WO2024109452A1 - 有机硅组合物及其应用 - Google Patents

有机硅组合物及其应用 Download PDF

Info

Publication number
WO2024109452A1
WO2024109452A1 PCT/CN2023/127567 CN2023127567W WO2024109452A1 WO 2024109452 A1 WO2024109452 A1 WO 2024109452A1 CN 2023127567 W CN2023127567 W CN 2023127567W WO 2024109452 A1 WO2024109452 A1 WO 2024109452A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
relative molecular
concentration
organosilicon composition
dielectric constant
Prior art date
Application number
PCT/CN2023/127567
Other languages
English (en)
French (fr)
Inventor
杨敏
陈德义
宛志文
陆平
茅炳荣
袁磊
Original Assignee
江苏南大光电材料股份有限公司
南大光电半导体材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏南大光电材料股份有限公司, 南大光电半导体材料有限公司 filed Critical 江苏南大光电材料股份有限公司
Publication of WO2024109452A1 publication Critical patent/WO2024109452A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the present invention relates to the field of organosilicon compositions, and in particular to an organosilicon composition and application thereof.
  • Alkoxysilane is mainly used to synthesize organic silicon intermediates and polymer compounds, and can also be used as a hydrosilylation agent. At the same time, it can be applied to semiconductor devices. In order to reduce resistance and capacitance (RC) delay and interconnection delay, improve semiconductor device performance, and increase circuit speed, low-K or even ultra-low-K dielectric materials are needed.
  • RC resistance and capacitance
  • the ultra-low-K dielectric mask layer as an example, for example, alkoxysilane is used to form an ultra-low-k dielectric mask layer on a substrate, wherein alkoxysilane reacts with oxygen to form a
  • organic chlorine and inorganic chlorine by-products such as chlorosilane, organic chloride and hydrogen chloride are generated, mainly in the form of hydrogen chloride or residual silicon chloride, and finally hydrogen chloride is formed.
  • this crude diethoxymethylsilane is used to make semiconductor devices, for example, when preparing a low-k dielectric mask layer, salt precipitation is likely to occur, and chlorine residues are likely to appear in the film, thereby affecting the performance of the semiconductor device.
  • the existing alkoxysilane organic silicon composition such as CN101092689A discloses an organic silicon product. Since an alkaline chloride scavenger, such as ammonia and amine compounds, is added during the purification process, the purified organic silicon composition contains not only residual chloride but also excessive alkaline chloride scavengers, such as metal salts and organic amines. As a result, the organic silicon composition contains excessive impurities and has a low purity. When manufacturing semiconductor devices, Therefore, it is urgent to provide an organosilicon composition with low chloride residue.
  • an alkaline chloride scavenger such as ammonia and amine compounds
  • the first object of the present invention is to provide an organosilicon composition with low residual inorganic chlorine and organic chlorine and low residual ethanol, in order to solve the problem that the existing organosilicon composition for semiconductor devices described in the background technology contains not only residual chloride but also excessive residual alkaline chloride scavengers, such as metal salts, organic amines, etc., so that there are too many impurities in the organosilicon composition and the corresponding purity is low, which affects the performance of semiconductor devices when manufacturing them.
  • An organosilicon composition comprising:
  • the first concentration is defined as the sum of the concentrations of all existing chlorine elements obtained when the organosilicon composition is fully digested.
  • the inorganic chlorine includes hydrogen chloride
  • the organic chlorine includes chlorosilane compounds and/or organic chlorine compounds.
  • a further solution is that the first concentration of the dissolved residual inorganic chlorine and organic chlorine is between the instrument detection limit and 100 ppm, the second concentration of the ethanol is between the instrument detection limit and 20 ppm, and the third concentration of the by-product is between the instrument detection limit and 5000 ppm.
  • a further solution is that the concentration of the dissolved residual inorganic chlorine is between the instrument detection limit and 10 ppm.
  • concentration of the dissolved residual inorganic chlorine is preferably between the instrument detection limit and 1 ppm.
  • a further embodiment is that the by-products include any one or more of a compound with a relative molecular weight of 164, a compound with a relative molecular weight of 208, a compound with a relative molecular weight of 148, a compound with a relative molecular weight of 194, a compound with a relative molecular weight of 178, a compound with a relative molecular weight of 150, a compound with a relative molecular weight of 120, a compound with a relative molecular weight of 124 or 126, and a compound with a relative molecular weight of 90.
  • the compound with a relative molecular weight of 164 includes triethoxysilane
  • the compound with a relative molecular weight of 208 may include tetraethoxysilane
  • the compound with a relative molecular weight of 148 includes diethoxydimethylsilane
  • the compound with a relative molecular weight of 194 includes triethoxymethoxysilane
  • the compound with a relative molecular weight of 178 includes triethoxymethylsilane
  • the compound with a relative molecular weight of 150 includes diethoxymethoxysilane
  • the compound with a relative molecular weight of 120 includes ethoxymethoxymethylsilane
  • the compound with a relative molecular weight of 124 or 126 includes ethoxymethylchlorosilane
  • the compound with a relative molecular weight of 90 includes ethoxymethylsilane.
  • the second object of the present invention is to provide an application of the above-mentioned organosilicon composition, specifically, an application of the organosilicon composition in a low dielectric constant film.
  • the low dielectric constant film includes a low dielectric constant interlayer dielectric film, a porous low dielectric constant film or an air gap low dielectric constant film.
  • the low dielectric constant film is a low dielectric constant interlayer dielectric film, which is formed from the organic silicon composition by chemical vapor deposition.
  • a further solution is that the dielectric constant of the low dielectric constant interlayer dielectric film is less than or equal to 3.5.
  • the beneficial effect of the above scheme is that under chemical deposition gas phase conditions sufficient to deposit a thin film on a substrate, the organic silicon precursor of the organic silicon composition of the present invention reacts with one or more other reactants, such as oxygen, gaseous or liquid organic substances, etc., to deposit an interlayer dielectric film on the substrate.
  • the dielectric constant of the obtained interlayer dielectric film is less than or equal to 3.5, and the surface is flat and has no defects.
  • the beneficial effects of the present invention are as follows: the organosilicon composition of the present invention has low inorganic chlorine, organic chlorine and ethanol residues, especially very little inorganic chlorine residue, so the quality of the organosilicon composition is stable.
  • the dielectric constant of the low dielectric constant film is less than or equal to 3.5, the performance is stable and controllable, and it is better than the existing organosilicon composition.
  • Figure 1-2 is the GC spectrum and MS spectrum of triethoxysilane, a by-product of the organosilicon composition in Example 1 of the present invention
  • 3-4 are GC and MS spectra of tetraethoxysilane, a byproduct of the organosilicon composition in Example 1 of the present invention.
  • 5-6 are GC spectra and MS spectra of diethoxydimethylsilane, a by-product of the organosilicon composition in an embodiment of the present invention.
  • 7-8 are GC spectra and MS spectra of triethoxymethoxysilane, a by-product of the organosilicon composition in an embodiment of the present invention.
  • 9-10 are GC spectra and MS spectra of diethoxymethoxysilane, a by-product of the organosilicon composition in an embodiment of the present invention.
  • 11-12 are GC spectra and MS spectra of ethoxymethoxymethylsilane, a by-product of the organosilicon composition in an embodiment of the present invention.
  • 15-16 are GC and MS spectra of ethoxymethylsilane, a by-product of the organosilicon composition in an embodiment of the present invention.
  • One aspect of the present invention provides an organosilicon composition including diethoxymethylsilane, a first concentration of dissolved residual total chloride, a second concentration of ethanol, and a third concentration of byproducts.
  • the total chloride includes inorganic chlorine and organic chlorine, and the first concentration is defined as the sum of the concentrations of all existing chlorine elements obtained in the case of full digestion of the organosilicon composition.
  • the second concentration represents the highest concentration of alcohol that cannot be removed during the purification process.
  • the third concentration represents the highest concentration of the byproduct generated during the purification process.
  • the inorganic chlorine includes hydrogen chloride
  • the organic chlorine includes chlorosilane compounds and/or organic chlorides.
  • the chlorosilane compounds are chlorosilane.
  • the first concentration of the dissolved residual inorganic chlorine and organic chlorine is between the instrument detection limit and 100 ppm
  • the second concentration of the ethanol is between the instrument detection limit and 20 ppm
  • the third concentration of the by-product is between the instrument detection limit and 5000 ppm.
  • the first concentration of dissolved residual inorganic chlorine and organic chlorine is between the instrument detection limit and 40 ppm
  • the second concentration of ethanol is between the instrument detection limit and 10 ppm
  • the third concentration of the by-product is between the instrument detection limit and 5000 ppm.
  • the concentration of the dissolved residual inorganic chlorine is between the instrument detection limit and 10 ppm.
  • the concentration of the dissolved residual inorganic chlorine is preferably between the instrument detection limit and 1 ppm, and further can be less than 0.5 ppm.
  • the by-products include any one or more of a compound with a relative molecular weight of 164, a compound with a relative molecular weight of 208, a compound with a relative molecular weight of 148, a compound with a relative molecular weight of 194, a compound with a relative molecular weight of 178, a compound with a relative molecular weight of 150, a compound with a relative molecular weight of 120, a compound with a relative molecular weight of 124 or 126, and a compound with a relative molecular weight of 90.
  • the compound with a relative molecular weight of 164 may include triethoxysilane or other compounds
  • the compound with a relative molecular weight of 208 may include tetraethoxysilane or other compounds
  • the compound with a relative molecular weight of 148 may include diethoxydimethylsilane or other compounds
  • the compound with a relative molecular weight of 194 may include triethoxymethoxysilane or other compounds
  • the compound with a relative molecular weight of 178 may include triethoxymethylsilane or other compounds
  • the compound with a relative molecular weight of 150 may include diethoxymethoxysilane or other compounds
  • the compound with a relative molecular weight of 120 may include ethoxymethoxymethylsilane or other compounds
  • the compound with a relative molecular weight of 124 or 126 may include ethoxymethylchlorosilane or other compounds
  • the compound with a relative molecular weight of 90 may include ethoxy
  • Another aspect of the present invention provides a use of an organosilicon composition in a low dielectric constant film.
  • the low dielectric constant film includes a low dielectric constant interlayer dielectric film, a porous low dielectric constant film or an air gap low dielectric constant film.
  • the low dielectric constant film is a low dielectric constant interlayer dielectric film, which is formed from the organosilicon composition of the present invention by chemical vapor deposition.
  • the dielectric constant of the low dielectric constant interlayer dielectric film is less than or equal to 3.5.
  • the method for preparing a low dielectric constant interlayer dielectric film comprises reacting an organosilicon precursor comprising at least the organosilicon composition of the present invention with one or more other reactants under chemical deposition vapor conditions sufficient to deposit a film on a substrate to form an interlayer dielectric film having a dielectric constant of 3.5 or less.
  • the organosilicon composition of the present invention can be obtained by the following purification method, or by other purification methods.
  • the specific purification steps include:
  • the molar concentration ratio of chloride ions to ethanol in the organic chlorine is 1:1 to 1:10 6 , and the maximum amount of ethanol is 10% of the total amount of materials to ensure complete reaction.
  • step 2) comprises: refluxing the mixture under normal or reduced pressure and in a boiling state, so that ethanol reacts with organic chlorine and chloride ions in the organic chlorine are converted into hydrogen chloride; in a boiling state, introducing a gas, contacting the mixture with the gas, removing the hydrogen chloride by gas exchange, and promoting the reaction between organic chlorine and ethanol, promoting the reaction between organic chlorine and ethanol to move in a positive direction, thereby obtaining a purified organosilicon composition.
  • the reflux time is 1-30 h, preferably 1-24 h.
  • the mixture is in contact with the gas for 2-48 hours.
  • the gas includes an inert gas, such as argon and helium.
  • the gas may also include nitrogen, hydrogen, carbon monoxide, etc.
  • the gas may be one of them or a combination of two or more.
  • the gas flow rate is less than or equal to 10 L/min.
  • the total amount of gas is 10 3 -10 6 times the total chloride concentration in the organosilicon composition.
  • the total time of passing the gas is 2-48 hours, wherein the total chloride includes inorganic chlorine and organic chlorine.
  • the method further comprises using gas detection gas and/or silver nitrate solution to detect the inorganic chlorine and/or organic chlorine remaining in the organosilicon composition, for example, by using a gas detector for tail gas or using silver nitrate titration without discoloration.
  • the purification method is convenient and does not introduce additional metal salts, organic amines and other products.
  • gas to exchange hydrogen chloride it promotes the reaction of organic chlorine and ethanol to move in the positive direction, further completing the removal of chloride ions, that is, removing inorganic chlorine and organic chlorine simultaneously.
  • the purified new organosilicon composition has very little residual chloride, especially inorganic chlorine, and contains suitable ethanol and by-products, so the organosilicon composition has stable quality.
  • the preparation method of DEMS is as follows: 150 g of anhydrous ethanol is added to a 1L round-bottom flask, cooled to 0 degrees Celsius, 115 g of methyldichlorosilane (MeSiHCl 2 ) is gradually added dropwise and maintained for 12 hours, gradually heated to room temperature and then boiled and refluxed for 4 hours, and 121 g of diethoxymethylsilane is obtained by distillation, with a yield of 90%.
  • the nuclear magnetic spectrum is 1 H-NMR (C 6 D 6 ): 0.0 (d, 3H), 0.97 (t, 6H), 3.5 (dd, 4H), 4.7 (s, 1H). That is, the crude product T1.
  • the prepared crude product T1 contains a large amount of inorganic chloride, organic chloride and ethanol in addition to diethoxymethylsilane.
  • the total concentration of inorganic chloride and organic chloride is 1500ppm, of which the concentration of inorganic chloride is 550ppm and the content of ethanol is 2500ppm.
  • the content of inorganic chlorine and ethanol in the crude product is too high to be directly applied to the preparation of low dielectric constant films. Therefore, it is necessary to purify it to obtain a new diethoxymethylsilane organosilicon composition.
  • the steps are as follows:
  • the exhaust gas is detected by a gas detector, and then the residual inorganic chlorine in the silicone composition is detected.
  • the residual inorganic chlorine content dissolved in the silicone composition is less than 10 ppm, distillation is performed to remove 10 g of the front fraction, and 60 g of the middle fraction is collected, and the still residue is left untouched to obtain the final DEMS composition product, namely, product T2.
  • the organic silicon composition obtained in this embodiment contains diethoxymethylsilane, a total chloride with a first concentration of 40 ppm, of which inorganic chloride is 0.9 ppm, and ethanol with a second concentration of 22 ppm.
  • the silicone composition also contains a third concentration of by-products, which are triethoxysilane with a relative molecular weight of 164, tetraethoxysilane with a relative molecular weight of 208, diethoxydimethylsilane with a relative molecular weight of 148, triethoxymethoxysilane with a relative molecular weight of 194, triethoxymethylsilane with a relative molecular weight of 178, diethoxymethoxysilane with a relative molecular weight of 150, ethoxymethoxymethylsilane with a relative molecular weight of 120, ethoxymethylchlorosilane with a relative molecular weight of 124 or 126, and e
  • the total concentration of by-products is 5000 ppm.
  • the GC spectra and MS spectra of some by-products are shown in Figures 1-16.
  • nitrogen and argon are introduced into the mixture in a boiling state, with a ratio of 8:2, so that the mixture is fully in contact with the gas, and the tail gas is safely discharged under the protection of nitrogen and argon, thereby removing hydrogen chloride through gas exchange.
  • the maximum gas flow rate is controlled at 5L/min, the ventilation time is 48 hours, and the total amount of gas is 12000L.
  • a gas detector for tail gas is used to detect the residual inorganic chlorine in the alkoxysilane composition.
  • a purified silicone composition is obtained.
  • 10 g of the front fraction is removed, and 60 g of the middle fraction is collected.
  • the still residue remains unchanged to obtain a purified DEMS composition product, namely, product T3.
  • the total concentration of inorganic chloride and organic chloride in product T3 was 18ppm, of which the concentration of inorganic chlorine was 0.3ppm, and the concentration of ethanol was 5.7ppm.
  • the obtained organosilicon composition also contained byproducts of the third concentration, which were triethoxysilane with a relative molecular weight of 164, tetraethoxysilane with a relative molecular weight of 208, diethoxydimethylsilane with a relative molecular weight of 148, triethoxymethoxysilane with a relative molecular weight of 194, triethoxymethylsilane with a relative molecular weight of 178, diethoxymethoxysilane with a relative molecular weight of 150, ethoxymethoxymethylsilane with a relative molecular weight of 120, ethoxymethylchlorosilane with a relative molecular weight of 124 or 126, and ethoxymethylsilane with a relative molecular weight of 90.
  • the total concentration of byproducts was 4800ppm.
  • Example 2 100 g of the crude DEMS product T1 obtained in Example 1 was taken, and 1 g of ethanol was added thereto. The mixture was refluxed under normal pressure and boiling state for 24 h to allow the ethanol to react with the organic chloride in the crude DEMS product to convert the organic chloride into hydrogen chloride.
  • a gas detector for tail gas is used to detect the residual inorganic chlorine in the organosilicon composition.
  • the residual inorganic chlorine content dissolved in the organosilicon composition is less than 10 ppm
  • distillation is performed to remove 10 g of the front fraction, and 60 g of the middle fraction is collected.
  • the still residue is left untouched to obtain a purified DEMS composition product, namely, product T4.
  • the total concentration of inorganic chloride and organic chloride in product T4 was 25ppm, of which the concentration of inorganic chlorine was 1.1ppm and the concentration of ethanol was 10.7ppm.
  • the obtained organosilicon composition also contained byproducts of the third concentration, which were triethoxysilane with a relative molecular weight of 164, tetraethoxysilane with a relative molecular weight of 208, diethoxydimethylsilane with a relative molecular weight of 148, triethoxymethoxysilane with a relative molecular weight of 194, triethoxymethylsilane with a relative molecular weight of 178, diethoxymethoxysilane with a relative molecular weight of 150, ethoxymethoxymethylsilane with a relative molecular weight of 120, ethoxymethylchlorosilane with a relative molecular weight of 124 or 126, and ethoxymethylsilane with a relative molecular weight of 90.
  • the total concentration of byproducts was 4500ppm.
  • Example 2 100 g of the crude DEMS product T1 obtained in Example 1 was taken, and 5 g of ethanol was added thereto. The mixture was refluxed under normal pressure and boiling state for 12 h, and the ethanol reacted with the organic chloride in the crude DEMS product to convert the organic chloride into hydrogen chloride.
  • the residual inorganic chlorine in the organosilicon composition is detected by using a gas detector for tail gas.
  • the product T5 can be obtained by distillation, removing 10 g of the front fraction, collecting 60 g of the middle fraction, and leaving the still untouched.
  • the total concentration of inorganic chloride and organic chloride in the product T5 is 10 ppm, of which the concentration of inorganic chlorine is 0.5 ppm and the concentration of ethanol is 5.3 ppm.
  • the obtained organosilicon composition also contains a third concentration of by-product
  • the by-products are triethoxysilane with a relative molecular weight of 164, tetraethoxysilane with a relative molecular weight of 208, diethoxydimethylsilane with a relative molecular weight of 148, triethoxymethoxysilane with a relative molecular weight of 194, triethoxymethylsilane with a relative molecular weight of 178, diethoxymethoxysilane with a relative molecular weight of 150, ethoxymethoxymethylsilane with a relative molecular weight of 120, ethoxymethylchlorosilane with a relative molecular weight of 124 or 126, and ethoxymethylsilane with a relative molecular weight of 90, and the total concentration of the by-products is 4000ppm.
  • This embodiment provides a low dielectric constant interlayer dielectric film, and the preparation method thereof is as follows:
  • an organic silicon precursor including at least the organic silicon composition T2 product is reacted with oxygen, gaseous and liquid organic substances, etc. to deposit an interlayer dielectric film on the substrate.
  • the dielectric constant of the obtained interlayer dielectric film is less than or equal to 3.5, and the surface is flat and has no defects.
  • the obtained silicone composition may contain different by-products, for example, it may be triethoxysilane or other compounds with a relative molecular weight of 164, tetraethoxysilane or other compounds with a relative molecular weight of 208, diethoxydimethylsilane or other compounds with a relative molecular weight of 148, triethoxymethoxysilane or other compounds with a relative molecular weight of 194, triethoxymethylsilane or other compounds with a relative molecular weight of 178, diethoxymethoxysilane or other compounds with a relative molecular weight of 150, ethoxymethoxymethylsilane or other compounds with a relative molecular weight of 120, ethoxymethylchlorosilane or other compounds with a relative molecular weight of 124 or 126, and ethoxymethylsilane or other compounds with a relative molecular weight of 90, any one compound or a combination of two or more compounds.
  • the organosilicon composition is obtained by distillation.
  • the total concentration of inorganic chloride and organic chloride is 520 pm, of which the concentration of inorganic chlorine is 107 ppm, the concentration of ethanol is 52 ppm, and the total concentration of by-products is greater than 1%. It can be seen that there are more chloride and ethanol residues in this product, and the concentration of by-products is too high, the quality is unstable, and it is difficult to be used in semiconductor devices.
  • the method for preparing the low dielectric constant interlayer dielectric film is the same as that of Example 5, except that the organosilicon composition prepared by the purification method in Comparative Example 1 is used as an organosilicon precursor, and reacts with oxygen, gaseous and liquid organic substances, etc. to deposit an interlayer dielectric film on a substrate. After testing, the dielectric constant of the obtained interlayer dielectric film is greater than 3.5, and there are convex defects on the surface.
  • the purified organosilicon composition obtained by the above technical solution of the present invention has very little chloride residue, especially inorganic chlorine, and contains suitable ethanol and by-products, so the organosilicon composition has stable quality.
  • the preparation process is convenient, and no additional metal salts, organic amines and other products are introduced.
  • the reaction of organic chlorine and ethanol can be promoted to move in the positive direction, further completing the removal of chloride ions, that is, the inorganic chlorine and organic chlorine are removed simultaneously.
  • compositions taught by the present invention also consist essentially of or consist of the recited components, and that the processes taught by the present invention also consist essentially of or consist of the recited process steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

本发明是关于种有机硅组合物,其包含:二乙氧基甲基硅烷;第一浓度的溶解的残留无机氯和有机氯;第二浓度的乙醇;以及第三浓度的副产物(杂质);其中第一浓度定义为所述有机硅组合物在全消解情况下获得的所有存在的氯元素的浓度的总和。本发明的有机硅组合物,引进了副产物(杂质)的概念,对产品的品质管控有关键作用,同时无机氯和有机氯及乙醇的残留很低,尤其是无机氯的残留极少,因而二乙氧基甲基硅烷的品质稳定,当应用于半导体器件中,例如在制备各类低介电常数薄膜时,该低介电常数薄膜的介电常数小于或等于3.5,性能稳定可控,优于现有的有机硅组合物。

Description

有机硅组合物及其应用
本发明要求2022年11月22日向中国专利局提交的、申请号为202211462774.7、发明名称为“有机硅组合物及其应用”的中国专利申请的优先权,该申请的全部内容通过引用结合在本文中。
技术领域
本发明关于有机硅组合物领域,特别涉及一种有机硅组合物及其应用。
背景技术
烷氧基硅烷主要用于合成有机硅中间体及高分子化合物,也可作为氢化硅烷化试剂。同时,其可应用于半导体器件。为减少电阻电容(RC)延迟和互连延迟,改善半导体器件性能,提高电路速度,需要低K甚至超低K介电材料,目前通用的超低K介电层采用低K多孔结构(SiCOH,K=2.2-2.5),使用硅氮化碳(K=4.8)和非晶碳化硅(K=2-3.6)为电介质阻挡层,利用PCVD/ALD薄膜在金属导线之间使用牺牲材料形成空洞,实现低K介质层间的金属互连。以超低K介质掩膜层为例,例如采用烷氧基硅烷在衬底上形成超低k介质掩膜层,其中烷氧基硅烷和氧反应生成二氧化硅玻璃体形成薄氧层,该超低k介质层表面平整,克服了原有的凸起缺陷,改进了超低k介质层的性能。
二乙氧基甲基硅烷(简称为DEMS)通常采用二氯甲基硅烷与乙醇反应生成,例如采用如下的化学反应:
CH3SiHCl2+2C2H5OH=CH3SiH(OC2H5)2+2HCl。
在上述反应中,会产生有机氯和无机氯的副产物,如氯硅烷、有机氯化物和氯化氢,主要以氯化氢或残余氯化硅的形式出现,最终均形成氯化氢,在采用该种粗品二乙氧基甲基硅烷用于制作半导体器件时,例如制备低k介质掩膜层时,容易产生盐沉淀,薄膜中容易出现氯残留,从而影响半导体器件的性能。
现有的烷氧基硅烷的有机硅组合物,如CN101092689A公开了一种有机硅产品,由于其纯化过程中另外加入碱性氯化物清除剂,如氨、胺化合物,因此纯化后的有机硅组合物中除了含有残留的氯化物外,还会残留过多的碱性氯化物清除剂,例如金属盐、有机胺等,因而有机硅组合物中杂质过多,相应纯度较低,在制作半导体器件时, 影响其性能。因此,亟需提出一种低氯化物残留的有机硅组合物。
发明内容
本发明的第一个发明目的在于针对背景技术中所述的现有的用于半导体器件的有机硅组合物除了含有残留的氯化物外,还会残留过多的碱性氯化物清除剂,例如金属盐、有机胺等,因而有机硅组合物中杂质过多,相应纯度较低,在制作半导体器件时影响其性能的问题,提供一种低残留无机氯和有机氯、低残留乙醇的有机硅组合物。
为实现以上目的,本发明通过以下技术方案予以实现:
一种有机硅组合物,其包括:
二乙氧基甲基硅烷;
第一浓度的溶解的残留无机氯和有机氯;
第二浓度的乙醇;
以及第三浓度的副产物;
其中第一浓度定义为所述有机硅组合物在全消解情况下获得的所有存在的氯元素的浓度的总和。
进一步的方案是,所述无机氯包括氯化氢,所述有机氯包括氯硅烷类化合物和/或有机氯化合物。
进一步的方案是,所述溶解的残留无机氯和有机氯的第一浓度为仪器检出限至100ppm之间,所述乙醇的第二浓度为仪器检出限至20ppm之间,所述副产物的第三浓度为仪器检出限至5000ppm之间。
进一步的方案是,所述溶解的残留无机氯的浓度为仪器检出限至10ppm之间。
更进一步的方案是,所述溶解的残留无机氯的浓度优选为仪器检出限至1ppm之间。
进一步的方案是,所述副产物包括相对分子量为164的化合物、相对分子量为208的化合物、相对分子量为148的化合物、相对分子量为194的化合物、相对分子量为178的化合物、相对分子量为150的化合物、相对分子量为120的化合物、相对分子量为124或126的化合物和相对分子量为90的化合物中的任意一种或多种。
更进一步的方案是,所述相对分子量为164的化合物包括三乙氧基硅烷,相对分子量为208的化合物可能包括四乙氧基硅烷、相对分子量为148的化合物包括二乙氧基二甲基硅烷、相对分子量为194的化合物包括三乙氧基甲氧基硅烷、相对分子量为178的化合物包括三乙氧基甲基硅烷、相对分子量为150的化合物包括二乙氧基甲氧基硅烷、相对 分子量为120的化合物包括乙氧基甲氧基甲基硅烷、相对分子量为124或126的化合物包括乙氧基甲基氯硅烷,相对分子量为90的化合物包括乙氧基甲基硅烷。
本发明的第二个目的在于提供上述的有机硅组合物的应用,具体为,有机硅组合物于低介电常数薄膜中的应用。
进一步的方案是,所述低介电常数薄膜包括低介电常数层间介质薄膜、多孔低介电常数薄膜或气隙低介电常数薄膜。
进一步的方案是,所述低介电常数薄膜为低介电常数层间介质薄膜,由所述的有机硅组合物经由化学气相沉积的方式形成。
进一步的方案是,所述低介电常数层间介质薄膜的介电常数小于或等于3.5。
进一步的方案是,所述低介电常数层间介质薄膜由式SiaObCcHdFe表示,其中以原子百分比为基础,10%≤a≤35%,1%≤b≤66%,1%≤c≤35%,0≤d≤60%,0≤e≤25%,使a+b+c+d+e=100%。
上述方案的有益效果为:在足以在基片上沉积薄膜的化学沉积气相条件下,使本发明的有机硅组合物的有机硅前体与其他一种或多种反应物质一起发生反应,例如与氧、气态或液态有机物质等反应,在基片上沉积层间介质薄膜。经测试,所得层间介质薄膜的介电常数小于或等于3.5,且表面平整,无缺陷。
与现有技术相比,本发明的有益效果在于:本发明的有机硅组合物,无机氯和有机氯及乙醇的残留低,尤其是无机氯的残留极少,因而有机硅组合物的品质稳定,当应用于半导体器件中,例如在制备各类低介电常数薄膜时,该低介电常数薄膜的介电常数小于或等于3.5,性能稳定可控,更优于现有的有机硅组合物。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-2是本发明实施例1中有机硅组合物副产物三乙氧基硅烷的GC图谱与MS图谱;
图3-4是本发明实施例1中有机硅组合物副产物四乙氧基硅烷的GC图谱与MS图谱;
图5-6是本发明实施例中有机硅组合物副产物二乙氧基二甲基硅烷的GC图谱与MS图谱;
图7-8是本发明实施例中有机硅组合物副产物三乙氧基甲氧基硅烷的GC图谱与MS图谱;
图9-10是本发明实施例中有机硅组合物副产物二乙氧基甲氧基硅烷的GC图谱与MS图谱;
图11-12是本发明实施例中有机硅组合物副产物乙氧基甲氧基甲基硅烷的GC图谱与MS图谱;
图13-14是本发明实施例中有机硅组合物副产物乙氧基甲基氯硅烷的GC图谱与MS图谱;
图15-16是本发明实施例中有机硅组合物副产物乙氧基甲基硅烷的GC图谱与MS图谱。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的一个方面提供了一种有机硅组合物,包括二乙氧基甲基硅烷、第一浓度的溶解的残留总氯化物、第二浓度的乙醇,以及第三浓度的副产物。
其中总氯化物包括无机氯和有机氯,第一浓度定义为所述有机硅组合物在全消解情况下获得的所有存在的氯元素的浓度的总和。
第二浓度表示在纯化过程中无法去除的醇的最高浓度。
第三浓度表示在纯化过程中生成的副产物的最高浓度。
优选的,无机氯包括氯化氢,有机氯包括氯硅烷类化合物和/或有机氯化物。氯硅烷类化合物为是氯化硅烷。
优选的,所述溶解的残留无机氯和有机氯的第一浓度为仪器检出限至100ppm之间,所述乙醇的第二浓度为仪器检出限至20ppm之间,所述副产物的第三浓度为仪器检出限至5000ppm之间。
进一步的,溶解的残留无机氯和有机氯的第一浓度为仪器检出限至40ppm之间,乙醇的第二浓度为仪器检出限至10ppm之间,所述副产物的第三浓度为仪器检出限至5000ppm之间。
更进一步地,所述溶解的残留无机氯的浓度为仪器检出限至10ppm之间。
再进一步地,所述溶解的残留无机氯的浓度优选为仪器检出限至1ppm之间,更进一步地可以达到低于0.5ppm。
优选的,副产物包括相对分子量为164的化合物、相对分子量为208的化合物、相对分子量为148的化合物、相对分子量为194的化合物、相对分子量为178的化合物、相对分子量为150的化合物、相对分子量为120的化合物、相对分子量为124或126的化合物和相对分子量为90的化合物中的任意一种或多种。
其中,相对分子量为164的化合物可能包括三乙氧基硅烷或其他化合物,相对分子量为208的化合物可能包括四乙氧基硅烷或其他化合物、相对分子量为148的化合物可能包括二乙氧基二甲基硅烷或其他化合物、相对分子量为194的化合物可能包括三乙氧基甲氧基硅烷或其他化合物、相对分子量为178的化合物可能包括三乙氧基甲基硅烷或其他化合物、相对分子量为150的化合物可能包括二乙氧基甲氧基硅烷或其他化合物、相对分子量为120的化合物可能包括乙氧基甲氧基甲基硅烷或其他化合物、相对分子量为124或126的化合物可能包括乙氧基甲基氯硅烷或其他化合物,相对分子量为90的化合物可能包括乙氧基甲基硅烷或其他化合物。
该些副产物的存在,不会影响薄膜的成膜特性,且由于其结构相对明确,浓度控制适宜,因而对薄膜的品质控制可以起到关键作用。
本发明的另一个方面提供了一种有机硅组合物于低介电常数薄膜中的应用。
优选的,低介电常数薄膜包括低介电常数层间介质薄膜、多孔低介电常数薄膜或气隙低介电常数薄膜。
较为优选的,所述低介电常数薄膜为低介电常数层间介质薄膜,由本发明的有机硅组合物经由化学气相沉积的方式形成。
较为优选的,低介电常数层间介质薄膜的介电常数小于或等于3.5。
低介电常数层间介质薄膜的制备方法例如,包括足以在基片上沉积薄膜的化学沉积气相条件下,使至少包括本发明的有机硅组合物的有机硅前体,与其他一种或多种反应物质一起发生反应,以形成介电常数为3.5或者更低的层间介质薄膜。
其中,该层间介质薄膜由式SiaObCcHdFe表示,其中以原子百分比为基础,10%≤a≤ 35%,1%≤b≤66%,1%≤c≤35%,0≤d≤60%,0≤e≤25%,使a+b+c+d+e=100%。
本发明的有机硅组合物可以通过下面的纯化方法获得,也可以通过其他的纯化方法来获得,具体纯化步骤包括:
1)将待纯化的有机硅组合物与乙醇混合,得到混合物;
2)使所述混合物反应,从而将有机氯中的氯离子转化为氯化氢;将混合物与气体接触,通过气体交换去除氯化氢,并促使反应向正方向移动,从而得到纯化的有机硅组合物。
有机氯与乙醇反应的方程式如下:
优选的,步骤1)中,有机氯中氯离子与乙醇的摩尔浓度比为1:1~1:106,且乙醇的最大用量为总物料量的10%,以确保完全反应。
优选的,步骤2)包括:使所述混合物在常压或减压,并且在沸腾状态下回流,从而使乙醇与有机氯反应,有机氯中的氯离子转化为氯化氢;在沸腾状态下,通入气体,将所述混合物与气体接触,通过气体交换去除所述氯化氢,同时促进有机氯与乙醇的反应,促进有机氯与乙醇的反应向正向移动,从而得到纯化的有机硅组合物。
较为优选的,其中回流时间为1-30h,优选为1-24h。
较为优选的,所述混合物与气体接触的时间为2-48h。
优选的,气体包括惰性气体,例如氩气、氦气,另外,气体也可包括氮气、氢气及一氧化碳等。气体可以为其中一种,也可以为两种或两种以上的组合。
优选的,气体的流速小于或等于10L/min。气体的总量为有机硅组合物中总氯化物浓度的103-106倍。通入气体的总时间为2-48小时,其中总氯化物包括无机氯和有机氯。通过控制气体流速、通入时间及总量等参数,可保证气体交换完全,更进一步推动反应向正向移动,完成氯离子的去除。
优选的,还包括采用气体检测气和/或硝酸银溶液对有机硅组合物中残留的无机氯和/或有机氯进行检测。例如,通过尾气用气体检测器或者使用硝酸银滴定不变色的方式。
由此通过反应及精馏回流去除有机氯及乙醇,并且气体交换去除氯化氢,并促使反应向正向移动,同时对有机硅组合物中残留的无机氯和/或有机氯进行检测,当达到纯度要求,即有机硅组合物中溶解的残留无机氯含量达到小于10ppm,优选小于1ppm时,则获得本发明如上述的纯化的有机硅组合物产品。
该纯化方法便捷,且不会引入额外的金属盐、有机胺等产物,同时在使用气体交换氯化氢的同时,促使有机氯与乙醇的反应向正向移动,进一步完成氯离子的去除,即将无机氯和有机氯同步去除。纯化后的一种新的有机硅组合物,其氯化物尤其是无机氯的残留极少,且含有适宜的乙醇及副产物,因而该有机硅组合物品质稳定。
以下结合若干较佳实施例对本发明的技术方案作详细说明。
实施例1
现有技术中,DEMS的制备方法为:在1L圆底烧瓶中加入150克无水乙醇,冷却到0摄氏度后逐渐滴加入115克甲基二氯硅烷(MeSiHCl2)并保持12h,逐步升温到室温后再沸腾回流4小时,通过蒸馏获得二乙氧基甲基硅烷121克,产率90%。核磁图谱为1H-NMR(C6D6):0.0(d,3H),0.97(t,6H),3.5(dd,4H),4.7(s,1H)。即粗产品T1。
制备的粗产品T1中除了二乙氧基甲基硅烷,还含有大量的无机氯化物、有机氯化物和乙醇。无机氯化物和有机氯化物的总浓度为1500ppm,其中无机氯化物的浓度为550ppm,乙醇含量2500ppm,粗产品中无机氯和乙醇的含量太高,无法直接应用于低介电常数薄膜的制备,因而需要对其进行纯化,得到一种新的二乙氧基甲基硅烷有机硅组合物。对粗产品T1进行纯化时,其步骤如下:
1)取100克的粗产品T1,向其中加入10g乙醇;
2)将该混合物在常压及沸腾状态下回流,回流时间为1小时,从而使乙醇与有机氯反应,有机氯中的氯离子转化为氯化氢;反应式如下:
在沸腾状态下,向混合物中通入氮气,使该混合物与气体接触,在回流和氮气保护下,将尾气安全排放,通过气体交换去除回流液体中携带的氯化氢。其中,气体流速最大控制在10L/min,通气时间为24小时,氮气气体的总用量为12000L。
并且,用气体检测器对尾气进行检测,进而对有机硅组合物中残留的无机氯进行检测,当有机硅组合物中溶解的残留无机氯含量小于10ppm时,再经过蒸馏,去除10g前馏分,并收取60g中间馏分,釜残不动,即获得最终的DEMS组合物产品,即产品T2。
本实施例得到的有机硅组合物,含有二乙氧基甲基硅烷,以及第一浓度为40ppm的总氯化物,其中无机氯化物0.9ppm,另含第二浓度为22ppm的乙醇。并且,所得到的有 机硅组合物中还含有第三浓度的副产物,副产物为相对分子量为164的三乙氧基硅烷、相对分子量为208的四乙氧基硅烷、相对分子量为148的二乙氧基二甲基硅烷、相对分子量为194的三乙氧基甲氧基硅烷、相对分子量为178的三乙氧基甲基硅烷、相对分子量为150的二乙氧基甲氧基硅烷、相对分子量为120的乙氧基甲氧基甲基硅烷、相对分子量为124或126的乙氧基甲基氯硅烷和相对分子量为90的乙氧基甲基硅烷。
副产物的总浓度为5000ppm。部分副产物的GC图谱和MS图谱见附图1-16。
实施例2
取100克实施例1得到的DEMS粗产品T1,向其中加入1g乙醇。将该混合物在常压及沸腾状态下回流,回流时间为30小时,从而使乙醇与粗DEMS产品中的有机氯化物反应,将有机氯化物转化为氯化氢。
待回流时间结束后,在沸腾状态下,向混合物中通入氮气和氩气,氮气和氩气的比例为8:2,使混合物与气体充分接触,并同时在氮气和氩气的保护下,将尾气安全排放,由此通过气体交换去除氯化氢。气体流速最大控制在5L/min,通气时间为48小时,气体的总量为12000L。
并且,采用尾气用气体检测器对烷氧基硅烷组合物中残留的无机氯进行检测,当有机硅组合物中溶解的残留无机氯含量小于10ppm时,即获得纯化的有机硅组合物,再经过蒸馏,去除10g前馏分,并收取60g中间馏分,釜残不动,即获得经纯化的DEMS组合物产品,即产品T3。经检测,产品T3中,无机氯化物和有机氯化物的总浓度为18ppm,其中无机氯浓度为0.3ppm,乙醇浓度为5.7ppm,并且,所得到的有机硅组合物中还含有第三浓度的副产物,副产物为相对分子量为164的三乙氧基硅烷、相对分子量为208的四乙氧基硅烷、相对分子量为148的二乙氧基二甲基硅烷、相对分子量为194的三乙氧基甲氧基硅烷、相对分子量为178的三乙氧基甲基硅烷、相对分子量为150的二乙氧基甲氧基硅烷、相对分子量为120的乙氧基甲氧基甲基硅烷、相对分子量为124或126的乙氧基甲基氯硅烷和相对分子量为90的乙氧基甲基硅烷。副产物的总浓度为4800ppm。
实施例3
取100克实施例1得到的DEMS粗产品T1,向其中加入1g乙醇。将该混合物在常压及沸腾状态下回流,回流时间为24h,使乙醇与粗DEMS产品中的有机氯化物反应,将有机氯化物转化为氯化氢。
在回流时间结束后,在沸腾状态下向混合物中通入氮气,使混合物与气体充分接触,在回流和氮气保护下,将尾气安全排放,由此通过气体交换去除氯化氢。氮气流速最大控 制在10L/min,通气时间为2小时,氮气气体的总量为1200L。
并且,采用尾气用气体检测器对有机硅组合物中残留的无机氯进行检测,当有机硅组合物中溶解的残留无机氯含量小于10ppm时,再经过蒸馏,去除10g前馏分,并收取60g中间馏分,釜残不动,即可获得经纯化的DEMS组合物产品,即产品T4。经检测,产品T4中,无机氯化物和有机氯化物的总浓度为25ppm,其中无机氯浓度为1.1ppm,乙醇浓度为10.7ppm,并且,所得到的有机硅组合物中还含有第三浓度的副产物,副产物为相对分子量为164的三乙氧基硅烷、相对分子量为208的四乙氧基硅烷、相对分子量为148的二乙氧基二甲基硅烷、相对分子量为194的三乙氧基甲氧基硅烷、相对分子量为178的三乙氧基甲基硅烷、相对分子量为150的二乙氧基甲氧基硅烷、相对分子量为120的乙氧基甲氧基甲基硅烷、相对分子量为124或126的乙氧基甲基氯硅烷和相对分子量为90的乙氧基甲基硅烷。副产物的总浓度为4500ppm。
实施例4
取100克实施例1得到的DEMS粗产品T1,向其中加入5g乙醇。将该混合物在常压及沸腾状态下回流,回流时间为12h,乙醇与粗DEMS产品中的有机氯化物反应,将有机氯化物转化为氯化氢。
在回流时间结束后,在沸腾状态下向混合物中通入氮气,使混合物与气体充分接触,在回流和氮气保护下,将尾气安全排放,由此通过气体交换去除氯化氢。氮气流速最大控制在10L/min,通气时间为12h,气体的总量为7200L。
并且,采用尾气用气体检测器对有机硅组合物中残留的无机氯进行检测,当有机硅组合物中溶解的残留无机氯含量小于10ppm时,再经过蒸馏,去除10g前馏分,并收取60g中间馏分,釜残不动,即可获得经纯化的DEMS组合物产品,即产品T5经检测,产品T5中,无机氯化物和有机氯化物的总浓度为10ppm,其中无机氯浓度为0.5ppm,乙醇浓度为5.3ppm,并且,所得到的有机硅组合物中还含有第三浓度的副产物,副产物为相对分子量为164的三乙氧基硅烷、相对分子量为208的四乙氧基硅烷、相对分子量为148的二乙氧基二甲基硅烷、相对分子量为194的三乙氧基甲氧基硅烷、相对分子量为178的三乙氧基甲基硅烷、相对分子量为150的二乙氧基甲氧基硅烷、相对分子量为120的乙氧基甲氧基甲基硅烷、相对分子量为124或126的乙氧基甲基氯硅烷和相对分子量为90的乙氧基甲基硅烷,副产物的总浓度为4000ppm。
实施例5
本实施例提供一种低介电常数层间介质薄膜,其制备方法如下:
在足以在基片上沉积薄膜的化学沉积气相条件下,使至少包括有机硅组合物T2产品的有机硅前体,与氧、气态及液态有机物质等反应,在基片上沉积层间介质薄膜。经测试,所得层间介质薄膜的介电常数小于或等于3.5,且表面平整,无缺陷。
其中,该层间介质薄膜由式SiaObCcHdFe表示,其中以原子百分比为基础,10%≤a≤35%,1%≤b≤66%,1%≤c≤35%,0≤d≤60%,0≤e≤25%,使a+b+c+d+e=100%。
在其他实施例中,所得到的有机硅组合物,其中含有的副产物可以有所差异,例如可以是相对分子量为164的三乙氧基硅烷或其他化合物、相对分子量为208的四乙氧基硅烷或其他化合物、相对分子量为148的二乙氧基二甲基硅烷或其他化合物、相对分子量为194的三乙氧基甲氧基硅烷或其他化合物、相对分子量为178的三乙氧基甲基硅烷或其他化合物、相对分子量为150的二乙氧基甲氧基硅烷或其他化合物、相对分子量为120的乙氧基甲氧基甲基硅烷或其他化合物、相对分子量为124或126的乙氧基甲基氯硅烷或其他化合物和相对分子量为90的乙氧基甲基硅烷或其他化合物中的任意一种化合物或两种以上化合物的组合。
对照例1
1)取100克的DEMS粗产品T1,向其中加入10g乙醇;
2)将该混合物在常压及沸腾状态下回流,回流时间为1小时,从而使乙醇与有机氯反应,有机氯中的氯离子转化为氯化氢;反应式如下:
在沸腾状态下,不向混合物中通入气体,由于没有将产生的氯化氢带出,因此体系中的有机氯和无机氯依然大量存在。回流结束后通过蒸馏得到有机硅组合物。本产品中,无机氯化物和有机氯化物的总浓度为520pm,其中无机氯浓度为107ppm,乙醇浓度为52ppm,副产物总浓度大于1%。可知该产品中氯化物及乙醇残留均较多,且副产物浓度过大,品质不稳定,难以应用于半导体器件中。
对照例2
与实施例5低介电常数层间介质薄膜的制备方法相同,区别点在于选用通过对照例1中纯化方法制得的有机硅组合物作为有机硅前体,与氧、气态及液态有机物质等反应,在基片上沉积层间介质薄膜。经测试,所得该层间介质薄膜的介电常数大于3.5,且表面存在凸起缺陷。
通过实施例1-5及对照例1-2,可以发现,藉由本发明的上述技术方案获得的纯化的有机硅组合物,其氯化物尤其是无机氯的残留极少,且含有适宜的乙醇及副产物,因而该有机硅组合物品质稳定。当其应用于半导体器件如制备低k介质掩膜层时,具有提升该掩膜层性能的效果。采用本发明的上述技术方案,制备工艺便捷,且不会引入额外的金属盐、有机胺等产物,同时在使用气体交换氯化氢的同时,可促使有机氯与乙醇的反应向正向移动,进一步完成氯离子的去除,即将无机氯和有机氯同步去除。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,无论是获得有机硅组合物,还是通过获得的有机硅组合物制备其他低介电常数薄膜,均获得了较为理想的结果。
本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
在本发明案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明的任何方面、实施例或特征。
在本发明案通篇中,在将组合物描述为具有、包含或包括特定组份之处或者在将过程描述为具有、包含或包括特定过程步骤之处,预期本发明教示的组合物也基本上由所叙述组份组成或由所叙述组份组成,且本发明教示的过程也基本上由所叙述过程步骤组成或由所叙述过程步骤组组成。
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本发明教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
尽管已参考说明性实施例描述了本发明,但所属领域的技术人员将理解,在不背离本发明的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的元件。另外,可在不背离本发明的范围的情况下做出许多修改以使特定情形或材料适应本发明的教示。因此,本文并不打算将本发明限制于用于执行本发明的所揭示特定实施例,而是打算使本发明将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (12)

  1. 一种有机硅组合物,其特征在于,其包含:
    二乙氧基甲基硅烷;
    第一浓度的溶解的残留无机氯和有机氯;
    第二浓度的乙醇;
    以及第三浓度的副产物;
    其中第一浓度定义为所述有机硅组合物在全消解情况下获得的所有存在的氯元素的浓度的总和。
  2. 根据权利要求1所述的有机硅组合物,其特征在于,所述无机氯包括氯化氢,所述有机氯包括氯硅烷类化合物和/或有机氯化合物。
  3. 根据权利要求1所述的有机硅组合物,其特征在于,所述溶解的残留无机氯和有机氯的第一浓度为仪器检出限至100ppm之间,所述乙醇的第二浓度为仪器检出限至20ppm之间,所述副产物的第三浓度为仪器检出限至5000ppm之间。
  4. 根据权利要求3所述的有机硅组合物,其特征在于,所述溶解的残留无机氯的浓度为仪器检出限至10ppm之间。
  5. 根据权利要求4所述的有机硅组合物,其特征在于,所述溶解的残留无机氯的浓度优选为仪器检出限至1ppm之间。
  6. 根据权利要求1所述的有机硅组合物,其特征在于,所述副产物包括相对分子量为164的化合物、相对分子量为208的化合物、相对分子量为148的化合物、相对分子量为194的化合物、相对分子量为178的化合物、相对分子量为150的化合物、相对分子量为120的化合物、相对分子量为124或126的化合物和相对分子量为90的化合物中的任意一种或多种。
  7. 根据权利要求6所述的有机硅组合物,其特征在于,所述相对分子量为164的化合物包括三乙氧基硅烷,相对分子量为208的化合物包括四乙氧基硅烷、相 对分子量为148的化合物包括二乙氧基二甲基硅烷、相对分子量为194的化合物包括三乙氧基甲氧基硅烷、相对分子量为178的化合物包括三乙氧基甲基硅烷、相对分子量为150的化合物包括二乙氧基甲氧基硅烷、相对分子量为120的化合物包括乙氧基甲氧基甲基硅烷、相对分子量为124或126的化合物包括乙氧基甲基氯硅烷,相对分子量为90的化合物包括乙氧基甲基硅烷。
  8. 一种权利要求1-7中任一项所述的有机硅组合物于低介电常数薄膜中的应用。
  9. 根据权利要求8所述的有机硅组合物于低介电常数薄膜中的应用,其特征在于,所述低介电常数薄膜包括低介电常数层间介质薄膜、多孔低介电常数薄膜或气隙低介电常数薄膜。
  10. 根据权利要求9所述的有机硅组合物于低介电常数薄膜中的应用,其特征在于,所述低介电常数薄膜为低介电常数层间介质薄膜,由所述的有机硅组合物经由化学气相沉积的方式形成。
  11. 根据权利要求10所述的有机硅组合物于低介电常数薄膜中的应用,其特征在于,所述低介电常数层间介质薄膜的介电常数小于或等于3.5。
  12. 根据权利要求10所述的有机硅组合物于低介电常数薄膜中的应用,其特征在于,所述低介电常数层间介质薄膜由式SiaObCcHdFe表示,其中以原子百分比为基础,10%≤a≤35%,1%≤b≤66%,1%≤c≤35%,0≤d≤60%,0≤e≤25%,使a+b+c+d+e=100%。
PCT/CN2023/127567 2022-11-22 2023-10-30 有机硅组合物及其应用 WO2024109452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211462774.7 2022-11-22
CN202211462774.7A CN115572307B (zh) 2022-11-22 2022-11-22 有机硅组合物及其应用

Publications (1)

Publication Number Publication Date
WO2024109452A1 true WO2024109452A1 (zh) 2024-05-30

Family

ID=84589818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127567 WO2024109452A1 (zh) 2022-11-22 2023-10-30 有机硅组合物及其应用

Country Status (2)

Country Link
CN (1) CN115572307B (zh)
WO (1) WO2024109452A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572307B (zh) * 2022-11-22 2023-08-11 江苏南大光电材料股份有限公司 有机硅组合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228092A (en) * 1978-01-02 1980-10-14 Dynamit Nobel Aktiengesellschaft Process for the preparation of organoalkoxysilanes
US6177584B1 (en) * 1998-10-26 2001-01-23 Degussa-Huels Aktiengesellschaft Process for neutralizing and reducing residual halogen contents in alkoxysilanes or alkoxysilane-based compositions
CN1302806A (zh) * 1999-11-13 2001-07-11 德古萨-希尔斯股份公司 烷氧基硅烷的制备方法
CN101250690A (zh) * 2007-02-05 2008-08-27 气体产品与化学公司 用作化学气相沉积的前体的有机硅组合物的纯化方法
CN102803275A (zh) * 2009-06-26 2012-11-28 瓦克化学股份公司 制备有机烷氧基氢硅烷的方法
CN115572307A (zh) * 2022-11-22 2023-01-06 江苏南大光电材料股份有限公司 有机硅组合物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4228092A (en) * 1978-01-02 1980-10-14 Dynamit Nobel Aktiengesellschaft Process for the preparation of organoalkoxysilanes
US6177584B1 (en) * 1998-10-26 2001-01-23 Degussa-Huels Aktiengesellschaft Process for neutralizing and reducing residual halogen contents in alkoxysilanes or alkoxysilane-based compositions
CN1302806A (zh) * 1999-11-13 2001-07-11 德古萨-希尔斯股份公司 烷氧基硅烷的制备方法
CN101250690A (zh) * 2007-02-05 2008-08-27 气体产品与化学公司 用作化学气相沉积的前体的有机硅组合物的纯化方法
CN102803275A (zh) * 2009-06-26 2012-11-28 瓦克化学股份公司 制备有机烷氧基氢硅烷的方法
CN115572307A (zh) * 2022-11-22 2023-01-06 江苏南大光电材料股份有限公司 有机硅组合物及其应用

Also Published As

Publication number Publication date
CN115572307A (zh) 2023-01-06
CN115572307B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
JP6864086B2 (ja) 酸化ケイ素膜の堆積のための組成物及び方法
WO2024109452A1 (zh) 有机硅组合物及其应用
JP6885984B2 (ja) ケイ素含有膜の堆積のための有機アミノ官能化環状オリゴシロキサン
TWI680982B (zh) 作為高成長速率含矽膜的前驅物的官能化環矽氮烷
KR20160088952A (ko) 화학 기상 성장용 원료 및 이것을 사용한 실리콘 함유 박막 형성방법
TW202045765A (zh) 摻雜碳的矽氧化物的沉積
US8759563B2 (en) Low-impurity organosilicon product as precursor for CVD
CN115490719B (zh) 一种烷氧基硅烷组合物的纯化方法
JP2011080108A (ja) 化学気相成長用原料及びこれを用いたケイ素含有薄膜形成方法
JP6760822B2 (ja) 化合物、薄膜形成用原料、原子層堆積法用の薄膜形成用原料及び薄膜の製造方法
EP1953168B1 (en) Method of purifying organosilicon compositions used as precursors in chemical vapor deposition
JP2020026425A (ja) アミノシラン化合物、前記アミノシラン化合物を含むシリコン含有膜形成用の組成物
CN112110948B (zh) 一种液态双氨基取代的乙硅烷制备方法及其产物的应用
TWI796567B (zh) 用於沉積含矽膜的有機矽前驅物
JPWO2019039103A1 (ja) タングステン化合物、薄膜形成用原料及び薄膜の製造方法
JP6116007B2 (ja) 薄膜形成用原料及び薄膜の製造方法
JP2019077579A (ja) ヘキサクロロジシランの製造方法
JP4107924B2 (ja) 薄膜の製造方法及びこれに用いられる化学気相成長用原料組成物
JP6210828B2 (ja) 薄膜形成用原料、薄膜の製造方法
JP2005197675A (ja) ハフニウム含有膜形成材料及び該材料から作製されたハフニウム含有膜