WO2024074055A1 - 一种电池和焊带的连接结构及其电池组件 - Google Patents

一种电池和焊带的连接结构及其电池组件 Download PDF

Info

Publication number
WO2024074055A1
WO2024074055A1 PCT/CN2023/101917 CN2023101917W WO2024074055A1 WO 2024074055 A1 WO2024074055 A1 WO 2024074055A1 CN 2023101917 W CN2023101917 W CN 2023101917W WO 2024074055 A1 WO2024074055 A1 WO 2024074055A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
strip
solder
grid
connection structure
Prior art date
Application number
PCT/CN2023/101917
Other languages
English (en)
French (fr)
Inventor
邓士锋
石磊
Original Assignee
浙江制能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江制能科技有限公司 filed Critical 浙江制能科技有限公司
Priority to EP23874249.8A priority Critical patent/EP4447130A1/en
Publication of WO2024074055A1 publication Critical patent/WO2024074055A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/006Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by gluing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to the field of connection between a battery and a welding strip, and in particular to a connection structure between a battery and a welding strip and a battery assembly thereof.
  • photovoltaic modules play the role of receiving sunlight and converting electrical energy.
  • the battery is not a whole piece, but multiple pieces assembled together to ensure the output power of the module.
  • the battery pieces are connected by welding strips.
  • the welding strips include the inner copper substrate and the outer solder alloy layer.
  • the solder alloy has a low melting point and is easy to melt. However, whether it is solder alloy or copper, it cannot be well connected to the battery itself and has low adhesion. Therefore, the usual practice is to lay silver paste on the battery, also called the main grid.
  • the welding strip is placed on the main grid, and the solder alloy can be better fused with the main grid to improve the firmness.
  • the purpose of the present disclosure includes, for example, providing a connection structure of a battery and a welding strip and a battery assembly thereof, so as to at least solve the problems raised in the above-mentioned background technology.
  • connection structure of a battery and a welding strip comprising a battery and a plurality of parallel welding strips placed on the battery, and also comprising an adhesive mechanism arranged between the welding strip and the battery, wherein the adhesive mechanism wraps the welding strip from the outside and then adheres to the battery to fix the welding strip on the battery.
  • connection structure of the battery and the welding strip also comprises a secondary grid arranged on the battery perpendicular to the welding strip, a reinforcing grid parallel to the secondary grid is arranged at the end of the battery, the reinforcing grid is located between two adjacent secondary grids, and the reinforcing grid is located on the outside of the outermost welding strip, the inner end of the reinforcing grid is connected to a vertical connecting grid, and the two ends of the connecting grid are connected to the secondary grids on both sides of the reinforcing grid; an auxiliary positioning grid for positioning the welding strip is arranged on the battery, and the auxiliary positioning grid is perpendicular to the secondary grid, and the auxiliary positioning grid is located on the front or back of the battery and is only arranged at the starting end of the welding strip.
  • the secondary grid can be used to collect current on the battery.
  • the number of secondary grids on the back of the battery is more than that on the front.
  • the auxiliary positioning grid is arranged on at least one side of the front or back, and the auxiliary positioning grid is positioned at the starting end of the welding strip, and there is no need to arrange an auxiliary positioning grid in the middle.
  • the function of the reinforcing grid is to facilitate the current to converge to the outermost welding strip to reduce the resistance, while the connecting grid avoids local breakage and facilitates the current to pass.
  • Both the reinforcing grid and the connecting grid are made of silver paste.
  • the adhesive mechanism fixes the soldering ribbon to the battery from the outside, thereby eliminating the need for silver paste and changing the original connection between the soldering ribbon and the silver paste into a connection between the soldering ribbon and the adhesive mechanism, eliminating the need for silver paste and reducing costs.
  • the bonding mechanism may be a positioning tape, and the positioning tape may be wrapped around the outside of the welding tape, and the positioning tape may be bonded to the battery along both sides in the length direction.
  • the positioning tape can be hot melt adhesive, high performance pressure sensitive adhesive, UV, catalytic adhesive or PET substrate and high performance pressure sensitive adhesive coated on one end of the PET substrate near the welding tape.
  • the fixing effect is good.
  • the positioning tape may be in the shape of a strip along the length direction of the welding strip, and may be arranged along the length direction of the welding strip, with the number of positioning tapes corresponding to the number of welding strips.
  • the positioning tape may be in the shape of a strip perpendicular to the welding strip, and the positioning tape may span across multiple parallel welding strips.
  • the positioning tape may be perpendicular to the welding strip and span across the welding strip, one positioning tape may fix multiple welding strips, and multiple positioning tapes may be provided along the length direction of the welding strip.
  • the positioning tape may be block-shaped, and a plurality of positioning tapes are arranged on each welding strip along the length direction.
  • the positioning tape is square-shaped, and a plurality of positioning tapes are arranged along the length direction of the welding strip for fixing.
  • the positioning tape may be in a whole block that covers all the solder strips.
  • the positioning tape can cover all the solder strips, achieve whole block coverage, increase the pulling force, and prevent the adhesive film from flowing into the gap between the solder strips and the adhesive film, causing product defects.
  • the number of auxiliary positioning grids in each row may be 15 to 35, and the width of the auxiliary positioning grids may be 0.01 to 0.20 mm, and the height may be 4 to 20 um.
  • welding strips and auxiliary grids may be provided on both the front and back sides of the battery.
  • the solder strip may be a low-temperature solder strip.
  • the low-temperature solder strip has a copper substrate in the middle and a solder alloy on the outside.
  • the solder alloy contains at least one or more metals such as lead, bismuth, silver, and indium in addition to tin, which reduces the melting point and can be directly heated during lamination to melt the solder strip and the auxiliary grid together.
  • the melting temperature can be 120°C to 160°C.
  • the battery may be a thin-film battery with a thickness ranging from 70 to 150 um.
  • An embodiment of the present disclosure further provides a battery assembly, which includes the above connection structure of the battery and the welding strip.
  • the battery is provided with welding strips on both the upper and lower sides, and further includes a front adhesive film layer provided on the upper side of the battery, an upper glass provided on the upper side of the front adhesive film layer, a back adhesive film layer provided on the lower side of the battery, and a cover provided on the lower side of the back adhesive film layer.
  • the front adhesive film layer and the back adhesive film layer are both used for lamination to connect the whole.
  • the front adhesive film layer and the back adhesive film layer may be POE (polyolefin elastomer), EVA (ethyl vinyl acetate) or EPE (expanded polyethylene).
  • POE polyolefin elastomer
  • EVA ethyl vinyl acetate
  • EPE expanded polyethylene
  • the cover plate may be glass or a back plate. Either glass or a back plate is acceptable.
  • the present invention can achieve at least the following beneficial effects:
  • the main grid is directly omitted here, and the positioning tape is used to connect and fix it, which ensures the strength and reduces the cost. No flux is required, which reduces the risk of yellowing due to long-term aging of the flux and other materials outdoors;
  • Strengthening grids are set at both ends of the auxiliary grid to increase the current transmission capacity
  • a connecting grid is provided at the inner end of the auxiliary grid to realize the transfer of current to the auxiliary grid, wherein the reinforcing grid facilitates current collection; and in actual production, the welding strip will have a certain position deviation, and will move to the reinforcing grid, or be located on the inner side of the reinforcing grid and detach from the reinforcing grid. When a local fracture occurs, the part where the reinforcing grid and the connecting grid are connected will continue to transfer the current to the auxiliary grid through the reinforcing grid, which facilitates current transfer and ensures current collection inside the fracture area;
  • FIG1 is a schematic diagram of the connection between a battery and a reinforcing grid disclosed in the present invention
  • FIG2 is a schematic diagram of the structure of a battery and a welding strip according to an embodiment of the present disclosure
  • FIG3 is a cross-sectional view of a battery and a welding ribbon according to another embodiment of the present disclosure.
  • FIG4 is a schematic diagram of the structure of a battery and a welding strip according to another embodiment of the present disclosure.
  • FIG5 is a schematic structural diagram of a battery and a welding strip according to yet another embodiment of the present disclosure.
  • FIG6 is a schematic structural diagram of a battery and a welding ribbon according to another embodiment of the present disclosure.
  • FIG7 is a cross-sectional view of a battery assembly of the present disclosure.
  • FIG8 is a tensile force diagram of a common welding strip and a main grid after welding
  • FIG9 is a tension diagram of a battery after being fixed by the adhesive tape of the present disclosure.
  • FIG. 10 is a plan view of a battery assembly according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a connection structure of a battery and a welding strip and a technical solution for a battery assembly thereof.
  • the connection structure of the battery and the welding strip may include a battery 1 and a plurality of parallel welding strips 11 placed on the battery 1, and may also include an adhesive mechanism disposed between the welding strip 11 and the battery 1, and the adhesive mechanism may wrap the welding strip 11 from the outside and then adhere to the battery 1 to fix the welding strip 11 on the battery 1.
  • the adhesive mechanism fixes the welding strip 11 on the battery 1 from the outside, thereby eliminating the silver paste, and changing the original connection between the welding strip and the silver paste into a connection between the welding strip and the adhesive mechanism, thereby reducing the cost.
  • the connection structure of the battery and the welding strip may also include a secondary grid 12 disposed on the battery 1 perpendicular to the welding strip 11.
  • the secondary grid 12 can be used to collect current on the battery 1.
  • the number of secondary grids 12 on the back of the battery 1 may be greater than the number of secondary grids 12 on the front.
  • An auxiliary positioning grid 13 for positioning the welding strip 11 may be disposed on the battery 1, and the auxiliary positioning grid 13 may be perpendicular to the secondary grid 12, and the auxiliary positioning grid 13 may be located on the front or back of the battery 1. At least one side of the front or back side is required, and it can be positioned at the starting end of the welding strip 11, and no need in the middle. In the present application, the auxiliary positioning grid 13 is positioned only at one end of the welding strip 11.
  • the auxiliary positioning grid 13 between the two batteries is avoided from being exposed due to the skew of the welding strip 11, thereby improving the yield rate.
  • the number of auxiliary positioning grids 13 in each row can be 15 to 35, and the width of the auxiliary positioning grid 13 can be 0.01 to 0.20 mm, and the height can be 4 to 20 um.
  • the end of the battery 1 can be provided with a reinforcing grid 14 parallel to the auxiliary grid 12.
  • the reinforcing grid 14 can be located between two adjacent auxiliary grids 12, and the reinforcing grid 14 can be located on the outside of the outermost welding strip 11.
  • the inner end of the reinforcing grid 14 can be connected to a vertical connecting grid 15, and the two ends of the connecting grid 15 can be connected to the auxiliary grids 12 on both sides of the reinforcing grid 14.
  • the function of the reinforcing grid 14 is to facilitate the current to converge to the outermost welding strip 11 to reduce the resistance, and the connecting grid 15 avoids local fracture and facilitates the current to pass.
  • the reinforcing grid 14 and the connecting grid 15 can both be silver paste.
  • the front and back sides of the battery 1 can be provided with welding strips 11 and auxiliary grids 12.
  • the soldering strip 11 can be a low-temperature soldering strip, the middle substrate of the low-temperature soldering strip is copper, and the outer side is a solder alloy.
  • the solder alloy contains at least one or more metals such as lead, bismuth, silver, and indium to reduce the melting point. It can be directly heated during lamination so that the soldering strip 11 and the auxiliary grid 12 can be melted together.
  • the melting temperature can be 120°C to 160°C.
  • the battery 1 can be a thin-film battery with a thickness range of 70 to 150um.
  • connection structure of a battery and a solder strip and a technical solution of a battery assembly thereof a connection structure of a battery and a solder strip, comprising a battery 1 and a plurality of parallel solder strips 11 placed on the battery 1, and may also include a bonding mechanism disposed between the solder strip 11 and the battery 1, the bonding mechanism wraps the solder strip 11 from the outside and then bonds to the battery 1 to fix the solder strip 11 on the battery 1.
  • the bonding mechanism can fix the solder strip 11 on the battery 1 from the outside, thereby eliminating silver paste, and changing the original connection between the solder strip and the silver paste into a connection between the solder strip and the bonding mechanism, eliminating silver paste and reducing costs.
  • the bonding mechanism can be a positioning tape 2, and the positioning tape 2 is wrapped on the outside of the solder strip 11, and the positioning tape 2 can be bonded to the battery 1 along both sides of the length direction.
  • the positioning tape 2 can be a hot melt adhesive, a high-performance pressure-sensitive adhesive, a UV, a catalytic adhesive, or a PET substrate and a high-performance pressure-sensitive adhesive coated on the PET substrate near one end of the solder strip 11. The fixing effect is good.
  • the soldering strip 11 may be a low-temperature soldering strip, the middle substrate of which is copper and the outer side is a solder alloy.
  • the solder alloy contains at least one or more metals such as lead, bismuth, silver, and indium in addition to tin, which reduces the melting point and can be directly heated during lamination.
  • the welding strip 11 and the auxiliary grid 12 can be melted together at a temperature of 120° C. to 160° C.
  • the battery 1 can be a thin-film battery with a thickness ranging from 70 to 150 um.
  • the positioning tape 2 is in the shape of a strip along the length direction of the welding tape 11.
  • the number of positioning tapes 2 corresponds to the number of welding tapes 11 arranged along the length direction of the welding tape 11.
  • connection structure of a battery and a solder strip and a technical solution of a battery assembly thereof a connection structure of a battery and a solder strip, comprising a battery 1 and a plurality of parallel solder strips 11 placed on the battery 1, and may also include a bonding mechanism disposed between the solder strip 11 and the battery 1, the bonding mechanism may wrap the solder strip 11 from the outside and then bond to the battery 1 to fix the solder strip 11 to the battery 1.
  • the bonding mechanism may fix the solder strip 11 to the battery 1 from the outside, thereby eliminating silver paste, and changing the original connection between the solder strip and the silver paste into a connection between the solder strip and the bonding mechanism, eliminating silver paste and reducing costs.
  • the bonding mechanism may be a positioning tape 2, and the positioning tape 2 is wrapped around the outside of the solder strip 11, and the positioning tape 2 is bonded to the battery 1 along both sides of the length direction.
  • the positioning tape 2 may be a hot melt adhesive, a high-performance pressure-sensitive adhesive, a UV, a catalytic adhesive, or a PET substrate and a high-performance pressure-sensitive adhesive coated on the PET substrate near one end of the solder strip 11. The fixing effect is good.
  • the soldering strip 11 can be a low-temperature soldering strip, the middle substrate of the low-temperature soldering strip can be copper, and the outer side can be a solder alloy.
  • the soldering alloy contains at least one or more metals such as lead, bismuth, silver, and indium to lower the melting point. It can be directly heated during lamination to melt the soldering strip 11 and the auxiliary grid 12 together.
  • the melting temperature can be 120°C to 160°C.
  • the battery 1 is a thin-film battery with a thickness range of 70 to 150um.
  • the positioning tape 2 can be in the shape of a strip perpendicular to the welding strip 11, and the positioning tape 2 can span across multiple parallel welding strips 11.
  • the positioning tape 2 can be perpendicular to the welding strip 11 and span across the welding strip 11.
  • One positioning tape 2 fixes multiple welding strips 11, and multiple positioning tapes 2 are provided along the length direction of the welding strip 11.
  • connection structure of a battery and a solder strip and a technical solution of a battery assembly thereof:
  • a connection structure of a battery and a solder strip comprising a battery 1 and a plurality of parallel solder strips 11 placed on the battery 1, and may also include a bonding mechanism disposed between the solder strip 11 and the battery 1, the bonding mechanism may wrap the solder strip 11 from the outside and then bond to the battery 1 to fix the solder strip 11 to the battery 1.
  • the bonding mechanism may fix the solder strip 11 to the battery 1 from the outside, thereby eliminating silver paste, and changing the original connection between the solder strip and the silver paste into a connection between the solder strip and the bonding mechanism, eliminating silver paste and reducing costs.
  • the bonding mechanism may be a positioning tape 2, and the positioning tape 2 may be wrapped around the outside of the solder strip 11, and the positioning tape 2 may be bonded to the battery 1 along both sides of the length direction.
  • the positioning tape 2 may be a hot melt adhesive, a high-performance pressure-sensitive adhesive, a UV, a catalytic adhesive, or a PET substrate and a high-performance pressure-sensitive adhesive coated on the PET substrate near one end of the solder strip 11. The fixing effect is good.
  • the soldering strip 11 can be a low-temperature soldering strip, the middle substrate of the low-temperature soldering strip can be copper, and the outer side can be a solder alloy.
  • the soldering alloy can contain at least one or more metals such as lead, bismuth, silver, and indium to lower the melting point. It can be directly heated during lamination so that the soldering strip 11 and the auxiliary grid 12 can be melted together.
  • the melting temperature can be 120°C to 160°C.
  • the battery 1 is a thin-film battery with a thickness range of 70 to 150um.
  • the positioning tape 2 may be block-shaped, and a plurality of positioning tapes 2 may be provided along the length direction on each welding strip 11.
  • the positioning tape 2 is in a square shape, and a plurality of positioning tapes 2 are provided along the length direction of the welding strip 11 for fixing.
  • connection structure of a battery and a solder strip and a technical solution of a battery assembly thereof a connection structure of a battery and a solder strip, comprising a battery 1 and a plurality of parallel solder strips 11 placed on the battery 1, and may also include an adhesive mechanism disposed between the solder strip 11 and the battery 1, the adhesive mechanism may wrap the solder strip 11 from the outside and then adhere to the battery 1 to fix the solder strip 11 on the battery 1.
  • the adhesive mechanism may fix the solder strip 11 on the battery 1 from the outside, thereby eliminating silver paste, and changing the original connection between the solder strip and the silver paste into a connection between the solder strip and the adhesive mechanism, eliminating silver paste and reducing costs.
  • the adhesive mechanism may be a positioning tape 2, and the positioning tape 2 may be wrapped on the outside of the solder strip 11, and the positioning tape 2 may be adhered to the battery 1 along both sides of the length direction.
  • the positioning tape 2 may be a hot melt adhesive, a high-performance pressure-sensitive adhesive, a UV, a catalytic adhesive, or a PET substrate and a high-performance pressure-sensitive adhesive coated on the PET substrate near one end of the solder strip 11. The fixing effect is good.
  • the soldering strip 11 may be a low-temperature soldering strip, the middle substrate of the low-temperature soldering strip may be copper, and the outer side may be a solder alloy.
  • the soldering alloy may contain at least one or more metals selected from lead, bismuth, silver, indium, etc., to lower the melting point. It may be directly heated during lamination so that the soldering strip 11 and the auxiliary grid 12 may be melted together.
  • the melting temperature may be 120°C to 160°C.
  • the battery 1 may be a thin-film battery with a thickness range of 70 to 150um.
  • the positioning tape 2 may be in a whole block that covers all the solder strips 11.
  • the positioning tape 2 can cover all the solder strips 11, achieve whole block coverage, increase pulling force, and prevent the adhesive film from flowing into the gap between the solder strips and the adhesive film, causing product defects.
  • An embodiment of the present disclosure provides a battery assembly, including the above connection structure of the battery and the soldering strip.
  • the upper and lower sides of the battery 1 can be provided with soldering strips 11, and can also include a front film layer 3 arranged on the upper side of the battery 1, an upper glass 31 arranged on the upper side of the front film layer 3, a back film layer 32 arranged on the lower side of the battery 1, and a cover plate 33 arranged on the lower side of the back film layer 32.
  • Both the front film layer 3 and the back film layer 32 can be used for lamination to connect the whole.
  • the front film layer 3 and the back film layer 32 can be POE, EVA or EPE.
  • the cover plate 33 can be glass or a back plate. Either glass or a back plate is fine.
  • pad represents the welding pad point, and the welding tensile test after welding is shown in Figure 8;
  • the tension generated by the positioning tape is generally greater than the strength of the direct connection between the welding tape and the main grid. That is to say, compared with the original connection between the welding tape and the silver paste, the connection strength between the positioning tape and the battery is higher, and the strength is increased while the cost is reduced.
  • connection between the positioning tape and the soldering tape reduces the amount of silver paste.
  • the tensile strength and power are increased, achieving three goals at one stroke.
  • the embodiments of the present disclosure provide a connection structure of a battery and a welding strip and a battery assembly thereof. Compared with the original method of setting silver paste and welding strip connection on the battery, the main grid is directly omitted here, and a positioning tape is used for connection and fixing, which ensures strength and reduces cost.
  • connection structure of the battery and the solder strip and the battery assembly provided by the embodiment of the present disclosure are reproducible and can be used in a variety of industrial applications.
  • connection structure of the battery and the solder strip and the battery assembly provided by the embodiment of the present disclosure can be used in the technical field involving the connection of the battery and the solder strip, such as the field of the connection structure of the battery and the solder strip and the battery assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开公开了一种电池和焊带的连接结构,包括电池和放置在电池上的多根平行的焊带,还包括设置在焊带和电池之间的粘合机构,所述粘合机构从外侧包裹焊带后粘合在电池上以将焊带固定在电池上。粘合机构从外侧将焊带固定在电池上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,省去银浆,降低成本。一种电池组件,包含以上的电池和焊带的连接结构,所述电池的上下侧均设置有焊带,还包括设置在电池上侧的正面胶膜层、设置在正面胶膜层上侧的上层玻璃、设置在电池下侧的背面胶膜层以及设置在背面胶膜层下侧的盖板。正面胶膜层和背面胶膜层均用于层压,将整体连接。

Description

一种电池和焊带的连接结构及其电池组件
相关申请的交叉引用
本公开要求于2022年10月8日提交中国国家知识产权局的申请号为202211220767.6、名称为“一种电池和焊带的连接结构及其电池组件”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池和焊带的连接领域,具体为一种电池和焊带的连接结构及其电池组件。
背景技术
在光伏发电中,光伏组件,起到接收阳光和转化电能的作用。实际中,电池并不是一整片,而是多个拼装在一起,从而保证组件的输出功率,电池片之间则通过焊带连接,焊带包括内侧的铜基材和外侧的焊锡合金层,焊锡合金熔点低,便于熔化,而不管是焊锡合金还是铜,与电池本身并不能很好的连接,附着力很低,因此,通常做法是在电池上铺设银浆,也叫主栅,焊带放在主栅上,焊锡合金能够和主栅更好的熔合在一起,提高牢固强度,但是,这里也存在一个问题,那就是银浆比较贵,在电池组件的成本中占有不小的比例,达到20%以上,对企业来说,在保证发电效率和强度的情况下,降低成本,是追求的目标,因此,如何减小银浆用量,同时保证连接强度,是该领域技术人员急需解决的问题。
发明内容
本公开的目的例如包括提供一种电池和焊带的连接结构及其电池组件,以至少解决上述背景技术中提出的问题。
为实现上述目的,本公开的实施例提供如下技术方案:一种电池和焊带的连接结构,包括电池和放置在电池上的多根平行的焊带,还包括设置在焊带和电池之间的粘合机构,所述粘合机构从外侧包裹焊带后粘合在电池上以将焊带固定在电池上。电池和焊带的连接结构还包括设置在电池上垂直于所述焊带的副栅,所述电池的端部设置有平行于副栅的加强栅,加强栅位于相邻的两个副栅之间,且加强栅位于最外侧的焊带的外侧,加强栅的内端连接有垂直的连接栅,且连接栅的两端与加强栅两侧的副栅连接;所述电池上设置有对焊带定位的辅助定位栅,且辅助定位栅垂直于副栅,所述辅助定位栅位于电池的正面或者背面并且仅设置于所述焊带起始的一端。其中,副栅能够用于收集电池上的电流。电池背面的副栅数量多于正面。辅助定位栅设置在正面或者背面中的至少一面上,并且辅助定位栅定位在焊带起始的一端即可,中间不需要设置助定位栅。加强栅的作用是,便于电流汇集到最外侧的焊带,减小电阻,连接栅则避免局部断裂,便于电流通过。加强栅和连接栅均为银浆。
粘合机构从外侧将焊带固定在电池上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,省去银浆,降低成本。
可选地,所述粘合机构可以为定位胶带,且定位胶带可以包裹在焊带的外侧,定位胶带可以沿着长度方向的两侧粘合在电池上。
可选地,所述定位胶带可以为热熔胶、高性能压敏胶、UV、催化的粘接胶或PET基体和涂覆在PET基体靠近焊带一端的高性能压敏胶。固定效果好。
可选地,所述定位胶带可以为沿着焊带长度方向的条形。沿着焊带的长度方向设置,多少个焊带,就对应多少个定位胶带。
可选地,所述定位胶带可以为垂直于焊带的条形,且定位胶带可以横跨多个平行的焊带。定位胶带可以垂直于焊带,并横跨焊带,一个定位胶带可以固定多根焊带,定位胶带沿着焊带的长度方向则设置多个。
可选地,所述定位胶带可以为块状,且定位胶带在每个焊带上沿着长度方向设置多个。定位胶带呈方块形,沿着焊带的长度方向设置多个,进行固定。
可选地,所述定位胶带可以为覆盖所有焊带的整块状。定位胶带能够覆盖所有焊带,实现整块覆盖,增加拉力。防止胶膜流入焊带与胶膜中间带来的产品不良。
可选地,每排辅助定位栅的数量可以为15~35根,且辅助定位栅的宽度为0.01~0.20mm,高度为4~20um。
可选地,所述电池的正面和背面均可以设置焊带和副栅。
可选地,所述焊带可以为低温焊带。低温焊带中间基材为铜,外侧为焊锡合金,焊锡合金除锡以外,至少包含铅、铋、银、铟等中的一种或多种金属,降低熔点,可以在层压时直接加热,使焊带与副栅熔在一起,温度可以在120℃~160℃进行熔化。
可选地,所述电池可以为薄片电池,厚度范围70~150um。
本公开的实施例还提供了一种电池组件,该电池组件包含以上的电池和焊带的连接结构。
可选地,所述电池的上下侧均设置有焊带,还包括设置在电池上侧的正面胶膜层、设置在正面胶膜层上侧的上层玻璃、设置在电池下侧的背面胶膜层以及设置在背面胶膜层下侧的盖板。正面胶膜层和背面胶膜层均用于层压,将整体连接。
可选地,所述正面胶膜层和背面胶膜层可以为POE(polyolefin elastomer,聚烯烃弹性体)、EVA(ethyl vinyl acetate,乙烯-乙酸乙烯共聚物)或EPE(expanded polyethylene,发泡聚乙烯)。
可选地,所述盖板可以为玻璃或者背板。玻璃或者背板都行。
与现有技术相比,本公开能够实现至少以下有益效果:
1、相对于原有的在电池上设置银浆与焊带连接,这里直接省去了主栅,采用定位胶带连接固定,保证了强度,也降低了成本,也不需要助焊剂,降低由于助焊剂与其它材料户外长期老化的黄变风险;
2、在副栅的两端设置了加强栅,增加电流的传递能力;
3、在副栅的内端部,设置了连接栅,实现电流到副栅的传递,其中加强栅便于电流收集;而且在实际生产中,焊带会有一定的位置偏差,会移动到加强栅上,或者位于加强栅的内侧,脱离加强栅,而能够在出现局部断裂时,加强栅与连接栅连接的部分会继续将电流通过加强栅传递到副栅,便于电流传递,保证断裂区域内侧的电流收集;
4、去除了高温红外焊接,低温互联工艺,可以实现薄片电池互联,降低晶体硅用量;以及
5、在两个副栅之间只设置一个加强栅,实现了电流均衡,外侧距离传输距离是焊带内侧的两倍,因此,在副栅之间设置一个加强栅保证了电流均衡,消除了明暗片的缺陷。
附图说明
图1为本公开的电池与加强栅的连接示意图;
图2为本公开的实施例的电池与焊带的结构示意图;
图3为本公开的另一实施例的电池与焊带的截面图;
图4为本公开的又一实施例的电池与焊带的结构示意图;
图5为本公开的再一实施例的电池与焊带的结构示意图;
图6为本公开的另外的实施例的电池与焊带的结构示意图;
图7为本公开的电池组件的截面图;
图8为普通焊带结合主栅进行焊接后的拉力图;
图9为本公开胶带固定后电池后的拉力图;
图10为根据本公开实施例的电池组件的平面图。
图中:1、电池;11、焊带;12、副栅;13、辅助定位栅;14、加强栅;15、连接栅;2、定位胶带;3、正面胶膜层;31、上层玻璃;32、背面胶膜层;33、盖板。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
请参阅图1,本公开的实施例提供一种电池和焊带的连接结构及其电池组件技术方案。 该电池和焊带的连接结构可以包括电池1和放置在电池1上的多根平行的焊带11,还可以包括设置在焊带11和电池1之间的粘合机构,粘合机构可以从外侧包裹焊带11后粘合在电池1上,以将焊带11固定在电池1上。粘合机构从外侧将焊带11固定在电池1上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,降低成本。电池和焊带的连接结构还可以包括设置在电池1上垂直于焊带11的副栅12。副栅12能够用于收集电池1上的电流。电池1背面的副栅12的数量可以多于正面的副栅12的数量。电池1上可以设置有对焊带11定位的辅助定位栅13,且辅助定位栅13可以垂直于副栅12,辅助定位栅13可以位于电池1的正面或者背面。正面或者背面至少需要一面,在焊带11起始的一端定位即可,中间不需要。本申请中仅在焊带11一端定位辅助定位栅13的这种构造,由于仅在一端进行定位,定位端本身需要露出(不属于露白),没有在另一端定位,因此避免了辅助定位栅13在两个电池之间的部分因为焊带11的歪斜而造成露白的现象,提高了良品率。每排辅助定位栅13的数量可以为15~35根,且辅助定位栅13的宽度可以为0.01~0.20mm,高度可以为4~20um。电池1的端部可以设置有平行于副栅12的加强栅14,加强栅14可以位于相邻的两个副栅12之间,且加强栅14可以位于最外侧的焊带11的外侧,加强栅14的内端可以连接有垂直的连接栅15,且连接栅15的两端可以与加强栅14两侧的副栅12连接。加强栅14的作用是,便于电流汇集到最外侧的焊带11,减小电阻,连接栅15则避免局部断裂,便于电流通过。加强栅14和连接栅15均可以为银浆。电池1的正面和背面均可以设置焊带11和副栅12。
焊带11可以为低温焊带,低温焊带中间基材为铜,外侧为焊锡合金,焊锡合金除锡以外,至少包含铅、铋、银、铟等中的一种或多种金属,降低熔点,可以在层压时直接加热,使焊带11与副栅12可以熔在一起,温度可以在120℃~160℃进行熔化,电池1可以为薄片电池,厚度范围可以为70~150um。
请参阅图2至图3,本公开的实施例提供一种电池和焊带的连接结构及其电池组件技术方案:一种电池和焊带的连接结构,包括电池1和放置在电池1上的多根平行的焊带11,还可以包括设置在焊带11和电池1之间的粘合机构,粘合机构从外侧包裹焊带11后粘合在电池1上以将焊带11固定在电池1上。粘合机构可以从外侧将焊带11固定在电池1上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,省去银浆,降低成本。粘合机构可以为定位胶带2,且定位胶带2包裹在焊带11的外侧,定位胶带2可以沿着长度方向的两侧粘合在电池1上。定位胶带2可以为热熔胶、高性能压敏胶、UV、催化的粘接胶或PET基体和涂覆在PET基体靠近焊带11一端的高性能压敏胶。固定效果好。
焊带11可以为低温焊带,低温焊带中间基材为铜,外侧为焊锡合金,焊锡合金除锡以外,至少包含铅、铋、银、铟等中的一种或多种金属,降低熔点,可以在层压时直接加热, 使焊带11与副栅12可以熔在一起,温度可以在120℃~160℃进行熔化,电池1可以为薄片电池,厚度范围可以为70~150um。
定位胶带2为沿着焊带11长度方向的条形。沿着焊带11的长度方向设置多少个焊带11,就对应多少个定位胶带2。
请参阅图4,本公开的实施例提供一种电池和焊带的连接结构及其电池组件技术方案:一种电池和焊带的连接结构,包括电池1和放置在电池1上的多根平行的焊带11,还可以包括设置在焊带11和电池1之间的粘合机构,粘合机构可以从外侧包裹焊带11后粘合在电池1上以将焊带11固定在电池1上。粘合机构可以从外侧将焊带11固定在电池1上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,省去银浆,降低成本。粘合机构可以为定位胶带2,且定位胶带2包裹在焊带11的外侧,定位胶带2沿着长度方向的两侧粘合在电池1上。定位胶带2可以为热熔胶、高性能压敏胶、UV、催化的粘接胶或PET基体和涂覆在PET基体靠近焊带11一端的高性能压敏胶。固定效果好。
焊带11可以为低温焊带,低温焊带中间基材可以为铜,外侧可以为焊锡合金,焊锡合金除锡以外,至少包含铅、铋、银、铟等中的一种或多种金属,降低熔点,可以在层压时直接加热,使焊带11与副栅12熔在一起,温度可以在120℃~160℃进行熔化,电池1为薄片电池,厚度范围70~150um。
定位胶带2可以为垂直于焊带11的条形,且定位胶带2可以横跨多个平行的焊带11。定位胶带2可以垂直于焊带11,并横跨焊带11,一个定位胶带2固定多根焊带11,定位胶带2沿着焊带11的长度方向则设置多个。
请参阅图5,本公开的实施例提供一种电池和焊带的连接结构及其电池组件技术方案:一种电池和焊带的连接结构,包括电池1和放置在电池1上的多根平行的焊带11,还可以包括设置在焊带11和电池1之间的粘合机构,粘合机构可以从外侧包裹焊带11后粘合在电池1上以将焊带11固定在电池1上。粘合机构可以从外侧将焊带11固定在电池1上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,省去银浆,降低成本。粘合机构可以为定位胶带2,且定位胶带2可以包裹在焊带11的外侧,定位胶带2可以沿着长度方向的两侧粘合在电池1上。定位胶带2可以为热熔胶、高性能压敏胶、UV、催化的粘接胶或PET基体和涂覆在PET基体靠近焊带11一端的高性能压敏胶。固定效果好。
焊带11可以为低温焊带,低温焊带中间基材可以为铜,外侧可以为焊锡合金,焊锡合金除锡以外,可以至少包含铅、铋、银、铟等中的一种或多种金属,降低熔点,可以在层压时直接加热,使焊带11与副栅12可以熔在一起,温度可以在120℃~160℃进行熔化,电池1为薄片电池,厚度范围70~150um。
定位胶带2可以为块状,且定位胶带2在每个焊带11上可以沿着长度方向设置多个。定位胶带2呈方块形,沿着焊带11的长度方向设置多个,进行固定。
请参阅图6,本公开的实施例提供一种电池和焊带的连接结构及其电池组件技术方案:一种电池和焊带的连接结构,包括电池1和放置在电池1上的多根平行的焊带11,还可以包括设置在焊带11和电池1之间的粘合机构,粘合机构可以从外侧包裹焊带11后粘合在电池1上以将焊带11固定在电池1上。粘合机构可以从外侧将焊带11固定在电池1上,从而省去银浆,将原本的焊带与银浆的连接变成焊带和粘合机构的连接,省去银浆,降低成本。粘合机构可以为定位胶带2,且定位胶带2可以包裹在焊带11的外侧,定位胶带2可以沿着长度方向的两侧粘合在电池1上。定位胶带2可以为热熔胶、高性能压敏胶、UV、催化的粘接胶或PET基体和涂覆在PET基体靠近焊带11一端的高性能压敏胶。固定效果好。
焊带11可以为低温焊带,低温焊带中间基材可以为铜,外侧可以为焊锡合金,焊锡合金除锡以外,可以至少包含铅、铋、银、铟等中的一种或多种金属,降低熔点,可以在层压时直接加热,使焊带11与副栅12可以熔在一起,温度可以在120℃~160℃进行熔化,电池1可以为薄片电池,厚度范围可以为70~150um。
定位胶带2可以为覆盖所有焊带11的整块状。定位胶带2能够覆盖所有焊带11,实现整块覆盖,增加拉力。防止胶膜流入焊带与胶膜中间带来的产品不良。
请参阅图7,本公开的实施例提供了一种电池组件,包含以上的电池和焊带的连接结构。电池1的上下侧均可以设置有焊带11,还可以包括设置在电池1上侧的正面胶膜层3、设置在正面胶膜层3上侧的上层玻璃31、设置在电池1下侧的背面胶膜层32以及设置在背面胶膜层32下侧的盖板33。正面胶膜层3和背面胶膜层32均可以用于层压,将整体连接。正面胶膜层3和背面胶膜层32可以为POE、EVA或EPE。盖板33可以为玻璃或者背板。玻璃或者背板都行。
工作原理:相对于原有的在电池1上设置银浆与焊带11连接,这里直接省去了主栅,采用定位胶带2连接固定,保证了强度,也降低了成本,降低由于助焊剂与其它材料户外长期老化的黄变风险。在副栅12的两端设置了加强栅14,增加电流的传递能力。在副栅12的端部,设置了连接栅15,能够在出现局部断裂时,将电流传递到副栅12,便于电流传递。
试验1
通过拉力机,进行180°拉力试验:
针对于普通的焊带结合主栅,pad代表焊盘点,进行焊接后的焊接拉力试验如图8所示;
定位胶带固定后的电池,通过多处取样,得出的结果如图9;
通过以上对比可以看出,定位胶带产生的拉力总体都是大于焊带和主栅直接连接的强度,也就是说,相对于原有的焊带与银浆的连接,定位胶带与电池的连接强度更高,在成本降低的情况下,强度还有增加。
试验2
针对焊带和主栅的连接,同样的电池和光照环境,我们测量功率如下(测试条件:1000W/m2,25℃):
通过上图对比我们发现,相对于现有的焊带和主栅的连接,定位胶带和焊带的连接,测试功率由659.15变成了669.54,还提高了,没有主栅银浆复合损失减少,电压增加。焊带数量增加,副栅到焊带的传输距离变小,电阻降低。因此增加组件功率。
综上试验1和试验2,相对于原有的焊带和主栅的连接,通过定位胶带和焊带的连接,降低了银浆量,同时,抗拉强度和功率均有所增加,一举三得。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由所附权利要求及其等同物限定。
工业实用性
本公开的实施例提供了一种电池和焊带的连接结构及其电池组件,其相对于原有的在电池上设置银浆与焊带连接,这里直接省去了主栅,采用定位胶带连接固定,保证了强度,也降低了成本,也不需要助焊剂,降低由于助焊剂与其它材料户外长期老化的黄变风险;在副栅的两端设置了加强栅,增加电流的传递能力;在副栅的端部,设置了连接栅,能够在出现局部断裂时,将电流传递到副栅,便于电流传递;去除了高温红外焊接,低温互联工艺,可以实现薄片电池互联,降低晶体硅用量。
此外,可以理解的是,本公开实施例提供的电池和焊带的连接结构及其电池组件是可以重现的,并且可以用在多种工业应用中。例如,本公开实施例提供的电池和焊带的连接结构及其电池组件可以用于涉及电池和焊带的连接的技术领域,例如电池和焊带的连接结构及其电池组件的领域。

Claims (17)

  1. 一种电池和焊带的连接结构,包括电池(1)和放置在电池(1)上的多根平行的焊带(11),其特征在于:还包括设置在焊带(11)和电池(1)之间的粘合机构,所述粘合机构从外侧包裹焊带(11)后粘合在电池(1)上以将焊带(11)固定在电池(1)上,所述电池和焊带的连接结构还包括设置在电池(1)上垂直于所述焊带(11)的副栅(12),所述电池(1)的端部设置有平行于副栅(12)的加强栅(14),加强栅(14)位于相邻的两个副栅(12)之间,且加强栅(14)位于最外侧的焊带(11)的外侧,加强栅(14)的内端连接有垂直的连接栅(15),且连接栅(15)的两端与加强栅(14)两侧的副栅(12)连接;所述电池(1)上设置有对焊带(11)定位的辅助定位栅(13),且辅助定位栅(13)垂直于副栅(12),所述辅助定位栅(13)位于电池(1)的正面或者背面并且仅设置于所述焊带(11)起始的一端。
  2. 根据权利要求1所述的电池和焊带的连接结构,其中,所述粘合机构为定位胶带(2),且定位胶带(2)包裹在焊带(11)的外侧,定位胶带(2)沿着长度方向的两侧粘合在电池(1)上。
  3. 根据权利要求2所述的电池和焊带的连接结构,其中,所述定位胶带(2)为热熔胶、高性能压敏胶、UV、催化的粘接胶或PET基体和涂覆在PET基体靠近焊带(11)一端的高性能压敏胶。
  4. 根据权利要求2或3所述的电池和焊带的连接结构,其中,所述定位胶带(2)为沿着焊带(11)长度方向的条形。
  5. 根据权利要求2或3所述的电池和焊带的连接结构,其中,所述定位胶带(2)为垂直于焊带(11)的条形,且定位胶带(2)横跨多个平行的焊带(11)。
  6. 根据权利要求2或3所述的电池和焊带的连接结构,其中,所述定位胶带(2)为块状,且定位胶带(2)在每个焊带(11)上沿着长度方向设置多个。
  7. 根据权利要求2或3所述的电池和焊带的连接结构,其中,所述定位胶带(2)为覆盖所有焊带(11)的整块状。
  8. 根据权利要求1至7中的任一项所述的电池和焊带的连接结构,其中,每排辅助定位栅(13)的数量为15~35根,且辅助定位栅(13)的宽度为0.01~0.20mm,高度为4~20um。
  9. 根据权利要求1至8中的任一项所述的电池和焊带的连接结构,其中,所述电池(1)的正面和背面均设置焊带(11)和副栅(12)。
  10. 根据权利要求1至9中的任一项所述的电池和焊带的连接结构,其中,所述 焊带(11)为低温焊带。
  11. 根据权利要求1至10中的任一项所述的电池和焊带的连接结构,其中,所述电池(1)为薄片电池,厚度范围70~150um。
  12. 根据权利要求10所述的电池和焊带的连接结构,其中,所述低温焊带的中间基材为铜,所述低温焊带的外侧为焊锡合金,所述焊锡合金除锡以外还至少包含铅、铋、银、铟等中的一种或更多种金属。
  13. 根据权利要求1至12中的任一项所述的电池和焊带的连接结构,其中,在层压直接加热时,所述焊带(11)与所述副栅(12)在温度在120℃~160℃时进行熔化从而被熔在一起。
  14. 一种电池组件,包括权利要求1至13中的任一项所述的电池和焊带的连接结构。
  15. 根据权利要求14所述的电池组件,其中,所述电池(1)的上下侧均设置有焊带(11),还包括设置在电池(1)上侧的正面胶膜层(3)、设置在正面胶膜层(3)上侧的上层玻璃(31)、设置在电池(1)下侧的背面胶膜层(32)以及设置在背面胶膜层(32)下侧的盖板(33)。
  16. 根据权利要求15所述的电池组件,其中,所述正面胶膜层(3)和背面胶膜层(32)可以为POE、EVA或EPE。
  17. 根据权利要求15或16所述的电池组件,其中,所述盖板(33)可以为玻璃或者背板。
PCT/CN2023/101917 2022-10-08 2023-06-21 一种电池和焊带的连接结构及其电池组件 WO2024074055A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23874249.8A EP4447130A1 (en) 2022-10-08 2023-06-21 Connection structure for battery and solder strips, and battery assembly comprising connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211220767.6 2022-10-08
CN202211220767.6A CN115295653A (zh) 2022-10-08 2022-10-08 一种电池和焊带的连接结构及其电池组件

Publications (1)

Publication Number Publication Date
WO2024074055A1 true WO2024074055A1 (zh) 2024-04-11

Family

ID=83834637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101917 WO2024074055A1 (zh) 2022-10-08 2023-06-21 一种电池和焊带的连接结构及其电池组件

Country Status (3)

Country Link
EP (1) EP4447130A1 (zh)
CN (1) CN115295653A (zh)
WO (1) WO2024074055A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295653A (zh) * 2022-10-08 2022-11-04 浙江制能科技有限公司 一种电池和焊带的连接结构及其电池组件
CN116072753B (zh) * 2023-01-16 2024-05-10 浙江晶科能源有限公司 光伏组件及制备方法
EP4451353A1 (en) * 2023-02-22 2024-10-23 Zhejiang Znergy Solar Co., Ltd. Photovoltaic stress-free interconnection apparatus, use method and assembly
CN117936647A (zh) * 2024-01-26 2024-04-26 江苏海博瑞光伏科技有限公司 太阳能电池串的制备方法、光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017263A1 (en) * 2007-09-05 2011-01-27 Solaria Corporation Method and device for fabricating a solar cell using an interface pattern for a packaged design
CN207651495U (zh) * 2017-12-29 2018-07-24 苏州阿特斯阳光电力科技有限公司 电池片及印刷网版
CN111584669A (zh) * 2020-05-29 2020-08-25 中威新能源(成都)有限公司 一种硅异质结shj太阳能电池及其制备方法
CN215418193U (zh) * 2021-04-13 2022-01-04 苏州阿特斯阳光电力科技有限公司 电池片和具有其的光伏组件
CN114023842A (zh) * 2021-11-03 2022-02-08 东方日升新能源股份有限公司 太阳能电池串的连接方法、太阳能电池组件及其制备方法
CN114068734A (zh) * 2021-11-11 2022-02-18 任佳新 一种光伏电池组件的制造方法
CN114695574A (zh) * 2022-04-27 2022-07-01 浙江爱康光电科技有限公司 一种无主栅的异质结电池片
CN115295653A (zh) * 2022-10-08 2022-11-04 浙江制能科技有限公司 一种电池和焊带的连接结构及其电池组件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882497A (zh) * 2015-06-05 2015-09-02 中利腾晖光伏科技有限公司 一种网格状电极太阳能电池片
CN110993733A (zh) * 2019-12-04 2020-04-10 通威太阳能(合肥)有限公司 一种光伏组件制作方法
CN114068733B (zh) * 2020-08-10 2024-09-27 苏州阿特斯阳光电力科技有限公司 电池片和具有其的光伏组件
CN114068735A (zh) * 2021-11-11 2022-02-18 任佳新 一种异质结光伏电池组件的制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110017263A1 (en) * 2007-09-05 2011-01-27 Solaria Corporation Method and device for fabricating a solar cell using an interface pattern for a packaged design
CN207651495U (zh) * 2017-12-29 2018-07-24 苏州阿特斯阳光电力科技有限公司 电池片及印刷网版
CN111584669A (zh) * 2020-05-29 2020-08-25 中威新能源(成都)有限公司 一种硅异质结shj太阳能电池及其制备方法
CN215418193U (zh) * 2021-04-13 2022-01-04 苏州阿特斯阳光电力科技有限公司 电池片和具有其的光伏组件
CN114023842A (zh) * 2021-11-03 2022-02-08 东方日升新能源股份有限公司 太阳能电池串的连接方法、太阳能电池组件及其制备方法
CN114068734A (zh) * 2021-11-11 2022-02-18 任佳新 一种光伏电池组件的制造方法
CN114695574A (zh) * 2022-04-27 2022-07-01 浙江爱康光电科技有限公司 一种无主栅的异质结电池片
CN115295653A (zh) * 2022-10-08 2022-11-04 浙江制能科技有限公司 一种电池和焊带的连接结构及其电池组件

Also Published As

Publication number Publication date
EP4447130A1 (en) 2024-10-16
CN115295653A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024074055A1 (zh) 一种电池和焊带的连接结构及其电池组件
WO2023284100A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
US20090255565A1 (en) Thin film solar cell string
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
JP6941252B1 (ja) セルストリング構造及び光起電力モジュール並びにそれらの製造方法
CN108687418B (zh) 一种太阳电池的焊带连接方法
WO2024108996A1 (zh) 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
WO2024016806A1 (zh) 光伏电池单元及其制备方法
WO2023232136A1 (zh) 一种基于超薄钢化玻璃的轻质叠瓦光伏组件
CN212676285U (zh) 光伏组件
WO2023016582A1 (zh) 光伏电池串及其制备方法、串焊设备和光伏组件
WO2024140134A1 (zh) 光伏电池串及光伏组件
WO2022033322A1 (zh) 光伏组件
CN108649088A (zh) 一种hit太阳能电池片的连接方法及hit光伏组件
WO2024016805A1 (zh) 一种光伏叠瓦组件及其制备方法
WO2020177530A1 (zh) 光伏组件及其制造方法
WO2023103260A1 (zh) 光伏电池组件及其制造方法
WO2024055763A1 (zh) 一种光伏电池连接工艺
CN115763603A (zh) 光伏组件
WO2013001822A1 (ja) 太陽電池モジュール
CN110828600A (zh) 一种ibc电池组件及其制造方法
US20240194809A1 (en) Photovoltaic module
CN115663049A (zh) 光伏组件
WO2024074056A1 (zh) 无主栅组件及其制作方法以及对电池和焊带进行连接的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023874249

Country of ref document: EP

Ref document number: 23874249.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023874249

Country of ref document: EP

Effective date: 20240712