WO2024016806A1 - 光伏电池单元及其制备方法 - Google Patents

光伏电池单元及其制备方法 Download PDF

Info

Publication number
WO2024016806A1
WO2024016806A1 PCT/CN2023/094484 CN2023094484W WO2024016806A1 WO 2024016806 A1 WO2024016806 A1 WO 2024016806A1 CN 2023094484 W CN2023094484 W CN 2023094484W WO 2024016806 A1 WO2024016806 A1 WO 2024016806A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
metal
cell unit
strip
photovoltaic cell
Prior art date
Application number
PCT/CN2023/094484
Other languages
English (en)
French (fr)
Inventor
王伟亮
陈章洋
曹育红
符黎明
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2024016806A1 publication Critical patent/WO2024016806A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a photovoltaic cell unit and its application.
  • silicon wafers are used to make cells.
  • Metal patterns for collecting current are pre-prepared on the surface of the cells.
  • the pattern for collecting current is a fine grid. Considering the light shading and current transmission loss, the fine grid The aspect ratio should be as large as possible.
  • the pattern used for connecting cells in series and collecting fine grid current is the main grid. To a certain extent, the more main grids there are, the smaller and narrower the fine grid silver consumption can be, and the fine grid thermal resistance loss is reduced. , which reduces battery consumption and improves efficiency, so battery main grids have been developing in more and more directions.
  • the number of main grids of multi-busbar is mainly: 9 to 20 main grids. Compared with the number of fine grids and cell width, the number of main grids and the actual light-shielding area of the welding ribbon are still relatively small. The impact on the light utilization of the entire component is still relatively limited, so the welding ribbon itself is also There are not many harsh and specific requirements, such as chamfering of the triangular welding strip, reflectivity requirements on the surface of the welding strip, etc.
  • the current path of the cell is complex.
  • the photogenerated current is collected from the base of the cell to the fine grid lines, transversely transmitted to the main grid lines through the fine grid lines, and then vertically transmitted to the welding ribbon, and then transmitted out of the cell through the welding ribbon;
  • the battery metallization silver consumption is too high
  • the metal shading area on the surface of the cell is large, which affects the efficiency of the cell and components;
  • the current of the cell sheet is transmitted and collected through the fine metal grid on the surface.
  • the thermal resistance loss during the transmission process reduces the output power of the battery and components
  • the production speed of photovoltaic modules is slow.
  • the cells in the module are connected to the front and back of adjacent cells through a welding ribbon to form a series connection. This connection method makes it difficult to significantly increase the module production speed after it reaches a certain level;
  • the present invention provides a photovoltaic cell unit, which includes a cell sheet, a first conductive connecting strip, a second conductive connecting strip respectively arranged on both sides of the cell sheet; the first conductive connecting strip, the second conductive connecting strip The connecting strips are parallel to each other;
  • the front side of the battery sheet is connected to the bottom surface of the first conductive connection bar through a plurality of mutually parallel first metal wires; each first metal wire is fixedly connected to the bottom surface of the first conductive connection bar through an electrical connection material; each first metal wire The wires are also fixedly connected to the front side of the battery sheet through electrical connection materials; and one end of each first metal wire away from the first conductive connecting strip does not extend to the outside of the battery sheet;
  • the back side of the battery sheet is connected to the top surface of the second conductive connection bar through a plurality of mutually parallel second metal wires; each second metal wire is fixedly connected to the top surface of the second conductive connection bar through an electrical connection material; each second metal wire is connected to the top surface of the second conductive connection bar through an electrical connection material.
  • the two metal wires are also fixedly connected to the back of the battery sheet through electrical connection materials respectively; and one end of each second metal wire away from the second conductive connecting strip does not extend to the outside of the battery sheet.
  • the electrical connection material on the bottom surface of the first conductive connection strip and the top surface of the second conductive connection strip can be melted and solidified again during the component lamination process.
  • Example 1 for the specific content of the photovoltaic cell unit of the present invention.
  • the present invention also provides two methods for preparing photovoltaic modules, both of which use the above-mentioned photovoltaic cell units. Please refer to Example 2 and Example 3 for specific steps.
  • the photovoltaic cell unit of the present invention combines metal wires (first metal wires, second metal wires) and conductive connection strips (first conductive connection strips, second conductive connection strips) on the cell sheet, which can be regarded as a whole.
  • a cell unit, the entire process from the cell unit to the photovoltaic module is the preparation process of the photovoltaic module, because all the metal wires (first metal wire, second metal wire) that collect and transmit current have been pre-connected to the cell unit and are used for
  • the assembly process is relatively simpler than the traditional assembly process.
  • the current on the surface of the cell (front side of the cell, back side of the cell) can be directly collected and transmitted through metal wires (first metal wire, second metal wire), and the number of metal wires on the surface of the battery can be extremely large.
  • ultra-dense such as 166mm width cell
  • the number of metal wires on its surface can exceed 120
  • traditional component string welding process and component packaging process can no longer realize the packaging of this structural component.
  • the biggest difference between the component preparation method of the present invention and the traditional component preparation method is that it does not require the traditional string welding step.
  • the traditional string welding process can no longer satisfy the battery series connection process of ultra-multiple metal wires.
  • the metal wire (the first metal wire) is first wires, second metal wires) and conductive connecting strips (first conductive connecting strips, second conductive connecting strips) are compounded on the cell sheet to form an independent photovoltaic cell unit, and then the photovoltaic cell units are connected end to end, which can realize ultra-multiple metal lines
  • the batteries are connected in series while simplifying the connection process.
  • the present invention can realize the simultaneous placement of multiple battery cells and increase the speed of arranging the cells.
  • the present invention can weaken the accuracy of cell arranging, and the placement process no longer requires high-precision positioning by vision and robots. , effective placement of battery cells can be achieved through simple mechanical positioning.
  • the effective overlapping method of ultra-fine metal wires of the present invention is to electrically connect battery sheets by connecting the metal wires (first metal wire, second conductive connecting bar) through a pair of conductive connection strips (first conductive connection strip, second conductive connection strip).
  • Metal wires are sandwiched in the middle and then welded at high temperature by a laminator, which can simply and effectively realize the overlap between small metal wires, ensuring the effective transmission of current between battery sheets on each metal wire.
  • the metal wires can be directly electrically connected to the TCO through conductive glue or alloy.
  • the metal wires can be electrically connected to the metal grid wires on the battery surface through conductive glue or alloy.
  • the above structure can be applied to most solar cells with surface metal patterns and non-metal patterns on the surface such as PERC, TOPCon, HJT, etc., which collect current through TCO.
  • the photogenerated current of the photovoltaic cell unit of the present invention is collected on the surface of the cell (front and back of the cell) and transmitted to the metal wires (first metal wire, second metal wire) without passing through the fine grid, and the metal wire (first metal wire) , the second metal line) is much lower than the fine gate resistance, so the thermal resistance loss of current transmission in the metal lines (the first metal line, the second metal line) can be reduced a lot. When the loss is reduced, the output power of the component will be high.
  • the present invention can reduce the silver paste consumption of battery components.
  • the current on the surface of the battery sheet (front and back of the battery sheet) is collected and transmitted through metal wires (first metal wire, second metal wire).
  • the silver paste only serves to connect the metal wires and As for the function of the cell, the current in the silver paste only needs to be transmitted in the longitudinal direction perpendicular to the surface of the cell, and does not need to be transmitted horizontally, so there is no need to stack a lot of silver paste to reduce the transverse transmission resistance.
  • the height of the silver paste can be reduced to less than 5 ⁇ m, so Silver paste consumption can also be significantly reduced. Whether it is PERC, TOPCon, HJT or other batteries, the silver consumption can be greatly reduced, up to more than 80%.
  • the shading of traditional battery fine grids and welding ribbons is 3% to 5%, resulting in serious shading losses.
  • the cross-sectional shape of the metal wires (first metal wire, second metal wire) on the surface of the battery sheet of the present invention is preferably a highly reflective triangular structure. Direct light reflected on the surface of the metal wire will eventually reach the battery sheet and be absorbed by the battery sheet, so the metal The surface of the line-to-cell cell does not block incident light, and the cell module has a high light reception rate, and the cell module efficiency is naturally high.
  • the inter-chip conductive connecting strips (first conductive connecting strip, second conductive connecting strip) of the present invention can have a highly reflective zigzag structure, forming a secondary total reflection of the incident light, and finally returning to the cell chip, thereby improving the utilization of the light in the cell chip gap.
  • the inter-sheet conductive connection strips (first conductive connection strips, second conductive connection strips) designed in the present invention can achieve simple operation and effective use.
  • the present invention can greatly reduce the silver consumption and metal line light blocking on the surface of the cell, and greatly increase the production speed of photovoltaic modules.
  • the solution of the present invention is suitable for stacked grid cells with a stacked grid structure.
  • the stacked grid structure includes: a grid line-shaped ultra-thin seed layer provided on the surface of the cell sheet, and a grid-line-shaped ultra-thin seed layer stacked on the ultra-thin seed layer.
  • the metal lines are parallel to the ultra-thin seed layer where they are located, and the width of the metal lines is not less than the width of the ultra-thin seed layer where they are located; the thickness of the ultra-thin seed layer is ⁇ 5 ⁇ m; specifically, as shown in Figure 5, the metal lines
  • the ultra-thin seed layer where the metal wire is located is connected through a conductive connecting material; more specifically, the metal wire and the ultra-thin seed layer where it is located are connected through welding, conductive curing glue connection or conductive tape connection.
  • the ultra-thin seed layer is mainly used to collect and longitudinally conduct the photo-generated current in the cell matrix, and the metal wire is mainly used to transmit the photo-generated current out of the cell chip;
  • the photogenerated current transmission path of the stacked grid cell is collected from the cell matrix to the grid-shaped ultra-thin seed layer, and then vertically transmitted from the grid-shaped ultra-thin seed layer to the metal wire, and then transmitted out of the cell sheet through the metal wire , there is no need for lateral current transmission through the grid-like ultrathin seed layer;
  • the stacked grid battery has a simple structure and a short current transmission path.
  • the cell substrate, ultra-thin seed layer, and metal wires are stacked together in the vertical direction.
  • the photogenerated current flows vertically from the inside of the cell through the ultra-thin seed layer directly to the metal. Lines, no lateral transmission process, small resistance loss, can save the consumption of precious metal silver in lateral transmission and avoid or reduce the light blocking by silver grid lines.
  • Figure 1 is a schematic top view of the photovoltaic cell unit of the present invention.
  • Figure 2 is a schematic side view of the photovoltaic cell unit of the present invention.
  • Figure 3 is a schematic diagram of the stacking of photovoltaic modules in Embodiment 2 and 3 of the present invention.
  • Figures 4 and 5 are schematic diagrams of stacked gate structures.
  • the present invention provides a photovoltaic cell unit, which includes a rectangular cell sheet, and a first conductive connecting strip and a second conductive connecting strip respectively arranged on both sides of the cell sheet; the first conductive connecting strip and the second conductive connecting strip The two conductive connecting strips are parallel to a pair of edges of the battery sheet, and the first conductive connecting strip and the second conductive connecting strip are symmetrically arranged; the distance between the first conductive connecting strip and the second conductive connecting strip and the battery sheet is not greater than 5mm (preferably (0.5 ⁇ 5mm);
  • the front side of the battery sheet is connected to the bottom surface of the first conductive connection strip through a plurality of first metal lines that are parallel to each other and arranged at intervals; each first metal line is perpendicular to the first conductive connection strip; the line width of each first metal line is 0.05 ⁇ 0.2mm; the distance between two adjacent first metal wires is 1 ⁇ 3mm; each first metal wire is fixedly connected to the bottom surface of the first conductive connecting strip through an electrical connection material; each first metal wire is also respectively connected through an electrical connection material.
  • the connecting material is fixedly connected to the front side of the battery piece; and the end of each first metal wire away from the first conductive connecting strip does not extend to the outside of the battery piece;
  • the back side of the battery sheet is connected to the top surface of the second conductive connecting strip through a plurality of second metal lines arranged parallel to each other and spaced apart; each second metal line is perpendicular to the second conductive connecting strip; the line width of each second metal line is 0.05 ⁇ 0.2mm; the spacing between two adjacent second metal wires is 1 ⁇ 3mm; each second metal wire is fixedly connected to the top surface of the second conductive connecting strip through an electrical connecting material; each second metal wire is also separately The electrical connecting material is fixedly connected to the back of the battery sheet; and one end of each second metal wire away from the second conductive connecting strip does not extend to the outside of the battery sheet.
  • the electrical connection material may be conductive glue (such as a colloidal material filled with conductive particles), conductive paste (such as silver paste), solder (such as solder or other alloy materials) or other conductive adhesive materials.
  • conductive glue such as a colloidal material filled with conductive particles
  • conductive paste such as silver paste
  • solder such as solder or other alloy materials
  • the cross-sectional shapes of the first metal wire and the second metal wire may be triangular, circular, semicircular, trapezoidal, rectangular, etc.
  • the cross-sectional shape of the first metal wire and the second metal wire is a triangle, and the chamfer R of the triangle apex is ⁇ 0.03 mm, the base angles of the triangle are both > 45°, and the width of the base of the triangle is 0.05 to 0.2 mm.
  • the surfaces of the first metal wire and the second metal wire may be highly reflective surfaces with a reflectivity of ⁇ 80%.
  • the cross-sectional shapes of the first conductive connecting strip and the second conductive connecting strip may be triangular, circular, semicircular, trapezoidal, rectangular, zigzag, etc.
  • the surface of the first conductive connecting strip connected to the plurality of first metal lines is provided with a reflective structure with a reflectivity of ⁇ 80%;
  • the surface of the second conductive connecting strip connected to the plurality of second metal lines is provided with a reflective structure.
  • the reflective structure can be a triangular sawtooth structure, and the top angle of the sawtooth is 90 to 140 degrees, and the top corner chamfer R ⁇ 0.05mm.
  • the front side of the cell sheet is an insulating surface, and the front side of the cell sheet is provided with an ultra-thin seed layer that conducts current.
  • the first metal wire is fixedly connected to the seed layer through an electrical connection material; the thickness of the seed layer is preferably ⁇ 5 ⁇ m; the seed layer can also be Use the seed layer directly from the metallization plating process.
  • the battery sheet has a stacked grid structure;
  • the stacked grid structure includes: a grid-shaped ultra-thin seed layer provided on the surface of the battery sheet, and a metal wire stacked on the ultra-thin seed layer; the metal wire and the ultra-thin seed layer where it is located Parallel, and the width of the metal line is not less than the width of the ultra-thin seed layer where it is located; the thickness of the ultra-thin seed layer is ⁇ 5 ⁇ m; the metal line and the ultra-thin seed layer where it is located are fixedly connected through a conductive connecting material; specifically, the metal line The ultra-thin seed layer where it is located is fixed through welding, conductive curing glue connection or conductive tape connection;
  • the ultra-thin seed layer includes: a plurality of first ultra-thin seed layers provided on the front side of the cell sheet and corresponding to the first metal lines, and a plurality of first ultra-thin seed layers provided on the back side of the cell sheet and corresponding to the second metal lines.
  • the first metal line is stacked on the corresponding first ultra-thin seed layer; the first metal line is parallel to the first ultra-thin seed layer where it is located, and the width of the first metal line is not less than the first ultra-thin seed layer where it is located.
  • the second metal line is stacked on the corresponding second ultra-thin seed layer; the second metal line is parallel to the second ultra-thin seed layer where it is located, and the width of the second metal line is not less than the second ultra-thin seed layer where it is located.
  • the present invention also provides a method for preparing a photovoltaic module, which uses the photovoltaic cell unit of Example 1, Example 2 or Example 3, and the bottom surface of the first conductive connection bar and the top surface of the second conductive connection bar
  • the electrical connection material on the surface can be melted and solidified again during the component lamination process; including the following steps:
  • the first conductive connection strip of the photovoltaic cell unit is stacked on the second conductive connection strip of the adjacent photovoltaic cell unit; at this time, the first metal line on the bottom surface of the first conductive connection strip and the The second metal wire on the top surface of the second conductive connecting strip is sandwiched between the first conductive connecting strip and the second conductive connecting strip, which can ensure the effectiveness of the connection between adjacent battery sheets in the battery string; due to the battery
  • the electrical connection on the surface of the cell has been completed (each first metal wire is fixedly connected to the front of the cell; each second metal wire is fixed to the back of the cell), so in this step only the electrical connection between the photovoltaic cells is required.
  • a pair of conductive connecting strips is formed by stacking the first conductive connecting strip and the second conductive connecting strip.
  • the lamination temperature is 130 ⁇ 160°C, and during the lamination process, the electrical connection material between the pairs of conductive connecting strips Melting and fixing the pair of conductive connecting strips and the first metal wire and the second metal wire between the pair of conductive connecting strips together to achieve a stable electrical connection between adjacent cells;
  • the present invention also provides another method for preparing a photovoltaic module, which uses the photovoltaic cell unit of Example 1, Example 2 or Example 3, and includes the following steps:
  • the first conductive connection strip of the photovoltaic cell unit is stacked on the second conductive connection strip of the adjacent photovoltaic cell unit; at this time, the first metal line on the bottom surface of the first conductive connection strip and the The second metal wire on the top surface of the second conductive connecting strip is sandwiched between the first conductive connecting strip and the second conductive connecting strip, which can ensure the effectiveness of the connection between adjacent battery sheets in the battery string; due to the battery
  • the electrical connection on the surface of the cell has been completed (each first metal wire is fixedly connected to the front of the cell; each second metal wire is fixed to the back of the cell), so in this step only the electrical connection between the photovoltaic cells is required.
  • a pair of conductive connecting strips is formed by stacking the first conductive connecting strip and the second conductive connecting strip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种光伏电池单元,包括分设在电池片两侧且相互平行的导电连接条,电池片的正背面分别通过多个金属线连接一个导电连接条。本发明还提供两种光伏组件的制备方法。本发明可降低电池片表面银耗量和金属线光遮挡,并提升光伏组件的制作速度。本发明在电池片摆片过程中,能实现多个电池片同时摆放,提升摆片速度;本发明可以弱化电池片排片精度,摆片工序可以不再需要视觉和机器人高精度定位,通过简单的机械定位即可实现电池片的有效摆放。本发明的方案适用于具有叠栅结构的叠栅电池,叠栅电池的光生电流从电池片内部垂直流经超薄种子层直接到达金属线,无横向传输过程,电阻损耗小,可节省贵金属银耗量并避免银栅线对光的遮挡。

Description

光伏电池单元及其制备方法 技术领域
本发明涉及一种光伏电池单元及其应用。
背景技术
在现有晶硅光伏产业链中,使用硅片制作成电池片,电池片表面预先制备好用于收集电流的金属图形,收集电流的图形为细栅,综合考虑遮光和电流传输损耗,细栅高宽比应尽量大,用于电池片串联及汇集细栅电流的图形为主栅,一定程度上,主栅数量越多,细栅银耗可以越少越窄,且细栅热阻损失降低,使得电池片银耗降低同时效率提升,所以电池片主栅一直在朝着越来越多的方向发展。组件端,主栅数量越多,要求连接电池片之间的焊带数量越多、越细,组件制作及工艺控制难度也越大。目前市场上的多主栅电池串联主要使用圆丝焊带或三角焊带,起到连接电路作用的同时其表面光反射可以二次利用,提升组件光利用率,多主栅的主栅数量主要为9~20主栅,相比于电池细栅数及电池片宽度,主栅数量及焊带实际遮光面积依然相对较少,对整个组件光的利用率影响还比较有限,所以对焊带本身也没有太多苛刻和具体的要求,如三角焊带的倒角、焊带表面的反光率要求等。
现有光伏组件有如下缺陷:
电池片的电流路径复杂,光生电流从电池片基体内汇集到细栅线,通过细栅线横向传输到主栅线,再纵向传输到焊带,再通过焊带传输出电池片;
电池片金属化银耗过高;
电池片表面金属遮光面积大,影响电池及组件效率;
电池片电流通过表面细栅金属传输收集,传输过程中的热阻损耗拉低电池及组件输出功率;
光伏组件制作速度慢,组件中电池片通过一根焊带分别连接相邻电池片的正背面形成串联,这种连接方式使得组件制作速度达到一定程度后很难再大幅提升;
现常规组件中电池片之间的空隙处的光利用率低。
发明内容
为解决现有技术的缺陷,本发明提供一种光伏电池单元,包括电池片,以及分设在电池片两侧的第一导电连接条、第二导电连接条;第一导电连接条、第二导电连接条相互平行;
所述电池片的正面通过多个相互平行的第一金属线连接第一导电连接条的底面;各第一金属线分别通过电连接材料与第一导电连接条的底面固接;各第一金属线还分别通过电连接材料与电池片的正面固接;且各第一金属线上远离第一导电连接条的一端,不伸至电池片外侧;
所述电池片的背面通过多个相互平行的第二金属线连接第二导电连接条的顶面;各第二金属线分别通过电连接材料与第二导电连接条的顶面固接;各第二金属线还分别通过电连接材料与电池片的背面固接;且各第二金属线上远离第二导电连接条的一端,不伸至电池片外侧。
优选的,所述第一导电连接条底面、第二导电连接条顶面的电连接材料,可在组件层压过程中再次熔化并固化。
本发明光伏电池单元的具体内容参见实施例1。
本发明还提供两种光伏组件的制备方法,都采用上述光伏电池单元,具体步骤参见实施例2和实施例3。
有益效果
本发明的优点和有益效果在于:
本发明的光伏电池单元,在电池片上复合了金属线(第一金属线、第二金属线)和导电连接条(第一导电连接条、第二导电连接条),可视为一个整体,为一个电池片单元,从电池片单元到光伏组件的整个过程为光伏组件的制备过程,因为电池片上已经预连接好所有汇集传输电流的金属线(第一金属线、第二金属线)及用于电池片之间连接的导电连接条(第一导电连接条、第二导电连接条),组件工艺相比传统组件工艺相对简单很多。
本发明的光伏电池单元结构中,电池片表面(电池片正面、电池片背面)电流可直接通过金属线(第一金属线、第二金属线)汇集和传输,电池表面金属线可以数量超多、超密集,如166mm宽度电池片,其表面金属线数量可以超过120根,传统组件串焊工艺及组件封装工艺已无法实现该结构组件的封装。本发明组件制备方法与传统组件制备方法最大的区别在于不需要传统串焊步骤,传统串焊工艺已不再满足这种超多金属线的电池串联工艺,本发明先将金属线(第一金属线、第二金属线)和导电连接条(第一导电连接条、第二导电连接条)复合在电池片上形成独立的光伏电池单元,再使光伏电池单元首尾相连,可在实现超多金属线电池串联的同时简化连接工艺。且本发明在电池片摆片过程中,可以实现多个电池片同时摆放,提升摆片速度;另外,本发明可以弱化电池片排片精度,摆片工序可以不再需要视觉和机器人高精度定位,通过简单的机械定位即可实现电池片的有效摆放。
本发明超多超细金属线的有效搭接方式,电池片片间电气连接,通过导电连接条对(第一导电连接条、第二导电连接条)将金属线(第一金属线、第二金属线)夹在中间,再通过层压机高温焊接,可以简单有效实现细小金属线之间的搭接,保证电池片之间的电流在每根金属线上的有效传输。
对于表面为透明导电层(TCO)的电池(如HJT电池),金属线(第一金属线、第二金属线)可直接通过导电胶或合金等与TCO形成电气连接。对于表面无TCO的电池,金属线(第一金属线、第二金属线)可通过导电胶或合金等与电池表面金属栅线形成电气连接。以上结构可应用于PERC、TOPCon、HJT等有表面金属图形及表面无金属图形通过TCO收集电流的大部分太阳能电池片。
本发明光伏电池单元的光生电流在电池片表面(电池片正面、背面)汇集传送到金属线(第一金属线、第二金属线)上,可以不经过细栅,金属线(第一金属线、第二金属线)相比细栅电阻低很多,所以电流在金属线(第一金属线、第二金属线)中传输热阻损失可以降低很多,损失降低了,组件输出功率就高了。
本发明能降低电池组件的银浆耗量,电池片表面(电池片正面、背面)电流通过金属线(第一金属线、第二金属线)收集和传输,银浆只是起到连接金属线和电池片的作用,电流在银浆只需要垂直电池片表面的纵向方向传输,不需要横向传输,所以不再需要很多的银浆堆叠,降低横向传输电阻,银浆高度可以下降到5μm以下,所以银浆耗量也可以大幅降低。不管是PERC、TOPCon、HJT还是其它电池,其银耗量都可以大幅降低,最高可降低80%以上。
传统电池细栅及焊带遮光为3%~5%,遮光损失严重。本发明电池片表面的金属线(第一金属线、第二金属线)的截面形状优选为高反射三角形结构,直射光在金属线表面反射最终还会到达电池片,被电池片吸收,所以金属线对电池片表面并不遮挡入射光,电池组件受光率高,电池组件效率自然也高。
本发明的片间导电连接条(第一导电连接条、第二导电连接条)可以具有高反射锯齿结构,对入射光形成二次全反射,最终回到电池片,提升电池片间隙光的利用,目前市面上还没有简单有效的、便于操作的利用片间入射光的方法,本发明设计的片间导电连接条(第一导电连接条、第二导电连接条)正好可以实现简单操作及有效利用。
由上可知,本发明可以大幅度降低电池片表面银耗量和金属线光遮挡,并大幅度提升光伏组件的制作速度。
本发明的方案适用于具有叠栅结构的叠栅电池,如图4所示,叠栅结构包括:设于电池片表面的栅线状超薄种子层,以及叠设在超薄种子层上的金属线;金属线与其所在的超薄种子层并行,且金属线的宽度不小于其所在超薄种子层的宽度;超薄种子层的厚度≤5μm;具体的,如图5所示,金属线与其所在的超薄种子层之间通过导电连接材料固接;更具体的,金属线与其所在的超薄种子层,通过焊接、导电固化胶连接或导电胶带连接等方式固接。
超薄种子层主要用于收集并纵向导出电池片基体内的光生电流,金属线主要用于将光生电流传输出电池片;
具体的,叠栅电池的光生电流传输路径,从电池片基体内汇集到栅线状超薄种子层,再由栅线状超薄种子层纵向传输至金属线,再通过金属线传输出电池片,不需要通过栅线状超薄种子层进行电流横向传输;
可见,叠栅电池的结构简单,电流传输路径短,电池片基体、超薄种子层、金属线在垂直方向上叠合在一起,光生电流从电池片内部垂直流经超薄种子层直接到达金属线,无横向传输过程,电阻损耗小,可节省横向传输贵金属银耗量并避免或减少银栅线对光的遮挡。
附图说明
图1是本发明光伏电池单元的俯视示意图;
图2是本发明光伏电池单元的侧视示意图;
图3是本发明实施例2和实施例3中光伏组件的层叠示意图;
图4和图5是叠栅结构的示意图。
本发明的实施方式 具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施的技术方案如下:
实施例1
如图1和图2所示,本发明提供一种光伏电池单元,包括矩形电池片,以及分设在电池片两侧的第一导电连接条、第二导电连接条;第一导电连接条和第二导电连接条与电池片的一对边线平行,且第一导电连接条、第二导电连接条对称设置;第一导电连接条、第二导电连接条与电池片的间距都不大于5mm(优选为0.5~5mm);
所述电池片的正面通过多个相互平行且间隔设置的第一金属线连接第一导电连接条的底面;各第一金属线与第一导电连接条垂直;各第一金属线的线宽为0.05~0.2mm;相邻两个第一金属线的间距为1~3mm;各第一金属线分别通过电连接材料与第一导电连接条的底面固接;各第一金属线还分别通过电连接材料与电池片的正面固接;且各第一金属线上远离第一导电连接条的一端,不伸至电池片外侧;
所述电池片的背面通过多个相互平行且间隔设置的第二金属线连接第二导电连接条的顶面;各第二金属线与第二导电连接条垂直;各第二金属线的线宽为0.05~0.2mm;相邻两个第二金属线的间距为1~3mm;各第二金属线分别通过电连接材料与第二导电连接条的顶面固接;各第二金属线还分别通过电连接材料与电池片的背面固接;且各第二金属线上远离第二导电连接条的一端,不伸至电池片外侧。
具体的:
所述电连接材料可以采用导电胶(如填充了导电颗粒的胶体材料)、导电浆料(如银浆)、焊料(如焊锡或其它合金材料)或其它导电粘合材料。
所述第一金属线、第二金属线的截面形状可以为三角形、圆形、半圆形、梯形、矩形等。优选的,所述第一金属线、第二金属线的截面形状为三角形,且三角形顶角的倒角R≤0.03mm,三角形的底角均>45°,三角形的底边宽度为0.05~0.2mm。
所述第一金属线、第二金属线的表面可以为反射率≥80%的高反射面。
所述第一导电连接条、第二导电连接条的截面形状可以为三角形、圆形、半圆形、梯形、矩形、锯齿型等。优选的,所述第一导电连接条上与多个第一金属线连接的面,设有反射率≥80%的反光结构;所述第二导电连接条上与多个第二金属线连接的面,设有反射率≥80%的反光结构;所述反光结构可以为三角锯齿结构,且锯齿的顶角为90~140度,顶角倒角R≤0.05mm。
实施例2
在实施例1的基础上,区别在于:
所述电池片正面为绝缘面,且电池片正面设有一层将电流导出的超薄种子层,第一金属线通过电连接材料与种子层固接;种子层厚度优选≤5μm;种子层也可以直接使用金属化电镀工艺中的种子层。
实施例3
在实施例1的基础上,区别在于:
所述电池片具有叠栅结构;叠栅结构包括:设于电池片表面的栅线状超薄种子层,以及叠设在超薄种子层上的金属线;金属线与其所在的超薄种子层并行,且金属线的宽度不小于其所在超薄种子层的宽度;超薄种子层的厚度≤5μm;金属线与其所在的超薄种子层之间通过导电连接材料固接;具体的,金属线与其所在的超薄种子层,通过焊接、导电固化胶连接或导电胶带连接等方式固接;
更具体的:
所述超薄种子层包括:设于电池片正面且与第一金属线一一对应的多个第一超薄种子层,以及设于电池片背面且与第二金属线一一对应的多个第二超薄种子层;
所述第一金属线叠设在对应的第一超薄种子层上;第一金属线与其所在的第一超薄种子层并行,且第一金属线的宽度不小于其所在第一超薄种子层的宽度;第一超薄种子层的厚度≤5μm;第一金属线与其所在的第一超薄种子层之间通过导电连接材料固接;具体的,第一金属线与其所在的第一超薄种子层,通过焊接、导电固化胶连接或导电胶带连接等方式固接;
所述第二金属线叠设在对应的第二超薄种子层上;第二金属线与其所在的第二超薄种子层并行,且第二金属线的宽度不小于其所在第二超薄种子层的宽度;第二超薄种子层的厚度≤5μm;第二金属线与其所在的第二超薄种子层之间通过导电连接材料固接;具体的,第二金属线与其所在的第二超薄种子层,通过焊接、导电固化胶连接或导电胶带连接等方式固接。
实施例4
如图3所示,本发明还提供一种光伏组件的制备方法,其采用实施例1、实施例2或实施例3的光伏电池单元,且第一导电连接条底面、第二导电连接条顶面的电连接材料,可在组件层压过程中再次熔化并固化;包括如下步骤:
1)铺设光伏面板(如光伏玻璃)和正面胶膜,正面胶膜与光伏面板尺寸基本一致,正面胶膜平整铺盖在光伏面板上;
2)通过机械手或机械吸盘抓取光伏电池单元(抓取光伏电池单元可以单片或多片同时抓取),并按照组件电路连接结构将光伏电池单元平铺在正面胶膜上,形成电池串;且单个电池串中,使光伏电池单元的第一导电连接条叠放在相邻光伏电池单元的第二导电连接条上;此时,该第一导电连接条底面的第一金属线和该第二导电连接条顶面的第二金属线,被夹在该第一导电连接条和该第二导电连接条之间,可保障电池串中相邻电池片之间连接的有效性;由于电池片表面的电气连接已完成(各第一金属线分别与电池片正面固接;各第二金属线分别与电池片背面固接),故此步骤中只需实现光伏电池单元之间的电气连接,所以电池片抓取、摆放的精度要求要低很多,因此可以多片同时抓取,提升摆片速度;以叠放在一起的第一导电连接条、第二导电连接条组成导电连接条对;
3)焊接汇流条和电极引出线;使用汇流条将电池串连接起来,使组件整个电路完整;并在出线位置焊接引出线,用于与外部接线盒连接;
4)铺设背面胶膜和光伏背板(可以是背板玻璃);此时,形成待层压的层叠件;
5)将层叠件置入层压机进行层压,使层叠件挤压粘合为一个整体;层压温度为130~160℃,且层压过程中,导电连接条对之间的电连接材料熔化,并将导电连接条对以及该导电连接条对之间的第一金属线、第二金属线固接在一起,实现相邻电池片的稳固电连接;
6)安装接线盒和组件边框并固化。
实施例5
如图3所示,本发明还提供另一种光伏组件的制备方法,其采用实施例1、实施例2或实施例3的光伏电池单元,包括如下步骤:
1)铺设光伏面板(如光伏玻璃)和正面胶膜,正面胶膜与光伏面板尺寸基本一致,正面胶膜平整铺盖在光伏面板上;
2)通过机械手或机械吸盘抓取光伏电池单元(抓取光伏电池单元可以单片或多片同时抓取),并按照组件电路连接结构将光伏电池单元平铺在正面胶膜上,形成电池串;且单个电池串中,使光伏电池单元的第一导电连接条叠放在相邻光伏电池单元的第二导电连接条上;此时,该第一导电连接条底面的第一金属线和该第二导电连接条顶面的第二金属线,被夹在该第一导电连接条和该第二导电连接条之间,可保障电池串中相邻电池片之间连接的有效性;由于电池片表面的电气连接已完成(各第一金属线分别与电池片正面固接;各第二金属线分别与电池片背面固接),故此步骤中只需实现光伏电池单元之间的电气连接,所以电池片抓取、摆放的精度要求要低很多,因此可以多片同时抓取,提升摆片速度;以叠放在一起的第一导电连接条、第二导电连接条组成导电连接条对;
3)对导电连接条对之间的电连接材进行加热,使导电连接条对之间的电连接材料熔化再固化,将导电连接条对以及该导电连接条对之间的第一金属线、第二金属线固接在一起,实现相邻电池片的稳固电连接;
4)焊接汇流条和电极引出线;使用汇流条将电池串连接起来,使组件整个电路完整;并在出线位置焊接引出线,用于与外部接线盒连接;
5)铺设背面胶膜和光伏背板(可以是背板玻璃);此时,形成待层压的层叠件;
6)将层叠件置入层压机进行层压,使层叠件挤压粘合为一个整体;
7)安装接线盒和组件边框并固化。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (20)

  1.  光伏电池单元,其特征在于,包括电池片,以及分设在电池片两侧的第一导电连接条、第二导电连接条;第一导电连接条、第二导电连接条相互平行;
    所述电池片的正面通过多个相互平行的第一金属线连接第一导电连接条的底面;各第一金属线分别通过电连接材料与第一导电连接条的底面固接;各第一金属线还分别通过电连接材料与电池片的正面固接;且各第一金属线上远离第一导电连接条的一端,不伸至电池片外侧;
    所述电池片的背面通过多个相互平行的第二金属线连接第二导电连接条的顶面;各第二金属线分别通过电连接材料与第二导电连接条的顶面固接;各第二金属线还分别通过电连接材料与电池片的背面固接;且各第二金属线上远离第二导电连接条的一端,不伸至电池片外侧。
  2.  根据权利要求1所述的光伏电池单元,其特征在于,所述电连接材料采用导电胶、导电浆料或焊料。
  3.  根据权利要求1所述的光伏电池单元,其特征在于,所述电池片为矩形;所述第一导电连接条和第二导电连接条与电池片的一对边线平行;各第一金属线和各第二金属线与电池片的另一对边线平行。
  4.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一导电连接条、第二导电连接条对称设置。
  5.  根据权利要求1所述的光伏电池单元,其特征在于,所述多个第一金属线等间隔设置,相邻两个第一金属线的间距为1~3mm;所述多个第二金属线等间隔设置,相邻两个第二金属线的间距为1~3mm。
  6.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一金属线、第二金属线的线宽为0.05~0.2mm。
  7.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一金属线、第二金属线的截面形状为三角形、圆形、半圆形、梯形、矩形。
  8.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一金属线、第二金属线的截面形状为三角形,且三角形顶角的倒角R≤0.03mm,三角形的底角均>45°,三角形的底边宽度为0.05~0.2mm。
  9.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一金属线、第二金属线的表面为反射率≥80%的高反射面。
  10.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一导电连接条、第二导电连接条与电池片的间距不大于5mm。
  11.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一导电连接条、第二导电连接条的截面形状为三角形、圆形、半圆形、梯形、矩形、锯齿型。
  12.  根据权利要求1所述的光伏电池单元,其特征在于,所述第一导电连接条上与多个第一金属线连接的面,设有反射率≥80%的反光结构;所述第二导电连接条上与多个第二金属线连接的面,设有反射率≥80%的反光结构。
  13.  根据权利要求12所述的光伏电池单元,其特征在于,所述反光结构为三角锯齿结构,且锯齿的顶角为90~140度,顶角倒角R≤0.05mm。
  14.  根据权利要求1所述的光伏电池单元,其特征在于,所述电池片正面为绝缘面,且电池片正面设有将电流导出的种子层,第一金属线通过电连接材料与种子层固接。
  15.  根据权利要求1所述的光伏电池单元,其特征在于,所述电池片具有叠栅结构;叠栅结构包括设于电池片表面的栅线状超薄种子层,以及叠设在超薄种子层上的金属线;金属线与其所在的超薄种子层并行,且金属线的宽度不小于其所在超薄种子层的宽度;
    所述超薄种子层包括:设于电池片正面且与第一金属线一一对应的多个第一超薄种子层,以及设于电池片背面且与第二金属线一一对应的多个第二超薄种子层。
  16.  根据权利要求15所述的光伏电池单元,其特征在于,所述超薄种子层的厚度≤5μm。
  17.  根据权利要求15所述的光伏电池单元,其特征在于,所述金属线与其所在的超薄种子层之间通过导电连接材料固接。
  18.  根据权利要求15所述的光伏电池单元,其特征在于,所述金属线与其所在的超薄种子层,通过焊接、导电固化胶连接或导电胶带连接方式固接。
  19.  光伏组件的制备方法,其特征在于,其采用权利要求1至18中任一项所述的光伏电池单元,包括如下步骤:
    1)铺设光伏面板和正面胶膜;
    2)抓取光伏电池单元,并按照组件电路连接结构将光伏电池单元平铺在正面胶膜上,形成电池串;且单个电池串中,使光伏电池单元的第一导电连接条叠放在相邻光伏电池单元的第二导电连接条上;此时,该第一导电连接条底面的第一金属线和该第二导电连接条顶面的第二金属线,被夹在该第一导电连接条和该第二导电连接条之间;以叠放在一起的第一导电连接条、第二导电连接条组成导电连接条对;
    3)焊接汇流条和电极引出线;
    4)铺设背面胶膜和光伏背板;此时,形成待层压的层叠件;
    5)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;且层压过程中,导电连接条对之间的电连接材料熔化,并将导电连接条对以及该导电连接条对之间的第一金属线、第二金属线固接在一起;
    6)安装接线盒和组件边框。
  20.  光伏组件的制备方法,其特征在于,其采用权利要求1至18中任一项所述的光伏电池单元,包括如下步骤:
    1)铺设光伏面板和正面胶膜;
    2)抓取光伏电池单元,并按照组件电路连接结构将光伏电池单元平铺在正面胶膜上,形成电池串;且单个电池串中,使光伏电池单元的第一导电连接条叠放在相邻光伏电池单元的第二导电连接条上;此时,该第一导电连接条底面的第一金属线和该第二导电连接条顶面的第二金属线,被夹在该第一导电连接条和该第二导电连接条之间;以叠放在一起的第一导电连接条、第二导电连接条组成导电连接条对;
    3)对导电连接条对之间的电连接材进行加热,使其熔化再固化,将导电连接条对以及该导电连接条对之间的第一金属线、第二金属线固接在一起;
    4)焊接汇流条和电极引出线;
    5)铺设背面胶膜和光伏背板;此时,形成待层压的层叠件;
    6)将层叠件置入层压机进行层压,使层叠件粘合为一个整体;
    7)安装接线盒和组件边框。
PCT/CN2023/094484 2022-07-21 2023-05-16 光伏电池单元及其制备方法 WO2024016806A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210860115.2A CN115241295A (zh) 2022-07-21 2022-07-21 一种光伏电池单元及其应用
CN202210860115.2 2022-07-21
CN202310145937.7A CN116154028A (zh) 2022-07-21 2023-02-22 光伏电池单元及其应用
CN202310145937.7 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024016806A1 true WO2024016806A1 (zh) 2024-01-25

Family

ID=83672795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094484 WO2024016806A1 (zh) 2022-07-21 2023-05-16 光伏电池单元及其制备方法

Country Status (2)

Country Link
CN (2) CN115241295A (zh)
WO (1) WO2024016806A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241295A (zh) * 2022-07-21 2022-10-25 常州时创能源股份有限公司 一种光伏电池单元及其应用
CN115295681A (zh) * 2022-09-16 2022-11-04 常州时创能源股份有限公司 一种光伏电池连接工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019349A1 (en) * 2016-07-13 2018-01-18 Solarcity Corporation Gridless photovoltaic cells and methods of producing a string using the same
CN110649119A (zh) * 2019-09-12 2020-01-03 常州比太科技有限公司 一种基于晶硅的太阳能发电组件及其制备方法
CN111403490A (zh) * 2018-12-28 2020-07-10 泰州隆基乐叶光伏科技有限公司 太阳能电池互联结构制备方法
CN112670376A (zh) * 2021-03-16 2021-04-16 常州时创能源股份有限公司 太阳能电池片的连接方法
CN113097325A (zh) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 太阳能电池组件
CN115241295A (zh) * 2022-07-21 2022-10-25 常州时创能源股份有限公司 一种光伏电池单元及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180019349A1 (en) * 2016-07-13 2018-01-18 Solarcity Corporation Gridless photovoltaic cells and methods of producing a string using the same
CN111403490A (zh) * 2018-12-28 2020-07-10 泰州隆基乐叶光伏科技有限公司 太阳能电池互联结构制备方法
CN110649119A (zh) * 2019-09-12 2020-01-03 常州比太科技有限公司 一种基于晶硅的太阳能发电组件及其制备方法
CN112670376A (zh) * 2021-03-16 2021-04-16 常州时创能源股份有限公司 太阳能电池片的连接方法
CN113097325A (zh) * 2021-03-26 2021-07-09 福斯特(嘉兴)新材料有限公司 太阳能电池组件
CN115241295A (zh) * 2022-07-21 2022-10-25 常州时创能源股份有限公司 一种光伏电池单元及其应用

Also Published As

Publication number Publication date
CN115241295A (zh) 2022-10-25
CN116154028A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2024016806A1 (zh) 光伏电池单元及其制备方法
WO2023284100A1 (zh) 一种背接触太阳能电池串及制备方法、组件及系统
CN110838527B (zh) 一种用于半片叠瓦光伏组件的电池片及该组件的制作方法
CN112670376B (zh) 太阳能电池片的连接方法
CN107799615B (zh) 太阳能电池片单元、光伏电池模组及其制备工艺
WO2024012161A1 (zh) 无主栅ibc电池组件单元及制作方法、电池组件、电池组串
WO2016065735A1 (zh) 一种光伏电池的制备工艺
CN111403490B (zh) 太阳能电池互联结构制备方法
CN110828598A (zh) 一种半片叠瓦组件及其制作方法
WO2021037020A1 (zh) 无主栅太阳能电池片及无主栅太阳能光伏组件
WO2024108996A1 (zh) 分段低温焊带、无主栅ibc电池串、电池组件及其封装方法
CN108010981A (zh) 提高光伏转换效率的反光膜及其制备方法
WO2023232136A1 (zh) 一种基于超薄钢化玻璃的轻质叠瓦光伏组件
US20240105871A1 (en) Photovoltaic module and method for preparing the photovoltaic module
CN115706182A (zh) 光伏电池串及其制备方法、串焊设备和光伏组件
WO2024087506A1 (zh) 焊带件及其制备方法、光伏组件
WO2024016805A1 (zh) 一种光伏叠瓦组件及其制备方法
WO2021120655A1 (zh) 双面电池组件结构
US20240194809A1 (en) Photovoltaic module
CN211182228U (zh) 一种半片叠瓦组件
CN211182220U (zh) 一种用于半片叠瓦光伏组件的电池片
CN204834651U (zh) 一种低温串接的太阳能电池组件
JP7239912B1 (ja) 太陽光発電モジュール構造
WO2011152350A1 (ja) 太陽電池モジュールの製造方法
CN220021141U (zh) 一种异质结光伏电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841875

Country of ref document: EP

Kind code of ref document: A1