WO2024016805A1 - 一种光伏叠瓦组件及其制备方法 - Google Patents

一种光伏叠瓦组件及其制备方法 Download PDF

Info

Publication number
WO2024016805A1
WO2024016805A1 PCT/CN2023/094404 CN2023094404W WO2024016805A1 WO 2024016805 A1 WO2024016805 A1 WO 2024016805A1 CN 2023094404 W CN2023094404 W CN 2023094404W WO 2024016805 A1 WO2024016805 A1 WO 2024016805A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
battery
photovoltaic
shaped conductive
shingled
Prior art date
Application number
PCT/CN2023/094404
Other languages
English (en)
French (fr)
Inventor
孟祥敏
陈章洋
曹育红
符黎明
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2024016805A1 publication Critical patent/WO2024016805A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a photovoltaic shingled component and a preparation method thereof.
  • Shingled modules are usually components in which traditional battery cells are cut into small pieces, and then the small cells are connected in series using conductive adhesive to be laminated and packaged. This connection method replaces the traditional way of connecting metal grid lines of components, eliminating the step of screen printing the main grid of the battery, and reducing line loss and light blocking caused by the grid lines. And because shingled modules have no chip gaps, the power of shingled modules is higher compared to traditional modules under the same area.
  • shingled modules currently face two major problems: 1. Low CTM; this is mainly due to the fact that shingled modules transmit current through fine grids, and the current transmission path increases by more than 400% compared to the current 16BB cells; this leads to line losses in shingled cells is very high, the power loss of the module will be higher; in addition, a diffuse reflection structure (such as a backplane) is usually installed between the cells of traditional modules to increase the secondary absorption of light by the cells, while the shingled module passes the front and rear cells up and down. Lap connection performs current transfer with no inter-chip gain. 2.
  • a diffuse reflection structure such as a backplane
  • the metal of fine grid lines in photovoltaic cells is generally silver.
  • current is collected from the surface of the cell to the silver fine grid wires, and is directly transmitted to adjacent cells through the silver fine grid wires.
  • the cross-sectional area of the silver fine grid wires is small, so that conventional shingled cells can only pass through Cut into narrow strips multiple times to reduce the current transmission distance in the silver thin grid lines, thereby reducing resistive losses.
  • the present invention provides a photovoltaic shingled component, which includes a battery string composed of tiled connections of battery sheets; the front and back of the battery sheets are provided with fine grid lines (which may be silver fine grid lines) covering the seed layer. ); two adjacent cells in the battery string are connected through sheet-shaped conductive connecting materials; the sheet-shaped conductive connecting materials are conductive tape (conductive double-sided tape), ultra-thin alloy materials or ultra-thin ones with solder on the surface. Metal sheets.
  • the fine grid lines and metal lines of the seed layer are arranged in parallel on the surface of the cell sheet, and the spacing between adjacent fine grid seed layers and metal lines is 1 to 3 mm.
  • the front side of the cell sheet is provided with a plurality of front metal lines covering the thin grid lines of the seed layer and parallel to each other.
  • Each front metal line extends along the head and tail direction of the cell sheet where it is located; the tail end of each front metal line Extending to the outside of the tail end of the battery piece where the front metal wire is located, and the sheet-shaped conductive connection material is located at the tail end of each front metal wire.
  • the length of the tail end of each front metal wire extending out of the tail end of the battery piece is no more than 5 mm, preferably no more than 2 mm.
  • the ultra-thin alloy material can be melted and solidified again during the component lamination process; the solder on the surface of the ultra-thin metal sheet can be melted and solidified again during the component lamination process.
  • the present invention also provides various methods for preparing photovoltaic shingled components. For specific steps, please refer to the examples.
  • the current transmission path is as follows: the current is transmitted from the base of the cell to the surface of the cell, and then vertically transmitted to the metal wire through the fine grid lines of the seed layer on the surface of the cell, and then transmitted to the sheet-shaped conductive connection through the metal wire. materials, and are transmitted to adjacent cell sheets by sheet-shaped conductive connecting materials; among them, the fine grid lines in the seed layer only play the role of vertically conducting current and transmitting current to the metal lines, and do not bear the role of lateral transmission of current.
  • the metal of fine grid lines in photovoltaic cells is generally silver.
  • the invention optimizes the current transmission path in the component and eliminates the lateral transmission of current on the fine grid wire, so that the fine grid wire only serves to connect the battery and the metal wire.
  • the fine grid wire basically has no diameter requirements, so the fine grid wire consumes less metal. It can be reduced by more than 80% at most, greatly saving material costs.
  • metal wires have large cross-sectional areas, small resistance, and low losses, so wider battery sheets can be used to prepare shingled components, which can reduce the number of battery sheet cutting times and battery sheet cutting efficiency losses, and improve component production. speed.
  • metal wires can be shaped to reduce their shading on the surface of the cell, further improving module efficiency.
  • the shape of the metal wires is preferably triangular, circular, semicircular, etc.
  • the present invention uses conductive tape (conductive double-sided tape), ultra-thin alloy materials or ultra-thin metal sheets with solder on the surface to replace the conductive glue.
  • the position of the sheet-shaped conductive connection materials can be flexibly arranged according to different layout methods. This enables it to form a stable electrical connection with the front and rear battery cells, thereby achieving the purpose of cost reduction and efficiency improvement.
  • the invention can improve the strength and reliability of the connection between shingled component sheets, reduce material costs, and increase the power of the shingled component.
  • the tail end of the front metal wire extends out of the tail end of the battery piece, and the sheet-shaped conductive connecting material is located at the tail end of each front metal wire.
  • the conductive connecting materials are fixed together; this can avoid or reduce the blocking of the tail end of the previous cell by the leading end of the latter cell, and the blocking of the front side of the cell by the sheet conductive connecting material; it can reduce the waste of silicon material caused by stacking. It saves costs; it can increase inter-chip gain and improve the CTM value of shingled components; it can reduce light blocking and improve component efficiency.
  • the present invention can design the lead-out length of the front metal wire (that is, the length of the tail end of the front metal wire extending outside the tail end of the battery sheet) according to the thickness of the battery sheet, the layout of the components, etc.
  • the yield strength of the front metal wire does not exceed 120MPa, so that the front metal wire
  • the lead-out length is small (the length of the tail end of the front metal wire extending out of the tail end of the battery piece is not more than 5mm, preferably not more than 2mm), the battery piece will not be crushed, and the stress and long-term cracks in the battery piece after welding can be reduced. risk.
  • the base of the sheet-shaped conductive connecting material of the present invention is made of relatively soft metal or alloy material.
  • the yield strength of the sheet-shaped conductive connecting material of the present invention does not exceed 120MPa, which can ensure that when the sheet-shaped conductive connecting material is placed on the back of the battery sheet, it will not cause damage to the battery. There is a risk of lamination cracks and poor long-term reliability of battery cells.
  • the sheet-shaped conductive connecting material of the present invention can be welded during the component lamination process (the ultra-thin alloy material can be melted and solidified again during the component lamination process; the solder on the surface of the ultra-thin metal sheet can be melted again during the component lamination process. and solidified), so the present invention does not require end welding of conductive glue like conventional shingled components.
  • the present invention can directly complete the electrical connection in the laminator after the components are stacked, simplifying the process steps. This method is also consistent with the principle of surface welding of shingled components instead of point-line welding of traditional components. Compared with conductive adhesive, metal alloy welding improves the reliability of welding and reduces the cost of materials.
  • the invention provides a photovoltaic shingled component, which is prepared through the following steps:
  • each cell Lay rectangular battery sheets on the front adhesive film, and stack the battery sheets end to end to form a battery string; the head to tail direction of the battery sheet is the length direction of the battery sheet; when stacking, the head end and back of the latter battery sheet are stacked on the previous battery.
  • the front and rear ends of each cell are preset with sheet-shaped conductive connecting materials for shingled connections.
  • the sheet-shaped conductive connecting materials are long strips whose length direction is perpendicular to the head-to-tail direction of the cell.
  • Sheet-shaped conductive connection materials use conductive tape (conductive double-sided tape), ultra-thin alloy materials or ultra-thin metal sheets covered with solder on the surface; the sheet-shaped conductive connection materials are welded to make a single battery string Two adjacent battery cells are fixed together through a sheet-shaped conductive connecting material (the back of the front end of the latter battery sheet and the front end of the tail end of the previous battery sheet are fixed together through a sheet-shaped conductive connecting material);
  • the battery sheet used in step 2) of Embodiment 1 can also be provided with metal lines covering the fine grid lines of the seed layer on its front and/or back. More specifically:
  • Step 2) The front side of the cell used can also be provided with multiple front metal lines covering the seed layer fine grid lines and arranged in parallel (each front metal line is configured with a front seed layer fine grid line).
  • Each front metal line It extends along the head and tail direction of the cell where it is located, and the tail end of each front metal wire is connected to the sheet-shaped conductive connecting material; the distance between two adjacent front metal wires is 1 to 3mm; the cross-sectional shape of the front metal wire is triangular or circular. Shape or semicircle, etc.;
  • Step 2 The back side of the cell used can also be provided with multiple back metal lines covering the seed layer fine grid lines and arranged in parallel (each back metal line is configured with a back seed layer fine grid line).
  • Each back metal line It extends along the head and tail direction of the cell where it is located, and the first end of each back metal wire is connected to the sheet-shaped conductive connecting material; the spacing between two adjacent back metal wires is 1 to 3mm; the cross-sectional shape of the back metal wire is triangular or circular. shape or semicircle, etc.
  • the present invention also provides another photovoltaic shingled component, which is prepared through the following steps:
  • each cell Lay rectangular battery sheets on the front adhesive film, and stack the battery sheets end to end to form a battery string; the head to tail direction of the battery sheet is the length direction of the battery sheet; when stacking, the head end and back of the latter battery sheet are stacked on the previous battery.
  • the front and rear ends of each cell are preset with sheet-shaped conductive connecting materials for shingled connections.
  • the sheet-shaped conductive connecting materials are long strips whose length direction is perpendicular to the head-to-tail direction of the cell.
  • Sheet-shaped conductive connection materials use ultra-thin alloy materials or ultra-thin metal sheets covered with solder on the surface; ultra-thin alloy materials can be melted and solidified again during the component lamination process; solder on the surface of ultra-thin metal sheets Can be remelted and solidified during component lamination;
  • the lamination temperature is 130 ⁇ 160°C
  • the solder on the surface of the ultra-thin alloy material or ultra-thin metal sheet Melt and connect two adjacent battery sheets together (the back of the front end of the latter battery sheet and the front end of the tail end of the previous battery sheet are fixed together through a sheet-shaped conductive connecting material);
  • the battery sheet used in step 2) of Embodiment 2 can also be provided with metal lines covering the fine grid lines of the seed layer on its front and/or back. More specifically:
  • Step 2) The front side of the cell used can also be provided with multiple front metal lines covering the seed layer fine grid lines and arranged in parallel (each front metal line is configured with a front seed layer fine grid line).
  • Each front metal line It extends along the head and tail direction of the cell where it is located, and the tail end of each front metal wire is connected to the sheet-shaped conductive connecting material; the distance between two adjacent front metal wires is 1 to 3mm; the cross-sectional shape of the front metal wire is triangular or circular. Shape or semicircle, etc.;
  • Step 2 The back side of the cell used can also be provided with multiple back metal lines covering the seed layer fine grid lines and arranged in parallel (each back metal line is configured with a back seed layer fine grid line).
  • Each back metal line It extends along the head and tail direction of the cell where it is located, and the first end of each back metal wire is connected to the sheet-shaped conductive connecting material; the spacing between two adjacent back metal wires is 1 to 3mm; the cross-sectional shape of the back metal wire is triangular or circular. shape or semicircle, etc.
  • the present invention also provides another photovoltaic shingled component, which is prepared through the following steps:
  • each front metal line is configured with a front seed layer Thin grid lines
  • each front metal line extends along the head and tail direction of the cell where it is located; the spacing between two adjacent front metal lines is 1 to 3mm; the cross-sectional shape of the front metal lines is triangular, circular or semicircular, etc.;
  • the tail end of each front metal wire extends to the outside of the tail end of the battery piece where the front metal wire is located, and the length of the tail end of each front metal wire extending out of the tail end of the battery piece where the front metal wire is located is no more than 5mm (preferably no more than 2mm
  • the sheet-shaped conductive connection material is a long sheet-shaped conductive connection whose length direction is perpendicular to the head and tail direction of the cell piece.
  • Materials; sheet-like conductive connection materials use conductive tape (conductive double-sided tape), ultra-thin alloy materials or ultra-thin metal sheets covered with solder; the sheet-like conductive connection materials are welded to make two adjacent ones in a single battery string
  • the battery sheets are fixed together through sheet-like conductive connecting materials (the back end of the first and back of the latter battery sheet and the front and rear ends of the metal wires on the front of the previous battery sheet are fixed together through sheet-like conductive connecting materials);
  • the battery sheet used in step 2) of Embodiment 3 can also have metal lines covering the fine grid lines of the seed layer on its back. More specifically:
  • Step 2 The back side of the cell used can also be provided with multiple back metal lines covering the seed layer fine grid lines and arranged in parallel (each back metal line is configured with a back seed layer fine grid line).
  • Each back metal line It extends along the head and tail direction of the cell where it is located, and the first end of each back metal wire is connected to the sheet-shaped conductive connecting material; the spacing between two adjacent back metal wires is 1 to 3mm; the cross-sectional shape of the back metal wire is triangular or circular. shape or semicircle, etc.
  • the present invention also provides another photovoltaic shingled component, which is prepared through the following steps:
  • each front metal line is configured with a front seed layer Thin grid lines
  • each front metal line extends along the head and tail direction of the cell where it is located; the spacing between two adjacent front metal lines is 1 to 3mm; the cross-sectional shape of the front metal lines is triangular, circular or semicircular, etc.;
  • the tail end of each front metal wire extends to the outside of the tail end of the battery piece where the front metal wire is located, and the length of the tail end of each front metal wire extending out of the tail end of the battery piece where the front metal wire is located is no more than 5mm (preferably no more than 2mm
  • the sheet-shaped conductive connection material is a long sheet-shaped conductive connection whose length direction is perpendicular to the head and tail direction of the cell piece.
  • Materials; sheet conductive connection materials use ultra-thin alloy materials or ultra-thin metal sheets covered with solder on the surface; ultra-thin alloy materials can be melted and solidified again during the component lamination process; solder on the surface of ultra-thin metal sheets can be used at the component layer Melts and solidifies again during pressing;
  • the lamination temperature is 130 ⁇ 160°C
  • the solder on the surface of the ultra-thin alloy material or ultra-thin metal sheet Melt and connect two adjacent battery sheets together (the front and rear ends of the latter battery sheet and the front and rear metal wire ends of the previous battery sheet are fixed together through sheet-shaped conductive connecting materials);
  • the battery sheet used in step 2) of Embodiment 4 can also have metal lines covering the fine grid lines of the seed layer on its back. More specifically:
  • Step 2 The back side of the cell used can also be provided with multiple back metal lines covering the seed layer fine grid lines and arranged in parallel (each back metal line is configured with a back seed layer fine grid line).
  • Each back metal line It extends along the head and tail direction of the cell where it is located, and the first end of each back metal wire is connected to the sheet-shaped conductive connecting material; the spacing between two adjacent back metal wires is 1 to 3mm; the cross-sectional shape of the back metal wire is triangular or circular. shape or semicircle, etc.
  • Example 1 More specifically, in Example 1 to Example 4:
  • the yield strength of each front metal wire does not exceed 120MPa.
  • the thickness of the sheet-shaped conductive connecting material shall not be greater than 0.1mm.
  • the yield strength of sheet-shaped conductive connection materials does not exceed 120MPa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种光伏叠瓦组件,包括由电池片叠瓦连接组成的电池串;电池片正背面设有覆盖在种子层细栅线上的金属线;电池串中相邻两个电池片通过片状导电连接材料连接。本发明采用片状导电连接材料替换导电胶,可按照不同排版方式灵活布置片状导电连接材料位置,使其与前后片电池形成稳定的电连接,达到降本增效的目的。本发明可提高叠瓦组件片间连接的强度和可靠性,降低材料成本,提升叠瓦组件功率。本发明优化了组件中电流传输路径,消除了细栅线上电流横向传输,使得细栅线仅起到连接电池和金属线的作用,细栅线基本无线径要求,所以细栅线金属耗量最大可降低80%以上,大大节约材料成本。

Description

一种光伏叠瓦组件及其制备方法 技术领域
本发明涉及一种光伏叠瓦组件及其制备方法。
背景技术
叠瓦组件通常是将传统电池片切成小片,再将各小片电池利用导电胶前后搭接串联起来,进行层压封装的组件。这种连接方式取代了传统组件金属栅线连接的方式,省去了网印电池主栅的步骤,并降低了线损及栅线对光线造成的遮挡。而且由于叠瓦组件没有片间隙,因此在相同面积下相较于传统组件,叠瓦组件的功率更高。
但是,叠瓦组件目前面临两大难题:一、CTM低;这主要是由于叠瓦组件通过细栅传输电流,电流传输路径相较于目前16BB电池增加400%以上;这导致叠瓦电池线损很高,组件功率损耗也就更高;另外,传统组件电片间通常设置有漫反射结构(例如背板)可以增加电池片对光的二次吸收,而叠瓦组件通过前后两片电池上下搭接进行电流传输,没有片间增益。二、成本高;①由于叠瓦组件使用导电胶完成电池片间的连接,而导电胶主要成分是银颗粒,银的成本较高,且由于导电胶通过导电粒子间的相互接触进行电流传输,因此固含量下降意味着导电性能变差,因此银耗很高;而且导电胶需要在-20℃以下储存,存储成本较高;另外,导电胶对设备精度要求高,施加方式也比较复杂,因此叠瓦组件单是耗费在导电胶材料及施加上的成本就已经很高了;②叠瓦组件电池细栅传输路径长,为降低线损带来的功率损耗,细栅宽度必须加大,银耗量也随之增加;③叠瓦组件电池片重叠部分面积通常在0.5-1mm之间,重叠部分会造成硅料的浪费。
针对叠瓦组件成本高、CTM低的问题,部分厂家在电池表面焊接金属焊带,可以像主栅一样起到汇集传输电流的作用,缩短细栅电流传输路径,降低线损,提升叠瓦组件功率;但基于导电胶造成的材料、设备等方面的下降成本却极小。
另外,光伏电池片细栅线金属一般为银。常规叠瓦组件中,电流从电池片表面汇集到银细栅线上,并直接通过银细栅线传输至相邻电池片,银细栅线截面积小,致使常规叠瓦电池片只能通过多次切割成窄条小片,来降低银细栅线中电流传输距离,进而降低电阻损耗。
发明内容
为解决现有技术的缺陷,本发明提供一种光伏叠瓦组件,包括由电池片叠瓦连接组成的电池串;电池片正背面设有覆盖在种子层细栅线(可以是银细栅线)上的金属线;电池串中相邻两个电池片通过片状导电连接材料连接;片状导电连接材料为导电胶带(导电双面胶带)、超薄合金材料或表面覆有焊料的超薄金属片。
优选的,种子层细栅线及金属线在电池片表面平行排列,相邻细栅种子层及金属线间距为1~3mm。
优选的,所述电池片的正面设有多个覆盖在种子层细栅线上且相互平行的正面金属线,各正面金属线沿其所在电池片的首尾方向延伸;各正面金属线的尾端伸至正面金属线所在电池片尾端的外侧,且片状导电连接材料位于各正面金属线的尾端。各正面金属线尾端伸出所在电池片尾端外侧的长度不大于5mm,优选的,不大于2mm。
优选的,所述超薄合金材料可在组件层压过程中再次熔化并固化;所述超薄金属片表面的焊料可在组件层压过程中再次熔化并固化。
本发明还提供多种光伏叠瓦组件的制备方法,具体步骤参见实施例。
有益效果
本发明的优点和有益效果在于:
本发明光伏叠瓦组件中,电流传输路径为,电流由电池片基体至电池片表面,再通过电池片表面的种子层细栅线垂直传输至金属线,再通过金属线传输至片状导电连接材料,并由片状导电连接材料传输至相邻电池片;其中,种子层细栅线仅起到垂直导出电流并将电流传输给金属线的作用,不承担横向传输电流的作用。
如前所述,光伏电池片细栅线金属一般为银。本发明优化了组件中电流传输路径,消除了细栅线上电流横向传输,使得细栅线仅起到连接电池和金属线的作用,细栅线基本无线径要求,所以细栅线金属耗量最大可降低80%以上,大大节约材料成本。
如前所述,常规叠瓦组件中,电流从电池片表面汇集到银细栅线上,并直接通过银细栅线传输至相邻电池片,银细栅线截面积小,致使常规叠瓦电池片只能通过多次切割成窄条小片,来降低银细栅线中电流传输距离,进而降低电阻损耗。本发明直接通过金属线传输电流,金属线截面积大、电阻小、损耗低,所以可以使用更宽电池片来制备叠瓦组件,可减少电池片切割次数及电池片切割效率损失,提升组件制作速度。另外,金属线可以通过塑形降低其在电池片表面的遮光,进一步提升组件效率,金属线形状优选三角形、圆形、半圆形等。
本发明采用导电胶带(导电双面胶带)、超薄合金材料或表面覆有焊料的超薄金属片等片状导电连接材料替换导电胶,可按照不同排版方式灵活布置片状导电连接材料位置,使其与前后片电池形成稳定的电连接,达到降本增效的目的。
本发明可提高叠瓦组件片间连接的强度和可靠性,降低材料成本,提升叠瓦组件功率。
本发明正面金属线尾端伸出电池片尾端外侧,片状导电连接材料位于各正面金属线的尾端,后一电池片的首端背面与前一电池片的正面金属线尾端通过片状导电连接材料固接在一起;这样可以避免或减少后一电池片首端对前一电池片尾端的遮挡,以及片状导电连接材料对电池片正面的遮挡;可以减少叠片导致的硅料浪费,节约成本;可增加片间增益,提高叠瓦组件的CTM值;可减少对光线的遮挡,提升组件效率。
本发明可以根据电池片厚度、组件排版方式等设计正面金属线的引出长度(即正面金属线尾端伸出电池片尾端外侧的长度),正面金属线的屈服强度不超过120MPa,使正面金属线在较小引出长度(正面金属线尾端伸出电池片尾端外侧的长度不大于5mm,优选不大于2mm)时不会压裂电池片,且能减小焊接后电池片内的应力和长期裂片风险。
本发明的片状导电连接材料的基底采用质地相对柔软的金属或者合金材料,本发明片状导电连接材料屈服强度不超过120MPa,可保证片状导电连接材料置于电池片背面时,不会对电池片产生层压裂片及长期可靠性变差的风险。
本发明的片状导电连接材料可在组件层压过程中完成焊接(超薄合金材料可在组件层压过程中再次熔化并固化;超薄金属片表面的焊料可在组件层压过程中再次熔化并固化),故本发明不需要像常规叠瓦组件一样进行导电胶的端焊,本发明可在组件层叠后,直接在层压机内完成电连接,简化了工艺步骤。这种方式同样符合叠瓦组件以面焊接替代传统组件点线焊接的原理,且金属合金焊接相较于导电胶又提升了焊接的可靠性,降低了材料的成本。
本发明的实施方式 具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施的技术方案如下:
实施例1
本发明提供一种光伏叠瓦组件,通过如下步骤制备:
1)铺设光伏面板(如光伏玻璃)和正面胶膜;
2)在正面胶膜上铺设矩形电池片,并使电池片首尾堆叠形成电池串;电池片的首尾方向为电池片的长度方向;堆叠时,后一电池片的首端背面堆叠在前一电池片的尾端正面;且各电池片的尾端正面和/或首端背面预设有叠瓦连接用片状导电连接材料,片状导电连接材料为长度方向与电池片首尾方向垂直的长条片状导电连接材料;片状导电连接材料采用导电胶带(导电双面胶带)、超薄合金材料或表面覆有焊料的超薄金属片;对片状导电连接材料进行焊接,使单个电池串中相邻两个电池片通过片状导电连接材料固接在一起(后一电池片的首端背面与前一电池片的尾端正面通过片状导电连接材料固接在一起);
3)焊接汇流条和电极引出线;
4)铺设背面胶膜和光伏背板(可以是背板玻璃);此时,形成待层压的层叠件;
5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;
6)安装接线盒和组件边框。
实施例1的步骤2)所用的电池片,其正面和/或背面还可设有覆盖在种子层细栅线上的金属线,更具体的:
步骤2)所用电池片的正面还可设有多个覆盖在种子层细栅线上且平行排列的正面金属线(每个正面金属线对应配置一个正面种子层细栅线),各正面金属线沿其所在电池片的首尾方向延伸,且各正面金属线的尾端与片状导电连接材料连接;相邻两个正面金属线的间距为1~3mm;正面金属线的截面形状为三角形、圆形或半圆形等;
步骤2)所用电池片的背面还可设有多个覆盖在种子层细栅线上且平行排列的背面金属线(每个背面金属线对应配置一个背面种子层细栅线),各背面金属线沿其所在电池片的首尾方向延伸,且各背面金属线的首端与片状导电连接材料连接;相邻两个背面金属线的间距为1~3mm;背面金属线的截面形状为三角形、圆形或半圆形等。
实施例2
本发明还提供另一种光伏叠瓦组件,通过如下步骤制备:
1)铺设光伏面板(如光伏玻璃)和正面胶膜;
2)在正面胶膜上铺设矩形电池片,并使电池片首尾堆叠形成电池串;电池片的首尾方向为电池片的长度方向;堆叠时,后一电池片的首端背面堆叠在前一电池片的尾端正面;且各电池片的尾端正面和/或首端背面预设有叠瓦连接用片状导电连接材料,片状导电连接材料为长度方向与电池片首尾方向垂直的长条片状导电连接材料;片状导电连接材料采用超薄合金材料或表面覆有焊料的超薄金属片;超薄合金材料可在组件层压过程中再次熔化并固化;超薄金属片表面的焊料可在组件层压过程中再次熔化并固化;
3)焊接汇流条和电极引出线;
4)铺设背面胶膜和光伏背板(可以是背板玻璃);此时,形成待层压的层叠件;
5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;层压温度为130~160℃,且层压过程中,超薄合金材料或超薄金属片表面的焊料熔化,并将相邻的两个电池片固接在一起(后一电池片的首端背面与前一电池片的尾端正面通过片状导电连接材料固接在一起);
6)安装接线盒和组件边框。
实施例2的步骤2)所用的电池片,其正面和/或背面还可设有覆盖在种子层细栅线上的金属线,更具体的:
步骤2)所用电池片的正面还可设有多个覆盖在种子层细栅线上且平行排列的正面金属线(每个正面金属线对应配置一个正面种子层细栅线),各正面金属线沿其所在电池片的首尾方向延伸,且各正面金属线的尾端与片状导电连接材料连接;相邻两个正面金属线的间距为1~3mm;正面金属线的截面形状为三角形、圆形或半圆形等;
步骤2)所用电池片的背面还可设有多个覆盖在种子层细栅线上且平行排列的背面金属线(每个背面金属线对应配置一个背面种子层细栅线),各背面金属线沿其所在电池片的首尾方向延伸,且各背面金属线的首端与片状导电连接材料连接;相邻两个背面金属线的间距为1~3mm;背面金属线的截面形状为三角形、圆形或半圆形等。
实施例3
本发明还提供另一种光伏叠瓦组件,通过如下步骤制备:
1)铺设光伏面板(如光伏玻璃)和正面胶膜;
2)在正面胶膜上铺设带正面金属线的矩形电池片,并使电池片首尾堆叠形成电池串;电池片的首尾方向为电池片的长度方向;堆叠时,后一电池片的首端背面堆叠在前一电池片的正面金属线尾端;且各电池片的正面设有多个覆盖在种子层细栅线上且平行排列的正面金属线(每个正面金属线对应配置一个正面种子层细栅线),各正面金属线沿其所在电池片的首尾方向延伸;相邻两个正面金属线的间距为1~3mm;正面金属线的截面形状为三角形、圆形或半圆形等;各正面金属线的尾端伸至正面金属线所在电池片尾端的外侧,且各正面金属线尾端伸出正面金属线所在电池片尾端外侧的长度不大于5mm(优选不大于2mm);各电池片的正面金属线尾端和/或各电池片的首端背面预设有叠瓦连接用片状导电连接材料,片状导电连接材料为长度方向与电池片首尾方向垂直的长条片状导电连接材料;片状导电连接材料采用导电胶带(导电双面胶带)、超薄合金材料或表面覆有焊料的超薄金属片;对片状导电连接材料进行焊接,使单个电池串中相邻两个电池片通过片状导电连接材料固接在一起(后一电池片的首端背面与前一电池片的正面金属线尾端通过片状导电连接材料固接在一起);
3)焊接汇流条和电极引出线;
4)铺设背面胶膜和光伏背板(可以是背板玻璃);此时,形成待层压的层叠件;
5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;
6)安装接线盒和组件边框。
实施例3的步骤2)所用的电池片,其背面还可设有覆盖在种子层细栅线上金属线,更具体的:
步骤2)所用电池片的背面还可设有多个覆盖在种子层细栅线上且平行排列的背面金属线(每个背面金属线对应配置一个背面种子层细栅线),各背面金属线沿其所在电池片的首尾方向延伸,且各背面金属线的首端与片状导电连接材料连接;相邻两个背面金属线的间距为1~3mm;背面金属线的截面形状为三角形、圆形或半圆形等。
实施例4
本发明还提供另一种光伏叠瓦组件,通过如下步骤制备:
1)铺设光伏面板(如光伏玻璃)和正面胶膜;
2)在正面胶膜上铺设带正面金属线的矩形电池片,并使电池片首尾堆叠形成电池串;电池片的首尾方向为电池片的长度方向;堆叠时,后一电池片的首端背面堆叠在前一电池片的正面金属线尾端;且各电池片的正面设有多个覆盖在种子层细栅线上且平行排列的正面金属线(每个正面金属线对应配置一个正面种子层细栅线),各正面金属线沿其所在电池片的首尾方向延伸;相邻两个正面金属线的间距为1~3mm;正面金属线的截面形状为三角形、圆形或半圆形等;各正面金属线的尾端伸至正面金属线所在电池片尾端的外侧,且各正面金属线尾端伸出正面金属线所在电池片尾端外侧的长度不大于5mm(优选不大于2mm);各电池片的正面金属线尾端和/或各电池片的首端背面预设有叠瓦连接用片状导电连接材料,片状导电连接材料为长度方向与电池片首尾方向垂直的长条片状导电连接材料;片状导电连接材料采用超薄合金材料或表面覆有焊料的超薄金属片;超薄合金材料可在组件层压过程中再次熔化并固化;超薄金属片表面的焊料可在组件层压过程中再次熔化并固化;
3)焊接汇流条和电极引出线;
4)铺设背面胶膜和光伏背板(可以是背板玻璃);此时,形成待层压的层叠件;
5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;层压温度为130~160℃,且层压过程中,超薄合金材料或超薄金属片表面的焊料熔化,并将相邻的两个电池片固接在一起(后一电池片的首端背面与前一电池片的正面金属线尾端通过片状导电连接材料固接在一起);
6)安装接线盒和组件边框。
实施例4的步骤2)所用的电池片,其背面还可设有覆盖在种子层细栅线上金属线,更具体的:
步骤2)所用电池片的背面还可设有多个覆盖在种子层细栅线上且平行排列的背面金属线(每个背面金属线对应配置一个背面种子层细栅线),各背面金属线沿其所在电池片的首尾方向延伸,且各背面金属线的首端与片状导电连接材料连接;相邻两个背面金属线的间距为1~3mm;背面金属线的截面形状为三角形、圆形或半圆形等。
更具体的,实施例1至实施例4中:
各正面金属线的屈服强度不超过120MPa。
片状导电连接材料的厚度不大于0.1mm。
片状导电连接材料的屈服强度不超过120MPa。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1.  一种光伏叠瓦组件,包括由电池片叠瓦连接组成的电池串;其特征在于,电池片正背面设有覆盖在种子层细栅线上的金属线;电池串中相邻两个电池片通过片状导电连接材料连接;片状导电连接材料为导电胶带、超薄合金材料或表面覆有焊料的超薄金属片。
  2.  根据权利要求1所述的光伏叠瓦组件,其特征在于,所述电池片的正面设有多个覆盖在种子层细栅线上且平行排列的正面金属线,各正面金属线沿电池片的首尾方向延伸,且各正面金属线的尾端与片状导电连接材料连接。
  3.  根据权利要求2所述的光伏叠瓦组件,其特征在于,所述电池片的背面设有多个覆盖在种子层细栅线上且平行排列的背面金属线,各背面金属线沿电池片的首尾方向延伸,且各背面金属线的首端与片状导电连接材料连接。
  4.  根据权利要求3所述的光伏叠瓦组件,其特征在于,相邻两个正面金属线的间距为1~3mm;相邻两个背面金属线的间距为1~3mm。
  5.  根据权利要求3所述的光伏叠瓦组件,其特征在于,所述正面金属线、背面金属线的截面形状为三角形、圆形或半圆形。
  6.  根据权利要求2或3所述的光伏叠瓦组件,其特征在于,各正面金属线的尾端伸至电池片尾端的外侧,且片状导电连接材料位于各正面金属线的尾端。
  7.  根据权利要求6所述的光伏叠瓦组件,其特征在于,各正面金属线尾端伸出电池片尾端外侧的长度不大于5mm。
  8.  根据权利要求6所述的光伏叠瓦组件,其特征在于,各正面金属线的屈服强度不超过120MPa。
  9.  根据权利要求1所述的光伏叠瓦组件,其特征在于,所述片状导电连接材料的厚度不大于0.1mm。
  10.  根据权利要求1所述的光伏叠瓦组件,其特征在于,所述片状导电连接材料的屈服强度不超过120MPa。
  11.  根据权利要求1所述的光伏叠瓦组件,其特征在于,所述片状导电连接材料为长条片状导电连接材料,且长条片状导电连接材料的长度方向与电池片的首尾方向垂直。
  12.  一种光伏叠瓦组件的制备方法,其特征在于,包括如下步骤:
    1)铺设光伏面板和正面胶膜;
    2)在正面胶膜上铺设电池片,并使电池片首尾堆叠形成电池串;堆叠时,后一电池片的首端背面堆叠在前一电池片的尾端正面;且各电池片的尾端正面和/或首端背面预设有叠瓦连接用片状导电连接材料;片状导电连接材料为导电胶带、超薄合金材料或表面覆有焊料的超薄金属片;对片状导电连接材料进行焊接,使单个电池串中相邻两个电池片通过片状导电连接材料固接在一起;
    3)焊接汇流条和电极引出线;
    4)铺设背面胶膜和光伏背板;此时,形成待层压的层叠件;
    5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;
    6)安装接线盒和组件边框。
  13.  一种光伏叠瓦组件的制备方法,其特征在于,包括如下步骤:
    1)铺设光伏面板和正面胶膜;
    2)在正面胶膜上铺设电池片,并使电池片首尾堆叠形成电池串;堆叠时,后一电池片的首端背面堆叠在前一电池片的尾端正面;且各电池片的尾端正面和/或首端背面预设有叠瓦连接用片状导电连接材料;片状导电连接材料为超薄合金材料或表面覆有焊料的超薄金属片;
    3)焊接汇流条和电极引出线;
    4)铺设背面胶膜和光伏背板;此时,形成待层压的层叠件;
    5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;且层压过程中,超薄合金材料或超薄金属片表面的焊料熔化,并将相邻的两个电池片固接在一起;
    6)安装接线盒和组件边框。
  14.  一种光伏叠瓦组件的制备方法,其特征在于,包括如下步骤:
    1)铺设光伏面板和正面胶膜;
    2)在正面胶膜上铺设带正面金属线的电池片,并使电池片首尾堆叠形成电池串;堆叠时,后一电池片的首端背面堆叠在前一电池片的正面金属线尾端;且各电池片的正面设有多个覆盖在种子层细栅线上且平行排列的正面金属线,各正面金属线沿电池片的首尾方向延伸;各正面金属线的尾端伸至电池片尾端的外侧;各电池片的正面金属线尾端和/或各电池片的首端背面预设有叠瓦连接用片状导电连接材料;片状导电连接材料为导电胶带、超薄合金材料或表面覆有焊料的超薄金属片;对片状导电连接材料进行焊接,使单个电池串中相邻两个电池片通过片状导电连接材料固接在一起;
    3)焊接汇流条和电极引出线;
    4)铺设背面胶膜和光伏背板;此时,形成待层压的层叠件;
    5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;
    6)安装接线盒和组件边框。
  15.  一种光伏叠瓦组件的制备方法,其特征在于,包括如下步骤:
    1)铺设光伏面板和正面胶膜;
    2)在正面胶膜上铺设带正面金属线的电池片,并使电池片首尾堆叠形成电池串;堆叠时,后一电池片的首端背面堆叠在前一电池片的正面金属线尾端;且各电池片的正面设有多个覆盖在种子层细栅线上且平行排列的正面金属线,各正面金属线沿电池片的首尾方向延伸;各正面金属线的尾端伸至电池片尾端的外侧;各电池片的正面金属线尾端和/或各电池片的首端背面预设有叠瓦连接用片状导电连接材料;片状导电连接材料为超薄合金材料或表面覆有焊料的超薄金属片;
    3)焊接汇流条和电极引出线;
    4)铺设背面胶膜和光伏背板;此时,形成待层压的层叠件;
    5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;且层压过程中,超薄合金材料或超薄金属片表面的焊料熔化,并将相邻的两个电池片固接在一起;
    6)安装接线盒和组件边框。
PCT/CN2023/094404 2022-07-21 2023-05-16 一种光伏叠瓦组件及其制备方法 WO2024016805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210858297.XA CN115241294B (zh) 2022-07-21 2022-07-21 一种光伏叠瓦组件及其制备方法
CN202210858297.X 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024016805A1 true WO2024016805A1 (zh) 2024-01-25

Family

ID=83673499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094404 WO2024016805A1 (zh) 2022-07-21 2023-05-16 一种光伏叠瓦组件及其制备方法

Country Status (2)

Country Link
CN (1) CN115241294B (zh)
WO (1) WO2024016805A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241294B (zh) * 2022-07-21 2024-05-17 常州时创能源股份有限公司 一种光伏叠瓦组件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016593A (ja) * 2007-07-05 2009-01-22 Neomax Material:Kk 太陽電池用電極線材、その基材および基材の製造方法
CN102592702A (zh) * 2012-02-28 2012-07-18 无锡市斯威克科技有限公司 太阳能电池片用极软涂锡铜带
CN107810561A (zh) * 2015-06-25 2018-03-16 太阳能公司 太阳能电池的一维金属化
CN108574025A (zh) * 2018-05-21 2018-09-25 保定易通光伏科技股份有限公司 叠瓦组件的制作方法
CN112563358A (zh) * 2020-12-14 2021-03-26 浙江大学 一种双玻叠瓦光伏组件
US20210408314A1 (en) * 2019-05-28 2021-12-30 Zhejiang Jinko Solar Co., Ltd. Photovoltaic cell array and photovoltaic module
CN115241294A (zh) * 2022-07-21 2022-10-25 常州时创能源股份有限公司 一种光伏叠瓦组件及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009753A (ja) * 2010-06-28 2012-01-12 Sekisui Chem Co Ltd 太陽電池モジュール用導電材料及び太陽電池モジュール
CN106206767B (zh) * 2014-10-31 2019-01-11 比亚迪股份有限公司 太阳能电池单元、电池片阵列、电池组件及其制备方法
CN105789359A (zh) * 2016-03-29 2016-07-20 晶澳(扬州)太阳能科技有限公司 一种双面太阳能电池组件的制作方法
WO2019016118A1 (en) * 2017-07-20 2019-01-24 Meyer Burger (Switzerland) Ag SOLID CELL CHAINS IN STABILIZED SHINGLES AND METHODS OF PRODUCING SAME
CN107768473A (zh) * 2017-09-27 2018-03-06 江阴艾能赛瑞能源科技有限公司 太阳能叠片电池及其焊接方法
CN108987509A (zh) * 2018-08-03 2018-12-11 浙江爱旭太阳能科技有限公司 双面叠瓦太阳能电池组件及制备方法
CN109360863A (zh) * 2018-11-09 2019-02-19 连云港神舟新能源有限公司 一种新型叠片组件
CN209561428U (zh) * 2019-04-17 2019-10-29 厦门大学 一种叠瓦光伏组件
CN110277460A (zh) * 2019-07-16 2019-09-24 无锡鼎森茂科技有限公司 太阳能电池片及光伏组件
CN110556442B (zh) * 2019-09-10 2021-09-24 常州时创能源股份有限公司 无主栅晶硅电池片及其应用
CN111244216A (zh) * 2020-01-23 2020-06-05 成都晔凡科技有限公司 叠瓦组件的制造方法及叠瓦组件
CN111682082B (zh) * 2020-07-17 2021-12-10 杭州福斯特应用材料股份有限公司 封装胶膜及光伏组件
CN213692074U (zh) * 2020-12-29 2021-07-13 中建材浚鑫科技有限公司 一种用于无遮挡组件封装技术的太阳能电池组件
EP4228010A4 (en) * 2020-12-30 2024-05-29 Risen Energy Co Ltd PACKAGING METHOD FOR A SOLAR CELL MODULE, CONNECTING METHOD FOR A SOLAR CELL STRING, SOLAR CELL MODULE AND MANUFACTURING METHOD THEREFOR
CN216054739U (zh) * 2021-10-14 2022-03-15 常州捷佳创精密机械有限公司 电池串、光伏组件和电池串的生产设备
CN113851551A (zh) * 2021-10-14 2021-12-28 常州捷佳创精密机械有限公司 电池串、光伏组件、电池串的生产设备和生产方法
CN114220879A (zh) * 2021-12-13 2022-03-22 任佳新 一种无主栅线电极的叠瓦电池组件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016593A (ja) * 2007-07-05 2009-01-22 Neomax Material:Kk 太陽電池用電極線材、その基材および基材の製造方法
CN102592702A (zh) * 2012-02-28 2012-07-18 无锡市斯威克科技有限公司 太阳能电池片用极软涂锡铜带
CN107810561A (zh) * 2015-06-25 2018-03-16 太阳能公司 太阳能电池的一维金属化
CN108574025A (zh) * 2018-05-21 2018-09-25 保定易通光伏科技股份有限公司 叠瓦组件的制作方法
US20210408314A1 (en) * 2019-05-28 2021-12-30 Zhejiang Jinko Solar Co., Ltd. Photovoltaic cell array and photovoltaic module
CN112563358A (zh) * 2020-12-14 2021-03-26 浙江大学 一种双玻叠瓦光伏组件
CN115241294A (zh) * 2022-07-21 2022-10-25 常州时创能源股份有限公司 一种光伏叠瓦组件及其制备方法

Also Published As

Publication number Publication date
CN115241294A (zh) 2022-10-25
CN115241294B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
CN207800614U (zh) 一种叠瓦式太阳能光伏组件
WO2023005913A1 (zh) 太阳能电池串及其制备方法和应用
CN107195719A (zh) 叠瓦式太阳能光伏组件及生产设备
CN204857754U (zh) 一种太阳能电池组件
WO2022193578A1 (zh) 太阳能电池片的连接方法
WO2022247057A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
CN110277460A (zh) 太阳能电池片及光伏组件
CN206806350U (zh) 一种太阳能光伏组件
CN113678263A (zh) 光伏电池和光伏电池串及相关方法
WO2024016805A1 (zh) 一种光伏叠瓦组件及其制备方法
CN114220879A (zh) 一种无主栅线电极的叠瓦电池组件及其制备方法
CN116154028A (zh) 光伏电池单元及其应用
CN116314365A (zh) 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
CN215815903U (zh) 一种光伏组件
CN114864721A (zh) 一种无主栅的光伏组件及其制备方法、焊带焊接方法
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
WO2023232136A1 (zh) 一种基于超薄钢化玻璃的轻质叠瓦光伏组件
CN114203836A (zh) 一种异质结叠瓦光伏电池组件及其制备方法
CN206878020U (zh) 叠瓦式太阳能光伏组件及生产设备
CN209843731U (zh) 基线隐藏式叠瓦电池串
CN204834651U (zh) 一种低温串接的太阳能电池组件
WO2024087506A1 (zh) 焊带件及其制备方法、光伏组件
CN219180527U (zh) 一种新型无主栅光伏电池及光伏组件
EP4345912A1 (en) Photovoltaic module and method for preparing the photovoltaic module
WO2023016582A1 (zh) 光伏电池串及其制备方法、串焊设备和光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841874

Country of ref document: EP

Kind code of ref document: A1