WO2024108996A1 - 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法 - Google Patents

分段低温焊带、无主栅ibc电池串、电池组件及其封装方法 Download PDF

Info

Publication number
WO2024108996A1
WO2024108996A1 PCT/CN2023/101127 CN2023101127W WO2024108996A1 WO 2024108996 A1 WO2024108996 A1 WO 2024108996A1 CN 2023101127 W CN2023101127 W CN 2023101127W WO 2024108996 A1 WO2024108996 A1 WO 2024108996A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
busbar
low
fine grid
ibc
Prior art date
Application number
PCT/CN2023/101127
Other languages
English (en)
French (fr)
Inventor
雷楠
左燕
郭永刚
杨紫琪
孙蛟
郭强强
王锐
赵思阔
李翔虹
Original Assignee
青海黄河上游水电开发有限责任公司西宁太阳能电力分公司
青海黄河上游水电开发有限责任公司西安太阳能电力分公司
青海黄河上游水电开发有限责任公司
国家电投集团黄河上游水电开发有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司, 青海黄河上游水电开发有限责任公司西安太阳能电力分公司, 青海黄河上游水电开发有限责任公司, 国家电投集团黄河上游水电开发有限责任公司 filed Critical 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司
Publication of WO2024108996A1 publication Critical patent/WO2024108996A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the technical field of photovoltaic modules, and in particular to a segmented low-temperature welding strip, a main grid-free IBC battery string, a battery module and a packaging method thereof.
  • Busbar-free battery modules can significantly reduce the amount of battery silver paste used by removing the battery busbars, thereby reducing costs.
  • Busbar-free battery module technology uses low-temperature welding ribbons to replace the solar cell busbars, pre-fixes the welding ribbons on the busbar-free solar cell sheets, and realizes low-temperature welding of the welding ribbons and the cells during the module lamination process. While connecting multiple cells into a battery string, the welding ribbons replace the busbars to collect the current on the busbar-free battery thin grid. The more welding ribbons there are, the better the current collection effect will be, and the module will have higher power and better performance.
  • the front of the back-contact IBC battery has no grid lines at all, and the P+ and n+ areas are both on the back.
  • the positive and negative electrodes are arranged alternately by printing insulating paste at intervals. Therefore, in order to avoid short circuit problems, when the component end welding ribbon is connected to the back-contact IBC battery, the welding ribbon should fall within the insulating area for the area where the insulating paste is printed on the battery, and the alignment accuracy of the welding ribbon and the insulating area of the battery cell is required to be high. In order to improve the power and performance of the component, the number of positive and negative electrodes is large, and considering the cost of insulating materials, the size of the insulating area is set with certain restrictions.
  • the packaging film of the busbarless module will melt and flow while the low-temperature welding ribbon is welded to the battery cell.
  • the welding ribbons welded to the back-contact IBC battery electrodes are all on the back of the battery, in order to protect the back of the battery, the back film has a large gram weight. Therefore, the film has a large fluidity after melting, which can easily cause the pre-fixed welding ribbon to deviate and twist. After the welding ribbon is offset and twisted, it is easy to deviate from the insulation area corresponding to the battery electrode and cause a short circuit problem.
  • the purpose of the present invention is to provide a segmented low-temperature solder strip with an insulating area, a busbarless IBC battery string, a battery assembly and a packaging method thereof using the solder strip, and solve the problem that the solder strip in the busbarless back contact IBC battery assembly easily deviates from the battery cell insulating paste area and causes a short circuit, and the problems of increased battery cost and complicated process caused by printing the insulating area on the busbarless IBC battery cell.
  • the present invention provides the following technical solutions:
  • a segmented low-temperature solder strip comprises a substrate, a low-melting-point alloy coating and an insulating layer which are segmentedly arranged on the substrate, wherein the low-melting-point alloy coating and the insulating layer are arranged at intervals from each other; the melting point of the low-melting-point alloy coating is 45-200°C.
  • the melting point of the low-melting-point alloy coating is 90-150°C.
  • the substrate is a copper substrate or a copper-clad aluminum substrate
  • the low melting point alloy coating is an alloy composed of any two or more elements of tin, bismuth, lead, cadmium, indium, dysprosium or silver in a certain proportion, preferably a tin-bismuth-silver alloy coating, a tin-bismuth alloy coating or a tin-bismuth-lead alloy coating.
  • the low melting point alloy coating has the same thickness as the insulating layer.
  • the insulating layer is a non-adhesive insulating material.
  • the insulating layer is an insulating material with adhesiveness.
  • the present invention also provides a busbarless IBC battery string, which includes a plurality of busbarless IBC battery sheets and any of the aforementioned segmented low-temperature welding strips for connecting the plurality of busbarless IBC battery sheets.
  • the back side of the busbar-free IBC cell is provided with a plurality of flat Positive fine grid lines and negative fine grid lines are arranged alternately in rows;
  • the low-melting-point alloy coating on the first segmented low-temperature welding strip is connected to the positive electrode fine grid line, and the insulating layer adjacent to the low-melting-point alloy coating is connected to the negative electrode fine grid line adjacent to the positive electrode fine grid line;
  • the low-melting-point alloy coating on the second segmented low-temperature welding strip adjacent to the first segmented low-temperature welding strip is connected to the negative electrode fine grid line, and the insulating layer adjacent to the low-melting-point alloy coating is connected to the positive electrode fine grid line adjacent to the negative electrode fine grid line;
  • the low melting point alloy coating on the first segmented low temperature welding belt is connected to the negative electrode fine grid line, and the insulating layer adjacent to the low melting point alloy coating is connected to the positive electrode fine grid line adjacent to the negative electrode fine grid line;
  • the low melting point alloy coating on the second segmented low temperature welding belt adjacent to the first segmented low temperature welding belt is connected to the positive electrode fine grid line, and the insulating layer adjacent to the low melting point alloy coating is connected to the negative electrode fine grid line adjacent to the positive electrode fine grid line;
  • a plurality of the segmented low-temperature welding strips are vertically connected to the positive electrode fine grid wire and the negative electrode fine grid wire;
  • the widths of the insulating layer and the low-melting-point alloy coating are both greater than the widths of the positive electrode fine grid lines and the negative electrode fine grid lines, and are smaller than the width between two adjacent negative electrode fine grid lines and between two adjacent positive electrode fine grid lines.
  • the number of the segmented low-temperature solder strips connected to each of the busbar-free IBC solar cells is ⁇ 8, and each segmented low-temperature solder strip is parallel to the busbar-free solar cell fine grid. Distributed evenly on the battery cell.
  • the spacing between two busbar-free IBC battery cells is a positive spacing of 0.3 to 2.0 mm or a negative spacing of -0.5 to -1.5 mm.
  • some of the busbar-free IBC battery cells are whole cells or 1/n cells, or a combination of whole cells and 1/n cells, wherein n is an integer greater than 1.
  • the present invention also provides a busbar-free IBC battery assembly comprising any of the above busbar-free IBC battery strings,
  • the busbar-free IBC battery assembly comprises coated glass, a first packaging film, a plurality of arranged busbar-free IBC battery strings, a second packaging film and a backplane layer which are stacked in sequence from top to bottom.
  • the first packaging film is transparent EVA, POE or co-extruded POE;
  • the second packaging film is transparent EVA, POE or co-extruded POE; or,
  • the backplane layer is a white backplane, a black high-reflection backplane, a black inside and white outside high-reflection backplane, a grid backplane, a transparent glass backplane or a grid glass backplane.
  • the gram weight of the second packaging film is ⁇ 400 g/m2, preferably 430-550 g/m2.
  • the present invention also provides a packaging method for a busbar-free IBC battery assembly as described in any one of the above, the method comprising:
  • the coated glass, the first packaging film, a plurality of arranged main-grid-free IBC battery strings, the second packaging film and the backplane layer stacked in sequence from top to bottom are laminated, and welding between the segmented low-temperature welding strip and the main-grid-free IBC battery cell is achieved during the lamination process.
  • busbar-free IBC battery string includes:
  • the segmented low-temperature solder tape is arranged on a carrier film to form a conductive tape, and the conductive tape is laid on the busbar-free IBC cell sheet to achieve bonding and fixing through hot pressing; or,
  • the adhesive insulating layer on the segmented low-temperature solder tape is directly adhered to the main grid-free IBC battery sheet.
  • the carrier film is POE, TPO or EVA with low fluidity.
  • the adhesive material includes: heat-curing glue, light-curing glue, high-temperature positioning tape, heat-sensitive glue or pressure-sensitive glue.
  • the lamination temperature is set to 130-160°C.
  • the segmented low-temperature solder strip provided by the present invention can integrate the insulating area into one, thereby removing the printing of the insulating area on the main grid-free IBC battery sheet, so that it can effectively prevent the short circuit problem caused by the solder strip deviating from the insulating area during the lamination process.
  • the printing of insulating paste is removed from the main grid-free IBC battery, the electrode difference between the insulating paste and the fine grid line is eliminated, and the solder paste or silver paste or conductive adhesive material required to raise the fine grid electrode is reduced, thereby reducing the cost, reducing the process steps, and improving production efficiency.
  • the battery main grid line is removed, the amount of silver paste used is reduced, and the production cost of the battery is further reduced.
  • the busbar-free IBC battery module provided by the present invention can realize a larger number of welding strip designs, thereby shortening the current transmission distance, reducing the series resistance, and improving the module efficiency; in addition, the design with more welding strips has a higher tolerance to hidden cracks in the battery cells, and also improves the performance of the module.
  • low-temperature welding is realized during lamination, avoiding traditional infrared high-temperature welding, thereby avoiding problems such as battery cell warping and hidden cracks caused by high-temperature welding.
  • FIG1 is a schematic diagram of the structure of a segmented low-temperature welding strip according to the present invention.
  • FIG2 is a schematic diagram of the back structure of a busbar-free IBC cell of the present invention.
  • FIG3 is a schematic diagram of the structure of a busbar-free IBC battery string of the present invention.
  • FIG4 is a schematic diagram of the structure of the conductive tape in the present invention.
  • FIG. 5 is a schematic diagram of the packaging structure of the busbar-free IBC battery assembly of the present invention.
  • Reference numerals 1. Coated glass; 2. First packaging film; 3. Busbarless IBC battery cell; 31. Positive fine grid line; 32. Negative fine grid line; 4. Segmented low-temperature welding strip; 41. Base material; 42. Low-melting-point alloy coating; 43. Insulating layer; 5. Busbarless IBC battery string; 6. Second packaging film; 7. Backplane layer; 8. Carrier film.
  • the present invention discloses a segmented low-temperature solder strip 4 with an insulating area, as shown in FIG1 , the solder strip comprises a substrate 41, a low-melting-point alloy coating 42 and an insulating layer 43 which are segmented on the substrate; the low-melting-point alloy coating 42 and the insulating layer 43 are arranged at intervals from each other.
  • the melting point of the low-melting-point alloy coating 42 is 45 to 200°C, preferably 90 to 150°C.
  • the back structure of the busbar-free IBC cell 3 that is compatible with the aforementioned segmented low-temperature welding strip 4 with its own insulating area can be referred to as shown in FIG2.
  • the back of each IBC cell is provided with a plurality of parallel and alternating positive electrode fine grid lines 31 and negative electrode fine grid lines 32.
  • the insulating layer 43 adjacent to the low-melting-point alloy coating 42 contacts the positive electrode fine grid line 31 adjacent to the negative electrode fine grid line 32.
  • the present invention is implemented in the following manner: the segmented low-temperature welding strips 4 are all set to vertically connect the positive electrode fine grid lines 31 and the negative electrode fine grid lines 32, and the width of the insulating layer 43 is set to be smaller than the width between two adjacent negative electrode fine grid lines 32 and smaller than the width between two adjacent positive electrode fine grid lines 31; at the same time, the width of the insulating layer 43 is larger than the width of the positive electrode fine grid lines 31 and larger than the width of the negative electrode fine grid lines 32.
  • the width of the low-melting-point alloy coating 42 is set to be larger than the width of the positive electrode fine grid lines 31 and larger than the width of the negative electrode fine grid lines 32, and at the same time, smaller than the width between two adjacent negative electrode fine grid lines 32 and smaller than the width between two adjacent positive electrode fine grid lines 31.
  • the insulating paste is no longer printed on the busbarless IBC cell 3
  • the back side of the busbarless IBC cell 3 will be in the same plane without height difference, so the thickness of the low melting point alloy coating 42 can be set to be the same as the thickness of the insulating layer 43.
  • segmented low-temperature welding strip 4 is pre-fixed on the busbarless IBC battery cell 3 to form a busbarless IBC battery string 5. Please refer to FIG3 , where the segmented low-temperature welding strip 4 is in vertical contact with the positive and negative fine grid lines on the back of the busbarless IBC battery cell 3.
  • the low-melting-point alloy coating 42 is in contact with the positive fine grid line 31 of the busbarless IBC battery,
  • the insulating layer 43 adjacent to the low-melting alloy coating 42 contacts the negative electrode fine grid line 32 adjacent to the positive electrode fine grid line 31.
  • the insulating layer 43 adjacent to the low-melting alloy coating 42 contacts the positive electrode fine grid line 31 adjacent to the negative electrode fine grid line 32.
  • the low-melting alloy coating 42 of the segmented low-temperature welding strip 4 contacts the positive electrode fine grid line 31 of the busbarless IBC battery in the vertical direction of the fine grid of the busbarless IBC battery cell 3
  • the low-melting alloy coating 42 of another segmented low-temperature welding strip 4' adjacent to the segmented low-temperature welding strip contacts the negative electrode fine grid line 32 of the busbarless IBC battery in the vertical direction of the fine grid of the busbarless IBC battery cell 3, so that the two adjacent segmented low-temperature welding strips 4 and 4' contact the busbarless IBC battery cell 3 to form positive and negative lead-outs respectively.
  • the busbarless IBC battery string 5 includes at least two busbarless IBC battery cells 3 and 3′.
  • the busbarless IBC battery string 5 includes at least two busbarless IBC battery cells 3 and 3′.
  • the busbarless IBC battery string 5 includes at least two busbarless IBC battery cells 3 and 3′.
  • the busbarless IBC battery string 5 includes at least two busbarless IBC battery cells 3 and 3′.
  • all positive electrode fine grid lines 31 of the busbarless IBC battery cell 3 i.e., the insulating layer 43 of the segmented low-temperature welding strip contacts all negative electrode fine grid lines 32 of the busbarless IBC battery cell 3
  • all positive electrode fine grid lines 31 of the battery cell 3′ adjacent to the busbarless battery cell 3 contact the insulating layer 43 of the segmented low-temperature welding strip (i.e., the low-melting-point alloy coating 42 of the segmented low-temperature welding strip contacts all negative electrode fine grid lines 32 of the busbarless IBC battery cell 3′
  • busbar-less IBC cell 3 can be a whole cell, a half cell, a third cell, or multiple cells.
  • the insulating layer 43 can be set to a non-adhesive insulating material or an adhesive insulating material, such as an insulating glue or an insulating film, etc.
  • a non-adhesive insulating material such as an insulating glue or an insulating film, etc.
  • the carrier film 8 is one of POE, TPO or EVA with low fluidity.
  • the first packaging film 2 and the second packaging film 6 can be made of transparent EVA or POE or co-extruded POE, and the second packaging film 6 can also be made of white high-reflection or black high-reflection or black inside and white outside high-reflection EVA or POE or co-extruded POE.
  • the gram weight of the second packaging film 6 is controlled to be ⁇ 400 g/m2, preferably 430-550 g/m2.
  • the backplane layer 7 is configured as a white backplane or a black highly reflective backplane or a black inside and white outside highly reflective backplane or a grid backplane or a transparent glass backplane or a grid glass backplane.
  • the packaging principle of the busbarless IBC component in the present invention is: after the segmented low-temperature welding tape 4 is accurately aligned with the busbarless IBC battery cell 3, the low-temperature welding tape is pre-fixed on the busbarless IBC battery cell 3, and the busbarless IBC battery cell 3 is connected into a battery string by pre-fixing the low-temperature welding tape, and the busbarless IBC battery string 5 is arranged according to a certain circuit design, and the packaging materials of the aforementioned components are stacked, and then laminated. During the lamination process, the low-temperature welding tape and the battery cell are welded to form an ohmic contact.
  • the segmented low-temperature solder strip of the present invention can integrate the insulating area into one, thereby removing the printing of the insulating area on the main grid-free IBC battery cell, and effectively preventing the short circuit problem caused by the deviation of the solder strip from the insulating area during the lamination process.
  • the electrode difference between the insulating paste and the fine grid line is eliminated, and the solder paste or silver paste or conductive adhesive material required to raise the fine grid electrode is reduced, thereby reducing the production cost of the battery, reducing the process steps, and improving production efficiency.
  • the main grid-free IBC battery assembly encapsulated therein can realize a larger number of solder strip designs, which can not only have a higher tolerance for hidden cracks in the battery cell, but also shorten the current transmission distance, reduce the series resistance, and thus improve the performance of the assembly.
  • low-temperature welding is achieved during lamination, avoiding traditional infrared high-temperature welding, thereby avoiding problems such as warping and hidden cracks of the battery cell caused by high-temperature welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明公开一种自带绝缘区域的分段低温焊带及采用该焊带的无主栅IBC电池串、电池组件及其封装方法,所述分段低温焊带包括基材以及分段设置于基材上的相互间隔排列的低熔点合金涂层和绝缘层。本发明提供的分段低温焊带能够集绝缘区域于一体,从而去掉无主栅IBC电池片上的绝缘区域印刷,有效防止层压过程中因焊带偏移出绝缘区域而造成的短路问题。此外,因无主栅IBC电池上去掉了绝缘浆料印刷,消除了绝缘浆料与细栅线的电极差,减少了垫高细栅电极所需的锡膏或银浆或导电胶材料,从而降低了成本,减少了制程工序,提高生产效率。由其封装成的无主栅IBC电池组件,可实现更多数量焊带设计,从而缩短电流传输距离,降低串联电阻,进而提升组件性能。

Description

分段低温焊带、无主栅IBC电池串、电池组件及其封装方法 技术领域
本发明涉及光伏组件技术领域,尤其涉及一种分段低温焊带、无主栅IBC电池串、电池组件及其封装方法。
背景技术
无主栅电池组件通过去掉电池主栅线可以大幅降低电池银浆使用量,从而降低成本。无主栅电池组件技术采用低温焊带代替太阳能电池主栅线,将焊带预固定在无主栅太阳能电池片上,在组件层压过程中实现焊带与电池片的低温焊接。焊带在将多个电池片连接成电池串的同时,代替主栅线将无主栅电池细栅上的电流汇集,焊带数量越多电流收集效果越好,组件将具有更高功率和更优异性能。
背接触IBC电池的正面完全无栅线,P+区和n+区均处于背面,通过间隔印刷绝缘浆料实现正、负极交替排列。因此为了避免短路问题发生,在组件端焊带与背接触IBC电池连接时,对于电池上印刷绝缘浆料的区域,焊带应落在绝缘区域内,焊带与电池片绝缘区域对位精度要求较高。为了提升组件的功率和性能,正、负极数量较多,同时考虑绝缘材料成本,因此绝缘区域大小设置有一定限制。
在无主栅组件层压过程中,低温焊带与电池片焊接的同时,无主栅组件的封装胶膜会熔化流动,同时由于与背接触IBC电池电极焊接的焊带均在电池背面,为了保护电池背面,背面胶膜克重较大,因此胶膜熔化后流动性较大,容易使预固定的焊带发生偏移、扭曲等问题。焊带偏移、扭曲后容易偏离电池电极对应的绝缘区域出现短路问题。
同时,由于绝缘浆料印刷具有一定的高度,使得电池细栅线与绝缘浆料具有一定的高度差,焊带无法直接与细栅线接触,因此需要印刷锡膏或导电胶或银浆增高细栅高度以便与焊带更充分接触,增加了电池成本,增加了细 栅垫高处理工序。
鉴于以上不足,有必要开发出一种改进的焊带结构和电池片结构,以解决上述问题。
发明内容
本发明的目的在于提供了一种自带绝缘区域的分段式低温焊带及采用该焊带的无主栅IBC电池串、电池组件及其封装方法。解决无主栅背接触IBC电池组件中焊带容易偏离电池片绝缘浆料区域而造成短路的问题,以及因无主栅IBC电池片上印刷绝缘区域导致的电池成本增加、工艺繁琐等问题。
为实现上述目的,本发明提供如下技术方案:
一种分段低温焊带,所述分段低温焊带包括基材、分段设置于所述基材上的低熔点合金涂层和绝缘层,所述低熔点合金涂层与所述绝缘层相互间隔排列;所述低熔点合金涂层的熔点为45~200℃。
作为本发明的进一步改进,所述低熔点合金涂层熔点为90~150℃。
作为本发明的进一步改进,所述基材为铜基材或铜包铝基材;
所述低熔点合金涂层为由锡或铋或铅或镉或铟或镝或银中的任意两种或两种以上元素按一定比例组成的合金,优选为锡铋银合金涂层、锡铋合金涂层或锡铋铅合金涂层。
作为本发明的进一步改进,所述低熔点合金涂层与所述绝缘层厚度相同。
作为本发明的进一步改进,所述绝缘层为无粘接性的绝缘材料。
作为本发明的进一步改进,所述绝缘层为具有粘接性的绝缘材料。
本发明还提供了一种无主栅IBC电池串,所述无主栅IBC电池串包括若干无主栅IBC电池片和用于连接所述若干无主栅IBC电池片的前述任一项所述的分段低温焊带。
作为本发明的进一步改进,所述无主栅IBC电池片的背面设置有若干平 行交替排列的正极细栅线和负极细栅线;
当第一分段低温焊带上的低熔点合金涂层连接所述正极细栅线,且与所述低熔点合金涂层相邻的绝缘层与相邻于所述正极细栅线的所述负极细栅线相连接时;与所述第一分段低温焊带相邻的第二分段低温焊带上的低熔点合金涂层则连接所述负极细栅线,且与所述低熔点合金涂层相邻的绝缘层与相邻于所述负极细栅线的所述正极细栅线相连接;且,
当第一分段低温焊带的低熔点合金涂层连接第一无主栅IBC电池片的所有正极细栅线时,与所述第一无主栅IBC电池片相邻的第二无主栅IBC电池片的所有负极细栅线则连接所述第一分段低温焊带的低熔点合金涂层;
当第一分段低温焊带上的低熔点合金涂层连接所述负极细栅线,且与所述低熔点合金涂层相邻的绝缘层与相邻于所述负极细栅线的所述正极细栅线相连接时;与所述第一分段低温焊带相邻的第二分段低温焊带上的低熔点合金涂层则连接所述正极细栅线,且与所述低熔点合金涂层相邻的绝缘层与相邻于所述正极细栅线的所述负极细栅线相连接;且,
当第一分段低温焊带的低熔点合金涂层连接第一无主栅IBC电池片的所有负极细栅线时,与所述第一无主栅IBC电池片相邻的第二无主栅IBC电池片的所有正极细栅线则连接所述第一分段低温焊带的低熔点合金涂层。
作为本发明的进一步改进,若干所述分段低温焊带均垂直连接所述正极细栅线和所述负极细栅线;
所述绝缘层和所述低熔点合金涂层的宽度均大于所述正极细栅线和所述负极细栅线的宽度,且小于两相邻所述负极细栅线之间和两相邻所述正极细栅线之间的宽度。
作为本发明的进一步改进,每片所述无主栅IBC电池片上连接的所述分段低温焊带的根数≥8,每根分段低温焊带在与无主栅电池片细栅平行的方向 等间距分布于电池片上。
作为本发明的进一步改进,两片所述无主栅IBC电池片之间的片间距为正间距0.3~2.0mm或负间距-0.5~-1.5mm。
作为本发明的进一步改进,若干所述无主栅IBC电池片均为整片或1/n片,也可以是整片与1/n片的结合,其中,n为大于1的整数。
本发明还提供了一种包含前述任一项所述的无主栅IBC电池串的无主栅IBC电池组件,
所述无主栅IBC电池组件包括从上到下依次层叠设置的镀膜玻璃、第一封装胶膜、若干排列设置的无主栅IBC电池串、第二封装胶膜以及背板层。
作为本发明的进一步改进,所述第一封装胶膜为透明EVA、POE或共挤POE;
所述第二封装胶膜为透明的EVA、POE或共挤POE;或,
白色高反射、黑色高反射或内黑外白高反射的EVA、POE或共挤POE;
所述背板层为白色背板、黑色高反射背板、内黑外白高反射背板、网格背板、透明玻璃背板或网格玻璃背板。
作为本发明的进一步改进,所述第二封装胶膜的克重为≥400g/㎡,优选为430~550g/㎡。
本发明还提供了一种前述任一项所述的无主栅IBC电池组件的封装方法,所述方法包括,
形成前述任一项所述的无主栅IBC电池串;
对从上到下依次层叠设置的镀膜玻璃、第一封装胶膜、若干排列设置的所述无主栅IBC电池串、第二封装胶膜以及背板层进行层压,在所述层压过程中实现所述分段低温焊带与所述无主栅IBC电池片间的焊接。
作为本发明的进一步改进,形成所述无主栅IBC电池串包括:
将所述分段低温焊带设置于承载膜上形成导电带,将所述导电带敷设于所述无主栅IBC电池片上通过热压实现粘接固定;或,
将所述分段低温焊带通过粘结性材料固定于所述无主栅IBC电池片上;或,
将所述分段低温焊带上具有粘接性的绝缘层直接粘附于所述无主栅IBC电池片上。
作为本发明的进一步改进,所述承载膜为具有低流动性的POE、TPO或EVA。
作为本发明的进一步改进,所述粘结性材料包括:热固化胶水、光固化胶水、高温定位胶带、热敏胶或压敏胶。
作为本发明的进一步改进,设置层压温度为130~160℃。
本发明的技术效果和优点:
本发明提供的分段低温焊带能够集绝缘区域于一体,从而去掉了无主栅IBC电池片上的绝缘区域印刷,使其得以有效防止层压过程中因焊带偏移出绝缘区域而造成的短路问题。此外,因无主栅IBC电池上去掉了绝缘浆料印刷,消除了绝缘浆料与细栅线的电极差,减少了垫高细栅电极所需的锡膏或银浆或导电胶材料,从而降低了成本,减少了制程工序,提高生产效率。同时,因去掉了电池主栅线,减少了银浆使用量,也进一步降低了电池的生产成本。
本发明提供的无主栅IBC电池组件,可以实现更多数量焊带设计,从而缩短电流传输距离,降低串联电阻,提升组件效率;此外,更多焊带设计对电池片隐裂容忍度更高,也提升了组件性能。另外,在层压中实现低温焊接,避免了传统红外高温焊接,从而避免了高温焊接带来的电池片翘曲,隐裂等问题。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优 点可通过在说明书及其附图中所指出的结构来实现和获得。
附图说明
图1为本发明的分段低温焊带的结构示意图;
图2为本发明的无主栅IBC电池片的背面结构示意图;
图3为本发明的无主栅IBC电池串的结构示意图;
图4为本发明中导电带的结构示意图;
图5为本发明的无主栅IBC电池组件的封装结构示意图。
附图标记
1、镀膜玻璃;2、第一封装胶膜;3、无主栅IBC电池片;31、正极细栅
线;32、负极细栅线;4、分段低温焊带;41、基材;42、低熔点合金涂层;43、绝缘层;5、无主栅IBC电池串;6、第二封装胶膜;7、背板层;8、承载膜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为解决现有技术的不足,本发明公开了一种自带绝缘区域的分段低温焊带4,请参阅图1所示,该焊带包括基材41,分段设于基材上的低熔点合金涂层42和绝缘层43;所述低熔点合金涂层42与绝缘层43相互间隔排列。其中,所述低熔点合金涂层42的熔点为45~200℃,优选为90~150℃。基材41为铜基材或铜包铝基材中的一种;低熔点合金涂层42为由锡、铋、铅、镉、铟、镝或银中的任意两种或两种以上元素按一定比例组成的合金;优选为锡铋银合金涂层或锡铋合金涂层或锡铋铅合金涂层中的一种。
相应的,与前述自带绝缘区域的分段低温焊带4相适配的无主栅IBC电池片3的背面结构,可参阅图2所示,每个IBC电池片的背面均设有若干平行交替排列的正极细栅线31和负极细栅线32。如此设置,可实现当分段低温焊带4上的低熔点合金涂层42与无主栅IBC电池的正极细栅线31接触时,与低熔点合金涂层42相邻的绝缘层43与相邻于正极细栅线31的负极细栅线32相接触。而分段低温焊带4上的低熔点合金涂层42与无主栅IBC电池的负极细栅线32接触时,与低熔点合金涂层42相邻的绝缘层43将与相邻于负极细栅线32的正极细栅线31相接触。
具体的,为满足前述分段低温焊带4上的低熔点合金涂层42和绝缘层43与无主栅IBC电池片3上正极细栅线31和负极细栅线32的接触需求,本发明通过以下方式实现:将分段低温焊带4均设置成垂直连接正极细栅线31和负极细栅线32,并且将绝缘层43的宽度设置成小于两相邻负极细栅线32之间的宽度且小于两相邻正极细栅线31之间的宽度;同时,绝缘层43的宽度又大于正极细栅线31的宽度且大于负极细栅线32的宽度。将低熔点合金涂层42的宽度设置成大于正极细栅线31的宽度且大于负极细栅线32的宽度,同时又小于两相邻负极细栅线32之间的宽度且小于两相邻正极细栅线31之间的宽度。
进一步的,由于无主栅IBC电池片3上不再印刷绝缘浆料,故而无主栅IBC电池片3的背面将处于同一平面内,不存在高度差,因而可以将低熔点合金涂层42的厚度设置成与绝缘层43的厚度相同。
进一步的,将上述分段低温焊带4预固定于无主栅IBC电池片3上即可连接成无主栅IBC电池串5。请参阅图3所示,图中的分段低温焊带4与无主栅IBC电池片3背面的正、负极细栅线垂直接触,对于同一片无主栅IBC电池片3,当低熔点合金涂层42与无主栅IBC电池的正极细栅线31接触时,与 低熔点合金涂层42相邻的绝缘层43与相邻于正极细栅线31的负极细栅线32相接触。而当低熔点合金涂层42与无主栅IBC电池的负极细栅线32接触时,与低熔点合金涂层42相邻的绝缘层43与相邻于负极细栅线32的正极细栅线31相接触。与此同时,当分段低温焊带4的低熔点合金涂层42在与无主栅IBC电池片3的细栅垂直方向上均与无主栅IBC电池的正极细栅线31接触时,与分段低温焊带相邻的另一分段低温焊带4’的低熔点合金涂层42在与无主栅IBC电池片3的细栅垂直方向上均与无主栅IBC电池的负极细栅线32接触,使相邻两分段低温焊带4和4’与无主栅IBC电池片3接触后分别形成正极和负极引出。
进一步的,请参阅图3中所示,无主栅IBC电池串5包含至少2片无主栅IBC电池片3和3’。对于同一根分段低温焊带4,当其低熔点合金涂层42与无主栅IBC电池片3的所有正极细栅线31接触时(即分段低温焊带的绝缘层43与无主栅IBC电池片3的所有负极细栅线32接触),那么与无主栅电池片3相邻的电池片3’的所有正极细栅线31与该分段低温焊带的绝缘层43接触(即分段低温焊带的低熔点合金涂层42与无主栅IBC电池片3’的所有负极细栅线32接触),形成无主栅IBC电池片3的正极与其相邻的无主栅IBC电池片3’的负极相连接的电路。与此同时,对于同一根分段低温焊带,当其绝缘层43与无主栅IBC电池片3的所有正极细栅线31接触时(即分段低温焊带的低熔点合金涂层42与无主栅IBC电池片3的所有负极细栅线32接触),那么与无主栅电池片3相邻的电池片3’的所有正极细栅线31与该分段低温焊带的低熔点合金涂层42接触(即分段低温焊带的绝缘层43与无主栅IBC电池片3’的所有负极细栅线32接触),形成无主栅IBC电池片3的负极与其相邻的无主栅IBC电池片3’的正极相连接的电路。
进一步的,无主栅IBC电池片3可为整片,半片,三分之一片,多分片。
进一步的,可以将绝缘层43设置为无粘接性的绝缘材料或具有粘接性的绝缘材料,如绝缘胶或绝缘胶膜等等。当分段低温焊带4中的绝缘层43为无粘接性的绝缘材料时,分段低温焊带4预固定于无主栅IBC电池片3上有两种方式:
第一种方式为:将分段低温焊带4规律性交替设于承载膜8上形成导电带(可参阅图4所示),接着将导电带敷设于无主栅IBC电池片3上,在一定温度下热压将导电带粘接固定于电池片上,使得分段低温焊带4上的低熔点合金涂层42和绝缘层43按前述低温焊带与无主栅IBC电池片3预固定中的规律接触,按一定的片间距重复摆放电池片形成无主栅IBC电池串。
具体的,上述承载膜8为具有低流动性的POE或TPO或EVA中的一种。
第二种方式为:将分段低温焊带4与无主栅IBC电池片3按照焊带与电池片的预固定中的规律精准对位后,通过热固化胶水或光固化胶水或高温定位胶带或热敏胶或压敏胶将焊带预固定于电池片上,按照一定的片间距重复摆放电池片与焊带形成电池串。
当分段低温焊带4中的绝缘层43为粘接性的绝缘材料时,将分段低温焊带4与电池片对位,低温焊带通过绝缘层43粘接预固定到电池片上,按照一定的片间距重复摆放电池片与焊带形成电池串。
具体的,为确保较好的电流收集效果,每片无主栅IBC电池片3上连接的分段低温焊带4的根数应≥8,每根分段低温焊带在与无主栅电池片细栅平行的方向等间距分布于电池片上。
具体的,设置两片无主栅IBC电池片3之间的片间距为正间距0.3~2.0mm或负间距-0.5~-1.5mm。
本发明还提供了一种采用该分段低温焊带4的无主栅IBC电池组件,包括从上到下依次叠层铺设的镀膜玻璃1、第一封装胶膜2、若干排列设置的无主栅IBC电池串5、第二封装胶膜6、背板层7,组件封装结构示意图如图5所示。 其中,若干排列设置的无主栅IBC电池串5中相邻的无主栅IBC电池片3均通过分段低温焊带4相连接。
具体的,第一封装胶膜2和第二封装胶膜6可以选用透明EVA或POE或共挤POE,且第二封装胶膜6还可以选用白色高反射或黑色高反射或内黑外白高反射的EVA或POE或共挤POE。
具体的,控制第二封装胶膜6的克重≥400g/㎡,优选为430~550g/㎡。
优选地,背板层7设置为白色背板或黑色高反射背板或内黑外白高反射背板或网格背板或透明玻璃背板或网格玻璃背板。
进一步的,本发明中无主栅IBC组件的封装原理为:将分段低温焊带4与无主栅IBC电池片3精准对位后,将低温焊带预固定于无主栅IBC电池片3上,并通过低温焊带预固定将无主栅IBC电池片3连接成电池串,按照一定的电路设计对无主栅IBC电池串5进行排列,将前述组件各封装材料进行叠层,叠层后进行层压,在层压过程中实现低温焊带与电池片间的焊接,形成欧姆接触。
优选地,分段低温焊带4与无主栅IBC电池片3在层压过程中完成焊接实现焊带与无主栅电池的欧姆接触时,应控制层压温度为130~160℃。
综上所述,本发明的分段低温焊带能够集绝缘区域于一体,从而去掉无主栅IBC电池片上的绝缘区域印刷,有效防止层压过程中因焊带偏移出绝缘区域而造成的短路问题。此外,因无主栅IBC电池上去掉了绝缘浆料印刷,消除了绝缘浆料与细栅线的电极差,减少了垫高细栅电极所需的锡膏或银浆或导电胶材料,从而降低了电池的生产成本,减少了制程工序,也提高了生产效率。由其封装成的无主栅IBC电池组件,可实现更多数量焊带设计,不仅能够对电池片隐裂的容忍度更高,而且还能够缩短电流传输距离,降低串联电阻,进而提升组件的性能。另外,在层压中实现低温焊接,避免了传统红外高温焊接,从而避免了高温焊接带来的电池片翘曲,隐裂等问题。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限 制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种分段低温焊带,所述分段低温焊带包括基材(41)、分段设置于所述基材(41)上的低熔点合金涂层(42)和绝缘层(43),所述低熔点合金涂层(42)与所述绝缘层(43)相互间隔排列;
    所述低熔点合金涂层(42)的熔点为45~200℃。
  2. 根据权利要求1所述的分段低温焊带,其中,
    所述低熔点合金涂层(42)的熔点为90~150℃。
  3. 根据权利要求1或2所述的分段低温焊带,其中,
    所述基材(41)为铜基材或铜包铝基材;
    所述低熔点合金涂层(42)为由锡、铋、铅、镉、铟、镝或银中的任意两种或两种以上元素按一定比例组成的合金。
  4. 根据权利要求3所述的分段低温焊带,其中,
    所述低熔点合金涂层(42)为锡铋银合金涂层、锡铋合金涂层或锡铋铅合金涂层。
  5. 根据权利要求1所述的分段低温焊带,其中,
    所述低熔点合金涂层(42)与所述绝缘层(43)厚度相同。
  6. 根据权利要求1所述的分段低温焊带,其中,
    所述绝缘层(43)为无粘接性的绝缘材料。
  7. 根据权利要求1所述的分段低温焊带,其中,
    所述绝缘层(43)为具有粘接性的绝缘材料。
  8. 一种无主栅IBC电池串,所述无主栅IBC电池串(5)包括若干无主栅IBC电池片(3)和用于连接所述若干无主栅IBC电池片(3)的权利要求1~7任一项所述的分段低温焊带(4)。
  9. 根据权利要求8所述的无主栅IBC电池串,其中,
    所述无主栅IBC电池片(3)的背面设置有若干平行交替排列的正极细栅线(31)和负极细栅线(32);
    当第一分段低温焊带上的低熔点合金涂层(42)连接所述正极细栅线(31),且与所述低熔点合金涂层(42)相邻的绝缘层(43)与相邻于所述正极细栅线(31)的所述负极细栅线(32)相连接时;与所述第一分段低温焊带相邻的第二分段低温焊带上的低熔点合金涂层(42)则连接所述负极细栅线(32),且与所述低熔点合金涂层(42)相邻的绝缘层(43)与相邻于所述负极细栅线(32)的所述正极细栅线(31)相连接;且,
    当第一分段低温焊带的低熔点合金涂层(42)连接第一无主栅IBC电池片的所有正极细栅线(31)时,与所述第一无主栅IBC电池片相邻的第二无主栅IBC电池片的所有负极细栅线(32)则连接所述第一分段低温焊带的低熔点合金涂层(42);
    当第一分段低温焊带上的低熔点合金涂层(42)连接所述负极细栅线(32),且与所述低熔点合金涂层(42)相邻的绝缘层(43)与相邻于所述负极细栅线(32)的所述正极细栅线(31)相连接时;与所述第一分段低温焊带相邻的第二分段低温焊带上的低熔点合金涂层(42)则连接所述正极细栅线(31),且与所述低熔点合金涂层(42)相邻的绝缘层(43)与相邻于所述正极细栅线(31)的所述负极细栅线(32)相连接;且,
    当第一分段低温焊带的低熔点合金涂层(42)连接第一无主栅IBC电池片的所有负极细栅线(32)时,与所述第一无主栅IBC电池片相邻的第二无主栅IBC电池片的所有正极细栅线(31)则连接所述第一分段低温焊带的低熔点合金涂层(42)。
  10. 根据权利要求9所述的无主栅IBC电池串,其中,
    若干所述分段低温焊带(4)均垂直连接所述正极细栅线(31)和所述负 极细栅线(32);
    所述绝缘层(43)和所述低熔点合金涂层(42)的宽度均大于所述正极细栅线(31)和所述负极细栅线(32)的宽度,且小于两相邻所述负极细栅线(32)之间和两相邻所述正极细栅线(31)之间的宽度。
  11. 根据权利要求8所述的无主栅IBC电池串,其中,
    每片所述无主栅IBC电池片(3)上连接的所述分段低温焊带(4)的根数≥8。
  12. 根据权利要求8所述的无主栅IBC电池串,其中,
    两片所述无主栅IBC电池片(3)之间的片间距为正间距0.3~2.0mm或负间距-0.5~-1.5mm。
  13. 根据权利要求8所述的无主栅IBC电池串,其中,
    若干所述无主栅IBC电池片(3)为整片和/或1/n片,n为大于1的整数。
  14. 一种包含权利要求8~13任一项所述的无主栅IBC电池串的无主栅IBC电池组件,
    所述无主栅IBC电池组件包括从上到下依次层叠设置的镀膜玻璃(1)、第一封装胶膜(2)、若干排列设置的无主栅IBC电池串(5)、第二封装胶膜(6)以及背板层(7)。
  15. 根据权利要求14所述的无主栅IBC电池组件,其中,
    所述第一封装胶膜(2)为透明EVA、POE或共挤POE;
    所述第二封装胶膜(6)为透明的EVA、POE或共挤POE;或,
    白色高反射、黑色高反射或内黑外白高反射的EVA、POE或共挤POE;
    所述背板层(7)为白色背板、黑色高反射背板、内黑外白高反射背板、网格背板、透明玻璃背板或网格玻璃背板。
  16. 根据权利要求14所述的无主栅IBC电池组件,其中,
    所述第二封装胶膜(6)的克重≥400g/㎡;
  17. 根据权利要求16所述的无主栅IBC电池组件,其中,
    所述第二封装胶膜(6)的克重为430~550g/㎡。
  18. 一种权利要求14~17任一项所述的无主栅IBC电池组件的封装方法,所述方法包括,
    形成权利要求8~13任一项所述的无主栅IBC电池串(5);
    对从上到下依次层叠设置的镀膜玻璃(1)、第一封装胶膜(2)、若干排列设置的所述无主栅IBC电池串(5)、第二封装胶膜(6)以及背板层(7)进行层压,在所述层压过程中实现所述分段低温焊带(4)与所述无主栅IBC电池片(3)间的焊接。
  19. 根据权利要求18所述的无主栅IBC电池组件的封装方法,其中,形成所述无主栅IBC电池串(5)包括:
    将所述分段低温焊带(4)设置于承载膜(8)上形成导电带,将所述导电带敷设于所述无主栅IBC电池片(3)上通过热压实现粘接固定;或,
    将所述分段低温焊带(4)通过粘结性材料固定于所述无主栅IBC电池片(3)上;或,
    将所述分段低温焊带(4)上具有粘接性的绝缘层(43)直接粘附于所述无主栅IBC电池片(3)上。
  20. 根据权利要求19所述的无主栅IBC电池组件的封装方法,其中,
    所述承载膜(8)为具有低流动性的POE、TPO或EVA。
  21. 根据权利要求19所述的无主栅IBC电池组件的封装方法,其中,
    所述粘结性材料包括:热固化胶水、光固化胶水、高温定位胶带、热敏 胶或压敏胶。
  22. 根据权利要求18所述的无主栅IBC电池组件的封装方法,其中,
    设置层压温度为130~160℃。
PCT/CN2023/101127 2022-11-25 2023-06-19 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法 WO2024108996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211492760.XA CN116314365A (zh) 2022-11-25 2022-11-25 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
CN202211492760.X 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024108996A1 true WO2024108996A1 (zh) 2024-05-30

Family

ID=86787516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101127 WO2024108996A1 (zh) 2022-11-25 2023-06-19 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法

Country Status (2)

Country Link
CN (1) CN116314365A (zh)
WO (1) WO2024108996A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116978971B (zh) * 2023-09-20 2023-12-15 金阳(泉州)新能源科技有限公司 一种背接触电池模组及其制备方法
CN117525213B (zh) * 2024-01-04 2024-03-29 苏州智慧谷激光智能装备有限公司 一种电池片组件制备方法及电池片组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983195A (zh) * 2012-11-23 2013-03-20 苏州阿特斯阳光电力科技有限公司 一种用于背接触太阳能电池的焊带
CN106057923A (zh) * 2016-07-26 2016-10-26 晶澳(扬州)太阳能科技有限公司 一种背接触太阳能电池及太阳能电池组件
CN106653910A (zh) * 2016-12-23 2017-05-10 中利腾晖光伏科技有限公司 一种光伏焊带及其制备方法
CN115295651A (zh) * 2022-07-12 2022-11-04 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 无主栅ibc电池组件单元及制作方法、电池组件、电池组串

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983195A (zh) * 2012-11-23 2013-03-20 苏州阿特斯阳光电力科技有限公司 一种用于背接触太阳能电池的焊带
CN106057923A (zh) * 2016-07-26 2016-10-26 晶澳(扬州)太阳能科技有限公司 一种背接触太阳能电池及太阳能电池组件
CN106653910A (zh) * 2016-12-23 2017-05-10 中利腾晖光伏科技有限公司 一种光伏焊带及其制备方法
CN115295651A (zh) * 2022-07-12 2022-11-04 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 无主栅ibc电池组件单元及制作方法、电池组件、电池组串

Also Published As

Publication number Publication date
CN116314365A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2024108996A1 (zh) 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
WO2022143109A1 (zh) 太阳能电池组件的封装方法、太阳能电池串的连接方法、太阳能电池组件及其制备方法
CN113066885A (zh) 一种串联光伏电池组件及其封装方法
WO2023005913A1 (zh) 太阳能电池串及其制备方法和应用
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
WO2022247057A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
CN113037210A (zh) 电池串结构和光伏组件及其制造方法
CN204857754U (zh) 一种太阳能电池组件
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
US20040112423A1 (en) Solar cell, solar cell production method, and solar battery module
WO2014190608A1 (zh) 一种无焊带太阳能电池组件及其制备方法
JPH0799334A (ja) 光起電力素子及びモジュール
CN113851549A (zh) 一种太阳能电池串及其制备方法和应用
WO2024074055A1 (zh) 一种电池和焊带的连接结构及其电池组件
CN114628542A (zh) 背接触太阳能电池串及其制备方法、电池组件及光伏系统
WO2024016806A1 (zh) 光伏电池单元及其制备方法
WO2024012160A1 (zh) Ibc太阳能电池组件及其制作方法、ibc太阳能电池组串
WO2023232136A1 (zh) 一种基于超薄钢化玻璃的轻质叠瓦光伏组件
CN216958062U (zh) 背接触太阳能电池串、电池组件及光伏系统
CN109801981B (zh) 太阳能电池片用l形连接件及其应用
CN215815903U (zh) 一种光伏组件
CN110828600A (zh) 一种ibc电池组件及其制造方法
WO2020177530A1 (zh) 光伏组件及其制造方法
CN219371044U (zh) 光伏组件
WO2024016805A1 (zh) 一种光伏叠瓦组件及其制备方法