, 6.7%, 8%, 8.5%, 9.4%, 10%, etc.
  • the laminated glass 10 When the visible light transmittance of the laminated glass 10 is in the range of 0.5% to 10%, the laminated glass 10 has a lower visible light transmittance, which can protect the privacy of passengers and replace sunshades, and is suitable for use in skylight glass, side window glass and rear windshield of the vehicle 30.
  • the emissivity of the laminated glass 10 measured from the side of the low-emissivity layer 13 away from the inner glass plate 11 is less than or equal to 0.25.
  • the emissivity of the laminated glass 10 may be, but is not limited to, 0.12, 0.14, 0.17, 0.19, 0.21, 0.22, 0.23, 0.25, etc.
  • the laminated glass 10 When the emissivity of the laminated glass 10 is less than or equal to 0.25, the laminated glass 10 has low emissivity, which can effectively block the heat outside the vehicle 30 from being transferred to the inside of the vehicle 30 in summer, and block the heat inside the vehicle 30 from being lost to the outside in winter, thereby achieving the effect of heat insulation in summer and heat preservation in winter.
  • the visible light reflectance of the laminated glass 10 measured from the side of the low-emissivity layer 13 away from the inner glass plate 11 is less than or equal to 4%.
  • the visible light reflectance of the laminated glass 10 may be, but is not limited to, 4%, 3.8%, 3.75%, 3.6%, 3.5%, 3.2%, 3.1%, 3.0%, etc.
  • the visible light reflectivity of the laminated glass 10 measured from the side of the low-emissivity layer 13 away from the inner glass plate 11 is low.
  • the laminated glass 10 is applied to the vehicle 30, especially when used for the skylight glass on the roof of the vehicle 30, the phenomenon of obvious reflections of passengers and objects in the vehicle on the skylight glass due to mirror reflection can be reduced or even eliminated, thereby avoiding the reflection phenomenon from causing visual interference to passengers, especially rear passengers, and improving passenger experience.
  • the visible light reflectance of the laminated glass 10 is less than or equal to 3%.
  • the visible light reflectance of the laminated glass 10 can be, but is not limited to, 3%, 2.8%, 2.75%, 2.6%, 2.5%, 2.2%, 2.1%, 2.0%, etc.
  • the visible light reflectance of the laminated glass 10 is less than or equal to 2%.
  • the visible light reflectance of the laminated glass 10 can be, but is not limited to, 2%, 1.8%, 1.75%, 1.6%, 1.5%, 1.2%, 1.1%, 0.9%, 0.8%, 0.6%, etc.
  • the inner glass plate 11 is tinted glass.
  • the inner glass plate 11 is tinted glass.
  • the inner glass plate 11 can be, but is not limited to, any one of green glass, gray glass, blue glass and brown glass.
  • the visible light transmittance of the inner glass plate 11 is 5% to 45%.
  • the visible light transmittance of the inner glass plate 11 may be, but is not limited to, 5%, 8%, 16%, 19%, 23%, 25%, 33%, 35%, 37% and 40%.
  • the visible light transmittance of the inner glass plate 11 when the visible light transmittance of the inner glass plate 11 is in the range of 34% to 42%, in the Lab value of its color, the value range of L is 65 to 71.5, the value range of a is -3.5 to -2, and the value range of b is 2 to 3.5.
  • the inner glass plate 11 is gray glass.
  • the visible light transmittance of the inner glass plate 11 may be, but not limited to, 34%, 35%, 36%, 37%, 39%, 40%, 41% and 42%.
  • the value of L may be, but not limited to, 65, 65.3, 66.4, 66.6, 67.2, 67.9, 68.5, 69.3, 69.7, 70.2, 70.9 and 71.5, etc.
  • the value of a may be, but not limited to, -3.5, -3.4, -3.1, -2.9, -2.7, -2.5, -2.3, -2.1 and -2, etc.
  • the value of b may be, but not limited to, 2, 2.1, 2.3, 2.4, 2.7, 3.0, 3.1, 3.3, 3.4 and 3.5, etc.
  • the visible light transmittance of the inner glass plate 11 when the visible light transmittance of the inner glass plate 11 is in the range of 26% to 34%, in the Lab value of its color, the value range of L is 58.5 to 65, the value range of a is -5 to -3.5, and the value range of b is 0.5 to 2.
  • the inner glass plate 11 is gray glass.
  • the visible light transmittance of the inner glass plate 11 can be but is not limited to 26%, 26.3%, 27.1%, 27.7%, 28.4%, 29%, 30.4%, 31.4%, 32.2%, 32.8%, 33.6% and 34%, etc.
  • the value of L may be, but is not limited to, 58.5, 58.9, 59.4, 59.8, 60.2, 60.8, 61.4, 61.8, 62.7, 63.5, 64.2, 64.8 and 65;
  • the value of a may be, but is not limited to, -5, -4.9, -4.7, -4.5, -4.4, -4.2, -4.0, -3.9, -3.8, -3.7, -3.6 and -3.5;
  • the value of b may be, but is not limited to, 0.5, 0.6, 0.8, 1.0, 1.2, 1.3, 1.5, 1.7, 1.8, 1.9 and 2.
  • the mass fraction of total iron in the inner glass plate 11 calculated as Fe2O3 ranges from 0.9% to 2.2 %.
  • the mass fraction of total iron in the inner glass plate 11 calculated as Fe2O3 may be, but is not limited to, 0.9%, 1.0%, 1.1%, 1.3%, 1.4%, 1.7%, 1.8%, 2.0%, 2.1%, 2.2%, etc.
  • the transmittance TnIR of the laminated glass 10 for infrared rays with a wavelength of 1000nm to 1250nm is within a reasonable range, so that the laminated glass 10 can effectively block infrared rays with a wavelength of 1000nm to 1250nm from passing through the laminated glass 10 and entering the interior of the vehicle 30.
  • the laminated glass 10 has a relatively ideal heat blocking effect, bringing better human body surface sensation to passengers.
  • iron oxides are mainly used as coloring components and functional components in glass.
  • Iron in glass mainly exists in divalent and trivalent forms.
  • Divalent iron has an absorption peak near a wavelength of 1100nm
  • trivalent iron has an absorption peak near a wavelength of 400nm.
  • the total iron mentioned in this application refers to all iron oxides present in the inner glass plate 11, including both divalent iron (FeO) and trivalent iron ( Fe2O3 ). This is a common representation method in the art, and does not mean that all iron oxides in the glass are Fe2O3 .
  • the thickness of the inner glass plate 11 ranges from 0.7 mm to 2.1 mm.
  • the thickness of the inner glass plate 11 may be, but is not limited to, 0.7 mm, 0.9 mm, 1.0 mm, 1.1 mm, 1.3 mm, 1.5 mm, 1.7 mm, 1.8 mm, 2.0 mm, 2.1 mm, etc.
  • the thickness of the inner glass plate 11 satisfies the range of 0.7 mm to 2.1 mm, the thickness of the inner glass plate 11 is within a reasonable range, and the inner glass plate 11 is applied to the vehicle 30 after being combined with the outer glass plate 15 through the adhesive layer 17 .
  • the inner glass sheet 11 comprises 1.1% to 1.9% by mass of total iron in the form of Fe 2 O 3 , 140ppm to 300ppm of Co 2 O 3 , 10ppm to 320ppm of Cr 2 O 3 , 55ppm to 75ppm of SrO and 10-30ppm of Se.
  • the mass fraction of total iron in terms of Fe2O3 in the inner glass plate 11 may be, but is not limited to, 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8% and 1.9%;
  • the mass fraction of Co2O3 in the inner glass plate 11 may be , but is not limited to, 140ppm, 146ppm, 152ppm, 165ppm, 170ppm, 185ppm, 196ppm, 206ppm, 218ppm, 225ppm, 240ppm, 250ppm, 260ppm, 270ppm, 280ppm and 300ppm, etc.;
  • the mass fraction of Cr2O3 in the inner glass plate 11 may be, but is not limited to, 1
  • the mass fraction of 3 may be, but is not limited to, 10ppm, 16ppm, 25ppm, 38ppm, 56ppm, 88ppm, 107ppm, 138ppm, 156ppm, 188ppm, 220ppm,
  • the inner glass plate 11 is a tinted glass, and the inner glass plate 11 can block infrared rays from passing through the inner glass plate 11, so that the laminated glass 10 has a better heat insulation effect and a more suitable visible light transmittance.
  • the material of the transparent conductive oxide layer 131 is selected from at least one of doped zinc oxide (ZnO), indium tin oxide (ITO), nickel chromium oxide (CrNiOx), fluorine-doped tin oxide (FTO), and zinc tin oxide (ZnSnOx), and the doped zinc oxide is zinc oxide doped with one or more of aluminum, tungsten, hafnium, gallium, yttrium, niobium, and neodymium elements.
  • doped zinc oxide is zinc oxide doped with one or more of aluminum, tungsten, hafnium, gallium, yttrium, niobium, and neodymium elements.
  • the low-emissivity layer 13 can be directly deposited onto the fourth surface 112 by chemical vapor deposition (CVD) or physical vapor deposition (CVD).
  • the total thickness of the transparent conductive oxide layer 131 in the low-emissivity layer 13 ranges from 50 nm to 300 nm.
  • the emissivity of the laminated glass 10 without the low-emissivity layer 13 is about 0.9, and the low-emissivity layer 13 can reduce the emissivity of the laminated glass 10, so that the emissivity of the laminated glass 10 is less than or equal to 0.25.
  • the emissivity is mainly used to measure the relative strength of the ability of the surface of an object to release energy in the form of radiation, and usually reflects the ability to block mid- and far-infrared rays (wavelength greater than 2500 nm).
  • the transparent conductive oxide layer 131 is an indium tin oxide (ITO) layer deposited by a magnetron sputtering process, and the target material of the transparent conductive oxide 131 includes indium oxide and tin oxide, wherein the ratio of the mass of indium oxide to the mass of tin oxide is in the range of 80:20 to 90:10. Specifically, the ratio of the mass of indium oxide to the mass of tin oxide can be, but is not limited to, 80:20, 82:18, 85:15, 88:12, 90:10, etc.
  • the total thickness of the transparent conductive oxide layer 131 in the low-emissivity layer 13 ranges from 50 nm to 300 nm.
  • the total thickness of the transparent conductive oxide layer 131 may be, but is not limited to, 50 nm, 70 nm, 90 nm, 130 nm, 180 nm, 190 nm, 220 nm, 230 nm, 260 nm, and 300 nm.
  • the laminated glass 10 has a lower emissivity.
  • the total thickness of the transparent conductive oxide layer 131 is less than 50nm, the low emissivity of the laminated glass 10 is poor, and it is not possible to effectively block the outflow of heat from the inside of the vehicle 30 or the inflow of heat from the outside of the vehicle 30.
  • the total thickness of the transparent conductive oxide layer 131 is greater than 300nm, the visible light reflectivity of the laminated glass 10 also increases, so that the anti-reflection effect of the laminated glass 10 is poor, causing interference and discomfort to passengers.
  • the transparent conductive oxide layer 131 is an indium tin oxide (ITO) layer
  • the inner glass plate 11 includes iron oxide
  • the ratio of the mass of total iron in the inner glass plate 11 in terms of Fe 2 O 3 to the mass of indium in the transparent conductive oxide layer 131 is in the range of 20:1 to 500:1, preferably in the range of 50:1 to 200:1.
  • the ratio of the mass of total iron in terms of Fe2O3 in the inner glass plate 11 to the mass of indium in the transparent conductive oxide layer 131 can be, but is not limited to, 20:1, 30:1, 50:1, 80:1, 100:1, 110:1, 120:1, 150:1, 180:1, 200:1, 250:1, 300:1, 350:1, 400:1, 450:1, 500:1, etc.
  • the transparent conductive oxide layer 131 is an ITO layer deposited by a magnetron sputtering process
  • the low-emissivity layer 13 including the ITO layer is disposed on the fourth surface 112 of the inner glass plate 11.
  • Increasing the mass of total iron in Fe2O3 in the inner glass plate 11 can reduce the visible light transmittance of the laminated glass 10, and can also reduce the transmittance of the laminated glass 10 to infrared rays with a wavelength of 1000nm to 1250nm.
  • increasing the mass of total iron in Fe2O3 in the inner glass plate 11 increases the manufacturing difficulty and manufacturing cost of the inner glass plate 11, and makes the laminated glass 10 more likely to absorb heat and heat up in summer.
  • Increasing the mass of indium in the transparent conductive oxide layer 131 can reduce the emissivity of the laminated glass 10, and can also increase the reflectivity of the laminated glass 10 to infrared rays with a wavelength of 780nm to 2500nm.
  • increasing the mass of indium in the transparent conductive oxide layer 131 will increase the production cost and difficulty of the laminated glass 10, and the low-emissivity layer 13 obtained is difficult to meet various automotive grade requirements for window glass.
  • the ratio of the mass of the total iron in Fe2O3 in the inner glass plate 11 to the mass of indium in the transparent conductive oxide layer 131 is between 20:1 and 500:1, it is easier to achieve that the thermal insulation coefficient C of the laminated glass 10 satisfies 0.008 ⁇ C ⁇ 0.4, or even satisfies 0.03 ⁇ C ⁇ 0.25, or satisfies 0.009 ⁇ C ⁇ 0.15, so that the laminated glass 10 has a relatively ideal heat blocking effect, which can bring better human body surface feeling to passengers.
  • the ratio of the mass of the total iron in Fe2O3 in the inner glass plate 11 to the mass of indium in the transparent conductive oxide layer 131 is greater than 500:1, not only will the inner glass plate 11 be more likely to absorb heat in summer and radiate more heat into the vehicle, resulting in poor heat blocking effect of the laminated glass 10 and poor body surface sensation of passengers, but also the difficulty of matching the total iron in the inner glass plate 11 with other components is increased, thereby increasing the production cost and difficulty of the inner glass plate 11.
  • the ratio of the mass of the total iron in Fe2O3 in the inner glass plate 11 to the mass of indium in the transparent conductive oxide layer 131 is less than 20:1, the total thickness of the ITO layer is too large, and the manufacturing materials and processes of the low-emissivity layer 13 are both required to be high.
  • the low-emissivity layer 13 obtained is also difficult to meet the various automotive grade use requirements of vehicle window glass, which will further increase the production cost of the laminated glass 10.
  • the low-emissivity layer 13 further includes at least two first dielectric layers 132 .
  • the first dielectric layers 132 are provided on the opposite surfaces of each transparent conductive oxide layer 131 .
  • the first dielectric layer 132 can protect the transparent conductive oxide layer 131 from being corroded or damaged during processing or use, and adjust the optical effect and appearance color of the low-emissivity layer 13 , and can improve the adhesion between the low-emissivity layer 13 and the inner glass plate 11 , so as to achieve the heat blocking effect of the laminated glass 10 .
  • the material, thickness, etc. of the first dielectric layer 132 it is beneficial to achieve the anti-reflection effect of the low-emissivity layer 13 , and can reduce or even eliminate the phenomenon that the passengers and objects in the car form obvious reflections on the sunroof glass due to mirror reflection, so as to avoid visual interference to the passengers, especially the rear passengers, and improve the user experience.
  • the material of the first dielectric layer 132 is selected from nitrides, oxides, and oxynitrides of at least one element among Zn, Sn, Ti, Si, Al, Mg, and Zr.
  • the material of the first dielectric layer 132 may be, but is not limited to, zinc nitride, zinc oxide, zinc oxynitride, titanium oxynitride, magnesium oxide, and aluminum nitride.
  • the thickness of the first dielectric layer 132 ranges from 5 nm to 100 nm. Specifically, the thickness of the first dielectric layer 132 may be, but is not limited to, 5 nm, 10 nm, 25 nm, 38 nm, 45 nm, 50 nm, 68 nm, 75 nm, 80 nm, and 100 nm.
  • the first dielectric layer 132 when the thickness of the first dielectric layer 132 is within the range of 5 nm to 100 nm, The first dielectric layer 132 can protect the transparent conductive oxide layer 131 from being corroded or damaged during processing or use, and adjust the optical effect and appearance color of the low-emissivity layer 13, and can improve the adhesion between the low-emissivity layer 13 and the inner glass plate 11, so as to facilitate the thermal blocking effect of the laminated glass 10.
  • the thickness of the first dielectric layer 132 is greater than 100 nm, the first dielectric layer 132 is too thick, which is not conducive to matching with other film layers, and finally reduces the thermal blocking effect of the laminated glass 10.
  • the thickness of the first dielectric layer 132 is less than 5 nm, the thickness of the first dielectric layer 132 is too small, and the first dielectric layer 132 is easily worn in actual use, making it difficult to continue to protect the transparent conductive oxide layer 131 from being corroded or damaged.
  • the laminated glass 10 further includes an infrared reflection layer 18, which is disposed between the inner glass plate 11 and the outer glass plate 15.
  • the infrared reflection layer 18 includes 1 to 5 metal layers 184, and the material of the metal layer 184 is selected from a metal or alloy of at least one element of Ag, Au, Cu, Al, and Pt.
  • the infrared reflection layer 18 can be directly disposed on the second surface 152 of the outer glass plate 15, or directly disposed on the third surface 111 of the inner glass plate 11, or can be first disposed on an organic resin film such as polyethylene terephthalate, and the organic resin film provided with the infrared reflection layer 18 is sandwiched between the second surface 152 and the third surface 111.
  • the laminated glass 10 can further achieve a visible light transmittance of less than or equal to 10% and a total solar energy transmittance of less than or equal to 25%.
  • the infrared reflective layer 18 has a thickness ranging from 40 nm to 500 nm.
  • the infrared reflective layer 18 may have a thickness of, but not limited to, 40 nm, 50 nm, 80 nm, 140 nm, 160 nm, 220 nm, 280 nm, 330 nm, 380 nm, 440 nm, 480 nm, and 500 nm.
  • the infrared reflection layer 18 can effectively reflect infrared rays in sunlight, thereby blocking the transfer of heat, improving the heat insulation capacity of the laminated glass 10 , and reducing the total solar energy transmittance of the laminated glass 10 .
  • the material of the metal layer 184 may be, but is not limited to, silver, gold, copper, aluminum, platinum, silver-copper alloy, copper-aluminum alloy, copper-gold alloy, etc.
  • the material of the metal layer 184 is usually silver or a silver alloy, and the silver alloy may be, for example, a silver-gold alloy, a silver-aluminum alloy, a silver-copper alloy, a silver-platinum-gold alloy, etc.
  • the infrared reflection layer 18 when there is only one metal layer 184 in the infrared reflection layer 18 , it can be called a single silver infrared reflection layer. Similarly, when there are two metal layers 184 in the infrared reflection layer 18 , it can be called a double silver infrared reflection layer. Similarly, there can be three silver infrared reflection layers, four silver infrared reflection layers, and five silver infrared reflection layers.
  • each metal layer 184 in the infrared reflective layer 18 ranges from 4 nm to 20 nm.
  • the thickness of each metal layer 184 may be, but is not limited to, 4 nm, 5 nm, 6 nm, 8 nm, 10 nm, 12 nm, 14 nm, 16 nm, 17 nm, 19 nm, 20 nm, etc.
  • the infrared reflection layer 18 can have a better infrared reflection effect, and it is also beneficial to reduce the design difficulty of the infrared reflection layer 18 and ensure that the infrared reflection layer 18 can withstand high-temperature heat treatment and bending processes to meet the automotive-grade use requirements of vehicle window glass.
  • the infrared reflection layer 18 also includes at least two second dielectric layers 181.
  • the two opposite surfaces of each metal layer 184 are provided with the second dielectric layer 181.
  • the second dielectric layer 181 can protect the metal layer 184 from being oxidized or damaged during processing or use, and adjust the optical effect and appearance color of the infrared reflection layer 18, and can improve the adhesion performance of the infrared reflection layer 18, thereby facilitating the realization of the thermal blocking effect of the laminated glass 10.
  • the infrared reflection layer 18 is disposed on the second surface 152 of the outer glass plate 15, the second dielectric layer 181 disposed on the metal layer 184 closer to the second surface 152 is the second inner dielectric layer 182, and the second dielectric layer disposed on the metal layer 184 farther from the second surface 152 is the second outer dielectric layer 183.
  • the infrared reflection layer 18 is disposed on the third surface 111 of the inner glass plate 11
  • the second dielectric layer 181 disposed on the metal layer 184 closer to the third surface 111 is the second inner dielectric layer 182
  • the second dielectric layer 181 disposed on the metal layer 184 farther from the third surface 111 is the second outer dielectric layer 183.
  • the total number of the second dielectric layers 181 is one more than the total number of the metal layers 184181.
  • the infrared reflective layer 18 has one metal layer 184 and two second dielectric layers 181, or two metal layers 184 and three second dielectric layers 181, or three metal layers 184 and four second dielectric layers 181, or four metal layers 184 and five second dielectric layers 181, or five metal layers 184 and six second dielectric layers 181.
  • the material of the second dielectric layer is selected from nitride, oxide, and oxynitride of at least one element of Zn, Sn, Ti, Si, Al, Ni, Cr, Nb, Mg, Zr, Ga, Y, In, Sb, V, and Ta.
  • the material of the second dielectric layer may be, but is not limited to, zinc stannate (ZnSnOx), magnesium-doped zinc stannate, zinc oxide, magnesium-doped zinc oxide, zirconium-doped zinc oxide, niobium oxide, bismuth oxide, aluminum-doped zinc oxide (AZO), zirconium oxide, titanium oxide, titanium peroxide, nickel-chromium, zirconium nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
  • ZnSnOx zinc stannate
  • magnesium-doped zinc oxide zinc oxide
  • zirconium-doped zinc oxide zirconium-doped zinc oxide
  • niobium oxide bismuth oxide
  • aluminum-doped zinc oxide (AZO) zirconium oxide
  • titanium oxide titanium peroxide
  • the laminated glass 10 includes a low-emissivity layer 13, an inner glass plate 11, an adhesive layer 17, an infrared reflection layer 18, and an outer glass plate 15 stacked in sequence from the inside of the vehicle to the outside of the vehicle.
  • the infrared reflection layer 18 can reflect infrared rays in sunlight, thereby improving the heat blocking effect of the laminated glass 10 and effectively blocking the heat outside the vehicle 30 from being transferred to the space inside the vehicle 30.
  • an ideal heat blocking effect can be achieved without the need for use with a sunshade, etc., meeting the requirements of lightweighting and reducing costs of the vehicle 30.
  • the outer glass plate 15 is a transparent glass with a visible light transmittance greater than or equal to 80%.
  • the use of transparent glass can maximize the function of the infrared reflective layer 18 in reflecting infrared rays in sunlight, so as to reflect as much infrared rays in sunlight as possible and absorb as little infrared rays in sunlight as possible, so as to achieve an ideal heat blocking effect.
  • the visible light transmittance of the outer glass plate 15 can be, but not limited to, 80%, 82%, 84%, 85%, 88%, etc. More preferably, the visible light transmittance of the outer glass plate 15 is greater than or equal to 90%; specifically, the visible light transmittance of the outer glass plate 15 can be, but not limited to, 90%, 92%, 94%, 95%, 98%, etc.
  • the outer glass plate 15 is a tinted glass, and the mass fraction of total iron in Fe2O3 in the outer glass plate 15 ranges from 0.7 % to 2.2%.
  • the mass fraction of total iron in Fe2O3 in the outer glass plate 15 may be, but is not limited to, 0.7%, 0.8%, 0.9%, 1%, 1.1%, 1.2%, 1.4%, 1.6%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, etc.
  • the transmittance TnIR of the laminated glass 10 for infrared rays with a wavelength of 1000nm to 1250nm is within a reasonable range, so that the laminated glass 10 can effectively block infrared rays with a wavelength of 1000nm to 1250nm from penetrating through the laminated glass 10 into the interior of the vehicle 30, and the laminated glass 10 has a relatively ideal heat blocking effect, giving passengers a better human body surface feeling.
  • the laminated glass 10 can further achieve a visible light transmittance of less than or equal to 10% and a total solar energy transmittance of less than or equal to 25%.
  • the thickness of the outer glass plate 15 satisfies the range of 2.1 mm to 4.2 mm.
  • the thickness of the outer glass plate 15 can be, but is not limited to, 2.1 mm, 2.3 mm, 2.5 mm, 2.7 mm, 2.9mm, 3.0mm, 3.2mm, 3.5mm, 3.85mm, 4.0mm, 4.2mm, etc.
  • the outer glass plate 15 may be, but is not limited to, any one of green glass, gray glass, blue glass and brown glass.
  • the visible light transmittance of the outer glass plate 15 is 5% to 85%.
  • the visible light transmittance of the inner glass plate 11 may be, but is not limited to, 5%, 8%, 16%, 19%, 23%, 25%, 33%, 35%, 37%, 40%, 50%, 60%, 70%, 82%, etc.
  • the visible light transmittance of the outer glass plate 15 meets the range of 5% to 85%, the difficulty of the laminated glass undergoing high temperature heat treatment and bending process can be reduced.
  • an adhesive layer 17 is disposed between the inner glass plate 11 and the outer glass plate 15, and the adhesive layer 17 is used to bond the inner glass plate 11 and the outer glass plate 15.
  • the adhesive layer 17 is a transparent thermoplastic polymer film with a visible light transmittance greater than or equal to 70%.
  • the adhesive layer 17 is a transparent thermoplastic polymer film with a visible light transmittance greater than or equal to 70%, the visibility of the laminated glass 10 is high.
  • the laminated glass 10 is applied to the vehicle 30, the passengers can obtain a clearer field of vision, so that the laminated glass 10 can be applied to the side window glass, rear windshield, etc. of the vehicle 30.
  • the visible light transmittance of the adhesive layer 17 can be, but is not limited to, 70%, 71%, 73%, 75%, 78%, 80%, 82%, etc.
  • the adhesive layer 17 is a colored thermoplastic polymer film with a visible light transmittance of 1% to 20%.
  • the adhesive layer 17 reduces the visible light transmittance of the laminated glass 10, and can even improve the infrared blocking ability of the laminated glass 10, which can provide passengers with a better body surface sensation.
  • the visible light transmittance of the adhesive layer 17 provided in the present application is low, so that the visible light transmittance of the laminated glass 10 is low.
  • the laminated glass 10 can only be used for skylight glass, which can not only prevent people in the car from being dazzled by sunlight, but also provide heat insulation.
  • the visible light transmittance of the adhesive layer 17 can be, but is not limited to, 1%, 2%, 5%, 7%, 8%, 10%, 12%, 14%, 15%, 18% and 20%, etc.
  • the thermoplastic polymer film is selected from at least one of polyvinyl butyral (PVB), polyurethane (PU), ethylene-vinyl acetate copolymer (EVA) and ionomer (SGP).
  • PVB polyvinyl butyral
  • PU polyurethane
  • EVA ethylene-vinyl acetate copolymer
  • SGP ionomer
  • the laminated glass 10 also includes a dimming element 19, which is arranged between the inner glass plate 11 and the outer glass plate 15.
  • the dimming element 19 is used to adjust the visible light transmittance of the laminated glass 10 to meet the optical performance in different usage scenarios.
  • the laminated glass 10 includes the dimming element 19 , the number of the adhesive layers 17 is 2, and the dimming element 19 is disposed between two adjacent adhesive layers 17 .
  • the laminated glass 10 includes a low-emissivity layer 13, an inner glass plate 11, an adhesive layer 17, a dimming element 19, an adhesive layer 17 and an outer glass plate 15 which are stacked in sequence; in other embodiments, the laminated glass 10 includes a low-emissivity layer 13, an inner glass plate 11, an adhesive layer 17, a dimming element 19, an adhesive layer 17, an infrared reflection layer 18 and an outer glass plate 15 which are stacked in sequence; in some other embodiments, the laminated glass 10 includes a low-emissivity layer 13, an inner glass plate 11, an adhesive layer 17, a dimming element 19, an adhesive layer 17, an infrared reflection layer 18, an organic resin film (PET), an adhesive layer 17 and an outer glass plate 15 which are stacked in sequence.
  • PET organic resin film
  • the dimming element 19 includes at least one of a polymer dispersed liquid crystal (PDLC) dimming film, a suspended particle optic (SPD) dimming film and an electrochromic (EC) dimming film.
  • PDLC polymer dispersed liquid crystal
  • SPD suspended particle optic
  • EC electrochromic
  • the laminated glass 10 provided in the present application is further introduced below through specific embodiments.
  • the laminated glass 10 in Examples 1 to 5 comprises a low-emissivity layer 13, an inner glass plate 11, an adhesive layer 17 and an outer glass plate 15 which are stacked in sequence;
  • the low-emissivity layer 13 comprises a Si 3 N 4 layer, a SiO 2 layer, an ITO layer, a SiO 2 layer, an ITO layer, a Si 3 N 4 layer and a SiO 2 layer which are stacked in sequence on the fourth surface 112 of the inner glass plate 11 by a magnetron sputtering process, wherein the ITO layer is a transparent conductive oxide layer, and the rest are first dielectric layers.
  • the low-emissivity layer 13 comprises two ITO layers, and the mass ratio of In 2 O 3 to SnO 2 in the target material for sputtering the ITO layer is 90:10.
  • Inner glass plate 11 2.1 mm thick gray glass with a visible light transmittance of 28%;
  • Adhesive layer 17 0.76 mm thick gray PVB with a visible light transmittance of 2%;
  • Outer glass plate 15 2.1 mm thick green glass with a visible light transmittance of 82%;
  • the low-emissivity layer 13 is composed of a Si 3 N 4 layer (6 nm), a SiO 2 layer (63 nm), an ITO layer (20 nm), a SiO 2 layer (34 nm), an ITO layer (120 nm), a Si 3 N 4 layer (18 nm) and a SiO 2 layer (82 nm) which are sequentially stacked in a direction away from the fourth surface 112 .
  • the adhesive layer 17 is made of 0.76 mm thick grey PVB, whose visible light transmittance is 8%.
  • the outer glass plate 15 is made of 2.1 mm thick grey glass with a visible light transmittance of 40%; the adhesive layer 17 is made of 0.76 mm thick grey PVB with a visible light transmittance of 8%.
  • Example 2 The difference from Example 1 is that the outer glass plate 15 is made of 2.1 mm thick gray glass with a visible light transmittance of 40%; the adhesive layer 17 is made of 0.76 mm thick gray PVB with a visible light transmittance of 18%;
  • the low-emissivity layer 13 is composed of a Si 3 N 4 layer (6 nm), a SiO 2 layer (63 nm), an ITO layer (20 nm), a SiO 2 layer (34 nm), an ITO layer (80 nm), a Si 3 N 4 layer (18 nm) and a SiO 2 layer (82 nm) stacked in sequence in a direction away from the fourth surface 112 .
  • Example 2 The difference from Example 1 is that the outer glass plate 15 is made of 2.1 mm thick gray glass with a visible light transmittance of 28%; the adhesive layer 17 is made of 0.76 mm thick gray PVB with a visible light transmittance of 18%;
  • the low-emissivity layer 13 is composed of a Si 3 N 4 layer (6 nm), a SiO 2 layer (63 nm), an ITO layer (20 nm), a SiO 2 layer (34 nm), an ITO layer (100 nm), a Si 3 N 4 layer (18 nm) and a SiO 2 layer (82 nm) stacked in sequence in a direction away from the fourth surface 112 .
  • the laminated glass 10 of Examples 1 to 5 was obtained according to the automobile glass production process, and then the total visible light transmittance (TL) test, infrared transmittance (T nIR ) test, infrared reflectivity (R IR ) test and total solar transmittance (TTS) test were performed, and the thermal insulation coefficient (C) was calculated.
  • TLS total solar transmittance
  • C thermal insulation coefficient
  • Total visible light transmittance (TL) test the visible light transmittance of the laminated glass 10 in the wavelength range of 380nm to 780nm is measured and calculated according to ISO9050;
  • T nIR Infrared transmittance test: the infrared transmittance of the laminated glass 10 in the wavelength range of 1000nm to 1250nm is measured and calculated according to ISO9050;
  • R IR Infrared reflectivity
  • Total Solar Transmittance (TTS) Test Measure and calculate the total solar transmittance of the laminated glass 10 in the wavelength range of 300nm to 2500nm according to ISO9050;
  • Test of emissivity using an emissivity meter to measure from the side of the low-emissivity layer 13 away from the inner glass plate 11, that is, from the side inside the vehicle.
  • Table 1 Test results and calculation results of the laminated glass 10 of Examples 1 to 5
  • the visible light transmittance TL of the laminated glass 10 provided in Examples 1 to 5 is within the range of 0.5% to 7%, or even within the range of 0.5% to 4%
  • the total solar transmittance TTS of the laminated glass 10 provided in Examples 1 to 5 is less than or equal to 25%, or even less than or equal to 20%
  • the emissivity e of the laminated glass 10 provided in Examples 1 to 5 is less than or equal to 0.20, so that the laminated glass 10 has the properties of low visible light transmittance, excellent heat insulation and low emissivity, and can be more suitable for use as panoramic sunroof glass or panoramic skylight glass.
  • the laminated glass 10 provided in Examples 1 to 5 also has a lower thermal insulation coefficient C, achieving a thermal insulation coefficient C of 0.03 to 0.25, and thus has a good heat blocking effect.
  • a panoramic sunroof glass or a panoramic skylight glass it can bring passengers a good enough human body surface feeling.
  • the laminated glass 10 in Examples 6 to 10 comprises a low-emissivity layer 13, an inner glass plate 11, an adhesive layer 17, an infrared reflective layer 18 and an outer glass plate 15 which are sequentially stacked;
  • the low-emissivity layer 13 comprises a Si 3 N 4 layer, a SiO 2 layer, an ITO layer, a SiO 2 layer, an ITO layer, a Si 3 N 4 layer and a SiO 2 layer which are sequentially stacked on the fourth surface 112 of the inner glass plate 11 by a magnetron sputtering process, wherein the ITO layer is a transparent conductive oxide layer, and the rest are first dielectric layers.
  • the low-emissivity layer 13 comprises two ITO layers, and the mass ratio of In 2 O 3 to SnO 2 in the target material for sputtering the ITO layer is 90:10.
  • the infrared reflective layer 18 is deposited on the second surface 152 of the outer glass plate 15 by a magnetron sputtering process, and the infrared reflective layer 18 comprises two or three metal layers 184 and a plurality of second dielectric layers, wherein the metal layer 184 is a silver layer.
  • Inner glass plate 11 2.1 mm thick gray glass with a visible light transmittance of 28%;
  • Adhesive layer 17 0.76 mm thick gray PVB, with a visible light transmittance of 18%;
  • Outer glass plate 15 2.1 mm thick transparent glass with a visible light transmittance of 88%;
  • the low-emissivity layer 13 is composed of a Si 3 N 4 layer (6 nm), a SiO 2 layer (63 nm), an ITO layer (20 nm), a SiO 2 layer (34 nm), an ITO layer (120 nm), a Si 3 N 4 layer (18 nm) and a SiO 2 layer (82 nm) which are sequentially stacked in a direction away from the fourth surface 112 .
  • Infrared reflection layer 18 Si 3 N 4 layers (32 nm), AZO layers (7 nm), Ag layers (10.1 nm), TiOx layers (2 nm), AZO layers (8 nm), ZnSnOx layers (66 nm), AZO layers (7 nm), Ag layers (8.1 nm), TiOx layers (2 nm), AZO layers (8 nm), ZnSnOx layers (145 nm), and Si 3 N 4 layers (5 nm) are sequentially stacked in a direction away from the second surface 152.
  • AZO is aluminum-doped zinc oxide.
  • the adhesive layer 17 is made of 0.76 mm thick grey PVB, whose visible light transmittance is 8%.
  • the adhesive layer 17 is made of 0.76 mm thick grey PVB, whose visible light transmittance is 2%.
  • Example 6 The difference from Example 6 is that the inner glass plate 11 is made of 2.1 mm thick gray glass with a visible light transmittance of 40%; the adhesive layer 17 is made of 0.76 mm thick gray PVB with a visible light transmittance of 8%;
  • the infrared reflection layer 18 a ZnSnOx layer (26 nm), an AZO layer (10.8 nm), an Ag layer (13 nm), an AZO layer (8.6 nm), a ZnSnOx layer (56.8 nm), an AZO layer (8.8 nm), an Ag layer (14.4 nm), an AZO layer (8.4 nm), a ZnSnOx layer (54.8 nm), an AZO layer (8.6 nm), an Ag layer (13 nm), an AZO layer (9 nm), a ZnSnOx layer (19.9 nm) and a Si 3 N 4 layer (10.3 nm) are sequentially stacked in a direction away from the second surface 152 .
  • Example 6 The difference from Example 6 is that the adhesive layer 17 is made of 0.76 mm thick gray PVB, and its visible light transmittance is 5%;
  • the infrared reflection layer 18 a ZnSnOx layer (26 nm), an AZO layer (10.8 nm), an Ag layer (13 nm), an AZO layer (8.6 nm), a ZnSnOx layer (56.8 nm), an AZO layer (8.8 nm), an Ag layer (14.4 nm), an AZO layer (8.4 nm), a ZnSnOx layer (54.8 nm), an AZO layer (8.6 nm), an Ag layer (13 nm), an AZO layer (9 nm), a ZnSnOx layer (19.9 nm) and a Si 3 N 4 layer (10.3 nm) are sequentially stacked in a direction away from the second surface 152 .
  • the laminated glass 10 of Examples 6 to 10 was obtained according to the automobile glass production process, and then the total visible light transmittance (TL) test, infrared transmittance (T nIR ) test, infrared reflectivity (R IR ) test and total solar transmittance (TTS) test were performed, and the thermal insulation coefficient (C) was calculated.
  • TLS total solar transmittance
  • C thermal insulation coefficient
  • Total visible light transmittance (TL) test the visible light transmittance of the laminated glass 10 in the wavelength range of 380nm to 780nm is measured and calculated according to ISO9050;
  • T nIR Infrared transmittance test: the infrared transmittance of the laminated glass 10 in the wavelength range of 1000nm to 1250nm is measured and calculated according to ISO9050;
  • R IR Infrared reflectivity
  • Total Solar Transmittance (TTS) Test Measure and calculate the total solar transmittance of the laminated glass 10 in the wavelength range of 300nm to 2500nm according to ISO9050;
  • Test of emissivity using an emissivity meter to measure from the side of the low-emissivity layer 13 away from the inner glass plate 11, that is, from the side inside the vehicle.
  • Table 2 Test results and calculation results of the laminated glass 10 of Examples 6 to 10
  • the visible light transmittance TL of the laminated glass 10 provided in Examples 6 to 10 is in the range of 0.5% to 6%, or even in the range of 0.5% to 3%
  • the total solar energy transmittance TTS of the laminated glass 10 provided in Examples 6 to 10 is less than or equal to 16%, or even less than or equal to 13%
  • the emissivity e of the laminated glass 10 provided in Examples 6 to 10 is less than or equal to 0.20, so that the laminated glass 10 has the properties of low visible light transmittance, excellent heat insulation and low emissivity, and can be more suitable for use as panoramic sunroof glass or panoramic skylight glass.
  • the laminated glass 10 provided in Examples 6 to 10 also has a relatively low thermal insulation coefficient C, achieving a thermal insulation coefficient C of 0.009 to 0.15, or even 0.009 to 0.10, or even 0.009 to 0.05, thereby having a better heat blocking effect.
  • a thermal insulation coefficient C 0.009 to 0.15, or even 0.009 to 0.10, or even 0.009 to 0.05, thereby having a better heat blocking effect.
  • the embodiment of the present application further provides a vehicle 30, the vehicle 30 includes a vehicle body 31 and the laminated glass 10 provided in the present application, the laminated glass 10 is carried on the vehicle body 31, and serves as at least one of the skylight glass, the side window glass, and the rear windshield of the vehicle 30.
  • the laminated glass 10 has a low visible light transmittance and a low total solar energy transmittance, so that the laminated glass 10 has a good heat blocking effect; in addition, the laminated glass 10 has a low emissivity, and when the laminated glass 10 is applied to a vehicle, it can provide passengers with a good experience.
  • the vehicle 30 may be, but is not limited to, a car, a truck, or a sedan.
  • the sunroof glass of the vehicle 30 is the laminated glass 10 provided in the present application; in other embodiments, the side window glass of the vehicle 30 is the laminated glass 10 provided in the present application; in other embodiments, the rear windshield of the vehicle 30 is the laminated glass 10 provided in the present application; in other embodiments, the sunroof glass and rear windshield of the vehicle 30 are the laminated glass 10 provided in the present application; in other embodiments, the sunroof glass and side window glass of the vehicle 30 are the laminated glass 10 provided in the present application; in other embodiments, The side window glass and the rear windshield of the vehicle 30 are the laminated glass 10 provided in the present application; in other embodiments, the sunroof glass, side window glass and the rear windshield of the vehicle 30 are the laminated glass 10 provided in the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

一种夹层玻璃(10)及车辆(30)。所述夹层玻璃(10)包括依次层叠设置的外玻璃板(15)、粘合层(17)、内玻璃板(11)和低辐射层(13);外玻璃板(15)具有相对设置的第一表面(151)和第二表面(152),内玻璃板(11)具有相对设置的第三表面(111)和第四表面(112),粘合层(17)用于连接所述第二表面(152)和所述第三表面(111);低辐射层(13)设置于所述内玻璃板(11)的第四表面(112)上,低辐射层(13)包括1个至3个透明导电氧化物层(131);夹层玻璃(10)的断热系数C满足条件式:C=T nIR/R IR,夹层玻璃(10)的断热系数C的范围为0.008≤C≤0.4,其中,T nIR为夹层玻璃(10)对于波长为1000nm至1250nm的红外线的透过率,R IR为从低辐射层(13)远离内玻璃板(11)的一侧测量,所述夹层玻璃(10)对于波长为780nm至2500nm的红外线的反射率。

Description

一种夹层玻璃及车辆 技术领域
本申请涉及玻璃领域,尤其涉及一种夹层玻璃及车辆。
背景技术
车辆的内部空间在夏季因高温环境和强直射阳光而变得非常热,在冬季因外部温度过低而导致车内热量流失而变得特别冷。越来越多的车辆通过在天窗玻璃的靠近内部空间的表面上镀上具有低辐射特性的膜层,来实现车辆内部“冬暖夏凉”的作用。该低辐射膜层在夏季时,可以减少变热的天窗玻璃较少地向车辆内部散发长波热辐射,可以隔绝热量进入车辆内部;在冬季时,该低辐射膜层可以减少车辆内部的热量向外部环境辐射,避免车内热量流失。
随着天窗玻璃的尺寸越来越大,特别是电动汽车上的全景天窗玻璃或全景天幕玻璃,传统的具有低辐射膜层的玻璃作为天窗玻璃难以满足车内热舒适性的要求。根据研究发现,人体皮肤对1000nm至1250nm波段的热量最为敏感,在实际应用中,由于传统天窗玻璃的热阻断效果不够好,无法给乘客带来足够好的人体体表感觉,天窗玻璃仍需要搭配遮阳帘进行使用,无法满足汽车主机厂对于汽车轻量化、增大车顶空间及降低成本等要求。发明内容
鉴于此,本申请提供一种夹层玻璃及车辆,所述夹层玻璃具有较好的热阻断效果,能给乘客带来足够好的人体体表感觉。
本申请提供了一种夹层玻璃,所述夹层玻璃包括依次层叠设置的外玻璃板、粘合层、内玻璃板和低辐射层;所述外玻璃板具有相对设置的第一表面和第二表面,所述内玻璃板具有相对设置的第三表面和第四表面,所述粘合层用于连接所述第二表面和所述第三表面;所述低辐射层设置于所述内玻璃板的第四表面上,所述低辐射层包括1个至3个透明导电氧化物层;所述夹层玻璃的断热系数C满足条件式:C=TnIR/RIR,所述夹层玻璃的断热系数C的范围为0.008≤C≤0.4,其中,TnIR为所述夹层玻璃对于波长为1000nm至1250nm的红外线的透过率,RIR为从所述低辐射层远离所述内玻璃板的一侧测量,所述夹层玻璃对于波长为780nm至2500nm的红外线的反射率。
本申请提供的夹层玻璃包括低辐射层,所述低辐射层设置于所述内玻璃板的第四表面上,所述低辐射层可用于降低夹层玻璃在安装到车辆上时从车内一侧测量的辐射率,既能有效阻断车辆外部的热量传递到车辆内部的空间,又能阻断车辆内部的热量流失到外界,从而起到夏天隔热、冬天保温的效果。同时,通过控制夹层玻璃对波长为1000nm至1250nm的红外线的透过率TnIR及对波长为780nm至2500nm的红外线的反射率RIR,使所述夹层玻璃的断热系数C的范围为0.008≤C≤0.4,可以使得所述夹层玻璃具有较理想的热阻断效果,能给乘客带来较好的人体体表感觉。当将所述夹层玻璃安装到车辆上时,无需搭配遮阳帘等配合使用也能达到理想的热阻断效果,满足了轻量化、增大车顶空间以及降低成本等要求。
进一步地,所述透明导电氧化物层的材料为氧化铟锡,所述内玻璃板包括铁的氧化物, 所述内玻璃板中以Fe2O3计的总铁的质量与所述透明导电氧化物层中铟的质量的比值范围为20:1至500:1。
进一步地,所述内玻璃板为着色玻璃,所述内玻璃板中以Fe2O3计的总铁的质量分数的范围为0.9%至2.2%,所述内玻璃板的厚度的范围为0.7mm至2.1mm。当所述内玻璃板中以Fe2O3计的总铁的质量分数的取值满足范围0.9%至2.2%时,所述夹层玻璃对于波长为1000nm至1250nm的红外线的透过率TnIR在合理的范围内,使得所述夹层玻璃能有效阻断波长为1000nm至1250nm的红外线透过夹层玻璃进入到车辆内部,所述夹层玻璃具有较为理想的热阻断效果,给乘客带来较好的人体体表感觉。当所述内玻璃板的厚度满足范围0.7mm至2.1mm时,所述内玻璃板的厚度在合理的范围内,所述内玻璃板通过粘合层与外玻璃板结合后应用于车辆中。
进一步地,所述透明导电氧化物层的总厚度的范围50nm至300nm。当所述透明导电氧化物层的总厚度的取值满足范围50nm至300nm时,所述夹层玻璃具有较低的辐射率。
进一步地,所述夹层玻璃的可见光透过率的范围为0.5%至10%,从所述低辐射层远离所述内玻璃板的一侧测量的所述夹层玻璃的辐射率小于或等于0.25,从所述低辐射层远离所述内玻璃板的一侧测量的所述夹层玻璃的可见光反射率小于或等于4%。当所述夹层玻璃的可见光透过率的范围为0.5%至10%,使所述夹层玻璃具有较低的可见光透过率,可以起到保护乘客的隐私以及替代遮阳帘的作用,适合应用于车辆的天窗玻璃、边窗玻璃及后挡风玻璃。当所述夹层玻璃的辐射率小于或等于0.25,使所述夹层玻璃具有低辐射性能,在夏天能有效阻断车辆外部的热量传递到车辆内部,在冬天能阻断车辆内部的热量流失到外界,从而起到夏天隔热、冬天保温的效果。从所述低辐射层远离所述内玻璃板的一侧测量所述夹层玻璃的可见光反射率较低,当夹层玻璃应用于车辆时,特别是用于车辆车顶的天窗玻璃时,可以减弱甚至消除车内的乘客和物品在天窗玻璃上因镜面反射而形成明显的倒影的现象,避免反射现象对乘客特别是后排乘客造成视觉干扰,提高乘客体验。
进一步地,所述低辐射层还包括至少两个第一介质层,每个所述透明导电氧化物层的相背两个表面均设有所述第一介质层,所述第一介质层的材料选自Zn、Sn、Ti、Si、Al、Mg、Zr中至少一种元素的氮化物、氧化物、氮氧化物。在夹层玻璃制备过程中,需要经过高温热处理和弯曲工艺,所述第一介质层能在加工或使用的过程中保护透明导电氧化物层不被腐蚀或破坏,以及调节所述低辐射层的光学效果和外观颜色等,并且能提高所述低辐射层与所述内玻璃板之间的附着性能,从而有利于实现所述夹层玻璃的热阻断效果。
进一步地,所述夹层玻璃还包括红外反射层,所述红外反射层设置于内玻璃板及外玻璃板之间,所述红外反射层包括1个至5个金属层,所述金属层的材料选自Ag、Au、Cu、Al、Pt中至少一种元素的金属或合金。在本申请提供的夹层玻璃中,所述金属层有利于使得红外反射层具有较好的反射红外线的效果。
进一步地,所述红外反射层还包括至少两个第二介质层,每个所述金属层的相背两个表面均设有所述第二介质层,所述第二介质层的材料选自Zn、Sn、Ti、Si、Al、Ni、Cr、Nb、Mg、Zr、Ga、Y、In、Sb、V、Ta中至少一种元素的氮化物、氧化物、氮氧化物。在夹层玻璃的制备过程中,需要经过高温热处理和弯曲工艺,所述第二介质层能在加工或使用的过程中保护所述金属层不被氧化或破坏,以及调节所述红外反射层的光学效果和外观颜色等,并且能提高所述红外反射层的附着性能,从而有利于实现所述夹层玻璃的热阻断 效果。
进一步地,所述外玻璃板为可见光透过率大于或等于80%的透明玻璃。本申请提供的夹层玻璃中设置有红外反射层时,选用透明玻璃可以最大程度发挥红外反射层反射太阳光中的红外线的功能,实现尽可能多地反射太阳光中的红外线且尽可能少地吸收太阳光中的红外线,以达到理想的热阻断效果。
进一步地,所述夹层玻璃不包括红外反射层,所述外玻璃板为着色玻璃,所述外玻璃板中以Fe2O3计的总铁的质量分数的范围为0.7%至2.2%,所述外玻璃板的厚度的范围为2.1mm至4.2mm。本申请的外玻璃板为着色玻璃,有利于使夹层玻璃进一步实现可见光透过率小于或等于10%、太阳能总透过率大于或等于25%。
进一步地,所述夹层玻璃的断热系数C的范围为0.03≤C≤0.25。当所述夹层玻璃的断热系数C的取值满足范围0.03≤C≤0.25时,所述夹层玻璃具有较理想的热阻断效果,能给乘客带来较好的人体体表感觉。
进一步地,所述夹层玻璃的断热系数C的范围为0.009≤C≤0.15。当所述夹层玻璃的断热系数C的取值满足范围0.009≤C≤0.15时,所述夹层玻璃具有更理想的热阻断效果,能给乘客带来较好的人体体表感觉。
进一步地,所述粘合层为着色的热塑性聚合物膜,所述热塑性聚合物膜选自聚乙烯醇缩丁醛、聚氨基甲酸酯、乙烯-醋酸乙烯共聚物及离子型聚合物中的至少一种,所述粘合层的可见光透过率为1%至20%。所述热塑性聚合物膜能粘合所述内玻璃板及外玻璃板,且所述热塑性聚合物膜的粘合性能较好,能有效提高所述内玻璃板及外玻璃板之间的结合强度。
进一步地,所述内玻璃板的可见光透过率为34%至42%,所述内玻璃板的颜色的Lab值中的L的取值范围为65至71.5、a的取值范围为-3.5至-2、b的取值范围为2至3.5。在本申请中,所述内玻璃板为灰色玻璃。
进一步地,所述内玻璃板的可见光透过率为26%至34%,所述内玻璃板的颜色的Lab值中的L的取值范围为58.5至65,a的取值范围为-5至-3.5,b的取值范围为0.5至2。本申请中,所述内玻璃板为灰色玻璃。
进一步地,所述夹层玻璃还包括调光元件,所述调光元件设置于所述第二表面和及所述第三表面之间,所述调光元件包括聚合物分散液晶调光薄膜、悬浮粒子调光薄膜及电致变色调光薄膜中的至少一种。所述调光元件用于调节所述夹层玻璃的可见光透过率,以满足不同使用场景下的光学性能。
本申请还提供了一种车辆,所述车辆包括车辆本体以及本申请提供的夹层玻璃,所述夹层玻璃承载于车辆本体,作为所述车辆的天窗玻璃、边窗玻璃及后挡风玻璃中的至少一个。在本申请提供的车辆中,所述夹层玻璃的可见光透过率较低,太阳能总透过率较低,使得夹层玻璃具有较好的热阻断效果;此外,所述夹层玻璃具有较低的辐射率,当所述夹层玻璃应用于车辆时,能够乘客良好的体验。
本申请提供的夹层玻璃包括低辐射层,所述低辐射层设置于所述内玻璃板的第四表面上,所述低辐射层可用于降低夹层玻璃在安装到车辆上时从车内一侧测量的辐射率,既能有效阻断车辆外部的热量传递到车辆内部的空间,又能阻断车辆内部的热量流失到外界,从而起到夏天隔热、冬天保温的效果。同时,通过控制夹层玻璃对波长为1000nm至1250nm 的红外线的透过率TnIR及对波长为780nm至2500nm的红外线的反射率RIR,使所述夹层玻璃的断热系数C的范围为0.008≤C≤0.4,可以使得所述夹层玻璃具有较理想的热阻断效果,能给乘客带来较好的人体体表感觉。当将所述夹层玻璃安装到车辆上时,无需搭配遮阳帘等配合使用也能达到理想的热阻断效果,满足了轻量化、增大车顶空间以及降低成本等要求。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的夹层玻璃的结构示意图;
图2为本申请一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图3为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图4为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图5为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图6为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图7为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图8为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图9为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图10为本申请又一实施例的夹层玻璃沿图1中A-A方向的剖视图;
图11为本申请一实施例的车辆的结构示意图。
附图标记说明:
10-夹层玻璃,11-内玻璃板,111-第三表面,112-第四表面,13-低辐射层,131-透明导
电氧化物层,132-第一介质层,15-外玻璃板,151-第一表面,152-第二表面,17-粘合层,18-红外反射层,181-第二介质层,182-第二内介质层,183-第二外介质层,184-金属层,19-调光元件,30-车辆,31-车辆本体。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参见图1至图3,本申请实施例提供了一种夹层玻璃10,所述夹层玻璃10包括依次层叠设置的外玻璃板15、粘合层17、内玻璃板11和低辐射层13;所述外玻璃板15具有相对设置的第一表面151和第二表面152,所述内玻璃板11具有相对设置的第三表面111和第四表面112,所述粘合层17用于连接所述第二表面152和所述第三表面111;所述低辐射层13设置于所述内玻璃板11的第四表面112上,所述低辐射层13包括1个至3个透明导电氧化物层131;所述夹层玻璃10的断热系数C满足条件式:C=TnIR/RIR,所述夹层玻璃10的断热系数C的范围为0.008≤C≤0.4,其中,TnIR为所述夹层玻璃10对于波长为1000nm至1250nm的红外线的透过率,RIR为从所述低辐射层13远离所述内玻璃板的一侧测量,所述夹层玻璃10对于波长为780nm至2500nm的红外线的反射率。
具体地,所述夹层玻璃10的断热系数的值可以为但不限于为0.008、0.009、0.01、0.02、0.05、0.06、0.1、0.13、0.15、0.2、0.24、0.27、0.31、0.35、0.37及0.4等。
可选地,在一些实施例中,所述低辐射层13中透明导电氧化物层131的个数为1个;在另一些实施例中,所述低辐射层13中透明导电氧化物层131的个数为2个;在另一些实施例中,所述低辐射层13中透明导电氧化物层131的个数为3个。
在本申请的实施例中,所述外玻璃板15背离所述粘合层17的表面为第一表面151,所述外玻璃板15靠近所述粘合层17的表面为第二表面152;所述内玻璃板11靠近所述粘合层17的表面为第三表面111,所述内玻璃板11背离所述粘合层17的表面为第四表面112。当夹层玻璃10应用于车辆30时,第一表面151为夹层玻璃10靠近车外的最外表面,第四表面112为夹层玻璃10靠近车内的最内表面。
本申请的夹层玻璃10可以应用于建筑物、车辆30等。当夹层玻璃10应用于车辆30时,可以应用于车辆30的天窗玻璃、边窗玻璃及后挡风玻璃等中的至少一个。
由于人体皮肤对1000nm至1250nm波段的热量最为敏感,因此,通过控制夹层玻璃10对波长为1000nm至1250nm的红外线的透过率TnIR及对波长为780nm至2500nm的红外线的反射率RIR的值,将断热系数C的值控制在一定范围内,可以使得夹层玻璃10既能有效阻断车辆30外部的热量传递到车辆30内部,又能阻断车辆30内部的热量流失到外界,所述夹层玻璃10具有较好的低辐射性能;此外,所述夹层玻璃10具有较理想的热阻断效果,进一步能给乘客带来较好的人体体表感觉。当将所述夹层玻璃10安装到车辆上时,无需搭配遮阳帘等配合使用也能达到理想的热阻断效果,既能增大车顶空间又能满足车辆30轻量化,以及降低成本等要求。当夹层玻璃10的断热系数C的值满足0.008≤C≤0.4时,所述夹层玻璃10具有较理想的热阻断效果,能给乘客带来较好的人体体表感觉。当所述夹层玻璃10的断热系数C的值大于0.4时,所述夹层玻璃10对于波长为1000nm至1250nm的红外线的透过率太高且对于波长为780nm至2500nm的红外线的反射率太低,使得夹层玻璃10的热阻断效果较差,乘客的人体体表感觉较差。当所述夹层玻璃10的断热系数C的值小于0.008时,所述夹层玻璃10具有极好的热阻断效果,但对于所述夹层玻璃10的制作材料和工艺均要求较高,将进一步提高夹层玻璃10的生产成本。
可选地,在一些实施例中,所述夹层玻璃10的断热系数C的范围为0.03≤C≤0.25。具体地,所述夹层玻璃10的断热系数C的取值可以为但不限于为0.03、0.05、0.08、0.12、0.13、0.15、0.18、0.19、0.20、0.22、0.24及0.25等。当所述夹层玻璃10的断热系数C的取值满足范围0.03≤C≤0.25时,所述夹层玻璃10具有较理想的热阻断效果,能给乘客带来较好的人体体表感觉。
可选地,在另一些实施例中,所述夹层玻璃10的断热系数C的范围为0.009≤C≤0.15。具体地,所述夹层玻璃10的断热系数C的取值可以为但不限于为0.009、0.01、0.03、0.05、0.07、0.09、0.10、0.11、0.12、0.14及0.15等。当所述夹层玻璃10的断热系数C的取值满足范围0.009≤C≤0.15时,所述夹层玻璃10具有更理想的热阻断效果,能给乘客带来较好的人体体表感觉。
在本申请一实施例中,所述夹层玻璃10的可见光透过率的范围为0.5%至10%。具体地,所述夹层玻璃10的可见光透过率可以为但不限于为0.5%、1.5%、2%、2.5%、3.3%、4.8%、5%、6.7%、8%、8.5%、9.4%及10%等。
当所述夹层玻璃10的可见光透过率的范围为0.5%至10%,使所述夹层玻璃10具有较低的可见光透过率,可以起到保护乘客的隐私以及替代遮阳帘的作用,适合应用于车辆30的天窗玻璃、边窗玻璃及后挡风玻璃。
在本申请一实施例中,从所述低辐射层13远离所述内玻璃板11的一侧测量的所述夹层玻璃10的辐射率小于或等于0.25。具体地,所述夹层玻璃10的辐射率可以为但不限于为0.12、0.14、0.17、0.19、0.21、0.22、0.23及0.25等。
当所述夹层玻璃10的辐射率小于或等于0.25,使所述夹层玻璃10具有低辐射性能,在夏天能有效阻断车辆30外部的热量传递到车辆30内部,在冬天能阻断车辆30内部的热量流失到外界,从而起到夏天隔热、冬天保温的效果。
在本申请一实施例中,从所述低辐射层13远离所述内玻璃板11的一侧测量的所述夹层玻璃10的可见光反射率小于或等于4%。具体地,所述夹层玻璃10的可见光反射率可以为但不限于为4%、3.8%、3.75%、3.6%、3.5%、3.2%、3.1%及3.0%等。
从所述低辐射层13远离所述内玻璃板11的一侧测量所述夹层玻璃10的可见光反射率较低,当夹层玻璃10应用于车辆30时,特别是用于车辆30车顶的天窗玻璃时,可以减弱甚至消除车内的乘客和物品在天窗玻璃上因镜面反射而形成明显的倒影的现象,避免反射现象对乘客特别是后排乘客造成视觉干扰,提高乘客体验。
优选地,所述夹层玻璃10的可见光反射率小于或等于3%。具体地,所述夹层玻璃10的可见光反射率可以为但不限于为3%、2.8%、2.75%、2.6%、2.5%、2.2%、2.1%及2.0%等。
更优选地,所述夹层玻璃10的可见光反射率小于或等于2%。具体地,所述夹层玻璃10的可见光反射率可以为但不限于为2%、1.8%、1.75%、1.6%、1.5%、1.2%、1.1%、0.9%、0.8%及0.6%等。
在本申请一实施例中,所述内玻璃板11为着色玻璃。
可以理解地,所述内玻璃板11为着色玻璃。可选地,所述内玻璃板11可以为但不限于为绿色玻璃、灰色玻璃、蓝色玻璃及茶色玻璃中的任意一种。
在本申请一些实施例中,所述内玻璃板11的可见光透过率为5%至45%。具体地,所 述内玻璃板11的可见光透过率可以为但不限于为5%、8%、16%、19%、23%、25%、33%、35%、37%及40%等。
可选地,在一些实施例中,当内玻璃板11的可见光透过率的范围为34%至42%时,其颜色的Lab值中,L的取值范围为65至71.5,a的取值范围为-3.5至-2,b的取值范围为2至3.5。在本实施例中,所述内玻璃板11为灰色玻璃。
具体地,所述内玻璃板11的可见光透过率可以为但不限于为34%、35%、36%、37%、39%、40%、41%及42%。在所述内玻璃板11的颜色的Lab值中,L的取值可以为但不限于为65、65.3、66.4、66.6、67.2、67.9、68.5、69.3、69.7、70.2、70.9及71.5等;a的取值可以为但不限于为-3.5、-3.4、-3.1、-2.9、-2.7、-2.5、-2.3、-2.1及-2等;b的值可以为但不限于为2、2.1、2.3、2.4、2.7、3.0、3.1、3.3、3.4及3.5等。
可选地,在另一些实施例中,当内玻璃板11的可见光透过率的范围为26%至34%时,其颜色的Lab值中,L的取值范围为58.5至65,a的取值范围为-5至-3.5,b的取值范围为0.5至2。在本实施例中,所述内玻璃板11为灰色玻璃。
具体地,所述内玻璃板11的可见光透过率可以为但不限于为26%、26.3%、27.1%、27.7%、28.4%、29%、30.4%、31.4%、32.2%、32.8%、33.6%及34%等。在所述内玻璃板11的颜色的Lab值中,L的取值可以为但不限于为58.5、58.9、59.4、59.8、60.2、60.8、61.4、61.8、62.7、63.5、64.2、64.8及65等;a的取值可以为但不限于为-5、-4.9、-4.7、-4.5、-4.4、-4.2、-4.0、-3.9、-3.8、-3.7、-3.6及-3.5等;b的取值可以为但不限于为0.5、0.6、0.8、1.0、1.2、1.3、1.5、1.7、1.8、1.9及2等。
在本申请一实施例中,所述内玻璃板11中以Fe2O3计的总铁的质量分数的范围为0.9%至2.2%。具体地,所述内玻璃板11中以Fe2O3计的总铁的质量分数的取值可以为但不限于为0.9%、1.0%、1.1%、1.3%、1.4%、1.7%、1.8%、2.0%、2.1%及2.2%等。
当所述内玻璃板11中以Fe2O3计的总铁的质量分数的取值满足范围0.9%至2.2%时,所述夹层玻璃10对于波长为1000nm至1250nm的红外线的透过率TnIR在合理的范围内,使得所述夹层玻璃10能有效阻断波长为1000nm至1250nm的红外线透过夹层玻璃10进入到车辆30内部,所述夹层玻璃10具有较为理想的热阻断效果,给乘客带来较好的人体体表感觉。
其中,铁的氧化物在玻璃中主要作为着色成分和功能成分,玻璃中的铁主要以2价和3价的形态存在,2价铁在波长1100nm附近具有吸收峰,3价铁在波长400nm附近具有吸收峰,通过调节内玻璃板11中的总铁的质量可以实现调节所述夹层玻璃10的可见光透过率和红外线透过率,特别是波长在1100nm附近的红外线的透过率。本申请所述的总铁表示存在于内玻璃板11中的所有铁的氧化物,既包含二价铁(FeO),也包含三价铁(Fe2O3),这是本领域的通用表示方法,并不表示玻璃中的铁的氧化物都是Fe2O3
可选地,所述内玻璃板11的厚度的范围为0.7mm至2.1mm。具体地,所述内玻璃板11的厚度的取值可以为但不限于为0.7mm、0.9mm、1.0mm、1.1mm、1.3mm、1.5mm、1.7mm、1.8mm、2.0mm及2.1mm等。
当所述内玻璃板11的厚度满足范围0.7mm至2.1mm时,所述内玻璃板11的厚度在合理的范围内,所述内玻璃板11通过粘合层17与外玻璃板15结合后应用于车辆30中。
可选地,所述内玻璃板11按质量分数计包括1.1%至1.9%的以Fe2O3计的总铁、 140ppm~300ppm的Co2O3、10ppm~320ppm的Cr2O3、55ppm~75ppm的SrO和10-30ppm的Se。
具体地,所述内玻璃板11中以Fe2O3计的总铁的质量分数可以为但不限于为1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%及1.9%;所述内玻璃板11中Co2O3的质量分数可以为但不限于为140ppm、146ppm、152ppm、165ppm、170ppm、185ppm、196ppm、206ppm、218ppm、225ppm、240ppm、250ppm、260ppm、270ppm、280ppm及300ppm等;所述内玻璃板11中Cr2O3的质量分数可以为但不限于为10ppm、16ppm、25ppm、38ppm、56ppm、88ppm、107ppm、138ppm、156ppm、188ppm、220ppm、240ppm、270ppm、298ppm、300ppm及320ppm等;所述内玻璃板11中SrO的质量分数可以为但不限于为55ppm、56ppm、58ppm、62ppm、65ppm、68ppm、71ppm、72ppm、73ppm及75ppm等;所述内玻璃板11中Se的质量分数可以为但不限于为10ppm、11ppm、15ppm、18ppm、21ppm、22ppm、23ppm、25ppm、28ppm及30ppm等。在本申请的实施例中,所述内玻璃板11为着色玻璃,所述内玻璃板11能阻断红外线透过内玻璃板11,使得所述夹层玻璃10具有较好的隔热效果且具有较合适的可见光透过率。
可选地,所述透明导电氧化物层131的材料选自掺杂的氧化锌(ZnO)、氧化铟锡(ITO)、氧化镍铬(CrNiOx)、氟掺杂氧化锡(FTO)、氧化锡锌(ZnSnOx)中的至少一种,所述掺杂的氧化锌为铝、钨、铪、镓、钇、铌、钕元素中的一种或几种掺杂的氧化锌。
可选地,所述低辐射层13可以通过化学气相沉积(CVD)或物理气相沉积(CVD)的方法直接沉积到第四表面112上。所述低辐射层13中的透明导电氧化物层131的总厚度的范围50nm至300nm。其中,未设置低辐射层13的夹层玻璃10的辐射率在0.9左右,所述低辐射层13能够降低夹层玻璃10的辐射率,使得所述夹层玻璃10的辐射层小于或等于0.25,辐射率主要用于衡量物体表面以辐射的形式释放能量相对强弱的能力,通常反映的是对中远红外线(波长大于2500nm)的阻隔能力。
可选地,在本申请一实施例中,所述透明导电氧化物层131为通过磁控溅射工艺沉积的氧化铟锡(ITO)层,所述透明导电氧化物131的靶材包括氧化铟及氧化锡,其中氧化铟的质量与氧化锡的质量之间的比值的范围为80:20~90:10。具体地,所述氧化铟的质量与氧化锡的质量之间的比值可以为但不限于为80:20、82:18、85:15、88:12及90:10等。
可选地,所述低辐射层13中的透明导电氧化物层131的总厚度的范围50nm至300nm。具体地,所述透明导电氧化物层131的总厚度的取值可以为但不限于50nm、70nm、90nm、130nm、180nm、190nm、220nm、230nm、260nm及300nm等。
当所述透明导电氧化物层131的总厚度的取值满足范围50nm至300nm时,所述夹层玻璃10具有较低的辐射率。当所述透明导电氧化物层131的总厚度的取值小于50nm时,所述夹层玻璃10的低辐射性能较差,无法有效阻隔车辆30内部热量的流出或车辆30外部热量的流入。当所述透明导电氧化物层131的总厚度的取值大于300nm时,所述夹层玻璃10的可见光反射率也随之增加,使得所述夹层玻璃10的减反射作用较差,给乘客带来干扰和不适。
在本申请一实施例中,所述透明导电氧化物层131为氧化铟锡(ITO)层,所述内玻璃板11包括铁的氧化物,所述内玻璃板11中以Fe2O3计的总铁的质量与所述透明导电氧化物层131中铟的质量的比值范围为20:1至500:1,优选为50:1至200:1。具体地,所述 内玻璃板11中以Fe2O3计的总铁的质量与所述透明导电氧化物层131中铟的质量的比值可以为但不限于为20:1、30:1、50:1、80:1、100:1、110:1、120:1、150:1、180:1、200:1、250:1、300:1、350:1、400:1、450:1及500:1等。
当所述透明导电氧化物层131为通过磁控溅射工艺沉积的ITO层时,将包含ITO层的低辐射层13设置到内玻璃板11的第四表面112上。增大内玻璃板11中以Fe2O3计的总铁的质量可以降低所述夹层玻璃10的可见光透过率,还可以降低所述夹层玻璃10对于波长为1000nm至1250nm的红外线的透过率。但相应地,增大内玻璃板11中以Fe2O3计的总铁的质量,提高了内玻璃板11的制造难度和制造成本,而且使得夹层玻璃10在夏天时更容易吸热而升温发烫。增大透明导电氧化物层131中铟的质量则可以降低夹层玻璃10的辐射率,还可以增大所述夹层玻璃10对于波长为780nm至2500nm的红外线的反射率。但相应地,增大透明导电氧化物层131中铟的质量会提高夹层玻璃10的生产成本和难度,且制得的低辐射层13难以满足车窗玻璃的各种车规级使用要求。在本申请实施例中,当所述内玻璃板11中以Fe2O3计的总铁的质量与所述透明导电氧化物层131中铟的质量的比值在20:1至500:1之间,可以更容易实现夹层玻璃10的断热系数C的值满足0.008≤C≤0.4,甚至满足0.03≤C≤0.25,或满足0.009≤C≤0.15,使所述夹层玻璃10具有较为理想的热阻断效果,能给乘客带来较好的人体体表感觉。当所述内玻璃板11中以Fe2O3计的总铁的质量与所述透明导电氧化物层131中铟的质量的比值大于500:1时,不仅会在夏天使内玻璃板11更容易吸热且向车内辐射更多热量,使得夹层玻璃10的热阻断效果较差,乘客的人体体表感觉较差,而且提高了内玻璃板11中的总铁与其它成分配合的难度,进而提高了内玻璃板11的生产成本和难度。当所述内玻璃板11中以Fe2O3计的总铁的质量与所述透明导电氧化物层131中铟的质量的比值小于20:1时,ITO层的总厚度太大,对于所述低辐射层13的制作材料和工艺均要求较高,制得的低辐射层13也难以满足车窗玻璃的各种车规级使用要求,将进一步提高夹层玻璃10的生产成本。
请参见图3,在本申请一实施例中,所述低辐射层13还包括至少两个第一介质层132,每个所述透明导电氧化物层131的相背两个表面均设有所述第一介质层132。在夹层玻璃10制备过程中,需要经过高温热处理和弯曲工艺,所述第一介质层132能在加工或使用的过程中保护透明导电氧化物层131不被腐蚀或破坏,以及调节所述低辐射层13的光学效果和外观颜色等,并且能提高所述低辐射层13与所述内玻璃板11之间的附着性能,从而有利于实现所述夹层玻璃10的热阻断效果。此外,通过对所述第一介质层132的材料、厚度等进行合理的设计和组合,有利于实现所述低辐射层13的减反射效果,可以减弱甚至消除车内的乘客和物品在天窗玻璃上因镜面反射而形成明显的倒影的现象,避免对乘客特别是后排乘客造成视觉干扰,提高用户体验。
可选地,所述第一介质层132的材料选自Zn、Sn、Ti、Si、Al、Mg、Zr中至少一种元素的氮化物、氧化物、氮氧化物。具体地,所述第一介质层132的材料可以为但不限于为氮化锌、氧化锌、氮氧化锌、氮氧化钛、氧化镁及氮化铝等。
可选地,所述第一介质层132的厚度范围为5nm至100nm。具体地,所述第一介质层132的厚度的取值可以为但不限于5nm、10nm、25nm、38nm、45nm、50nm、68nm、75nm、80nm及100nm等。
在本申请的实施例中,当所述第一介质层132的厚度满足范围5nm至100nm时,所 述第一介质层132能在加工或使用的过程中保护透明导电氧化物层131不被腐蚀或破坏,以及调节所述低辐射层13的光学效果和外观颜色等,并且能提高所述低辐射层13与所述内玻璃板11之间的附着性能,从而有利于实现所述夹层玻璃10的热阻断效果。当所述第一介质层132的厚度大于100nm时,所述第一介质层132太厚,不利于与其它膜层匹配,最终降低所述夹层玻璃10的热阻断效果。当所述第一介质层132的厚度小于5nm时,所述第一介质层132的厚度过小,所述第一介质层132在实际使用中容易被磨破,使得难以继续保护透明导电氧化物层131不被腐蚀或破坏。
请参见图4及图5,在一些实施例中,所述夹层玻璃10还包括红外反射层18,所述红外反射层18设置于内玻璃板11及外玻璃板15之间,所述红外反射层18包括1个至5个金属层184,所述金属层184的材料选自Ag、Au、Cu、Al、Pt中至少一种元素的金属或合金。具体地,所述红外反射层18可以直接设置在外玻璃板15的第二表面152上,或直接设置在内玻璃板11的第三表面111上,还可以先设置在聚对苯二甲酸乙二醇酯等有机树脂薄膜上,设置有所述红外反射层18的有机树脂薄膜夹设在第二表面152和第三表面111之间。所述夹层玻璃10能进一步实现可见光透过率小于或等于10%、太阳能总透过率小于或等于25%。
可选地,所述红外反射层18的厚度范围为40nm至500nm。具体地,所述红外反射层18的厚度可以为但不限于为40nm、50nm、80nm、140nm、160nm、220nm、280nm、330nm、380nm、440nm、480nm及500nm等。
当所述红外反射层18的厚度范围满足40nm至500nm时,所述红外反射层18能有效反射太阳光中的红外线,从而阻断热量的传递,提高所述夹层玻璃10的断热能力,降低所述夹层玻璃10的太阳能总透过率。
可选地,所述金属层184的材料可以为但不限于为银、金、铜、铝、铂、银铜合金、铜铝合金、铜金合金等。其中,所述金属层184的材料通常选用银或银合金,银合金可以举例为银金合金、银铝合金、银铜合金、银铂金合金等。
请参见图6,在一些实施例中,所述红外反射层18中仅有一个金属层184时,可以称为单银红外反射层。同样地,所述红外反射层18中具有两个金属层184时,可以称为双银红外反射层,以此类推可以有三银红外反射层、四银红外反射层、五银红外反射层。
可选地,所述红外反射层18中的每个金属层184的厚度范围为4nm至20nm。具体地,每个金属层184的厚度可以为但不限于为4nm、5nm、6nm、8nm、10nm、12nm、14nm、16nm、17nm、19nm及20nm等。
当每个金属层184的厚度的取值满足范围4nm至20nm时,既能使所述红外反射层18具有较好的反射红外线的效果,又有利于降低所述红外反射层18的设计难度以及保证所述红外反射层18能够经受高温热处理和弯曲工艺,满足车窗玻璃的车规级使用要求。
请参见图6及图7,在本申请一实施例中,所述红外反射层18还包括至少两个第二介质层181,每个所述金属层184的相背两个表面均设有所述第二介质层181,在夹层玻璃10的制备过程中,需要经过高温热处理和弯曲工艺,所述第二介质层181能在加工或使用的过程中保护所述金属层184不被氧化或破坏,以及调节所述红外反射层18的光学效果和外观颜色等,并且能提高所述红外反射层18的附着性能,从而有利于实现所述夹层玻璃10的热阻断效果。
请参见图6及图7,所述红外反射层18设置在外玻璃板15的第二表面152上,设置于所述金属层184更靠近第二表面152的第二介质层181为第二内介质层182,设置于所述金属层184远离第二表面152的第二介质层为第二外介质层183。当所述红外反射层18设置在内玻璃板11的第三表面111上,设置于所述金属层184更靠近第三表面111上的第二介质层181为第二内介质层182,设置于所述金属层184更远离第三表面111的第二介质层181为第二外介质层183。可以理解的是,第二介质层181的总数量比金属层184181的总数量多一个,具体可举例所述红外反射层18具有一个金属层184和两个第二介质层181,或具有两个金属层184和三个第二介质层181,或具有三个金属层184和四个第二介质层181,或具有四个金属层184和五个第二介质层181,或具有五个金属层184和六个第二介质层181。
其中,所述第二介质层的材料选自Zn、Sn、Ti、Si、Al、Ni、Cr、Nb、Mg、Zr、Ga、Y、In、Sb、V、Ta中至少一种元素的氮化物、氧化物、氮氧化物。可选地,所述第二介质层的材料可以为但不限于为锡酸锌(ZnSnOx)、掺镁锡酸锌、氧化锌、掺镁氧化锌、掺锆氧化锌、氧化铌、氧化铋、掺铝氧化锌(AZO)、氧化锆、氧化钛、过氧化钛、镍铬、氮化锆、氮化硅、氧化硅、氮氧化硅等。
在本申请的实施例中,所述夹层玻璃10包括从车内向车外依次层叠的低辐射层13、内玻璃板11、粘合层17、红外反射层18及外玻璃板15,所述红外反射层18能反射太阳光中的红外线,从而提高所述夹层玻璃10的热阻断效果,有效阻断车辆30外部的热量传递到车辆30内部的空间。当将所述夹层玻璃10应用于车辆30时,无需搭配遮阳帘等配合使用就能达到理想的热阻断效果,满足了车辆30轻量化以及降低成本的要求。
在一些实施例中,所述外玻璃板15为可见光透过率大于或等于80%的透明玻璃,当夹层玻璃10中设置有红外反射层18时,选用透明玻璃可以最大程度发挥红外反射层18反射太阳光中的红外线的功能,实现尽可能多地反射太阳光中的红外线且尽可能少地吸收太阳光中的红外线,以达到理想的热阻断效果。具体地,所述外玻璃板15的可见光透过率可以为但不限于为80%、82%、84%、85%及88%等。更优选地,所述外玻璃板15的可见光透过率大于或等于90%;具体地,所述外玻璃板15的可见光透过率可以为但不限于为90%、92%、94%、95%及98%等。
可选地,在一些实施例中,当所述夹层玻璃10不包括红外反射层18时,所述外玻璃板15为着色玻璃,所述外玻璃板15中以Fe2O3计的总铁的质量分数的范围为0.7%至2.2%。具体地,所述外玻璃板15中以Fe2O3计的总铁的质量分数的取值可以为但不限于为0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.4%、1.6%、1.8%、1.9%、2.0%、2.1%及2.2%等。
当所述外玻璃板15中以Fe2O3计的总铁的质量分数的取值满足范围0.7%至2.2%时,所述夹层玻璃10对于波长为1000nm至1250nm的红外线的透过率TnIR在合理的范围内,使得所述夹层玻璃10能有效阻断波长为1000nm至1250nm的红外线透过夹层玻璃10进入到车辆30内部,所述夹层玻璃10具有较为理想的热阻断效果,给乘客带来较好的人体体表感觉。可以使夹层玻璃10进一步实现可见光透过率小于或等于10%、太阳能总透过率小于或等于25%。
在本申请的实施例中,所述外玻璃板15的厚度的取值满足范围2.1mm至4.2mm。具体地,所述外玻璃板15的厚度的取值可以为但不限于为2.1mm、2.3mm、2.5mm、2.7mm、 2.9mm、3.0mm、3.2mm、3.5mm、3.85mm、4.0mm、4.2mm等。
可选地,所述外玻璃板15可以为但不限于为绿色玻璃、灰色玻璃、蓝色玻璃及茶色玻璃中的任意一种。
在本申请一些实施例中,所述外玻璃板15的可见光透过率为5%至85%。具体地,所述内玻璃板11的可见光透过率可以为但不限于为5%、8%、16%、19%、23%、25%、33%、35%、37%、40%、50%、60%、70%、82%等。当所述外玻璃板15的可见光透过率满足范围5%至85%时,可以降低夹层玻璃经过高温热处理和弯曲工艺的难度。
可选地,粘合层17设置于所述内玻璃板11及外玻璃板15之间,所述粘合层17用于粘合所述内玻璃板11及外玻璃板15。在一些实施例中,所述粘合层17为可见光透过率大于或等于70%的透明的热塑性聚合物膜,当所述粘合层17为可见光透过率大于或等于70%的透明的热塑性聚合物膜时,所述夹层玻璃10的可视性较高,当所述夹层玻璃10应用于车辆30时,能使得乘客获得更加清晰的视野,使得所述夹层玻璃10可以应用于车辆30的侧窗玻璃、后挡风玻璃等。具体地,所述粘合层17的可见光透过率可以为但不限于为70%、71%、73%、75%、78%、80%及82%等。在另一些实施例中,所述粘合层17为可见光透过率为1%至20%的着色的热塑性聚合物膜。所述粘合层17降低所述夹层玻璃10的可见光透过率,甚至可以提高了夹层玻璃10对红外线的阻隔能力,能给乘客提供较好的体表感觉。但本申请提供的粘合层17的可见光透过率较低,使得所述夹层玻璃10的可见光透过率较低,因此所述夹层玻璃10只能应用于天窗玻璃,既能够防止车内人员被太阳光刺眼,还能够隔热。具体地,所述粘合层17的可见光透过率可以为但不限于为1%、2%、5%、7%、8%、10%、12%、14%、15%、18%及20%等。
可选地,所述热塑性聚合物膜选自聚乙烯醇缩丁醛(PVB)、聚氨基甲酸酯(PU)、乙烯-醋酸乙烯共聚物(EVA)及离子型聚合物(SGP)中的至少一种。所述热塑性聚合物膜能粘合所述内玻璃板11及外玻璃板15,且所述热塑性聚合物膜的粘合性能较好,能有效提高所述内玻璃板11及外玻璃板15之间的结合强度。
请参见图8至图10,在本申请一实施例中,所述夹层玻璃10还包括调光元件19,所述调光元件19设置于内玻璃板11及外玻璃板15之间,所述调光元件19用于调节所述夹层玻璃10的可见光透过率,以满足不同使用场景下的光学性能。
可以理解地,当所述夹层玻璃10包括调光元件19时,所述粘合层17的个数为2,所述调光元件19设置于相邻的两个粘合层17之间。
具体地,在一些实施例中,所述夹层玻璃10包括依次层叠设置的低辐射层13、内玻璃板11、粘合层17、调光元件19、粘合层17及外玻璃板15;在另一些实施例中,所述夹层玻璃10包括依次层叠设置的低辐射层13、内玻璃板11、粘合层17、调光元件19、粘合层17、红外反射层18及外玻璃板15;在其他一些实施例中,所述夹层玻璃10包括依次层叠设置的低辐射层13、内玻璃板11、粘合层17、调光元件19、粘合层17、红外反射层18、有机树脂薄膜(PET)、粘合层17及外玻璃板15。
可选地,所述调光元件19包括聚合物分散液晶(PDLC)调光薄膜、悬浮粒子(SPD)调光薄膜及电致变色(EC)调光薄膜中的至少一种。
以下通过具体实施例对本申请提供的夹层玻璃10作进一步介绍。
实施例1至实施例5
实施例1至实施例5中的夹层玻璃10包括依次层叠设置的低辐射层13、内玻璃板11、粘合层17以及外玻璃板15;所述低辐射层13包括通过磁控溅射工艺依次层叠设置于内玻璃板11的第四表面112上的Si3N4层、SiO2层、ITO层、SiO2层、ITO层、Si3N4层及SiO2层,其中ITO层为透明导电氧化物层,其余均为第一介质层。所述低辐射层13包括2个ITO层,溅射ITO层的靶材中的In2O3与SnO2的质量比是90:10。
实施例1
内玻璃板11:采用2.1mm厚的灰色玻璃,其可见光透过率为28%;
粘合层17:采用0.76mm厚的灰色PVB,其可见光透过率为2%;
外玻璃板15:采用2.1mm厚的绿色玻璃,其可见光透过率为82%;
低辐射层13:沿远离第四表面112的方向上依次层叠Si3N4层(6nm)、SiO2层(63nm)、ITO层(20nm)、SiO2层(34nm)、ITO层(120nm)、Si3N4层(18nm)及SiO2层(82nm)。
实施例2
与实施例1不同的是:粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为8%。
实施例3
与实施例1不同的是:外玻璃板15采用2.1mm厚的灰色玻璃,其可见光透过率为40%;粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为8%。
实施例4
与实施例1不同的是:外玻璃板15采用2.1mm厚的灰色玻璃,其可见光透过率为40%;粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为18%;
低辐射层13:沿远离第四表面112的方向上依次层叠Si3N4层(6nm)、SiO2层(63nm)、ITO层(20nm)、SiO2层(34nm)、ITO层(80nm)、Si3N4层(18nm)及SiO2层(82nm)。
实施例5
与实施例1不同的是:外玻璃板15采用2.1mm厚的灰色玻璃,其可见光透过率为28%;粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为18%;
低辐射层13:沿远离第四表面112的方向上依次层叠Si3N4层(6nm)、SiO2层(63nm)、ITO层(20nm)、SiO2层(34nm)、ITO层(100nm)、Si3N4层(18nm)及SiO2层(82nm)。
性能测试
根据汽车玻璃生产工艺得到实施例1至实施例5的夹层玻璃10,然后进行可见光总透过率(TL)测试、红外线透过率(TnIR)测试、红外线反射率(RIR)测试及太阳能总透过率(TTS)测试,并计算得到断热系数(C),实施例1至实施例5的测试结果及计算结果请参见表1。
可见光总透过率(TL)测试:根据ISO9050测量计算夹层玻璃10在380nm至780nm波长范围内的可见光透过率;
红外线透过率(TnIR)测试:根据ISO9050测量计算夹层玻璃10在1000nm至1250nm波长范围内的红外线透过率;
红外线反射率(RIR)测试:从所述低辐射层13远离所述内玻璃板11的一侧测量,根据ISO9050测量计算夹层玻璃10在780nm至2500nm波长范围内的红外线反射率;
太阳能总透过率(TTS)测试:根据ISO9050测量计算夹层玻璃10在300nm至2500nm波长范围内的太阳能总透过率;
断热系数(C)的计算:通过公式C=TnIR/RIR计算夹层玻璃10的断热系数;
辐射率(e)的测试:采用辐射率仪从所述低辐射层13远离所述内玻璃板11的一侧测量,即从车内一侧测量。
表1:实施例1至实施例5的夹层玻璃10的测试结果及计算结果
由表1可知,通过选用合适的外玻璃板15、粘合层17以及具有低辐射层13的内玻璃板11,实现实施例1至实施例5中所提供的夹层玻璃10的可见光透过率TL在0.5%至7%的范围内、甚至在0.5%至4%的范围内,实现实施例1至实施例5中所提供的夹层玻璃10的太阳能总透过率TTS小于或等于25%、甚至小于或等于20%,实现实施例1至实施例5中所提供的夹层玻璃10的辐射率e小于或等于0.20,使夹层玻璃10具有可见光低透、隔热优异和低辐射等性能,能够更适合作为全景天窗玻璃或全景天幕玻璃使用。同时,实施例1至实施例5中所提供的夹层玻璃10还都具有较低的断热系数C,实现断热系数C达到0.03~0.25,进而具有较好的热阻断效果,当作为全景天窗玻璃或全景天幕玻璃使用时,能给乘客带来足够好的人体体表感觉。
实施例6至实施例10
实施例6至实施例10中的夹层玻璃10包括依次层叠设置的低辐射层13、内玻璃板11、粘合层17、红外反射层18以及外玻璃板15;所述低辐射层13包括通过磁控溅射工艺依次层叠设置于内玻璃板11的第四表面112上的Si3N4层、SiO2层、ITO层、SiO2层、ITO层、Si3N4层及SiO2层,其中ITO层为透明导电氧化物层,其余均为第一介质层。所述低辐射层13包括2个ITO层,溅射ITO层的靶材中的In2O3与SnO2的质量比是90:10。所述红外反射层18通过磁控溅射工艺沉积在外玻璃板15的第二表面152上,所述红外反射层18包括2个或3个金属层184以及多个第二介质层,其中金属层184为银层。
实施例6
内玻璃板11:采用2.1mm厚的灰色玻璃,其可见光透过率为28%;
粘合层17:采用0.76mm厚的灰色PVB,其可见光透过率为18%;
外玻璃板15:采用2.1mm厚的透明玻璃,其可见光透过率为88%;
低辐射层13:沿远离第四表面112的方向上依次层叠Si3N4层(6nm)、SiO2层(63nm)、ITO层(20nm)、SiO2层(34nm)、ITO层(120nm)、Si3N4层(18nm)及SiO2层(82nm)。
红外反射层18:沿远离第二表面152的方向上依次层叠Si3N4层(32nm)、AZO层(7nm)、Ag层(10.1nm)、TiOx层(2nm)、AZO层(8nm)、ZnSnOx层(66nm)、AZO层(7nm)、Ag层(8.1nm)、TiOx层(2nm)、AZO层(8nm)、ZnSnOx层(145nm)、Si3N4层(5nm)。其中,AZO为铝掺杂的氧化锌。
实施例7
与实施例6不同的是:粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为8%。
实施例8
与实施例6不同的是:粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为2%。
实施例9
与实施例6不同的是:内玻璃板11采用2.1mm厚的灰色玻璃,其可见光透过率为40%;粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为8%;
红外反射层18:沿远离第二表面152的方向上依次层叠ZnSnOx层(26nm)、AZO层(10.8nm)、Ag层(13nm)、AZO层(8.6nm)、ZnSnOx层(56.8nm)、AZO层(8.8nm)、Ag层(14.4nm)层、AZO层(8.4nm)、ZnSnOx层(54.8nm)、AZO层(8.6nm)、Ag层(13nm)、AZO层(9nm)、ZnSnOx层(19.9nm)及Si3N4层(10.3nm)。
实施例10
与实施例6不同的是:粘合层17采用0.76mm厚的灰色PVB,其可见光透过率为5%;
红外反射层18:沿远离第二表面152的方向上依次层叠ZnSnOx层(26nm)、AZO层(10.8nm)、Ag层(13nm)、AZO层(8.6nm)、ZnSnOx层(56.8nm)、AZO层(8.8nm)、Ag层(14.4nm)层、AZO层(8.4nm)、ZnSnOx层(54.8nm)、AZO层(8.6nm)、Ag层(13nm)、AZO层(9nm)、ZnSnOx层(19.9nm)及Si3N4层(10.3nm)。
性能测试
根据汽车玻璃生产工艺得到实施例6至实施例10的夹层玻璃10,然后进行可见光总透过率(TL)测试、红外线透过率(TnIR)测试、红外线反射率(RIR)测试及太阳能总透过率(TTS)测试,并计算得到断热系数(C),实施例6至实施例10的测试结果及计算结果请参见表2。
可见光总透过率(TL)测试:根据ISO9050测量计算夹层玻璃10在380nm至780nm波长范围内的可见光透过率;
红外线透过率(TnIR)测试:根据ISO9050测量计算夹层玻璃10在1000nm至1250nm波长范围内的红外线透过率;
红外线反射率(RIR)测试:从所述低辐射层13远离所述内玻璃板11的一侧测量,根据ISO9050测量计算夹层玻璃10在780nm至2500nm波长范围内的红外线反射率;
太阳能总透过率(TTS)测试:根据ISO9050测量计算夹层玻璃10在300nm至2500nm波长范围内的太阳能总透过率;
断热系数(C)的计算:通过公式C=TnIR/RIR计算夹层玻璃的断热系数;
辐射率(e)的测试:采用辐射率仪从所述低辐射层13远离所述内玻璃板11的一侧测量,即从车内一侧测量。
表2:实施例6至实施例10的夹层玻璃10的测试结果及计算结果
由表2可知,通过增设红外反射层18以及选用合适的粘合层17和具有低辐射层13的内玻璃板11,实现实施例6至实施例10中所提供的夹层玻璃10的可见光透过率TL在0.5%至6%的范围内、甚至在0.5%至3%范围内,实现实施例6至实施例10中所提供的夹层玻璃10的太阳能总透过率TTS小于或等于16%、甚至小于或等于13%,实现实施例6至实施例10中所提供的夹层玻璃10的辐射率e小于或等于0.20,使夹层玻璃10具有可见光低透、隔热优异和低辐射等性能,能够更适合作为全景天窗玻璃或全景天幕玻璃使用。同时,实施例6至实施例10中所提供的夹层玻璃10还都具有较低的断热系数C,实现断热系数C达到0.009~0.15,甚至达到0.009~0.10,更甚至达到0.009~0.05,进而具有较好的热阻断效果,当作为全景天窗玻璃或全景天幕玻璃使用时,能给乘客带来足够好的人体体表感觉。
请参见图11,本申请实施例还提供了一种车辆30,所述车辆30包括车辆本体31以及本申请提供的夹层玻璃10,所述夹层玻璃10承载于车辆本体31,作为所述车辆30的天窗玻璃、边窗玻璃及后挡风玻璃中的至少一个。在本申请实施例的车辆30中,所述夹层玻璃10的可见光透过率较低,太阳能总透过率较低,使得夹层玻璃10具有较好的热阻断效果;此外,所述夹层玻璃10具有较低的辐射率,当所述夹层玻璃10应用于车辆时,能够乘客良好的体验。
可选地,所述车辆30可以为但不限于为汽车、卡车或轿车等。
可以理解地,在一些实施例中,所述车辆30的天窗玻璃为本申请提供的夹层玻璃10;在另一些实施例中,所述车辆30的边窗玻璃为本申请提供的夹层玻璃10;在另一些实施例中,所述车辆30的后挡风玻璃为本申请提供的夹层玻璃10;在另一些实施例中,所述车辆30的天窗玻璃及后挡风玻璃为本申请提供的夹层玻璃10;在另一些实施例中,所述车辆30的天窗玻璃及边窗玻璃为本申请提供的夹层玻璃10;在另一些实施例中,所述车 辆30的边窗玻璃及后挡风玻璃为本申请提供的夹层玻璃10;在另一些实施例中,所述车辆30的天窗玻璃、边窗玻璃及后挡风玻璃为本申请提供的夹层玻璃10。
在本申请中提及“实施例”“实施方式”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。此外,还应该理解的是,本申请各实施例所描述的特征、结构或特性,在相互之间不存在矛盾的情况下,可以任意组合,形成又一未脱离本申请技术方案的精神和范围的实施例。
最后应说明的是,以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (17)

  1. 一种夹层玻璃,其特征在于,包括依次层叠设置的外玻璃板、粘合层、内玻璃板和低辐射层;
    所述外玻璃板具有相对设置的第一表面和第二表面,所述内玻璃板具有相对设置的第三表面和第四表面,所述粘合层用于连接所述第二表面和所述第三表面;
    所述低辐射层设置于所述内玻璃板的第四表面上,所述低辐射层包括1个至3个透明导电氧化物层;
    所述夹层玻璃的断热系数C满足条件式:C=TnIR/RIR,所述夹层玻璃的断热系数C的范围为0.008≤C≤0.4,其中,TnIR为所述夹层玻璃对于波长为1000nm至1250nm的红外线的透过率,RIR为从所述低辐射层远离所述内玻璃板的一侧测量,所述夹层玻璃对于波长为780nm至2500nm的红外线的反射率。
  2. 根据权利要求1所述的夹层玻璃,其特征在于,所述透明导电氧化物层的材料为氧化铟锡,所述内玻璃板包括铁的氧化物,所述内玻璃板中以Fe2O3计的总铁的质量与所述透明导电氧化物层中铟的质量的比值范围为20:1至500:1。
  3. 根据权利要求2所述的夹层玻璃,其特征在于,所述内玻璃板为着色玻璃,所述内玻璃板中以Fe2O3计的总铁的质量分数的范围为0.9%至2.2%,所述内玻璃板的厚度的范围为0.7mm至2.1mm。
  4. 根据权利要求2所述的夹层玻璃,其特征在于,所述透明导电氧化物层的总厚度的范围50nm至300nm。
  5. 根据权利要求1所述的夹层玻璃,其特征在于,所述夹层玻璃的可见光透过率的范围为0.5%至10%,从所述低辐射层远离所述内玻璃板的一侧测量的所述夹层玻璃的辐射率小于或等于0.25,从所述低辐射层远离所述内玻璃板的一侧测量的所述夹层玻璃的可见光反射率小于或等于4%。
  6. 根据权利要求1所述的夹层玻璃,其特征在于,所述低辐射层还包括至少两个第一介质层,每个所述透明导电氧化物层的相背两个表面均设有所述第一介质层,所述第一介质层的材料选自Zn、Sn、Ti、Si、Al、Mg、Zr中至少一种元素的氮化物、氧化物、氮氧化物。
  7. 根据权利要求1所述的夹层玻璃,其特征在于,所述夹层玻璃还包括红外反射层,所述红外反射层设置于内玻璃板及外玻璃板之间,所述红外反射层包括1个至5个金属层,所述金属层的材料选自Ag、Au、Cu、Al、Pt中至少一种元素的金属或合金。
  8. 根据权利要求7所述的夹层玻璃,其特征在于,所述红外反射层还包括至少两个第 二介质层,每个所述金属层的相背两个表面均设有所述第二介质层,所述第二介质层的材料选自Zn、Sn、Ti、Si、Al、Ni、Cr、Nb、Mg、Zr、Ga、Y、In、Sb、V、Ta中至少一种元素的氮化物、氧化物、氮氧化物。
  9. 根据权利要求7所述的夹层玻璃,其特征在于,所述外玻璃板为可见光透过率大于或等于80%的透明玻璃。
  10. 根据权利要求1所述的夹层玻璃,其特征在于,所述夹层玻璃不包括红外反射层,所述外玻璃板为着色玻璃,所述外玻璃板中以Fe2O3计的总铁的质量分数的范围为0.7%至2.2%,所述外玻璃板的厚度的范围为2.1mm至4.2mm。
  11. 根据权利要求1所述的夹层玻璃,其特征在于,所述夹层玻璃的断热系数C的范围为0.03≤C≤0.25。
  12. 根据权利要求1所述的夹层玻璃,其特征在于,所述夹层玻璃的断热系数C的范围为0.009≤C≤0.15。
  13. 根据权利要求1所述的夹层玻璃,其特征在于,所述粘合层为着色的热塑性聚合物膜,所述热塑性聚合物膜选自聚乙烯醇缩丁醛、聚氨基甲酸酯、乙烯-醋酸乙烯共聚物及离子型聚合物中的至少一种,所述粘合层的可见光透过率为1%至20%。
  14. 根据权利要求1所述的夹层玻璃,其特征在于,所述内玻璃板的可见光透过率为34%至42%,所述内玻璃板的颜色的Lab值中的L的取值范围为65至71.5、a的取值范围为-3.5至-2、b的取值范围为2至3.5。
  15. 根据权利要求1所述的夹层玻璃,其特征在于,所述内玻璃板的可见光透过率为26%至34%,所述内玻璃板的颜色的Lab值中的L的取值范围为58.5至65,a的取值范围为-5至-3.5,b的取值范围为0.5至2。
  16. 根据权利要求1所述的夹层玻璃,其特征在于,所述夹层玻璃还包括调光元件,所述调光元件设置于所述第二表面和及所述第三表面之间,所述调光元件包括聚合物分散液晶调光薄膜、悬浮粒子调光薄膜及电致变色调光薄膜中的至少一种。
  17. 一种车辆,其特征在于,包括:
    车辆本体;以及
    权利要求1至16任一项所述的夹层玻璃,所述夹层玻璃承载于车辆本体,作为所述车辆的天窗玻璃、边窗玻璃及后挡风玻璃中的至少一个。
PCT/CN2023/133516 2022-11-23 2023-11-23 一种夹层玻璃及车辆 WO2024109864A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211472091.X 2022-11-23
CN202211472091.XA CN115847956A (zh) 2022-11-23 2022-11-23 一种夹层玻璃及车辆

Publications (1)

Publication Number Publication Date
WO2024109864A1 true WO2024109864A1 (zh) 2024-05-30

Family

ID=85665265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133516 WO2024109864A1 (zh) 2022-11-23 2023-11-23 一种夹层玻璃及车辆

Country Status (2)

Country Link
CN (1) CN115847956A (zh)
WO (1) WO2024109864A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115847956A (zh) * 2022-11-23 2023-03-28 福耀玻璃工业集团股份有限公司 一种夹层玻璃及车辆
CN115724597A (zh) * 2022-11-23 2023-03-03 福耀玻璃工业集团股份有限公司 一种玻璃、夹层玻璃及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115747A1 (fr) * 2004-05-28 2005-12-08 Glaverbel Vitrage de toit automobile
CN1823021A (zh) * 2003-07-11 2006-08-23 皮尔金顿公共有限公司 阳光控制窗玻璃
CN106517815A (zh) * 2016-10-21 2017-03-22 福建省万达汽车玻璃工业有限公司 一种低透镀膜车窗玻璃及其总成
CN114043787A (zh) * 2021-11-09 2022-02-15 福耀玻璃工业集团股份有限公司 一种低辐射复合玻璃及天窗
CN114057407A (zh) * 2021-12-23 2022-02-18 福建省万达汽车玻璃工业有限公司 一种镀膜玻璃及夹层玻璃
CN114455856A (zh) * 2022-01-28 2022-05-10 福建省万达汽车玻璃工业有限公司 天窗玻璃及车辆
CN115724597A (zh) * 2022-11-23 2023-03-03 福耀玻璃工业集团股份有限公司 一种玻璃、夹层玻璃及车辆
CN115847956A (zh) * 2022-11-23 2023-03-28 福耀玻璃工业集团股份有限公司 一种夹层玻璃及车辆

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1823021A (zh) * 2003-07-11 2006-08-23 皮尔金顿公共有限公司 阳光控制窗玻璃
WO2005115747A1 (fr) * 2004-05-28 2005-12-08 Glaverbel Vitrage de toit automobile
CN106517815A (zh) * 2016-10-21 2017-03-22 福建省万达汽车玻璃工业有限公司 一种低透镀膜车窗玻璃及其总成
CN114043787A (zh) * 2021-11-09 2022-02-15 福耀玻璃工业集团股份有限公司 一种低辐射复合玻璃及天窗
CN114057407A (zh) * 2021-12-23 2022-02-18 福建省万达汽车玻璃工业有限公司 一种镀膜玻璃及夹层玻璃
CN114455856A (zh) * 2022-01-28 2022-05-10 福建省万达汽车玻璃工业有限公司 天窗玻璃及车辆
CN115724597A (zh) * 2022-11-23 2023-03-03 福耀玻璃工业集团股份有限公司 一种玻璃、夹层玻璃及车辆
CN115847956A (zh) * 2022-11-23 2023-03-28 福耀玻璃工业集团股份有限公司 一种夹层玻璃及车辆

Also Published As

Publication number Publication date
CN115847956A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2024109864A1 (zh) 一种夹层玻璃及车辆
JP7071503B2 (ja) 太陽光保護コーティング及び熱放射反射コーティングを有する複合ペイン
EP4361113A1 (en) Coated glass and laminated glass
US4855186A (en) Coated plastic film and plastic laminate prepared therefrom
JP6498662B2 (ja) 積層グレージング
EP3360009B1 (en) Window assembly with infrared reflector
EP1060876B1 (fr) Vitrage feuillete reflechissant les rayons du soleil et les rayons thermiques
RU2523277C2 (ru) Покрытое изделие с теплоотражающим покрытием, имеющим слой на основе станната цинка между ик-отражающими слоями для уменьшения пятнистости, и соответствующий способ
KR102122790B1 (ko) 부분 금속 필름을 포함하는 다중층이 구비된 기판, 글레이징 유닛 및 방법
EP3565791B1 (en) Heat treatable coated article having titanium nitride based ir reflecting layer(s)
JPH03503755A (ja) スパッタリングによる多層色コンパチブル太陽光制御皮膜
KR20080005206A (ko) 개선된 선택도를 갖는 다층 창유리
JPS6261545B2 (zh)
JP2013532306A (ja) 低いソーラファクターを有する太陽光制御板ガラス
KR20070047331A (ko) 적외선 및/또는 태양 복사선을 반사하는 박막층의 적층과가열 수단을 포함하는 적층 글레이징
EP3310574A1 (fr) Vitrage feuillete
CN114043787B (zh) 一种低辐射复合玻璃及天窗
CN115724597A (zh) 一种玻璃、夹层玻璃及车辆
CN114455856A (zh) 天窗玻璃及车辆
KR20210146363A (ko) 가열가능한 차량 전면 유리
JP2002220262A (ja) 高断熱合わせガラス
WO2024109924A1 (zh) 一种车辆用夹层玻璃及其应用
JPH08268732A (ja) 熱線反射ガラス
WO2023155362A1 (zh) 夹层窗玻璃
CN117303749A (zh) 镀膜玻璃及夹层玻璃