WO2024104383A1 - 一种含苯并菲的有机化合物及其在有机光电器件中的应用 - Google Patents

一种含苯并菲的有机化合物及其在有机光电器件中的应用 Download PDF

Info

Publication number
WO2024104383A1
WO2024104383A1 PCT/CN2023/131804 CN2023131804W WO2024104383A1 WO 2024104383 A1 WO2024104383 A1 WO 2024104383A1 CN 2023131804 W CN2023131804 W CN 2023131804W WO 2024104383 A1 WO2024104383 A1 WO 2024104383A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
organic
atoms
group
triphenylene
Prior art date
Application number
PCT/CN2023/131804
Other languages
English (en)
French (fr)
Inventor
王小野
张皓
杜呈卓
潘君友
Original Assignee
浙江光昊光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江光昊光电科技有限公司 filed Critical 浙江光昊光电科技有限公司
Publication of WO2024104383A1 publication Critical patent/WO2024104383A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to the technical field of organic electronic materials and devices, and in particular to an organic compound containing triphenylene, a polymer, a mixture and a composition thereof, and applications thereof in organic photoelectric devices, in particular in organic electroluminescent devices.
  • Organic semiconductor materials have great potential for applications in optoelectronic devices such as flat panel displays and lighting due to their synthetic versatility, relatively low manufacturing costs, and excellent optical and electrical properties.
  • the triphenylene group has good stability and has been widely used in the luminescent host material. Compared with the BN condensed ring multiple resonance luminescent guest material, the triphenylene group is connected to further narrow its luminescence spectrum and further improve its thermal stability. Therefore, the development of more BN multiple resonance luminescent materials containing triphenylene groups is of great significance for OLED light-emitting devices.
  • the performance of the guest material determines the efficiency and life of the light-emitting device.
  • the currently commonly used BN guest materials are multiple resonance BN organic compounds, but due to the particularity of their structure, the thermal stability of the material is still relatively large, and the photoelectric stability of this type of material is limited, resulting in a low device life.
  • the prior art introduces a boron aza fused ring unit to achieve the multiple resonance effect of the molecule, form a better rigid structure, obtain a better material thermal stability, and achieve a narrow emission spectrum.
  • the present invention finds that the introduction of the triphenylene group into the BN fused ring structure can further improve the stability of the material without reducing the multiple resonance effect of the material.
  • This type of triphenylene boron aza organic compound can be applied to fluorescent guest materials, providing a basic structural unit with better performance for the development of multiple resonance fluorescent luminescent materials.
  • the purpose of the present invention is to provide an organic compound containing triphenylene, a polymer, a mixture, a composition containing the same, and their application in organic optoelectronic devices, aiming to solve the problem of insufficient performance of existing blue light materials.
  • an organic compound containing triphenylene has a structure as shown in the general formula (I):
  • A, B, C, and D are the same or different from each other, and are independently selected from substituted or unsubstituted C 6 -C 60 aromatic rings, C 5 -C 60 heteroaromatic rings, or C 10 -C 60 fused ring structural units, and at least one of A, B, and C is triphenylene.
  • X and Y are independently selected from N or B, and X and Y are different.
  • Ar is selected from formula (a) or formula (b), and the dotted line indicates the bonding position, and when Ar is formula (a), L 1 and L 2 are independently selected from none or a single bond, and when Ar is formula (b), L 1 and L 2 are both single bonds.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently selected from CR 1 , NR 1 , N, O, S, S ⁇ O, S( ⁇ O) 2 or C ⁇ O, so that the chemical formula (a) becomes a five-membered heteroaromatic ring, and the chemical formula (b) becomes a six-membered aromatic ring or heteroaromatic ring, wherein any two adjacent substituents in Z 1 -Z 6 can form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or the ring bonded to the group.
  • R1 may be selected, at each occurrence, identically or differently, from H, D, or a linear alkyl, haloalkyl, alkoxy, thioalkoxy radical having 1 to 20 C atoms, or a branched or cyclic alkyl, haloalkyl, alkoxy, thioalkoxy, silyl radical having 3 to 20 C atoms, or a keto radical having 1 to 20 C atoms, or an alkoxycarbonyl radical having 2 to 20 C atoms, or an aryloxycarbonyl radical having 4 to 20 C atoms, or a cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF3 , Cl, Br, F, I, a crosslinkable radical, or a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring
  • the triphenylene-containing organic compound according to the general formula (I) may be further substituted by substituents R; the substituents R may be selected from linear alkyl, haloalkyl, alkoxy, thioalkoxy groups having 1 to 20 C atoms, branched or cyclic alkyl, haloalkyl, alkoxy, thioalkoxy, silyl groups having 3 to 20 C atoms, keto groups having 1 to 20 C atoms, alkoxycarbonyl groups having 2 to 20 C atoms, aryloxycarbonyl groups having 4 to 20 C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF 3 , Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring
  • the present invention also relates to a polymer comprising at least one repeating unit, wherein the repeating unit comprises a structure corresponding to the above-mentioned triphenylene-containing organic compound.
  • the present invention further relates to a mixture comprising an organic compound containing triphenylene as described above, and at least one organic functional material, wherein the organic functional material can be selected from hole injection materials, hole transport materials, electron transport materials, electron injection materials, electron blocking materials, hole blocking materials, luminescent bodies or host materials.
  • the present invention also relates to a composition
  • a composition comprising an organic compound or polymer or mixture containing triphenylene as described above, and at least one organic solvent.
  • the present invention further relates to an organic optoelectronic device, comprising at least one triphenylene-containing organic compound or polymer or mixture as described above.
  • the present invention further relates to a color conversion layer, comprising a luminophore, wherein the luminophore is a chiral molecule. Further, the luminophore is selected from the chiral organic compound containing triphenylene as described above.
  • the organic compound containing triphenylene of the present invention by introducing triphenylene structural units into BN compounds, a stable organic light-emitting material can be obtained, and the light-emitting device prepared with the triphenylene structural unit has high efficiency and life. According to the organic compound containing triphenylene of the present invention, it can be used as a functional material in an OLED device, and by combining with other suitable functional materials, the light-emitting efficiency and life of the OLED device can be improved, thereby providing a material solution for a light-emitting device with high efficiency and long life.
  • Figure 1 Absorption and emission spectra of 0.5 mol/L toluene solution of compound 1.
  • the present invention provides an organic compound containing triphenylene and its application in an organic optoelectronic device.
  • an organic optoelectronic device In order to make the purpose, technical scheme and effect of the present invention clearer and more specific, the present invention is further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.
  • substituted means that a hydrogen atom of a compound is replaced by a substituent.
  • the "number of ring atoms" refers to the number of atoms constituting the ring itself of a structural compound (eg, a monocyclic compound, a condensed ring compound, a cross-linked compound, a carbocyclic compound, a heterocyclic compound) in which atoms are bonded to form a ring.
  • a structural compound eg, a monocyclic compound, a condensed ring compound, a cross-linked compound, a carbocyclic compound, a heterocyclic compound
  • the atoms contained in the substituent are not included in the ring atoms.
  • the "number of ring atoms" described below unless otherwise specified.
  • the number of ring atoms of a benzene ring is 6
  • the number of ring atoms of a naphthalene ring is 10
  • the number of ring atoms of a thienyl group is 5.
  • Aromatic groups refer to hydrocarbon groups containing at least one aromatic ring.
  • Heteroaromatic groups refer to aromatic hydrocarbon groups containing at least one heteroatom.
  • the heteroatom is preferably selected from Si, N, P, O, S and/or Ge, and is particularly preferably selected from Si, N, P, O and/or S.
  • a condensed ring aromatic group refers to a ring of an aromatic group that can have two or more rings, in which two carbon atoms are shared by two adjacent rings, i.e., a condensed ring.
  • a condensed heterocyclic aromatic group refers to a condensed ring aromatic hydrocarbon group containing at least one heteroatom.
  • aromatic groups or heteroaromatic groups include not only systems of aromatic rings, but also non-aromatic ring systems. Therefore, systems such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene, etc. are also considered to be aromatic groups or heterocyclic aromatic groups for the purposes of this invention.
  • fused aromatic or fused heteroaromatic ring systems include not only systems of aromatic or heteroaromatic groups, but also systems in which multiple aromatic or heteroaromatic groups may be interrupted by short non-aromatic units ( ⁇ 10% non-H atoms, preferably less than 5% non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamines, diaryl ethers, etc. are also considered fused aromatic ring systems for the purposes of the present invention.
  • the energy level structure of the organic material the singlet energy level S 1 , the triplet energy level T 1 , HOMO, and LUMO play a key role.
  • the determination of these energy levels is introduced below.
  • HOMO and LUMO energy levels can be measured by photoelectric effects, such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereafter referred to as CV).
  • photoelectric effects such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereafter referred to as CV).
  • CV cyclic voltammetry
  • quantum chemical methods such as density functional theory (hereafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • DFT density functional theory
  • the singlet energy level S 1 of the organic material can be determined by luminescence spectroscopy, and the triplet energy level T 1 can be measured by low-temperature time-resolved luminescence spectroscopy.
  • S 1 and T 1 can also be obtained by quantum simulation calculation (such as by Time-dependent DFT), such as by commercial software Gaussian 09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110 or described in the examples below.
  • ⁇ E ST is defined as (S 1 -T 1 ).
  • the absolute values of HOMO, LUMO, S 1 , and T 1 depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as the starting point and the peak point on the CV curve, may give different HOMO/LUMO values. Therefore, a reasonable and meaningful comparison should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, S 1 , and T 1 are based on the simulation of Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital energy level
  • (HOMO-2) is the third highest occupied orbital energy level
  • (LUMO+1) is defined as the second lowest unoccupied orbital energy level
  • (LUMO+2) is the third lowest occupied orbital energy level, and so on.
  • the present invention relates to an organic compound containing triphenylene, which has a structure as shown in the general formula (I):
  • A, B, C, and D are the same or different from each other, and are independently selected from substituted or unsubstituted C 6 -C 60 aromatic rings, C 5 -C 60 heteroaromatic rings, or C 10 -C 60 fused ring structural units, and at least one of A, B, and C is triphenylene.
  • X and Y are independently selected from N or B, and X and Y are not N or B at the same time;
  • Ar is selected from formula (a) or formula (b), and the dotted line indicates the bonding position, and when Ar is formula (a), L1 and L2 are independently selected from none or a single bond, and when Ar is formula (b), L1 and L2 are both single bonds.
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , and Z 6 are independently selected from CR 1 , NR 1 , N, O, S, S ⁇ O, S( ⁇ O) 2 or C ⁇ O, so that the chemical formula (a) becomes a five-membered heteroaromatic ring, and the chemical formula (b) becomes a six-membered aromatic ring or heteroaromatic ring, wherein Z 1 -Z 6 Any two adjacent substituents can form a monocyclic or polycyclic aliphatic or aromatic ring system with one another and/or with the ring to which the substituents are bonded.
  • R1 may be selected, at each occurrence, identically or differently, from H, D, or a linear alkyl, haloalkyl, alkoxy, thioalkoxy radical having 1 to 20 C atoms, or a branched or cyclic alkyl, haloalkyl, alkoxy, thioalkoxy, silyl radical having 3 to 20 C atoms, or a keto radical having 1 to 20 C atoms, or an alkoxycarbonyl radical having 2 to 20 C atoms, or an aryloxycarbonyl radical having 4 to 20 C atoms, or a cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF3 , Cl, Br, F, I, a crosslinkable radical, or a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring
  • the triphenylene-containing organic compound according to the general formula (I) may be further substituted by substituents R; the substituents R may be selected from linear alkyl, haloalkyl, alkoxy, thioalkoxy groups having 1 to 20 C atoms, branched or cyclic alkyl, haloalkyl, alkoxy, thioalkoxy, silyl groups having 3 to 20 C atoms, keto groups having 1 to 20 C atoms, alkoxycarbonyl groups having 2 to 20 C atoms, aryloxycarbonyl groups having 4 to 20 C atoms, cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxyl, nitro, CF 3 , Cl, Br, F, I, a crosslinkable group, or a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring
  • A, B, C, and D are the same or different, and are independently selected from substituted or unsubstituted C 6 -C 50 aromatic rings, C 5 -C 50 heteroaromatic rings, or C 10 -C 50 fused ring structural units, and at least one of A, B, and C is triphenylene.
  • A, B, C, and D are the same or different, and are independently selected from substituted or unsubstituted C 6 -C 40 aromatic rings, C 5 -C 40 heteroaromatic rings, or C 10 -C 40 fused ring structural units, and at least one of A, B, and C is triphenylene.
  • A, B, C, and D are the same or different, and are independently selected from substituted or unsubstituted C 6 -C 30 aromatic rings, C 5 -C 30 heteroaromatic rings, or C 10 -C 30 fused ring structural units, and at least one of A, B, and C is triphenylene.
  • A, B, C, and D are the same or different and are independently selected from substituted or unsubstituted C 6 -C 20 aromatic rings, C 5 -C 20 heteroaromatic rings, or C 10 -C 20 fused ring structural units, and at least one of A, B, and C is triphenylene.
  • A, B, and C are independently selected from benzene or triphenylene, and at least one of A, B, and C is triphenylene. In certain preferred embodiments, A, B, and C are independently selected from benzene or triphenylene, and at least two of A, B, and C are triphenylene. In certain preferred embodiments, A, B, and C are all triphenylene.
  • D is a group with a large steric hindrance structure, wherein "large steric hindrance group” refers to a group that can significantly improve the planarity of the molecule.
  • large steric hindrance group refers to a group that can significantly improve the planarity of the molecule.
  • Planarity refers to the difference between a molecule and an ideal plane. The size of the overall planarity of the molecule can be measured by theoretically calculating the "MPP" (molecular planarity parameter) value. The smaller the MPP value, the stronger the molecular planarity. An MPP value of 0 represents an ideal plane.
  • the triphenylene-containing organic compound is selected from the structure shown in one of the general formulas (I-1) to (I-14):
  • L 1 -L 2 , Z 1 -Z 6 , A, B, C, D, X and Y are as defined above.
  • the triphenylene-containing organic compound is not a structure represented by the following general formula:
  • L 1 -L 2 , Z 1 -Z 6 , B, C, D, X and Y are as defined above.
  • the triphenylene-containing organic compound is not a structure represented by the following general formula:
  • L 1 -L 2 , Z 1 -Z 6 , C, D, X and Y are as defined above.
  • the triphenylene-containing organic compound is selected from the structures shown in formula (Ia-1) to (Ia-13) and (Ib-1) to (Ib-37):
  • the triphenylene-containing organic compound is selected from the structures shown in the general formula (IIa-1) to the general formula (IIa-7) and the general formula (IIb-1) to the general formula (IIb-31):
  • X, Y, and R are as defined above, and n is selected from 0, 1, 2, 3, and 4.
  • A, B, C, and D, at each occurrence, are independently selected from the following groups:
  • w is independently selected from CR 1 R 2 , NR 1 , O, S, SiR 1 R 2 , PR 1 , P( ⁇ O)R 1 , S ⁇ O, S( ⁇ O) 2 or C ⁇ O at each occurrence;
  • v is independently selected from CR 3 or N at each occurrence;
  • R 1 -R 3 are independently selected from H, D, or a linear alkyl, haloalkyl, alkoxy, thioalkoxy group having 1-20 C atoms, or a branched or cyclic alkyl, haloalkyl, alkoxy, thioalkoxy, silyl group having 3-20 C atoms, or a keto group having 1-20 C atoms, or an alkoxycarbonyl group having 2-20 C atoms, or an aryloxycarbonyl group having 7-20 C atoms, or a cyano, carbamoyl, haloformyl, formyl, isocyano, isocyanate
  • the aromatic group or heteroaromatic group is selected from the following groups:
  • aromatic group or heteroaromatic group is selected from:
  • the aromatic group is selected from the group consisting of benzene, naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, perylene, tetracene, pyrene, benzopyrene, acenaphthene, fluorene, and derivatives thereof;
  • the heteroaromatic group is selected from the group consisting of benzofuran, benzothiophene, indole, carbazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furanopyrrole, furanofuran, thiophene, and furan, benzisoxazole, benzisothiazole, benzimidazole, quinoline, isoquinoline, o-naphthylidene, quinoxaline, phenanthridine, primary idine, quinazoline, quinazolinone
  • A, B, C, and D are independently selected from the following groups at each occurrence:
  • the H atoms on the ring can be further substituted.
  • the above-mentioned triphenylene-containing organic compound wherein A, B, C, and D, each time appearing, may be further selected from the following structural units or combinations thereof:
  • n1 is 1 or 2 or 3 or 4.
  • each occurrence of the substituent R is independently selected from the following groups:
  • the organic compound containing phenylene is selected from the structures shown in the general formula (IIc-1) to the general formula (IIc-31), and its planar configuration is distorted by introducing a large steric group (Z ring).
  • Z ring a large steric group
  • the ⁇ - ⁇ mutual attraction caused by the introduction of the benzene ring is weakened, and the intermolecular force is further weakened, thereby weakening the adverse effect of the concentration quenching effect on the efficiency.
  • the introduction of a large steric group can reduce stacking, which is beneficial to maintaining the stability of the PL spectrum.
  • X, Y, R, and n are defined as above.
  • D is selected from a C 6 -C 60 aromatic ring substituted by a substituent Z, a C 5 -C 60 heteroaromatic ring, or a C 10 -C 60 condensed ring structural unit.
  • the substituent Z is selected from bulky steric groups represented by general formula (IIIa) or general formula (IIIb):
  • connection site of P relative to Q is ortho-substituted, and P and Q are independently selected from substituted or unsubstituted C 6 -C 60 aromatic aromatic ring, C 5 -C 60 heteroaromatic ring or C 8 -C 60 fused ring structural unit; each occurrence of V 0 is independently selected from CR 4 or N; R 4 is defined as R 1 above, and * represents the connection site (the site where the connecting body and D are fused).
  • At least one V0 in the general formula (IIIb) is N; in some more preferred embodiments, at least two V0 in the general formula (IIIb) are N; in some more preferred embodiments, all three V0 in the general formula (IIIb) are N.
  • P and Q are independently selected from the following structures:
  • the substituent Z is selected from the following bulky steric groups:
  • w and v are defined as above.
  • P as a substituent, can replace any H on the ring.
  • at least one v on the corresponding ring is selected from CR 3 and R 3 is selected from H.
  • Structural formula For example, some of its combinations are as follows:
  • R is selected from benzene or naphthalene.
  • R is selected from heteroaromatic groups.
  • the triphenylene-containing organic compound is at least partially deuterated, preferably 10% or more of the H is deuterated, more preferably 20% or more of the H is deuterated, very preferably 30% or more of the H is deuterated, and most preferably 40% or more of the H is deuterated.
  • the triphenylene-containing organic compound is a chiral molecule, and its preferred spin mode is a P-type chiral molecule; in other embodiments, the triphenylene-containing organic compound is an M-type chiral molecule.
  • the general method for separating chiral molecules is: dissolving the chiral compound in an organic solvent, and separating and purifying the P- and M-type chiral compounds by chiral separation column chromatography.
  • the chiral triphenylene-containing organic compound is selected from one of the aforementioned general formulae (I-4) to (I-7) and (I-11) to (I-14).
  • the above-mentioned chiral triphenylene-containing organic compound is selected from one of the aforementioned general formulas (Ia-6), (Ia-7), (Ib-6), (Ib-7), (Ib-13), (Ib-14), (Ib-15), (Ib-17), (Ib-23)-(Ib-31).
  • the organic compound containing triphenylene according to the present invention can be used as a functional material in optical devices, such as color converters, or electronic devices, especially electroluminescent devices.
  • the electroluminescent device can be selected from OLED, OLEEC, organic light-emitting field effect tube; OLED devices are particularly preferred.
  • Organic functional materials can be divided into hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM), electron injection materials (EIM), electron blocking materials (EBM), hole blocking materials (HBM), emitters, host materials (Host) and organic dyes.
  • the organic compound containing triphenylene according to the present invention can be used as a host material, an electron transport material or a hole transport material.
  • the light emission wavelength of the electroluminescent device is 300nm-1500nm, preferably 400nm-1000nm, and more preferably 400nm-800nm.
  • the triphenylene-containing organic compound according to the present invention has a luminescent function, and its luminescent wavelength is between 300nm and 1000nm, preferably between 350nm and 900nm, and more preferably between 400nm and 800nm.
  • the luminescence referred to here refers to photoluminescence or electroluminescence.
  • the triphenylene-containing organic compound according to the present invention can be used as a fluorescent guest material.
  • the fluorescent guest material must have an appropriate singlet energy level, namely S 1 .
  • the triphenylene-containing organic compound according to the present invention has S 1 ⁇ 2.3 eV, preferably ⁇ 2.4 eV, more preferably ⁇ 2.5 eV, and most preferably ⁇ 2.6 eV.
  • the triphenylene-containing organic compound according to the present invention has a PLQY of ⁇ 40%, preferably ⁇ 50%, more preferably ⁇ 60%, and most preferably ⁇ 70%.
  • the PLQY of a compound is generally positively correlated with its resonance factor f 1 (calculated as follows).
  • the f 1 of the triphenylene-containing organic compound is ⁇ 0.3, preferably ⁇ 0.4, more preferably ⁇ 0.5, and most preferably ⁇ 0.6.
  • the triphenylene-containing organic compound is a green light emitting material; in other embodiments, the triphenylene-containing organic compound is an orange or red light emitting material.
  • the full width at half maximum (FWHM) of the emission spectrum of the organic compound containing triphenylene is ⁇ 40nm, preferably ⁇ 35nm, and most preferably ⁇ 35nm.
  • the triphenylene-containing organic compound according to the present invention is a thermally excited delayed fluorescent material (TADF material).
  • TADF material thermally excited delayed fluorescent material
  • the triphenylene-containing organic compound according to the present invention has a ⁇ E ST ⁇ 0.3 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.2 eV, and most preferably ⁇ 0.15 eV.
  • the organic compound containing triphenylene according to the present invention has a glass transition temperature (Tg) ⁇ 100°C, preferably Tg ⁇ 140°C, and more preferably Tg ⁇ 180°C.
  • the triphenylene-containing organic compound according to the present invention has (HOMO-(HOMO-1)) ⁇ 0.2 eV, preferably ⁇ 0.3 eV, more preferably ⁇ 0.4 eV, and most preferably ⁇ 0.45 eV.
  • the triphenylene-containing organic compound according to the present invention has ((LUMO+1)-LUMO) ⁇ 0.15 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.30 eV, most preferably ⁇ 0.35 eV.
  • the present invention also relates to a polymer comprising at least one repeating unit, wherein the repeating unit comprises a structure corresponding to the above-mentioned triphenylene-containing organic compound.
  • the polymer is a non-conjugated polymer, wherein the structure shown in general formula (I) is on the side chain. In another preferred embodiment, the polymer is a conjugated polymer.
  • the synthesis method of the polymer is selected from SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the polymer according to the present invention has a glass transition temperature (Tg) ⁇ 100°C, preferably ⁇ 120°C, more preferably ⁇ 140°C, more preferably ⁇ 160°C, and most preferably ⁇ 180°C.
  • Tg glass transition temperature
  • the molecular weight distribution (PDI) of the polymer according to the present invention is preferably in the range of 1 to 5, more preferably 1 to 4, more preferably 1 to 3, even more preferably 1 to 2, and most preferably 1 to 1.5.
  • the weight average molecular weight (Mw) is preferably in the range of 10,000 to 1,000,000, more preferably 50,000 to 500,000, more preferably 100,000 to 400,000, even more preferably 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the polymer according to the present invention has (HOMO-(HOMO-1)) ⁇ 0.2 eV, preferably ⁇ 0.3 eV, more preferably ⁇ 0.4 eV, most preferably ⁇ 0.45 eV.
  • the present invention also relates to a mixture, comprising an organic compound or polymer containing triphenylene as described above, and at least one organic functional material.
  • the organic functional material is selected from hole injection materials, hole transport materials, electron transport materials, electron injection materials, electron blocking materials, hole blocking materials, luminophores or host materials.
  • the luminophore is selected from singlet luminophores (fluorescent luminophores), triplet luminophores (phosphorescent luminophores) and organic thermally excited delayed fluorescence materials (TADF materials).
  • TADF materials organic thermally excited delayed fluorescence materials
  • various organic functional materials are described in detail in WO2010135519A1, US20090134784A1 and WO2011110277A1, and the entire contents of these three patent documents are hereby incorporated herein by reference.
  • the organic functional material can be a small molecule and a polymer material.
  • the mixture comprises at least one triphenylene-containing organic compound according to the present invention and a fluorescent host.
  • the triphenylene-containing organic compound according to the present invention can be used as a fluorescent guest material, and its weight percentage is ⁇ 10wt%, preferably ⁇ 9wt%, more preferably ⁇ 8wt%, particularly preferably ⁇ 7wt%, and most preferably ⁇ 5wt%.
  • the mixture comprises at least one triphenylene-containing organic compound according to the present invention, a blue light emitting material and a fluorescent host material.
  • the triphenylene-containing organic compound according to the present invention and the blue light emitting material are fluorescent co-guest materials, wherein the weight ratio is 2:8 to 8:2, preferably 3:7 to 7:3, Preferably it is 4:6 to 6:4.
  • the emission spectrum of the blue light emitting material and the absorption spectrum of the triphenylene-containing organic compound according to the present invention at least partially overlap, so that the energy of the blue light emitting material can be effectively transferred to the triphenylene-containing organic compound according to the present invention.
  • An object of the present invention is to provide a material solution for evaporation-type OLEDs.
  • the triphenylene-containing organic compound according to the present invention has a molecular weight of ⁇ 1100 g/mol, preferably ⁇ 1000 g/mol, very preferably ⁇ 950 g/mol, more preferably ⁇ 900 g/mol, and most preferably ⁇ 800 g/mol.
  • Another object of the present invention is to provide a material solution for printed OLEDs.
  • the triphenylene-containing organic compound according to the present invention has a molecular weight of ⁇ 700 g/mol, preferably ⁇ 900 g/mol, more preferably ⁇ 1000 g/mol, and most preferably ⁇ 1100 g/mol.
  • the solubility of the triphenylene-containing organic compound according to the present invention in toluene at 25° C. is ⁇ 10 mg/mL, preferably ⁇ 15 mg/mL, and most preferably ⁇ 20 mg/mL.
  • the present invention further relates to a composition or ink, comprising an organic compound or polymer or mixture containing triphenylene as described above, and at least one organic solvent.
  • the viscosity and surface tension of the ink are important parameters.
  • the appropriate surface tension parameters of the ink are suitable for a specific substrate and a specific printing method.
  • the surface tension of the ink according to the present invention at operating temperature or at 25°C is approximately in the range of 19 dyne/cm to 50 dyne/cm; more preferably in the range of 22 dyne/cm to 35 dyne/cm; and most preferably in the range of 25 dyne/cm to 33 dyne/cm.
  • the viscosity of the ink according to the present invention at the working temperature or 25° C. is about 1 cps to 100 cps; preferably 1 cps to 50 cps; more preferably 1.5 cps to 20 cps; and most preferably 4.0 cps to 20 cps.
  • the composition thus formulated will facilitate inkjet printing.
  • the viscosity can be adjusted by different methods, such as by selecting a suitable solvent and the concentration of the functional material in the ink.
  • the ink containing the metal organic complex or polymer according to the present invention can facilitate people to adjust the printing ink in an appropriate range according to the printing method used.
  • the weight ratio of the functional material contained in the composition according to the present invention is in the range of 0.3% to 30wt%, preferably in the range of 0.5% to 20wt%, more preferably in the range of 0.5% to 15wt%, more preferably in the range of 0.5% to 10wt%, and most preferably in the range of 1% to 5wt%.
  • the at least one organic solvent is selected from aromatic or heteroaromatic based solvents, in particular aliphatic chain/ring substituted aromatic solvents, or aromatic ketone solvents or aromatic ether solvents.
  • organic solvents suitable for the present invention include, but are not limited to: aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetralin, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl, p-methylisopropylbenzene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, dimethylbenzene, Hexyl
  • the at least one organic solvent can be selected from: aliphatic ketones, for example, 2-nonanone, 3-nonanone, 5-nonanone, 2-decanone, 2,5-hexanedione, 2,6,8-trimethyl-4-nonanone, phorone, di-n-amyl ketone, etc.; or aliphatic ethers, for example, amyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • aliphatic ketones for example, 2-nonanone, 3-nonanone, 5-nonanone
  • the printing ink further comprises another organic solvent.
  • another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methyl ethyl ketone, 1,2-dichloroethane, 3-phenoxytoluene, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetralin, decalin, indene and/or mixtures thereof.
  • the composition according to the present invention is a solution.
  • composition according to the present invention is a suspension.
  • composition in the embodiment of the present invention may include 0.01wt% to 20wt% of the organic compound containing triphenylene or its mixture according to the present invention, preferably 0.1wt% to 15wt%, more preferably 0.2wt% to 10wt%, and most preferably 0.25wt% to 5wt% of the organic compound containing triphenylene or its mixture.
  • the present invention also relates to the use of the composition as a coating or printing ink in the preparation of an organic optoelectronic device, and a preparation method by printing or coating is particularly preferred.
  • suitable printing or coating techniques include (but are not limited to) inkjet printing, nozzle printing, gravure printing, letterpress printing, screen printing, dip coating, spin coating, doctor blade coating, roller printing, twist roller printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slot extrusion coating, etc.
  • Inkjet printing, nozzle printing and gravure printing are preferred.
  • the solution or suspension may further include one or more components such as surfactants, lubricants, wetting agents, dispersants, hydrophobic agents, adhesives, etc., for adjusting viscosity, film-forming properties, improving adhesion, etc.
  • solvents and concentrations, viscosity, etc. please refer to the Handbook of Print Media: Technologies and Production Methods edited by Helmut Kipphan, ISBN 3-540-67326-1.
  • the present invention also provides an application of the above-mentioned triphenylene-containing organic compound or polymer, that is, the triphenylene-containing organic compound or polymer is applied to an organic optoelectronic device, and the organic optoelectronic device can be selected from, but not limited to, a color converter, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, an organic spin electronic device, an organic sensor and an organic plasmon emitting diode (Organic Plasmon Emitting Diode), etc., and organic electroluminescent devices such as OLED, OLEEC, and organic light emitting field effect transistor are particularly preferred.
  • the triphenylene-containing organic compound is preferably used in the light emitting layer of an electroluminescent device.
  • the present invention further relates to an organic optoelectronic device, comprising at least one organic compound or polymer or mixture containing triphenylene as described above.
  • an organic optoelectronic device comprising at least one cathode, an anode and a functional layer located between the cathode and the anode, wherein the functional layer comprises at least one organic compound or polymer containing triphenylene as described above.
  • the organic optoelectronic device can be selected from, but not limited to, a color converter, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, an organic spin electronic device, an organic sensor and an organic plasmon emitting diode (Organic Plasmon Emitting Diode). Diode), etc., particularly preferred are organic electroluminescent devices, such as OLED, OLEEC, and organic light-emitting field-effect tubes.
  • the organic optoelectronic device comprises a light-emitting layer, which comprises an organic compound or polymer or mixture containing triphenylene, or comprises an organic compound containing triphenylene and a phosphorescent light-emitting body, or comprises an organic compound containing triphenylene and a host material, or comprises an organic compound containing triphenylene, a phosphorescent light-emitting body and a host material.
  • a light-emitting layer which comprises an organic compound or polymer or mixture containing triphenylene, or comprises an organic compound containing triphenylene and a phosphorescent light-emitting body, or comprises an organic compound containing triphenylene and a host material, or comprises an organic compound containing triphenylene, a phosphorescent light-emitting body and a host material.
  • the organic photoelectric device especially OLED, mentioned above comprises a substrate, an anode, at least one light-emitting layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting device. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al., Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass. It is best that the substrate has a smooth surface. Substrates without surface defects are particularly ideal.
  • the substrate is flexible and can be selected from a polymer film or plastic with a glass transition temperature (Tg) of more than 150°C, preferably more than 200°C, more preferably more than 250°C, and most preferably more than 300°C. Examples of suitable flexible substrates are polyethylene terephthalate (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may include a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or the hole transport layer (HTL) or the light-emitting layer.
  • the absolute value of the difference between the work function of the anode and the HOMO energy level or valence band energy level of the light emitter in the light-emitting layer or the p-type semiconductor material as the HIL or HTL or the electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode materials include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), etc.
  • suitable anode materials are known and can be easily selected for use by a person skilled in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), etc.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the light-emitting layer.
  • the absolute value of the difference between the work function of the cathode and the LUMO energy level or conduction band energy level of the luminophore in the light-emitting layer or the n-type semiconductor material as the electron injection layer (EIL) or the electron transport layer (ETL) or the hole blocking layer (HBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • cathode materials examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, etc.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), etc.
  • OLEDs may also include other functional layers, such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer thereof is prepared by the composition according to the present invention.
  • the organic optoelectronic device according to the present invention has a light emission wavelength between 300nm and 1500nm, preferably between 350nm and 1200nm, and more preferably between 400nm and 800nm.
  • color converter for the purpose of the present invention, color converter, color conversion layer, and CCL have the same meaning.
  • the present invention further relates to a color conversion layer comprising a light emitter, wherein the light emitter is a chiral molecule.
  • the luminescent body comprises the chiral triphenylene-containing organic compound or polymer.
  • the color conversion layer comprises a host material and an organic compound or polymer containing triphenylene according to the present invention as a guest material.
  • the chiral light emitter is selected from the above-mentioned chiral triphenylene-containing organic compounds.
  • the chiral triphenylene-containing organic compound is selected from one of the aforementioned general formulas (I-4) to (I-7) and (I-11) to (I-14).
  • the chiral organic compound containing phenylene is selected from one of the aforementioned general formulas (Ia-6), (Ia-7), (Ib-6), (Ib-7), (Ib-13), (Ib-14), (Ib-15), (Ib-17), (Ib-23)-(Ib-31).
  • the present invention also relates to applications of the organic optoelectronic device according to the present invention in various electronic devices, including, but not limited to, display devices, lighting devices, light sources, sensors, and the like.
  • the present invention also relates to electronic devices including the organic optoelectronic device according to the present invention, including, but not limited to, display devices, lighting devices, light sources, sensors, and the like.
  • N,N-diisopropylethylamine (0.1 mL) was added dropwise to the system at 0°C, and stirred at 180°C for 12 h.
  • Synthesis of compound 2-2 The synthesis steps are similar to those of compound 1-2.
  • the intermediate compound 2-2 is formed under the action of a base.
  • N,N-diisopropylethylamine (0.1 mL) was added dropwise to the system at 0°C, and stirred at 180°C for 12 h.
  • N,N-diisopropylethylamine (0.1 mL) was added dropwise to the system at 0°C, and stirred at 180°C for 12 h.
  • the energy levels of organic compound materials can be obtained by quantum calculation, such as using TD-DFT (time-dependent density functional theory) through Gaussian09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian09W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the molecular geometry is optimized using the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet), and then the energy structure of the organic molecule is calculated by the TD-DFT (time-dependent density functional theory) method “TD-SCF/DFT/Default Spin/B3PW91” and the basis set “6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO energy levels are calculated according to the following calibration formula, and S 1 , T 1 and the resonance factor f(S
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are the direct calculation results of Gaussian 09W, and the unit is Hartree. The results are shown in Table 1:
  • the "planarity" of organic molecules can be measured by theoretically calculating the "MPP" (molecular planarity parameter) value to measure the overall planarity of the molecule.
  • MPP molecular planarity parameter
  • Table 2 calculates the MPP values of some molecules. It can be seen that the introduction of different large steric groups can significantly improve the planarity of the molecules, thereby improving the stacking effect of the molecules in the device and improving the efficiency and spectral stability of the molecules in the device.
  • ITO indium tin oxide
  • solvents such as one or more of chloroform, acetone or isopropyl alcohol
  • Evaporation The ITO substrate is moved into a vacuum vapor deposition device. Under high vacuum (1 ⁇ 10 -6 mbar), a resistive heating evaporation source is used to form a HI layer with a thickness of 30 nm. The HI layer is heated in sequence to form a 50 nm HT-1. Compound 1 is then evaporated on the HT-1 layer to form a 10 nm HT-2 layer. Two evaporation sources are then used, and the materials are vaporized at different rates. The weight ratio of BH:BD:GD is packaged at 94:3:3 to form a 50 nm light-emitting layer.
  • the first electron transport layer (ET) is then evaporated, and then ET and LiQ are placed in different evaporation units to co-deposit them at a ratio of 50 wt %, respectively, to obtain a second electron transport layer, and then 1 nm of LiQ is deposited as an electron injection layer, and finally a 100 nm thick Al cathode is deposited on the electron injection layer.
  • the device is encapsulated with UV-curable resin in a nitrogen glove box.
  • the device performance of the above embodiment and comparative example was tested, as shown in Table 3; the driving voltage and current efficiency were tested at a current density of 10 mA/cm 2 ; the device life of T95 refers to the time when the brightness decays to 95% at a constant current density of 20 mA/cm 2.
  • the current efficiency and T95 are both referenced to the comparative example.
  • the FWMH of device Example 1 is narrower, and the current efficiency and lifespan are significantly improved. This is due to the presence of the triphenylene group and the BN fused ring resonance system, which better balances the transmission characteristics of electrons and holes in the material, improves the luminous efficiency of the device, and improves the stability of the material.
  • the preparation of the color converter refers to WO2022213993A1.
  • the guest used is compound 1, and the structure of the host is as follows. Its synthesis is shown in WO2022213993A1:
  • PMMA polymethyl methacrylate
  • H1 main color conversion material
  • compound 1 compound 1 as the guest green color conversion material
  • a clear solution i.e., printing ink.
  • a KW-4a coating machine to spin coat the above solution on the surface of quartz glass to form a film of uniform thickness to obtain an organic functional material film, i.e., a color conversion film.
  • the color conversion film obtained above can reach an optical density of ⁇ 3 when the thickness is mostly about 3 ⁇ m.
  • the above green color conversion film can be placed on a blue self-luminous device, which emits blue light with a luminescence peak at 460nm; the blue light passes through a green color converter to emit green light with a luminescence peak between 523-525nm, and the FWMH is 28nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种含苯并菲的有机化合物及其在有机光电器件中的应用,其中含苯并菲的有机化合物具有如通式(I)所示的结构,按照本发明的含苯并菲的有机化合物可作为有机光电材料,通过将刚性苯并菲结构单元引入至BN类化合物中,能得到稳定的有机发光材料,提供了一种有机光电器件的材料解决方案。

Description

一种含苯并菲的有机化合物及其在有机光电器件中的应用 技术领域
本发明涉及有机电子材料和器件技术领域,尤其涉及一种含苯并菲的有机化合物,包含其的高聚物、混合物、组合物,及其在有机光电器件中的应用,特别是在有机电致发光器件中的应用。
背景技术
有机半导体材料在合成上具有多样性,制造成本相对较低以及具有优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
目前为止,基于BN稠环的多重共振荧光的发光材料体系已被开发出来,在蓝光发光层材料中,苯并菲类基团具有较好的稳定性,已广泛应用于发光主体材料中,相比BN稠环类多重共振发光客体材料,将苯并菲基团连接上去,进一步将其发光光谱变窄且进一步提高其热稳定性。因此,开发出更多包含苯并菲基团的BN类多重共振发光材料,对于OLED发光器件具有较大的意义。
对于多重共振窄光谱发光器件,客体材料性能决定发光器件效率及寿命,当前常用的BN类客体材料为多重共振BN类有机化合物,但由于其结构的特殊性,材料热稳定性问题仍然较大等缺点,同时这类材料的光电稳定性有限,导致器件寿命不高。为了更进一步提高客体材料稳定性,现有技术中通过引入硼杂氮杂稠环单元实现分子的多重共振效应,形成较好的刚性结构,得到较好材料热稳定性,实现窄发射光谱。本发明发现,将苯并菲基团引入BN类稠环结构中,在不降低材料多重共振效应前提下,进一步可以提高材料的稳定性。此类包含苯并菲硼杂氮杂有机化合物可应用于荧光客体材料中,为多重共振荧光发光材料的开发提供性能更优异的基本结构单元。
因此,现有技术,特别是材料解决方案还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种含苯并菲的有机化合物、包含其的高聚物、混合物、组合物,及其在有机光电器件的应用,旨在解决现有的蓝光材料性能不足的问题。
本发明的技术方案如下:一种含苯并菲的有机化合物,具有如通式(I)所示的结构:
其中:A、B、C、D彼此相同或不同,相互独立地选自取代或未取代的C6-C60芳香环、C5-C60杂芳香环或C10-C60的稠环结构单元,且A、B、C中至少有一个为苯并菲。X和Y相互独立地选自N或B,且X与Y不相同。Ar选自式(a)或式(b),虚线表示键合位置,且当Ar为式(a)时,L1和L2相互独立地选自无或单键,当Ar为式(b)时,L1和L2均为单键。Z1、Z2、Z3、Z4、Z5、Z6相互独立地选自CR1、NR1、N、O、S、S=O、S(=O)2或C=O,使得化学式(a)成为五元杂芳环,化学式(b)成为六元芳环或杂芳环,其中Z1-Z6中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
R1在每次出现时,可相同或不同的选自H、D,或者具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基基团,或者具有1至20个C原子的酮基基团,或者具有2至20个C原子的烷氧基羰基基团,或者具有4至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至40个环原子的芳氧基或杂芳氧基基团,或者具有5至40个环原子的芳胺基或杂芳胺基基团,或者这些基团的组合。
按照通式(I)的含苯并菲的有机化合物可以进一步被取代基R任意取代;取代基R在每次出现时,可相同或不同的选自具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基基团,或者具有1至20个C原子的酮基基团,或者具有2至20个C原子的烷氧基羰基基团,或者具有4至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至40个环原子的芳氧基或杂芳氧基基团,或者具有5至40个环原子的芳胺基或杂芳胺基基团,或者这些基团的组合。
本发明还涉及一种高聚物,包含至少一个重复单元,所述重复单元包含一种如上所述的含苯并菲的有机化合物所对应的结构。
本发明进一步涉及一种混合物,包含一种如上所述的含苯并菲的有机化合物,及至少一种有机功能材料,所述有机功能材料可选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体或主体材料。
本发明还涉及一种组合物,包含一种如上所述的含苯并菲的有机化合物或高聚物或混合物,及至少一种有机溶剂。
本发明进一步涉及一种有机光电器件,包含至少一种如上所述的含苯并菲的有机化合物或高聚物或混合物。
本发明进一步涉及一种颜色转换层,包含一种发光体,所述发光体是手性分子。进一步的,所述发光体选自如上所述的具有手性的含苯并菲的有机化合物。
有益效果:按照本发明的含苯并菲的有机化合物,通过将苯并菲结构单元引入至BN类化合物中,能得到稳定的有机发光材料,以其制备的发光器件具有较高的效率和寿命。按照本发明的含苯并菲的有机化合物可作为OLED器件中的功能材料,通过与合适的其它功能材料配合,能提高其作为OLED器件的发光效率及寿命,从而提供了一种效率高、寿命长的发光器件的材料解决方案。
附图说明
图1:化合物1的0.5mol/L甲苯溶液的吸收和发射光谱图。
具体实施方式
本发明提供一种含苯并菲的有机化合物及其在有机光电器件中的应用。为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明中,“取代”表示化合物的氢原子被取代基所取代。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。 该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
芳香基团指至少包含一个芳环的烃基。杂芳香基团指包含至少一个杂原子的芳香烃基。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,比如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于该发明目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是稠环芳香族环系。
在本发明实施例中,有机材料的能级结构,单线态能级S1、三线态能级T1、HOMO、LUMO起着关键的作用。下面对这些能级的确定做介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的单线态能级S1可通过发光光谱来确定,三线态能级T1可通过低温时间分辨发光光谱来测量。S1和T1还可以或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。ΔEST定义为(S1-T1)。
应该注意,HOMO、LUMO、S1、T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、S1、T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在本发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
本发明涉及一种含苯并菲的有机化合物,具有如通式(I)所示的结构:
其中:A、B、C、D彼此相同或不同,相互独立地选自取代或未取代的C6-C60芳香环、C5-C60杂芳香环或C10-C60的稠环结构单元,且A、B、C中至少有一个为苯并菲。X和Y相互独立地选自N或B,且X与Y不同时为N或B;Ar选自式(a)或式(b),虚线表示键合位置,且当Ar为式(a)时,L1和L2相互独立地选自无或单键,当Ar为式(b)时,L1和L2均为单键。Z1、Z2、Z3、Z4、Z5、Z6相互独立地选自CR1、NR1、N、O、S、S=O、S(=O)2或C=O,使得化学式(a)成为五元杂芳环,化学式(b)成为六元芳环或杂芳环,其中Z1-Z6中 任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
R1在每次出现时,可相同或不同的选自H、D,或者具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基基团,或者具有1至20个C原子的酮基基团,或者具有2至20个C原子的烷氧基羰基基团,或者具有4至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至40个环原子的芳氧基或杂芳氧基基团,或者具有5至40个环原子的芳胺基或杂芳胺基基团,或者这些基团的组合。
按照通式(I)的含苯并菲的有机化合物可以进一步被取代基R任意取代;取代基R在每次出现时,可相同或不同的选自具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基基团,或者具有1至20个C原子的酮基基团,或者具有2至20个C原子的烷氧基羰基基团,或者具有4至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至40个环原子的芳氧基或杂芳氧基基团,或者具有5至40个环原子的芳胺基或杂芳胺基基团,或者这些基团的组合。
在一些优选的实施例中,A、B、C、D相同或不同,彼此独立地选自取代或未取代的C6-C50芳香环、C5-C50杂芳香环或C10-C50的稠环结构单元,且A、B、C中至少有一个为苯并菲。在一些较优选的实施例中,A、B、C、D相同或不同,彼此独立地选自取代或未取代的C6-C40芳香环、C5-C40杂芳香环或C10-C40的稠环结构单元,且A、B、C中至少有一个为苯并菲。在一些更优选的实施例中,A、B、C、D相同或不同,彼此独立地选自取代或未取代的C6-C30芳香环、C5-C30杂芳香环或C10-C30的稠环结构单元,且A、B、C中至少有一个为苯并菲。在一些最优选的实施例中,A、B、C、D相同或不同,彼此独立地选自取代或未取代的C6-C20芳香环、C5-C20杂芳香环或C10-C20的稠环结构单元,且A、B、C中至少有一个为苯并菲。
在某些优选的实施例中,A、B、C相互独立地选自苯或苯并菲,且A、B、C中至少有一个为苯并菲。在某些优选的实施例中,A、B、C相互独立地选自苯或苯并菲,且A、B、C中至少有两个为苯并菲。在某些优选的实施例中,A、B、C均为苯并菲。
在某些优选的实施例中,D为带有大位阻结构的基团,其中“大位阻基团”指的是可以显著改善分子平面性的基团,通过引入大位阻基团可以极大提升分子整体结构的平面性,改善堆积。“平面性”是指分子相对于理想平面的差别,可通过理论计算“MPP”(molecular planarity parameter)值来衡量分子整体平面性的大小,MPP值越小表明分子平面性越强,MPP值为0代表理想平面。
在某些实施例中,所述含苯并菲的有机化合物选自如通式(I-1)-通式(I-14)之一所示的结构:

其中,L1-L2、Z1-Z6、A、B、C、D、X及Y的定义同上所述。
在某些优选的实施例中,A、B、C中仅有一个为苯并菲时,所述含苯并菲的有机化合物不为以下通式所示的结构:
其中,L1-L2、Z1-Z6、B、C、D、X及Y的定义同上所述。
在某些优选的实施例中,A、B、C中仅有二个为苯并菲时,所述含苯并菲的有机化合物不为以下通式所示的结构:
其中,L1-L2、Z1-Z6、C、D、X及Y的定义同上所述。
在一些实施例中,所述含苯并菲的有机化合物选自如通式(Ia-1)-通式(Ia-13)、通式(Ib-1)-通式(Ib-37)所示的结构:

其中,X、Y的定义同上所述。
在一些优选的实施例中,所述含苯并菲的有机化合物选自如通式(IIa-1)-通式(IIa-7)、通式(IIb-1)-通式(IIb-31)所示的结构:

其中,X、Y、R的定义同上所述,n选自0、1、2、3、4。
在某些实施例中,A、B、C、D在每次出现时,相互独立地选自如下基团:
其中:w每次出现时,分别独立选自CR1R2、NR1、O、S、SiR1R2、PR1、P(=O)R1、S=O、S(=O)2或C=O;v每次出现时,分别独立选自CR3或N;R1-R3每次出现时,分别独立选自H、D,或者具有1-20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基,或者具有3-20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基,或者具有1-20个C原子的酮基,或者具有2-20个C原子的烷氧基羰基,或者具有7-20个C原子的芳氧基羰基基团,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5-60个环原子的取代或未取代的芳香基团或杂芳香基团,或者具有5-60个环原子的芳氧基或杂芳氧基基团,或者这些基团的组合。
在一些优选的实施例中,所述的芳香基团或杂芳香基团选自以下基团:
其中,w、v的定义同上所述。
更优选的,所述的芳香基团或杂芳香基团选自:
其中,w、v的定义同上所述。
进一步的,所述的芳香基团选自:苯、萘、蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、及其衍生物等;所述的杂芳香基团选自:苯并呋喃、苯并噻吩、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩 并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物等。
在一些优选的实施例中,A、B、C、D在每次出现时,相互独立选自如下基团:
其中:环上的H原子可以进一步被取代。
在某些优选的实施例中,上述的含苯并菲的有机化合物,其中A、B、C、D在每次出现时,可进一步选自以下结构单元或它们的组合:
其中n1是1或2或3或4。
在某些实施例中,取代基R在每次出现时,相互独立地选自如下基团:
其中,w、v的定义同上所述。
在一些优选的实施例中,所述含苯并菲的有机化合物选自如通式(IIc-1)-通式(IIc-31)所示的结构,通过引入大位阻基团(Z环),使其平面构型扭曲,通过调节大位阻基团上含有的不同取代基,减弱引入苯环后所引起的π-π相互吸引作用,进一步减弱分子间作用力,从而减弱浓度猝灭效应对效率的不良影响,同时,引入大位阻基团可以降低堆积有利于保持PL光谱稳定。

其中:X、Y、R、n的定义同上所述。
在某些优选的实施例中,D选自被取代基Z取代的C6-C60芳香环、C5-C60杂芳香环或C10-C60的稠环结构单元。
在某些优选的实施例中,取代基Z选自通式(IIIa)或通式(IIIb)所示的大位阻基团:
其中:P相对于Q的连接位点为邻位取代,P、Q分别独立选自取代或未取代的C6-C60芳 香环、C5-C60杂芳香环或C8-C60的稠环结构单元;V0每次出现时,分别独立选自CR4或N;R4的定义同上述R1,*表示连接位点(连接主体与D稠合的部位)。
在一些优选的实施例中,通式(IIIb)中至少有1个V0为N;在一些较为优选的实施例中,通式(IIIb)中至少有2个V0为N;在一些更优选的实施例中,通式(IIIb)中3个V0均为N。
在一些实施例中,P、Q分别独立选自如下所述的结构:
其中:w、v的定义同上所述。
在某些优选的实施例中,取代基Z选自如下大位阻基团:

其中:w、v的定义同上所述,P作为取代基,可取代所在环上的任一H,同时上述具有大位阻结构的基团中,存在P任意取代时,对应环上至少有一个v选自CR3,且R3选自H。
具体的:以结构式为例,其部分组合如下所示:
其中:*表示连接位点,w、v的定义同上所述。
在某些优选的实施例中,R选自苯或者萘。
在某些优选的实施例中,R选自杂芳香基团。
在一些比较优选的实施例中,所述含苯并菲的有机化合物是至少部分被氘代,较好是10%及以上的H被氘代,更好是20%及以上的H被氘代,很好是30%及以上的H被氘代,最好是40%及以上的H被氘代。
在一个优选的实施例中,所述含苯并菲的有机化合物是手性分子,其优选的自旋方式为P-类手性分子;在另一些实施例中,所述的含苯并菲有机化合物是M-类手性分子。
手性分子的分离的一般方法为:将所述手性化合物溶于有机溶剂中,通过手性拆分柱层析的方法对P-、M-类手性化合物进行拆分提纯。
优选的,上述具有手性的含苯并菲的有机化合物选自前述的通式(I-4)-(I-7)和(I-11)-(I-14)中的一个。
更加优选的,上述的具有手性的含苯并菲的有机化合物选自前述的通式(Ia-6),(Ia-7),(Ib-6),(Ib-7),(Ib-13),(Ib-14),(Ib-15),(Ib-17),(Ib-23)-(Ib-31)中的一个。
下面列出按照本发明所述含苯并菲的有机化合物的具体结构,但不限于此,其中有粗体表示的键为手性分子:

















按照本发明的含苯并菲的有机化合物,可以作为功能材料应用于光学器件,如颜色转换器,或电子器件,特别是电致发光器件中。所述的电致发光器件可选于OLED、OLEEC、有机发光场效应管;特别优选OLED器件。有机功能材料可分为空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光体(Emitter)、主体材料(Host)和有机染料。在一些优选的实施例中,按照本发明的含苯并菲的有机化合物可作为主体材料、电子传输材料或空穴传输材料。
在一些优选的实施例中,所述的电致发光器件的发光波长在300nm-1500nm,优选400nm-1000nm,更优选400nm-800nm。
在某些实施例中,按照本发明的含苯并菲的有机化合物具有发光功能,其发光波长在300nm到1000nm之间,较好是在350nm到900nm之间,更好是在400nm到800nm之间。这里指的发光是指光致发光或电致发光。
在一些优选的实施例中,按照本发明的含苯并菲的有机化合物可作为荧光客体材料。
作为荧光客体材料必须有适当的单线态能级,即S1。在某些实施例中,按照本发明的含苯并菲的有机化合物,其S1≥2.3eV,较好是≥2.4eV,更好是≥2.5eV,最好是≥2.6eV。
作为荧光客体材料必须有较高的光致发光量子效率,即PLQY。在某些实施例中,按照本发明的含苯并菲的有机化合物,其PLQY≥40%,较好是≥50%,更好是≥60%,最好是≥70%。
化合物的PLQY一般跟其谐振因子f1(其计算如下述)成正相关。在一个优选的实施例中,所述含苯并菲的有机化合物的f1≥0.3,较好是≥0.4,更好是≥0.5,最好是≥0.6。
在一个优选的实施例中,所述含苯并菲的有机化合物是绿光发光材料;在另一些实施例中所述含苯并菲的有机化合物是橙光或红光发光材料。
在另一些优选的实施例中,所述含苯并菲的有机化合物发光谱的半峰全宽(FWHM)≤40nm,较好为≤35nm,最好为≤35nm。
在某些优选的实施例中,按照本发明的含苯并菲的有机化合物为热激发延迟荧光材料(TADF材料)。一般的,按照本发明的含苯并菲的有机化合物,其ΔEST≤0.3eV,较好为≤0.25eV,更好为≤0.2eV,最好为≤0.15eV。
作为有机功能材料希望有好的热稳定性。一般的,按照本发明的含苯并菲的有机化合物,其玻璃化温度(Tg)≥100℃,较好的Tg≥140℃,更好的Tg≥180℃。
在某些优选的实施例中,按照本发明的含苯并菲的有机化合物,其(HOMO-(HOMO-1))≥0.2eV,较好是≥0.3eV,更好是≥0.4eV,最好是≥0.45eV。
在另一些优选的实施例中,按照本发明的含苯并菲的有机化合物,其((LUMO+1)-LUMO)≥0.15eV,较好是≥0.25eV,更好是≥0.30eV,最好是≥0.35eV。
本发明还涉及一种高聚物,包含至少一个重复单元,所述重复单元包含包含一种如上所述的含苯并菲的有机化合物所对应的结构。
在某些实施例中,所述的高聚物是非共轭高聚物,其中如通式(I)所示的结构在侧链上。在另一个优选的实施例中,所述的高聚物是共轭高聚物。
在一个优选的实施例中,其中的高聚物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优选的实施例中,按照本发明的高聚物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优选的实施例中,按照本发明的高聚物,其分子量分布(PDI)取值范围优选为1~5,较优选为1~4,更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优选的实施例中,按照本发明的高聚物,其重均分子量(Mw)取值范围优选为1万~100万,较优选为5万~50万,更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
在某些优选的实施例中,按照本发明的高聚物,其(HOMO-(HOMO-1))≥0.2eV,较好是≥0.3eV,更好是≥0.4eV,最好是≥0.45eV。
本发明还涉及一种混合物,包含一种如上所述的含苯并菲的有机化合物或高聚物,以及至少一种有机功能材料。所述的有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体或主体材料。发光体选自单重态发光体(荧光发光体)、三重态发光体(磷光发光体)及有机热激发延迟荧光材料(TADF材料)。例如在WO2010135519A1、US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和高聚物材料。
在某些实施例中,所述的混合物,包含至少一种按照本发明的含苯并菲的有机化合物和一种荧光主体。这里按照本发明的含苯并菲的有机化合物可以作为荧光客体材料,其重量百分比为≤10wt%,较好是≤9wt%,更好是≤8wt%,特别好是≤7wt%,最好是≤5wt%。
在另一些优选的实施例中,所述的混合物,包含至少一种按照本发明的含苯并菲的有机化合物、一种蓝光发光体材料和一种荧光主体材料。这里按照本发明的含苯并菲的有机化合物和所述的蓝光发光体材料为荧光共客体材料,其中重量比为2:8至8:2,较好是3:7至7:3, 最好是4:6至6:4。在一种优选的实施例中,所述蓝光发光体材料的发光谱和按照本发明的含苯并菲的有机化合物的吸收谱至少部分重叠,这样蓝光发光体材料的能量可以有效的转移到按照本发明的含苯并菲的有机化合物上。
其中关于主体材料、荧光发光体材料、TADF材料及其他有机功能材料的详细描述详见WO2018095395,特将此专利文件中的全部内容并入本文作为参考。
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在某些实施例中,按照本发明的含苯并菲的有机化合物,其分子量≤1100g/mol,优选≤1000g/mol,很优选≤950g/mol,更优选≤900g/mol,最优选≤800g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的含苯并菲的有机化合物,其分子量≥700g/mol,优选≥900g/mol,更优选≥1000g/mol,最优选≥1100g/mol。
在另一些实施例中,按照本发明的含苯并菲的有机化合物,在25℃时,在甲苯中的溶解度≥10mg/mL,优选≥15mg/mL,最优选≥20mg/mL。
本发明还进一步涉及一种组合物或油墨,包含有一种如上所述的含苯并菲的有机化合物或高聚物或混合物,及至少一种有机溶剂。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将便于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述金属有机配合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般的,按照本发明的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述的至少一种有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂或芳族醚溶剂。
适合本发明的有机溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮、异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4- (1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述的至少一种的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4-二氧杂环己烷、丙酮、甲基乙基酮、1,2-二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施例中,按照本发明的组合物是一溶液。
在另一个优选的实施例中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01wt%至20wt%的按照本发明的含苯并菲的有机化合物或其混合物,较好的是0.1wt%至15wt%,更好的是0.2wt%至10wt%,最好的是0.25wt%至5wt%的含苯并菲的有机化合物或其混合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机光电器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),凹版印刷,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是喷墨印刷,喷印及凹版印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook ofPrint Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述含苯并菲的有机化合物,本发明还提供一种如上所述含苯并菲的有机化合物或高聚物的应用,即将所述含苯并菲的有机化合物或高聚物应用于有机光电器件,所述的有机光电器件可选于,但不限于,颜色转换器,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。本发明实施例中,优选将所述含苯并菲的有机化合物用于电致发光器件的发光层。
本发明进一步涉及一种有机光电器件,至少包含一种如上所述含苯并菲的有机化合物或高聚物或混合物。一般的,此种有机光电器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述含苯并菲的有机化合物或高聚物。所述的有机光电器件可选于,但不限于,颜色转换器,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting  Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优选的实施例中,所述的有机光电器件,包含一发光层,所述发光层包含一种所述含苯并菲的有机化合物或高聚物或混合物,或包含一种所述含苯并菲的有机化合物和一种磷光发光体,或包含一种所述含苯并菲的有机化合物和一种主体材料,或包含一种所述含苯并菲的有机化合物,一种磷光发光体和一种主体材料。
在以上所述的有机光电器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度(Tg)为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚对苯二甲酸乙二醇酯(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个优选的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个优选的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,按照本发明的有机光电器件中,其发光层是通过按照本发明的组合物制备而成。
按照本发明的有机光电器件,特别是OLED,其发光波长在300nm到1500nm之间,较好的是在350nm到1200nm之间,更好的是在400nm到800nm之间。
出于本发明的目的,颜色转换器,颜色转换层,及CCL具有相同的含义。
本发明还进一步涉及一种颜色转换层,包含一种发光体,其中所述发光体是手性分子。
在一些实施例中,上述发光体包含上述的具有手性的含苯并菲的有机化合物或高聚物。
在一个优选的实施例中,所述的颜色转换层包含一种主体材料和一种按照本发明的含苯并菲的有机化合物或高聚物作为客体材料。如在申请号为WO2022213993A1的在先申请所述的, 特将此专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,所述的颜色转换层,其中所述手性发光体选自上述具有手性的含苯并菲的有机化合物。
优选的,所述的颜色转换层中,具有手性的含苯并菲的有机化合物选自前述的通式(I-4)-(I-7)和(I-11)-(I-14)中的一个。
更加优选的,所述的颜色转换层中,具有手性的含苯并菲的有机化合物选自前述的通式(Ia-6),(Ia-7),(Ib-6),(Ib-7),(Ib-13),(Ib-14),(Ib-15),(Ib-17),(Ib-23)-(Ib-31)中的一个。
本发明还涉及按照本发明的有机光电器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
本发明还涉及包含有按照本发明的有机光电器件的电子设备,包括,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1、化合物的合成
实施例1
化合物1的合成路线如下:
具体合成步骤如下:
化合物1-1的合成:在氩气气氛下,将3,6-二叔丁基咔唑(5.58g,20.0mmol),碳酸铯(9.77g,30.0mmol),1-溴-2,6-二氟苯(5.64g,30.0mmol)和60mL超干DMF加入至250mL单口瓶中,在150℃下搅拌22h。反应体系冷却至室温后倒入水中,过滤得到的粗产物经柱层析纯化(洗脱剂:PE),二氯甲烷和甲醇进行重结晶得到5.03g白色固体(化合物1-1),产率为56%。1HNMR(400MHz,CDCl3,297K,ppm)δ8.16(d,J=2.0Hz,2H),7.50-7.43(m,3H),7.34-7.26(m,2H),7.00(dd,J=8.8Hz,2.4Hz,2H),1.48(s,18H).13C NMR(101MHz,CDCl3,297K,ppm)δ143.25,139.50,139.30,129.22,129.13,126.42,123.83,123.51,116.52,116.24,111.60,109.62,34.90,32.17.19F NMR(376MHz,CDCl3,297K,ppm)δ-102.47.HRMS(MALDI)m/z:Calcd.for C26H27BrFN:451.1311;Found:451.1305[M]+
化合物1-2的合成:在氩气气氛下,将化合物1-1(321mg,0.710mmol),7H-二菲并咔唑(500mg,1.07mmol),碳酸铯(1.16g,3.56mmol)和12mL超干DMF加入至50mL Schlenk瓶中,在155℃下搅拌16h。反应体系冷却至室温后,将混合物用二氯甲烷萃取3次,有机相用水和饱和食盐水洗涤,无水硫酸镁干燥。过滤得到的粗产物经柱层析纯化(洗脱剂:PE/CH2Cl2=10:1),二氯甲烷和甲醇重结晶得到338mg浅黄色固体(化合物1-2),产率为53%。1HNMR(400MHz,CD2Cl2,297K,ppm)δ8.91-8.81(m,2H),8.80-8.70(m,4H),8.48(t,J=8.0Hz,2H), 8.23-8.18(m,2H),8.08-7.84(m,6H),7.78-7.67(m,5H),7.65-7.53(m,3H),7.31-7.20(m,3H),6.42-6.34(m,2H).1.47(s,18H).13C NMR(101MHz,CDCl3,297K,ppm)δ143.46,143.44,141.24,140.87,140.21,139.34,139.27,138.86,132.02,131.64,130.84,130.64,129.78,129.55,129.52,128.73,128.68,128.44,128.16,127.86,127.28,127.25,127.11,127.09,126.58,126.18,126.14,124.98,124.89,124.67,124.03,124.02,123.76,123.69,123.68,123.61,123.42,123.38,121.96,121.87,118.98,118.79,116.72,116.67,110.38,110.26,109.64,109.56,34.97,32.20.HRMS(MALDI)m/z:Calcd.for C62H47BrN2:898.2923;Found:898.2936[M]+
化合物1的合成:在氩气气氛下,将化合物1-2(300mg,0.334mmol)和4mL邻二氯苯加入至50mL史莱克管中,在0℃下加入正丁基锂(0.668mmol,1.6M in hexane),搅拌2h后,在0℃下往体系中滴加三溴化硼(10.8mmol,1.0M in heptane),移至室温下搅拌16h。减压除去低沸点溶剂后,在0℃下往体系中滴加N,N-二异丙基乙胺(0.1mL),180℃下搅拌12h。体系冷却至室温,减压除去溶剂后,经柱层析纯化(洗脱剂:PE/CH2Cl2=5:1),二氯甲烷和甲醇重结晶得到50mg橘色固体(化合物1),产率为18%。1HNMR(400MHz,CD2Cl2,297K,ppm)δ10.03(s,1H),9.03(d,J=1.6Hz,1H),8.84(d,J=8Hz,1H),8.61-8.53(m,2H),8.48-8.44(m,1H),8.42(d,J=1.6Hz,1H),8.37-8.31(m,4H),8.20(d,J=2.4Hz,1H),8.10(d,J=8.8Hz,1H),7.98(t,J=7.6Hz,2H),7.77-7.72(m,2H),7.68-7.63(m,1H),7.61-7.50(m,5H),7.19-7.12(m,2H),6.26-6.20(m,2H),1.69(s,9H),1.55(s,9H).13C NMR(101MHz,CD2Cl2,297K,ppm)δ145.88,145.16,144.09,143.65,142.59,141.90,140.21,138.70,133.33,131.41,130.70,130.57,130.52,130.04,129.94,129.84,129.36,129.33,129.27,128.17,127.96,127.86,127.77,127.60,127.56,127.46,126.84,125.91,125.75,125.16,125.11,124.96,124.34,124.08,124.03,123.78,123.50,123.25,122.43,122.36,122.27,121.74,121.55,121.25,118.94,117.85,114.74,114.16,109.64,109.57,35.65,35.24,32.51,32.16.HRMS(MALDI)m/z:Calcd.for C62H45BN2:828.3676;Found:828.3675[M]+
实施例2
化合物2的合成路线如下:
具体合成步骤如下:
化合物2-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物2-2,产率为30%,MS(ASAP)=787.76。
化合物2的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物2,产率为15%,MS(ASAP)=716.65。
实施例3
化合物3的合成路线如下:
化合物3-1的合成:合成步骤与化合物1-1的合成类似,在碱的作用下形成中间体化合物3-1,产率为54%,MS(ASAP)=490.38。
化合物3-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物3-2,产率为50%,MS(ASAP)=937.94。
化合物3的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物3,产率为21%,MS(ASAP)=866.83。
实施例4
化合物4的合成路线如下:
化合物4-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物4-2,产率为28%,MS(ASAP)=1088.12。
化合物4的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物4,产率为12%,MS(ASAP)=1003.99。
实施例5
化合物5的合成路线如下:
化合物5-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物5-2,产率为58%,MS(ASAP)=749.80。
化合物5的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物5,产率为25%,MS(ASAP)=678.69。
实施例6
化合物6的合成路线如下:
化合物6-1的合成:合成步骤与化合物1-1的合成类似,在碱的作用下形成中间体化合物6-1,产率为50%,MS(ASAP)=380.22。
化合物6-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物 6-2,产率为44%,MS(ASAP)=827.78。
化合物6的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物6,产率为10%,MS(ASAP)=756.67。
实施例7
化合物7的合成路线如下:
化合物7-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物7-2,产率为48%,MS(ASAP)=667.56。
化合物7的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物7,产率为16%,MS(ASAP)=596.45。
实施例8
化合物8的合成路线如下:
化合物8-1的合成:合成步骤与化合物1-1的合成类似,在碱的作用下形成中间体化合物8-1,产率为45%,MS(ASAP)=546.46。
化合物8-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物8-2,产率为47%,MS(ASAP)=849.86。
化合物8的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物8,产率为14%,MS(ASAP)=778.75。
实施例9
化合物9的合成路线如下:
化合物9-2的合成:采用经典的Hartwig反应合成,利用卤素原子反应活性的差异,优先和碘反应形成C-N键,在Pd催化作用下,反应收率为50%,其MS(ASAP)=855.10。
化合物9的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物9,产率为45%,MS(ASAP)=713.45。
实施例10
化合物10的合成路线如下:
化合物10-1的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为70%,MS(ASAP)=364.24。
化合物10-2的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为80%,MS(ASAP)=735.48。
化合物10的合成:合成过程与化合物9的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物10,产率为48%,MS(ASAP)=593.26。
实施例11
化合物11的合成路线如下:
化合物11-1的合成:合成步骤与化合物1-1的合成类似,在碱的作用下形成中间体化合物11-1,产率为64%,MS(ASAP)=330.16。
化合物11-2的合成:合成步骤与化合物1-2的合成类似,在碱的作用下形成中间体化合物11-2,产率为62%,MS(ASAP)=627.54。
化合物11的合成:合成过程与化合物1的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物11,产率为18%,MS(ASAP)=556.43。
实施例12
化合物12的合成路线如下:
化合物12-1的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为66%,MS(ASAP)=330.24。
化合物12-2的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为68%,MS(ASAP)=711.52。
化合物12的合成:合成过程与化合物9的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物12,产率为25%,MS(ASAP)=569.30。
实施例13
化合物13的合成路线如下:
具体合成步骤如下:
化合物13b的合成:在氩气气氛下,将7H-二菲并咔唑(5g,10.7mmol),碳酸铯(20g,300.0mmol),化合物13a和300mL超干DMF加入至5000mL单口瓶中,在150℃下搅拌22h。反应体系冷却至室温后倒入水中,过滤得到的粗产物经柱层析纯化(洗脱剂:PE),二氯甲烷和甲醇进行重结晶得到4.03g白色固体(化合物13b),产率为42%。
化合物13c的合成:在氩气气氛下,将化合物13b(3g,2.4mmol),咔唑(1g,2.14mmol),碳酸铯(1.16g,3.56mmol)和12mL超干DMF加入至50mL Schlenk瓶中,在155℃下搅拌16h。反应体系冷却至室温后,将混合物用二氯甲烷萃取3次,有机相用水和饱和食盐水洗涤,无水硫酸镁干燥。过滤得到的粗产物经柱层析纯化(洗脱剂:PE/CH2Cl2=10:1),二氯甲烷和甲醇重结晶得到2.1g浅黄色固体(化合物13c),产率为53%。
化合物13的合成:在氩气气氛下,将化合物13c(300mg,0.114mmol)和4mL邻二氯苯加入至50mL史莱克管中,在0℃下加入正丁基锂(0.3mmol,1.6M in hexane),搅拌2h后,在0℃下往体系中滴加三溴化硼(5.4mmol,1.0M in heptane),移至室温下搅拌16h。减压除去低沸点溶剂后,在0℃下往体系中滴加N,N-二异丙基乙胺(0.1mL),180℃下搅拌12h。体系冷却至室温,减压除去溶剂后,经柱层析纯化(洗脱剂:PE/CH2Cl2=5:1),二氯甲烷和甲醇重结晶得到50.12mg橘色固体(化合物13),产率为10%。
实施例14
化合物14的合成路线如下:
具体合成步骤如下:
化合物14b的合成:在氩气气氛下,将7H-二菲并咔唑(5g,10.7mmol),碳酸铯(20g,300.0mmol),化合物14a和300mL超干DMF加入至5000mL单口瓶中,在150℃下搅拌22h。反应体系冷却至室温后倒入水中,过滤得到的粗产物经柱层析纯化(洗脱剂:PE),二氯甲烷和甲醇进行重结晶得到4.12g白色固体(化合物14b),产率为43%。
化合物14c的合成:在氩气气氛下,将化合物14b(3g,2.7mmol),咔唑(1.5g,3.21mmol),碳酸铯(1.16g,3.56mmol)和12mL超干DMF加入至50mL Schlenk瓶中,在155℃下搅拌16h。反应体系冷却至室温后,将混合物用二氯甲烷萃取3次,有机相用水和饱和食盐水洗涤,无水硫酸镁干燥。过滤得到的粗产物经柱层析纯化(洗脱剂:PE/CH2Cl2=10:1),二氯甲烷和甲醇重结晶得到2.18mg浅黄色固体(化合物14c),产率为53%。
化合物14的合成:在氩气气氛下,将化合物14c(300mg,0.114mmol)和4mL邻二氯苯加入至50mL史莱克管中,在0℃下加入正丁基锂(0.3mmol,1.6M in hexane),搅拌2h后,在0℃下往体系中滴加三溴化硼(5.4mmol,1.0M in heptane),移至室温下搅拌16h。减压除去低沸点溶剂后,在0℃下往体系中滴加N,N-二异丙基乙胺(0.1mL),180℃下搅拌12h。体系冷却至室温,减压除去溶剂后,经柱层析纯化(洗脱剂:PE/CH2Cl2=5:1),二氯甲烷和甲醇重结晶得到50.23mg橘色固体(化合物14),产率为11%。
实施例15
化合物15的合成路线如下:
化合物15b的合成:合成步骤与化合物14c的合成类似,在碱的作用下形成中间体化合物,产率为51%,MS(ASAP)=1183。
化合物15的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物15,产率为12%,MS(ASAP)=1157。
实施例16
化合物16的合成路线如下:
化合物16a的合成:合成步骤与化合物14c的合成类似,在碱的作用下形成中间体化合物,产率为51%,MS(ASAP)=1147。
化合物16的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物16,产率为12%,MS(ASAP)=1121。
实施例17
化合物17的合成路线如下:
化合物17a的合成:合成步骤与化合物14c的合成类似,在碱的作用下形成中间体化合物,产率为51%,MS(ASAP)=1382。
化合物17的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物17,产率为11%,MS(ASAP)=1357。
实施例18
化合物18的合成路线如下:
化合物18b的合成:合成步骤与化合物14b的合成类似,在碱的作用下形成中间体化合物,产率为50%,MS(ASAP)=903.46。
化合物18c的合成:合成步骤与化合物14c的合成类似,在碱的作用下形成中间体化合物,产率为51%,MS(ASAP)=1050。
化合物18的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物18,产率为10%,MS(ASAP)=1024。
实施例19
化合物19的合成路线如下:
化合物19a的合成:合成步骤与化合物14c的合成类似,在碱的作用下形成中间体化合物,产率为52%,MS(ASAP)=1159。
化合物19的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物19,产率为12%,MS(ASAP)=1133。
实施例20
化合物20的合成路线如下:
化合物20b的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为66%,产率为51%,MS(ASAP)=1161。
化合物20的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物20,产率为11%,MS(ASAP)=1135。
实施例21
化合物21的合成路线如下:
化合物21b的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为67%,产率为51%,MS(ASAP)=1162。
化合物21的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物21,产率为11%,MS(ASAP)=1136。
化合物22b的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为78%,产率为51%,MS(ASAP)=1218。
化合物22的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物22,产率为10%,MS(ASAP)=1191。
实施例23
化合物23的合成路线如下:
化合物23b的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为67%,产率为51%,MS(ASAP)=1174。
化合物23的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物23,产率为10%,MS(ASAP)=1148。
实施例24
化合物24的合成路线如下:
化合物24b的合成:合成步骤与化合物9-2的合成类似,采用经典的Hartwig反应,产率为67%,产率为51%,MS(ASAP)=1264。
化合物24的合成:合成过程与化合物14的合成类似,在正丁基锂作用下,形成Li盐,进而在BBr3作用下,形成最终产物化合物24,产率为12%,MS(ASAP)=1237。
2、化合物的能量结构
有机化合物材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1,T1和谐振因子f(S1)直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表1所示:
表1

有机分子的“平面性”可通过理论计算“MPP”(molecular planarity parameter)值来衡量分子整体平面性的大小,表2计算了部分分子的MPP值,可以看出,通过引入不同的大位阻基团可显著改善分子的平面性,进而改善分子在器件中的堆积效应,提高分子在器件中的效率及光谱稳定性。
表2
3、OLED器件的制备及性能
OLED器件的制备:
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理。
b、蒸镀:将ITO基片移入真空气相沉积设备中,在高真空(1×10-6毫巴)下,采用电阻加热蒸发源形成厚度为30nm的HI层,在HI层上依次加热形成50nm的HT-1,紧接着在HT-1层上蒸镀化合物1形成10nm的HT-2层。随后使用两个蒸发源,材料按不同速率气化,包装BH:BD:GD的重量比在94:3:3,形成50nm的发光层。接着蒸镀第一电子传输层(ET),之后ET和LiQ置于不同的蒸发单元,使其分别以50重量%的比例进行共沉积,得到第二电子传输层,随后沉积1nm的LiQ作为电子注入层,最后在所述电子注入层上沉积厚度为100nm的Al阴极。
c、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
器件结构为HI(10)/HT-1(50)/HT-2(10)/BH:BD:GD=94:3:3(50)/第一ET传输层(5)/第二ET传输层ET:LiQ=50:50(25)/LiQ(1)/Al(100)。
对上述实施例和对比例的器件性能进行测试,具体如表3所示;其中驱动电压、电流效率是在10mA/cm2电流密度下进行测试;T95的器件寿命是指在恒定电流密度20mA/cm2亮度衰减至95%的时间。电流效率和T95都以对比例为参照。
表3
和对比例1相比,器件实施例1的FWMH较窄,而且电流效率和寿命都有明显的提升。这是由于苯并菲基团以及BN稠环共振体系的存在,从而较好地平衡材料电子、空穴的传输特性,提高提高器件的发光效率,提升材料的稳定性。
4、颜色转换器的制备及性能
化合物1的0.5mol/L甲苯溶液的吸收和发射光谱图见图1。
颜色转换器的制备参考WO2022213993A1。所用的客体为化合物1,主体的结构如下,其合成见WO2022213993A1:
分别称取100mg聚甲基丙烯酸甲酯(PMMA)、50mg颜色转换材料主体(H1)、5mg化合物1作为绿色颜色转换材料客体然后将以上物质一起溶解在1mL乙酸正丁酯中,得到澄清溶液,即印刷油墨。使用KW-4a匀胶机,在石英玻璃表面旋涂以上溶液,形成厚度均匀的薄膜,得有机功能材料薄膜,即颜色转换薄膜。以上所得的颜色转换薄膜在大多的厚度约3μm时,其光密度可达到≥3。
以上的绿色颜色转换薄膜可以放置在蓝色自发光器件,该蓝色自发光器件发射出发光峰在460nm的蓝光;蓝光经过绿色颜色转换器,发射出发光峰在523-525nm之间的绿光,且FWMH为28nm。
5、具有手性的颜色转换器
手性分子的分离:将所述化合物1溶于有机溶剂中,通过手性拆分柱层析的方法对P、M构型的手性化合物进行拆分提纯,得到P构型的手性分子化合物(1-P)。
以实施4相同的方法制备包含手性分子化合物(1-P)的手性颜色转换器。测得其手性不对称因子g=5.2×10-4,其中g=(Ileft-Iright)/(Ileft+Iright),Iright,Ileft为右旋和左旋光的强度。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

  1. 一种含苯并菲的有机化合物,具有如通式(I)所示的结构:
    其中:
    A、B、C、D彼此相同或不同,相互独立地选自取代或未取代的C6-C60芳香环、C5-C60杂芳香环或C10-C60的稠环结构单元,且A、B、C中至少有一个为苯并菲;
    X和Y相互独立地选自N或B,且X与Y不相同;
    Ar选自式(a)或式(b),虚线表示键合位置,且当Ar为式(a)时,L1和L2相互独立地选自无或单键,当Ar为式(b)时,L1和L2均为单键;
    Z1、Z2、Z3、Z4、Z5、Z6相互独立地选自CR1、NR1、N、O、S、S=O、S(=O)2或C=O,使得化学式(a)成为五元杂芳环,化学式(b)成为六元芳环或杂芳环,其中Z1-Z6中任意相邻的两个取代基可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;
    R1在每次出现时,可相同或不同的选自H、D,或者具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基基团,或者具有1至20个C原子的酮基基团,或者具有2至20个C原子的烷氧基羰基基团,或者具有4至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至40个环原子的芳氧基或杂芳氧基基团,或者具有5至40个环原子的芳胺基或杂芳胺基基团,或者这些基团的组合;
    按照通式(I)的含苯并菲的有机化合物可以进一步被取代基R任意取代;取代基R在每次出现时,可相同或不同的选自具有1至20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基基团,或者具有1至20个C原子的酮基基团,或者具有2至20个C原子的烷氧基羰基基团,或者具有4至20个C原子的芳氧基羰基,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或者具有5至40个环原子的芳氧基或杂芳氧基基团,或者具有5至40个环原子的芳胺基或杂芳胺基基团,或者这些基团的组合。
  2. 根据权利要求1所述的含苯并菲的有机化合物,选自如通式(I-1)-通式(I-14)之一所示的结构:

    其中,L1-L2、Z1-Z6、A、B、C、D、X及Y的定义同权利要求1。
  3. 根据权利要求1或2所述的含苯并菲的有机化合物,其中,A、B、C、D相互独立地选自如下基团:
    其中:
    w在每次出现时,分别独立地选自CR1R2、NR1、O、S、SiR1R2、PR1、P(=O)R1、S=O、S(=O)2或C=O;
    v在每次出现时,分别独立地选自CR3或N;
    R1-R3在每次出现时,分别独立地选自H、D,或者具有1-20个C原子的直链的烷基、卤代烷基、烷氧基、硫代烷氧基,或者具有3-20个C原子的支链或环状的烷基、卤代烷基、烷氧基、硫代烷氧基、甲硅烷基,或者具有1-20个C原子的酮基,或者具有2-20个C原子的烷氧基羰基,或者具有7-20个C原子的芳氧基羰基基团,或者氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF3、Cl、Br、F、I、可交联的基团,或者具有5-60个环原子的取代或未取代的芳香基团或杂芳香基团,或者具有5-60个环原子的芳氧基或杂芳氧基基团,或者这些基团的组合。
  4. 根据权利要求1-3任意一项所述的含苯并菲的有机化合物,其中,D选自被取代基Z取代的C6-C60芳香环、C5-C60杂芳香环或C8-C60的稠环结构单元,取代基Z选自如下通式(IIIa)或通式(IIIb)所示的大位阻基团:
    其中:P、Q分别独立选自取代或未取代的C6-C60芳香环、C5-C60杂芳香环或C10-C60的稠环结构单元;V0每次出现时,分别独立选自CR4或N;R4的定义同权利要求1中的R1,*表示连接位点。
  5. 一种高聚物,包含至少一个重复单元,所述重复单元包含一种如权利要求1-4任一项所述的含苯并菲的有机化合物所对应的结构。
  6. 一种混合物,包含一种如权利要求1-4任意一项所述的含苯并菲的有机化合物,以及至少一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体或主体材料。
  7. 一种组合物,包含一种如权利要求1-4任意一项所述的含苯并菲的有机化合物,或如权利要求5所述的高聚物或如权利要求6所述的混合物,及至少一种有机溶剂。
  8. 一种有机光电器件,包含至少一种如权利要求1-4任意一项所述的含苯并菲的有机化合物,或如权利要求5所述的高聚物,或如权利要求6所述的混合物。
  9. 根据权利要求8所述的有机光电器件,其特征在于,所述有机光电器件选于颜色转换器、有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离激元发射二极管。
  10. 根据权利要求8所述的有机光电器件,其特征在于,所述有机光电器件包含一发光层,所述发光层包含一种如权利要求1-4任意一项所述的含苯并菲的有机化合物,或如权利要求5所述的高聚物,或如权利要求6所述的混合物。
  11. 一种颜色转换层,包含一种发光体,其特征在于,所述发光体是手性分子。
  12. 根据权利要求11所述的颜色转换层,其特征在于,所述发光体选自权利要求1-4任意一项所述的具有手性的含苯并菲的有机化合物。
PCT/CN2023/131804 2022-11-15 2023-11-15 一种含苯并菲的有机化合物及其在有机光电器件中的应用 WO2024104383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211429395 2022-11-15
CN202211429395.8 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024104383A1 true WO2024104383A1 (zh) 2024-05-23

Family

ID=91083808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131804 WO2024104383A1 (zh) 2022-11-15 2023-11-15 一种含苯并菲的有机化合物及其在有机光电器件中的应用

Country Status (1)

Country Link
WO (1) WO2024104383A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417715A (zh) * 2017-07-14 2017-12-01 瑞声科技(南京)有限公司 一种有机电致发光材料及其发光器件
CN107793441A (zh) * 2016-09-07 2018-03-13 学校法人关西学院 多环芳香族化合物
WO2019128599A1 (zh) * 2017-12-27 2019-07-04 广州华睿光电材料有限公司 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN111834535A (zh) * 2019-04-17 2020-10-27 乐金显示有限公司 有机电致发光装置
CN112679310A (zh) * 2019-10-18 2021-04-20 罗门哈斯电子材料韩国有限公司 多种发光材料以及包含其的有机电致发光装置
CN112930382A (zh) * 2018-10-26 2021-06-08 罗门哈斯电子材料韩国有限公司 多种发光材料以及包含其的有机电致发光装置
CN113540369A (zh) * 2020-04-13 2021-10-22 罗门哈斯电子材料韩国有限公司 有机电致发光装置
CN113727985A (zh) * 2019-09-10 2021-11-30 株式会社Lg化学 化合物及包含其的有机发光器件
CN114805407A (zh) * 2021-01-16 2022-07-29 浙江光昊光电科技有限公司 一种稠环化合物及其在有机电子器件中应用
WO2023190159A1 (ja) * 2022-04-01 2023-10-05 東レ株式会社 化合物、それを用いた発光素子材料および発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107793441A (zh) * 2016-09-07 2018-03-13 学校法人关西学院 多环芳香族化合物
CN107417715A (zh) * 2017-07-14 2017-12-01 瑞声科技(南京)有限公司 一种有机电致发光材料及其发光器件
WO2019128599A1 (zh) * 2017-12-27 2019-07-04 广州华睿光电材料有限公司 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN112930382A (zh) * 2018-10-26 2021-06-08 罗门哈斯电子材料韩国有限公司 多种发光材料以及包含其的有机电致发光装置
CN111834535A (zh) * 2019-04-17 2020-10-27 乐金显示有限公司 有机电致发光装置
CN113727985A (zh) * 2019-09-10 2021-11-30 株式会社Lg化学 化合物及包含其的有机发光器件
CN112679310A (zh) * 2019-10-18 2021-04-20 罗门哈斯电子材料韩国有限公司 多种发光材料以及包含其的有机电致发光装置
CN113540369A (zh) * 2020-04-13 2021-10-22 罗门哈斯电子材料韩国有限公司 有机电致发光装置
CN114805407A (zh) * 2021-01-16 2022-07-29 浙江光昊光电科技有限公司 一种稠环化合物及其在有机电子器件中应用
WO2023190159A1 (ja) * 2022-04-01 2023-10-05 東レ株式会社 化合物、それを用いた発光素子材料および発光素子、光電変換素子材料、色変換組成物、色変換シート、光源ユニット、表示装置、照明装置

Similar Documents

Publication Publication Date Title
CN110818642B (zh) 一种杂环芳胺化合物及其在有机电子器件上的应用
WO2018103749A1 (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
CN112430239B (zh) 基于七元环结构的化合物、高聚物、混合物、组合物及有机电子器件
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
CN112778309B (zh) 一种含n稠环化合物及其在有机电子器件中应用
CN115093333B (zh) 有机化合物、混合物、组合物及有机电子器件
CN112794856A (zh) 有机化合物、混合物、组合物及其应用
CN109792001B (zh) 有机化合物、有机混合物、有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN113816862A (zh) 芳香胺化合物、混合物、组合物及有机电子器件
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
CN114341136B (zh) 一种有机化合物及有机电子器件
CN114391034B (zh) 一种磷光主体材料及其应用
CN112979678B (zh) 一种有机化合物、高聚物、混合物、组合物及有机电子器件
CN114380852B (zh) 芘类有机化合物及其应用
WO2024104383A1 (zh) 一种含苯并菲的有机化合物及其在有机光电器件中的应用
CN114230508B (zh) 芳胺化合物及其在有机电子器件中的应用
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
CN112724152B (zh) 含氮杂环有机化合物及其应用
CN114656463B (zh) 有机化合物、混合物、组合物及有机电子器件
CN112724125B (zh) 含氮有机化合物及其应用
CN114716437B (zh) 有机化合物、混合物、组合物及有机电子器件
CN114075225B (zh) 含硼有机化合物及其用途
CN115403543B (zh) 有机化合物、混合物、组合物及有机电子器件
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890814

Country of ref document: EP

Kind code of ref document: A1