WO2024104185A1 - 手术机器人的安全监控系统、安全监控方法及控制系统 - Google Patents

手术机器人的安全监控系统、安全监控方法及控制系统 Download PDF

Info

Publication number
WO2024104185A1
WO2024104185A1 PCT/CN2023/129375 CN2023129375W WO2024104185A1 WO 2024104185 A1 WO2024104185 A1 WO 2024104185A1 CN 2023129375 W CN2023129375 W CN 2023129375W WO 2024104185 A1 WO2024104185 A1 WO 2024104185A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
robot
state
arm
state determination
Prior art date
Application number
PCT/CN2023/129375
Other languages
English (en)
French (fr)
Inventor
袁阳
Original Assignee
瑞龙诺赋(上海)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞龙诺赋(上海)医疗科技有限公司 filed Critical 瑞龙诺赋(上海)医疗科技有限公司
Publication of WO2024104185A1 publication Critical patent/WO2024104185A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the present application relates to the field of surgical robot control technology, for example, to a safety monitoring system, a safety monitoring method and a control system for a surgical robot.
  • Surgical robots have the characteristics of flexible and variable topology networking. At the same time, based on actual surgical needs, there is a need to add or remove independent robotic arms before and during surgery.
  • the related technology sets different monitoring modes based on different networks, and immediately stops the surgical robot's operation when a change in the topology network is found, and when resuming the surgical robot's operation, a node backflow problem occurs, and then the surgical operation instructions are continuously generated based on the backflow node to continue the surgical operation.
  • executing the backflow surgical operation instructions will interfere with the state of the surgical patient and affect the safety of the operation.
  • the present application provides a safety monitoring system, a safety monitoring method and a control system for a surgical robot, which increase the safety monitoring of the surgical robot and improve the safety of surgical operations.
  • an embodiment of the present application provides a safety monitoring system for a surgical robot, the system comprising: a safety control module and at least one robot arm state determination module;
  • the mechanical arm state determination module is electrically connected to the safety control module, and is configured to receive a mechanical arm coupling state signal and a mechanical arm working state signal, and generate a mechanical arm state signal according to the mechanical arm coupling state signal and the mechanical arm working state signal;
  • the safety control module is configured to control whether the surgical robot is working according to the robot arm status signal.
  • the present application also provides a method for safety monitoring of a surgical robot.
  • the method is applied to the safety monitoring system of the above-mentioned surgical robot, including:
  • the surgical robot is controlled to work according to the robot arm status signal.
  • an embodiment of the present application further provides a control system for a surgical robot, the system comprising: an operating system and the safety monitoring system of the surgical robot described above;
  • the operating system is electrically connected to the surgical robot and the safety monitoring system respectively;
  • the safety monitoring system is electrically connected to the surgical robot.
  • FIG1 is a schematic diagram of the structure of a safety monitoring system for a surgical robot provided in an embodiment of the present application
  • FIG2 is a schematic diagram of a topological structure of a surgical robot provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • FIG8 is a timing diagram of a pulse signal provided in an embodiment of the present application.
  • FIG9 is a timing diagram of another pulse signal provided in an embodiment of the present application.
  • FIG10 is a timing diagram of another pulse signal provided in an embodiment of the present application.
  • FIG11 is a flow chart of a safety monitoring method for a surgical robot provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a control system of a surgical robot provided in an embodiment of the present application.
  • the type, scope of use, usage scenarios, etc. of the personal information involved in this application should be informed to the user and the user's authorization should be obtained in an appropriate manner in accordance with relevant laws and regulations.
  • a prompt message is sent to the user to clearly prompt the user that the operation requested to be performed will require obtaining and using the user's personal information.
  • the user can autonomously choose whether to provide personal information to software or hardware such as an electronic device, application, server, or storage medium that performs the operation of the technical solution of the present application according to the prompt message.
  • the prompt information in response to receiving an active request from the user, may be sent to the user in the form of a pop-up window, in which the prompt information may be presented in text form.
  • the pop-up window may also carry a selection control for the user to choose "agree” or “disagree” to provide personal information to the electronic device.
  • the data involved in this technical solution shall comply with the requirements of relevant laws, regulations and relevant provisions.
  • FIG1 is a schematic diagram of the structure of a safety monitoring system for a surgical robot provided in an embodiment of the present application. This embodiment can be applied to the situation where the robotic arm of a surgical robot during surgery is increased or decreased.
  • the safety monitoring system includes: a safety control module 10 and at least one robotic arm state determination module 20; the robotic arm state determination module 20 is electrically connected to the safety control module 10, configured to receive a robotic arm coupling state signal and a robotic arm working state signal, and generate a robotic arm state signal according to the robotic arm coupling state signal and the robotic arm working state signal; the safety control module 10 is configured to control whether the surgical robot is working according to the robotic arm state signal.
  • the surgical robot may be a multi-column robot, that is, the surgical robot in this embodiment includes at least one robotic arm.
  • the multiple robotic arms are different from each other.
  • the connection relationship will generate different topological structures. Referring to FIG2 , there are multiple topological connection modes based on the hardware interface design of the topological structure. Based on the surgical needs, the robotic arm may need to be removed and connected during the surgical operation.
  • the removal and access of the robotic arm will cause the topological structure composed of multiple robotic arms of the surgical robot to change, so that the previous monitoring system can no longer continue to monitor the surgical robot after the topological structure changes.
  • multiple monitoring systems are required to monitor surgical robots with different topological structures respectively, which makes it more difficult to monitor the safety of the surgical robot during the surgical operation.
  • the technical solution of this embodiment simultaneously monitors the safety of surgical robots with different topological structures by pre-building a set of safety monitoring systems.
  • the safety monitoring system is configured to monitor the changing state of the topological networking of the surgical robot during the process of adding and reducing the robotic arms of the surgical robot performing the surgical operation, and when the topological networking changes, the robotic arm connection state signal and the robotic arm working state signal generated in the safety monitoring system are obtained to generate a safety monitoring instruction for the surgical robot, so as to realize the safety monitoring of the surgical robot.
  • the safety monitoring instructions may include control instructions for controlling whether the surgical robot is working.
  • the safety control module 10 needs to obtain the robot state signal of the robot arm to achieve safe control of the surgical robot.
  • the surgical robot in this embodiment includes at least one robot arm, and the safety monitoring system includes at least one robot arm state determination module 20, and the number of robot arm state determination modules 20 is equal to the number of the robot arms, and the at least one robot arm state determination module 20 corresponds to the at least one robot arm.
  • the method of one-to-one correspondence between at least one robotic arm state determination module 20 and the at least one robotic arm may include pre-mapping the robotic arm state determination module 20 and the hardware coding on the corresponding robotic arm one-to-one. Based on the verification of the hardware coding, the access and removal actions of the robotic arm will trigger the corresponding robotic arm state determination module 20 to perform logical judgment, so that the robotic arm state signal of the robotic arm can be determined based on the corresponding robotic arm state determination module 20.
  • the topological networking of the surgical robot changes, and it is necessary to decouple the robotic arm from the surgical robot, generate a new topological networking based on the remaining robotic arms of the surgical robot, and monitor the robotic arms corresponding to the new topological networking to control the surgical robot to perform surgical operations.
  • the safety control module will continue to monitor the removed robotic arm, but the robotic arm has been removed, and the safety control module cannot normally obtain the robotic arm working status signal of the robotic arm, which will cause the safety control module to believe that the working status of the robotic arm is abnormal and trigger the emergency stop signal of the surgical robot, that is, the control of the surgical robot cannot continue to perform the operation, which will affect the normal operation of the surgical robot; if the robot is decoupled, the safety control module will no longer monitor the working status of the removed robotic arm.
  • Safety monitoring can enable the surgical robot to continue to perform surgical operations normally, ensuring the safety of surgical operations.
  • the safety control module does not know that the robotic arm has been connected and will not monitor its safety, resulting in that when a problem occurs with the robotic arm, the safety control module will not control the surgical robot to stop operating, which will affect the operational safety of the surgical robot; if the robot is coupled, the safety control module can monitor the robotic arm to promptly control the surgical robot to stop the surgical operation when an abnormality is found, thereby ensuring the safety of the surgical robot performing the surgical operation.
  • the technical solution of this embodiment needs to obtain the robotic arm coupling status signal of the robotic arm, and perform safety monitoring on the surgical robot based on the robotic arm coupling status signal.
  • the robot arm coupling state signal may be a signal indicating the coupling state of the current robot arm and the surgical robot.
  • the coupling state is used to characterize whether the signal of the current robot arm has an impact on the signal of the entire surgical robot. If the current robot arm and the surgical robot are in a coupling state, the robot arm working state signal of the robot arm will be included in the monitoring of the safety controller of the system.
  • the safety shutdown of the system When the robot arm working state signal of any robot arm of the surgical robot is abnormal, the safety shutdown of the system will be triggered, so that the robot arm working state signal of the robot arm will have an impact on the signal of the entire surgical robot; if the current robot arm and the surgical robot are in a decoupling state, the robot arm working state signal of the robot arm will not be monitored by the safety controller of the system, and the abnormality of the robot arm working state signal of the robot arm will not trigger the safety shutdown of the system, so that the robot arm working state signal of the current robot arm will not have an impact on the signal of the entire surgical robot.
  • the robot arm coupling state signal is a low-level signal; if the robot arm and the surgical robot are in a decoupling state, the robot arm coupling state signal is a high-level signal.
  • the robot arm coupling state signal of the robot arm can be determined based on the robot arm connection state signal output by the operating system and the robot arm port detection sensor.
  • each robotic arm of the surgical robot is preset with a robotic arm parameter detection sensor, including a speed sensor, a current detection device, a positioning device, etc., which is configured to detect the state parameter signal of the robotic arm, and the state parameter signal is used to determine the working state of the robotic arm.
  • the robotic arm working state signal of the robotic arm is determined based on the state parameter signal detected by any of the above sensors or devices.
  • the robotic arm is promptly controlled to suspend work to avoid problems in the surgical operation performed by the surgical robot due to the abnormality of the robotic arm, thereby causing surgical safety risks.
  • the safety control module when an abnormality occurs in the robotic arm, that is, when an abnormality occurs in the working state signal of the robotic arm, the safety control module will execute a safe shutdown of the robotic arm, and the robotic arms in the remaining systems can still operate normally without interrupting the surgical workflow.
  • interruption means that the workflow needs to roll back to the previous node, that is, reinstall. Carrying equipment, matching posture, etc.
  • the robot arm working state signal may be a state signal indicating whether the robot arm is working normally. For example, if the robot arm is determined to be in a normal working state based on the signal of the above sensor or device, the output robot arm working state signal is a high level signal; if the robot arm is determined to be in an abnormal working state, the output robot arm working state signal is a low level signal.
  • the robot arm state determination module 20 receives the robot arm coupling state signal and the robot arm working state signal, and generates a robot arm state signal according to the robot arm coupling state signal and the robot arm working state signal. For example, each robot arm state determination module 20 outputs its corresponding robot arm state signal to the safety control module 10, so that the safety control module 10 performs safety control on the surgical robot.
  • the safety control module 10 controls whether the surgical robot is working according to the received connection status signal and the robotic arm status signal.
  • the safety control module 10 can be an AND gate calculation module. That is, when the received connection status signal and the robotic arm status signal are both high-level signals, the safety control signal output by the safety control module 10 is also a high-level signal, that is, the surgical robot can be controlled to continue working; if any of the connection status signal and the robotic arm status signal is a low-level signal, the safety control signal output by the safety control module 10 is a low-level signal, that is, the surgical robot can be controlled to stop working immediately, and after receiving the control instruction to continue working, the workflow is not interrupted, and the surgical operation is continued from the interruption node to ensure the continuity and safety of the surgical robot during the surgical operation.
  • the safety control module 10 controls whether the robot arm works in the surgical robot according to the robot arm status signal. If the robot arm status determination module 20 inputs a low-level signal, the safety control module 10 outputs a low-level signal; if the robot arm status determination module 20 inputs a high-level signal, the safety control module 10 outputs a high-level signal. In other words, when the robot arm is connected to the surgical robot, that is, in a coupled state, the safety control module 10 can control whether the robot arm works in the surgical robot based on the robot arm status signal, or when the robot arm is removed from the surgical robot, that is, when the robot arm is in a decoupled state, the safety control module 10 can continue to control the remaining robot arm in the coupled state to work in the surgical robot. At the same time, the operating system can send new operation instructions to the surgical robot based on the current topology networking so that the surgical robot can work normally.
  • the security monitoring system includes a safety control module and at least one robot arm state determination module.
  • the robot arm state determination module determines the robot arm state signal of the surgical robot based on the robot arm connection state signal output by the operating system and the robot arm port detection sensor and the robot arm working state signal determined by the signal detected by the preset sensor of the robot arm.
  • the safety control module controls whether the surgical robot is working based on the connection state signal and the robot arm state signal.
  • FIG. 3 is another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • the robot state determination module 20 includes a robot coupling state determination unit 201, a robot working state determination unit 202 and a robot state determination unit 203;
  • the robot coupling state determination unit 201 is electrically connected to the robot state determination unit 203, and is configured to receive a first robot connection state signal output by the operating system and a second robot connection state signal output by a robot port detection sensor, and determine the robot coupling state signal according to the first robot connection state signal and the second robot connection state signal;
  • the robot working state determination unit 202 is electrically connected to the robot state determination unit 203, and is configured to receive a robot detection signal issued by the robot state detection sensor, and generate the robot working state signal according to the robot detection signal;
  • the robot state determination unit 203 is electrically connected to the safety control module 10 as the output end of the robot state determination module 20, and is configured to generate a robot state signal according to the robot coupling state
  • the input end of the robot arm coupling state determination unit 201 serves as the first input end of the robot arm state determination module 20, and is configured to be input with the connection state signal of the robot arm, and output the robot arm coupling state signal;
  • the robot arm working state determination unit 202 serves as the second input end of the robot arm state determination module 20, and is configured to be input with the working signal of the robot arm, and output the robot arm working state signal;
  • the input end of the robot arm state determination unit 203 is electrically connected to the output end of the robot arm coupling state determination unit 201 and the output end of the robot arm working state determination unit 202, respectively, and is configured to be input with the robot arm coupling state signal and the robot arm working state signal, and generate a robot arm state signal;
  • the output end of the robot arm state determination unit 203 serves as the output end of the robot arm state determination module 20 and is electrically connected to the input end of the safety control module 10, and is configured to input the robot arm state signal to the safety control module 10, so that it can safely control the surgical robot.
  • the first mechanical arm connection state signal output by the operating system and the second mechanical arm connection state signal output by the mechanical arm port detection sensor are input to the mechanical arm coupling state determination unit 201 to obtain the generated mechanical arm coupling state signal.
  • the mechanical arm coupling state determination unit 201 can be an AND gate calculation unit, that is, when the input first mechanical arm connection state signal and the second mechanical arm connection state signal are both high-level signals, the generated mechanical arm coupling state signal is high-level; if any of the input first mechanical arm connection state signal and the second mechanical arm connection state signal is a low-level signal, the generated mechanical arm coupling state signal is also a low-level signal.
  • the robotic arm port detection sensor of the robotic arm will detect the removal or connection of the robotic arm.
  • the removal or access signal of the robot arm is sent to the operating system respectively, and the operating system inputs the first robot arm connection state signal corresponding to the robot arm to the robot arm coupling state determination unit 201 in the safety monitoring system based on the removal or access signal.
  • the robot arm port detection sensor also sends the removal or access signal of the robot arm to the safety monitoring system, and the safety monitoring system inputs the second robot arm connection state signal corresponding to the robot arm to the robot arm coupling state determination unit 201 based on the removal or access signal, so that the safety monitoring system performs safety monitoring on the surgical robot.
  • any mechanical arm in the surgical robot needs to be removed or connected according to the surgical operation, the user needs to select the corresponding mechanical arm through the interactive interface/button, and the operation signal will be sent to the operating system.
  • the operating system inputs the first mechanical arm connection state signal corresponding to the mechanical arm to the mechanical arm coupling state determination unit 201 in the safety monitoring system based on the removal or connection signal.
  • the mechanical arm port detection sensor will also send a hardware signal based on the actual removal or connection of the mechanical arm to the safety monitoring system, and the safety monitoring system inputs the second mechanical arm connection state signal corresponding to the mechanical arm to the mechanical arm coupling state determination unit 201 based on the removal or connection signal.
  • the safety monitoring system will immediately control the surgical robot to enter a safe state when it receives the removal or access signal sent by the robotic arm port detection sensor. That is, the surgical robot cannot perform any surgical operations, thereby avoiding misoperation of the surgical robot when the robotic arm is removed or accessed, and improving the safety of the surgical robot during operation.
  • the robot arm decoupling state signal is high level, indicating that the robot arm is in the decoupling state; the robot arm decoupling state signal is low level, indicating that the robot arm is in the coupling state.
  • the state parameters of the robot arm include emergency stop parameters, speed parameters, and current parameters.
  • the robot arm detection signal corresponding to the above state parameters is input into the robot arm working state determination unit 202 to obtain the robot arm working state signal outputted therefrom.
  • the robot arm working state determination unit 202 can be an AND gate calculation unit, that is, when the input multiple robot arm detection signals are all high-level signals, the output robot arm working state signal is a high-level signal; if any robot arm detection signal is a low-level signal, the output robot arm working state signal is a low-level signal.
  • the robot arm detection signal corresponding to the emergency stop parameter input to the robot arm working state determination unit 202 is a low level signal. In this case, no matter other signals are high or low, the robot arm works.
  • the robot arm working state signals output by the state determination unit 202 are all low-level signals; when the speed detection sensor detects that the moving speed of the robot arm exceeds the preset speed threshold, the robot arm detection signal corresponding to the speed parameter input to the robot arm working state determination unit 202 is a low-level signal.
  • the robot arm working state signals output by the robot arm working state determination unit 202 are all low-level signals; if the robot arm detection signals corresponding to the above-mentioned multiple state parameters are all input into the robot arm working state determination unit 202 with high-level signals, the output robot arm working state signal is a high-level signal.
  • the robot state determination unit 203 can be an OR gate calculation unit, that is, when either the robot arm coupling state signal or the robot arm working state signal input to the robot arm state determination unit 203 is a high level signal, the generated robot arm state signal is a high level signal; if both the robot arm coupling state signal and the robot arm working state signal input to the robot arm state determination unit 203 are low level signals, the generated robot arm state signal is a low level signal.
  • the robot arm coupling state determination unit 201 inputs a high level signal to the robot arm state determination unit 203, then based on the OR gate calculation logic, no matter what state signal the robot arm working state determination unit 202 inputs to the robot arm state determination unit 203, the robot arm state determination unit 203 outputs a high level signal; if the robot arm coupling state determination unit 201 inputs a low level signal to the robot arm state determination unit 203, then only when the robot arm working state determination unit 202 inputs a low level signal to the robot arm state determination unit 203, the robot arm state determination unit 203 will output a low level signal; in the above case, if the robot arm working state determination unit 202 inputs a high level signal to the robot arm state determination unit 203, the safety control module outputs a high level signal.
  • the robot state determination unit 203 if the robot working state determination unit 202 inputs a high level signal to the robot state determination unit 203, then no matter what state signal the robot coupling state determination unit 201 inputs to the robot state determination unit 203, the robot state determination unit 203 outputs a high level signal; if the robot working state determination unit 202 inputs a low level signal, then only when the signal input by the robot coupling state determination unit 201 to the robot state determination unit 203 is also a low level signal, the robot state determination unit 203 will output a low level signal; when the robot working state signal is a low level signal, if the robot coupling state signal input by the robot coupling state determination unit 201 to the robot state determination unit 203 is a high level signal, the robot state determination unit 203 will output a high level signal.
  • the above-mentioned robot arm state determination unit 203 may also determine the robot arm state signal in the following manner: when there is a problem with either the coupling state or the working state of the robot arm, that is, when the robot arm coupling state signal and/or the robot arm working state signal is a low level signal, the output robot arm state is a low level signal, that is, it is in an abnormal state, so that the safety monitoring system is safer during the process of safely controlling the surgical robot.
  • FIG4 is another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • the robot coupling state determination unit 201 includes a first NOT gate subunit 2011 and a first state determination subunit 2012; the first NOT gate subunit 2011 is electrically connected to the first state determination subunit 2012, and is configured to receive the second robot arm connection state signal, and process the second robot arm connection state signal to generate a robot arm connection state processing signal corresponding to the second robot arm connection state signal; the first state determination subunit 2012 is configured to generate the robot arm coupling state signal according to the first robot arm connection state signal and the robot arm connection state processing signal.
  • the input end of the first NOT gate subunit 2011 is used as the first input end of the mechanical arm coupling state determination unit 201, and is configured to receive the second mechanical arm connection state signal input by the security monitoring system, and generate a mechanical arm connection state processing signal; the output end of the first NOT gate subunit 2011 is connected to the first input end of the first state determination subunit 2012, and is configured to input the mechanical arm connection state processing signal into the first state determination subunit 2012.
  • the second input end of the first state determination subunit 2012 is configured to receive the first mechanical arm connection state signal input by the operating system, and simultaneously generate a mechanical arm coupling state signal of the mechanical arm based on the first mechanical arm connection state signal and the mechanical arm connection state processing signal.
  • the output end of the first state determination subunit 2012 is also electrically connected to the mechanical arm state determination unit 203 as the output end of the mechanical arm coupling state determination unit 201, and is configured to send the generated mechanical arm coupling state signal to the mechanical arm state determination unit 203 to determine the mechanical arm state signal of the mechanical arm.
  • the mechanical arm port detection sensor When the mechanical arm is removed from the surgical robot, the mechanical arm port detection sensor immediately sends a decoupling signal (high level signal) to the operating system end based on the change of the topological structure and the lack of the corresponding mechanical arm coding signal.
  • the operating system inputs the decoupling signal to the mechanical arm coupling state determination unit 201 to determine the mechanical arm coupling state.
  • the safety monitoring system receives the decoupling signal sent by the mechanical arm port detection sensor, it generates a hardware decoupling signal of the mechanical arm, and sends the hardware decoupling signal (low level signal) to the first NOT gate subunit 2011 of the mechanical arm coupling state determination unit 201 for logical NOT operation, and obtains a high level signal output by the first NOT gate subunit 2011.
  • the first state determination subunit 2012 is an AND gate logic.
  • the dual-channel input signal states of the first state determination subunit 2012 are both high level signals, the removed mechanical arm will be decoupled, and the mechanical arm working state signal will no longer affect other mechanical arms in operation in the surgical robot.
  • the operating system informs the safety monitoring system through a network communication to resume system operation and perform safety monitoring based on the new topological structure.
  • the robot arm port detection sensor When the robot arm needs to be connected to the system during surgery, the robot arm port detection sensor immediately sends a coupling signal (low-level signal) to the operating system based on the change of the topological structure and the access of the corresponding robot arm coding signal.
  • the operating system inputs the coupling signal to the robot arm coupling state determination unit 201 to determine the robot arm coupling state.
  • the safety monitoring system receives the coupling signal sent by the robot arm port detection sensor, it generates a hardware coupling signal of the robot arm, and sends the hardware coupling signal (high-level signal) to the first NOT gate subunit 2011 of the robot arm coupling state determination unit 201 to perform a logical NOT operation, and obtains a low-level signal output by the first NOT gate subunit 2011.
  • the first state determination subunit 2012 is an AND gate logic. When any of the two input signal states of the first state determination subunit 2012 is a low level signal, the connected robotic arm will be coupled, and the robotic arm working state signal will be associated with other running robotic arms in the surgical robot. At the same time, the operating system informs the security monitoring system to resume system operation through a network communication, and performs security monitoring based on the new topology.
  • the safety monitoring system is connected to the operating system so that the safety monitoring system can learn that the operating system is in a normal connection state based on the communication signal output by the operating system, receive the robot arm connection status signal generated by the operating system, and perform safety monitoring of the surgical robot based on the generated robot arm connection status signal to ensure the accuracy of the safety monitoring instructions generated by the safety monitoring system based on the robot arm connection status signal of the operating system.
  • FIG5 is another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • the system further includes a communication status determination module 30; the communication status determination module 30 is electrically connected to the safety control module 10, and is configured to receive a communication signal output by the operating system, and generate a connection status signal according to the communication signal; the connection status signal is used to characterize the connection status between the safety monitoring system and the operating system.
  • connection status between the security monitoring system and the operating system can be determined by the communication status determination module 30.
  • the communication signal output by the operating system is received, and a connection status signal for representing the connection status between the security monitoring system and the operating system is generated according to the communication signal.
  • the operating system sends a pulse signal to the communication status determination module 30 in the safety monitoring system for processing, and obtains the processed connection status signal to determine the connection status between the safety monitoring system and the operating system.
  • the connection status signal output by the communication status determination module 30 after the pulse signal passes through is a high-level signal, it means that the safety monitoring system and the operating system are in a normal connection state, that is, the safety monitoring system can normally receive the robot arm connection status signal generated by the operating system;
  • the pulse signal output by the operating system passes through the communication status determination module 30 and the connection status signal output is a low-level signal, it means that the safety monitoring system and the operating system are in an abnormal connection state, that is, the robot arm connection status signal received by the safety monitoring system may be an erroneous robot arm connection status signal, or the robot arm connection status signal output by the operating system cannot be received, so that the safety monitoring system cannot perform safety monitoring of the surgical robot based on the robot arm connection status signal sent by the operating system.
  • the communication status determination module 30 is electrically connected to the safety control module 10 of the safety monitoring system, and is configured to input the generated connection status signal into the safety control module 10 when a connection status signal is generated, so that the safety control module 10 can safely control the surgical robot based on the connection status signal.
  • the safety control module 10 controls whether the surgical robot is working according to the received connection status signal and the robot arm status signal.
  • the safety control module 10 can be an AND gate calculation module. That is, when the received connection status signal and the robot arm status signal are both high level signals, When the safety control signal output by the safety control module 10 is high level, the surgical robot can be controlled to continue working; if any of the connection status signal and the robotic arm status signal is low level, the safety control signal output by the safety control module 10 is low level, which can control the surgical robot to stop working immediately to ensure the safety of the surgical robot during the surgical operation.
  • connection status signal input by the communication status determination module 30 to the safety control module 10 is a low-level signal
  • the safety control module 10 outputs a low-level signal, that is, the surgical robot is controlled to stop working immediately;
  • the connection status signal input by the communication status determination module 30 to the safety control module 10 is a high-level signal, then only when the robot arm status determination module 20 inputs a high-level signal to the safety control module 10, the safety control module 10 will output a high-level signal, that is, the surgical robot can be controlled to continue working; in the case where the above-mentioned connection status signal is a high-level signal, if the robot arm status determination module 20 inputs a low-level signal to the safety control module 10, the safety control module 10 outputs a low-level signal.
  • the robot state determination module 20 inputs a low-level signal into the safety control module 10, then no matter what state signal the communication state determination module 30 inputs into the safety control module 10, the output of the safety control module 10 is a low-level signal; if the robot state signal input by the robot state determination module 20 into the safety control module 10 is a high-level signal, then only when the connection state signal input by the communication state determination module 30 into the safety control module 10 is also a high-level signal, the safety control module 10 will output a high-level signal; when the robot state signal is a high-level signal, if the connection state signal input by the communication state determination module 30 into the safety control module 10 is a low-level signal, the safety control module 10 will output a low-level signal.
  • the safety control module 10 can control whether the robot arm works in the surgical robot based on the robot arm status signal, or when the robot arm is removed from the surgical robot, that is, when the robot arm is in a decoupled state, continue to control the remaining robot arms in the coupled state to work in the surgical robot.
  • the operating system can send new operating instructions to the surgical robot based on the current topological networking so that the surgical robot can work normally.
  • connection status signal indicates that the operating system and the safety monitoring system are abnormally connected, or the robot arm status signal is not in a coupled state when the robot arm is connected to the surgical robot, or is not in a decoupled state when the robot arm is removed from the surgical robot, the surgical robot is controlled to stop working immediately.
  • the safety monitoring system also includes: a robot state determination module 40; the robot state determination module 40 is electrically connected to the safety control module 10, and is configured to receive a robot emergency stop signal output by the front-end console, and generate a robot safety state signal according to the robot emergency stop signal; the safety control module 10 is also configured to control whether the surgical robot is working according to the connection state signal, the robotic arm state signal and the robot safety state signal.
  • the front-end console can be used by the doctor to generate operation instructions to the surgical robot.
  • the robot emergency stop signal may be a robot state signal input by a doctor, which may be a robot emergency stop signal input based on the current state of the surgical robot.
  • the emergency stop signal includes a state emergency stop signal, an energy emergency stop signal, and a temperature emergency stop signal.
  • the robot emergency stop signal is input to the input end of the robot state determination module 40, and the signal is processed and output to obtain a robot safety state signal.
  • the output end of the robot state determination module 40 is also electrically connected to the input end of the safety control module 10, and is configured to input the robot safety state signal to the safety control module 10, so that the safety control module 10 can monitor the safety of the surgical robot based on the robot safety state signal.
  • the robot state determination module 40 can be an AND gate calculation module, that is, when multiple emergency stop signals input into the robot state determination module 40 are all high-level signals, the robot safety state signal output by the robot state determination module 40 is a high-level signal; if any emergency stop signal is a low-level signal, the robot safety state signal output by the robot state determination module 40 is a low-level signal.
  • the robot emergency stop state when an operation abnormality occurs in the robot, the robot emergency stop state is initiated, and the state emergency stop signal input to the robot state determination module 40 is a low level signal.
  • the robot safety state signal output by the robot state determination module 40 is a low level signal; when the energy emergency stop signal or the temperature emergency stop signal input to the robot state determination module 40 is a low level signal, in this case, also regardless of whether other emergency stop signals are high level signals or low level signals, the robot safety state signal output by the robot state determination module 40 is a low level signal; if the above-mentioned multiple emergency stop signals are all high level signals, the robot safety state signal output by the robot state determination module 40 is a high level signal.
  • the safety control module 10 jointly determines the safety control signal of the surgical robot based on the connection state signal input by the communication state determination module 30, the mechanical arm state signal input by the mechanical arm state determination module 20, and the robot safety state signal input by the robot state determination module 40.
  • the safety control module 10 outputs a high-level signal, i.e., controls the surgical robot to continue working.
  • This embodiment introduces a robot state determination module 40.
  • the robot safety state signal input by the robot state determination module 40 is at a low level, the surgical robot will be forced to stop working regardless of the state of other state signals.
  • the doctor can press the emergency stop button on the front console to switch the robot safety state signal to a low level, and can force the surgical robot to stop working, thereby enhancing the flexibility and safety of the surgical robot operation in an emergency.
  • FIG6 is another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • the communication status determination module 30 includes a signal input unit 301 and a status output unit 302; the signal input unit 301 is electrically connected to the status output unit 302; The signal input unit 301 is configured to receive the communication signal output by the operating system and generate a first communication processing signal and a second communication processing signal according to the communication signal; the status output unit 302 is configured to generate the connection status signal according to the first communication processing signal and the second communication processing signal.
  • the input end of the signal input unit 301 serves as the input end of the communication state determination module 30.
  • the input end of the signal input unit 301 may include a first input end and a second input end, which are respectively configured to receive the communication signal output by the operating system, and respectively perform different signal processing on the communication signal to obtain the first communication signal and the second communication processing signal output by the signal input unit 301; the output end of the signal input unit 301 is electrically connected to the input end of the state output unit 302, and the first communication processing signal and the second communication processing signal are input to the state output unit 302 to determine the connection state, and obtain the connection state signal output by it.
  • the output end of the state output unit 302 serves as the output end of the communication determination module 30 and is electrically connected to the safety control module 10, and the connection state signal output by it can be input to the safety control module 10, so that it can safely control the surgical robot according to the connection state signal.
  • the communication signal output by the operating system may be a pulse signal, which is input into the signal input unit 301 to obtain a first communication processing signal and a second communication processing signal output by the signal input unit 301.
  • the first communication processing signal is used to characterize whether the pulse signal output by the operating system has a signal abnormality caused by the inability to reset the signal due to a stuck operating system or other reasons.
  • the second communication processing signal is used to characterize whether the pulse signal output by the operating system has a signal abnormality caused by premature reset of the signal due to a short pulse signal duration.
  • the state output unit 302 generates a connection state signal representing the connection state between the operating system and the security monitoring system based on the first communication processing signal and the second communication processing signal output by the signal input unit 301. If the connection state between the operating system and the security monitoring system is normal, the output connection state signal may be a high level signal; if the connection state between the operating system and the security monitoring system is abnormal, the output connection state signal may be a low level signal.
  • the effect of the above-mentioned implementation method of generating two communication processing signals based on the pulse signal and generating a connection status signal is that the safety monitoring system can generate corresponding safety monitoring instructions according to different abnormal situations that may occur in the operating system, thereby improving the comprehensiveness of the safety monitoring of the surgical robot.
  • FIG7 is another safety monitoring system for a surgical robot provided in an embodiment of the present application.
  • the signal input unit 301 includes a second NOT gate subunit 3011 and a first delay subunit 3012
  • the state output unit 302 includes a second state determination subunit 3021 and a second delay subunit 3022
  • the NOT gate subunit and the first delay subunit 3012 are electrically connected to the second state determination subunit 3021, respectively
  • the second state determination subunit 3021 is electrically connected to the second delay subunit 3022
  • the NOT gate subunit is configured to receive the communication signal output by the operating system, and generate a first communication processing signal according to the communication signal
  • the first delay unit is configured to receive the communication signal output by the operating system, and generate a second communication processing signal according to the communication signal
  • the The second state determination subunit 3021 is configured to generate a first state signal according to the first communication processing signal and the second communication processing signal
  • the second delay subunit 3022 is configured to generate the connection state signal according to the
  • the input end of the second NOT gate subunit 3011 and the input end of the first delay subunit 3012 are respectively used as two input ends of the signal input unit 301, and the communication signal of the operating system is input for processing, and the first communication processing signal and the second communication processing signal are respectively obtained.
  • the output end of the second NOT gate subunit 3011 and the output end of the first delay subunit 3012 are used as two output ends of the signal input unit 301, and are connected to the input end of the state output unit 302 at the same time, and are configured to input the first communication processing signal and the second communication processing signal into the state output unit 302.
  • the input end of the second state determination subunit 3021 is used as the input end of the state output unit 302, receives the first communication processing signal and the second communication processing signal, and generates a first state signal.
  • the output end of the second state determination subunit 3021 is connected to the input end of the second delay subunit 3022, and the first state signal can be input into the second delay subunit 3022 to generate a connection state signal.
  • the output end of the second delay subunit 3022 is used as the output end of the state output unit 302, and is connected to the safety control module 10.
  • the connection status signal may be input into the safety control module 10 so that the safety control module 10 can monitor the safety of the surgical robot based on the connection status signal.
  • FIG. 8 is a timing diagram of a pulse signal provided by an embodiment of the present invention. Referring to Figure 8, 1 the channel signal is the first pulse heartbeat signal sent by the operating system. The pulse signal is at a low level in a normal state.
  • the pulse signal When the pulse signal is triggered, the signal changes from a low level to a high level, and returns to a low level after a time W.
  • the timer of the first delay unit 3012 (delay logic block A) will be triggered, and the output signal of the first delay subunit 3012 will be kept at a high level within the T1 duration. After exceeding T1, the output signal will become a low level; when the input signal triggers a rising edge, the timer of the first delay subunit 3012 will be reset.
  • the operating system also sends a second pulse signal to the security monitoring system every time period T, and the pulse signal is the same as the first pulse signal.
  • the second pulse signal is logically negated to obtain the 2 path signal in Figure 8.
  • the signal input from the first delay unit 3012 (delay logic block A) to the second state determination subunit 3021 (Watchdog signal monitoring) is high level.
  • the output signal of the first delay unit 3012 (delay logic block A) and the 2 path signal constitute a dual-path signal that is input to the second state determination subunit 3021 (Watchdog signal monitoring).
  • the second state determination subunit 3021 can be an AND gate calculation unit, that is, when both dual-path input signals are high level signals, the output signal of the second state determination subunit 3021 is high level; referring to Figure 9, when any signal input to the second state determination subunit 3021 is low level, the second state The output signal of the state determination subunit 3021 immediately changes to a low level.
  • the timer of the second delay subunit 3022 (delay logic block B) is triggered, and the signal (connection state signal) input to the safety control module 10 is kept at a high level within the T2 time period.
  • the output signal of the second delay subunit 3022 changes to a low level; when the signal input to the second delay subunit 3022 triggers a rising edge, the timer of the second delay subunit 3022 is reset.
  • the safety monitoring system still does not receive the pulse signal sent by the operating system after the duration T1+T2, that is, the connection status signal output by the communication status determination module 30 is a low-level signal, the signal input into the safety control module 10 becomes a low-level signal, and then the safety monitoring system will output a low-level signal to control the surgical robot to stop working.
  • the second pulse signal will output a low level signal after being negated, which will cause the output signal of the communication status determination module 30 to become a low level, and then the safety monitoring system will output a low level signal to control the surgical robot to stop working.
  • the above implementation method does not require a complex manual operating system to restore the workflow after the configuration structure is changed, and can quickly, efficiently and reliably ensure the functional safety of the surgical robot system after the configuration structure is changed.
  • FIG11 is a flow chart of a safety monitoring method for a surgical robot provided in an embodiment of the present application.
  • the method can be executed by a safety monitoring system for the surgical robot.
  • the safety monitoring system for the surgical robot can be implemented in the form of hardware and/or software.
  • the safety monitoring system for the surgical robot can be configured in an intelligent terminal. As shown in FIG11 , the method includes:
  • S520 Based on the safety control module, control whether the surgical robot is working according to the robot arm status signal.
  • the safety monitoring method of a surgical robot also includes receiving a communication signal output by the operating system based on a communication status determination module, and generating a connection status signal according to the communication signal; wherein the connection status signal is used to characterize the connection status between the safety monitoring system and the operating system.
  • the controlling whether the surgical robot is working according to the robot arm status signal based on the safety control module includes: controlling whether the surgical robot is working according to the connection status signal and the robot arm status signal based on the safety control module.
  • the safety monitoring method for surgical robots provided in the embodiments of the present application solves the problem in related technologies that the increase or decrease of surgical robots may lead to backflow of surgical nodes, thereby causing safety risks in surgical operations.
  • corresponding control instructions can be generated when changes in different topology networks are monitored, and no node rollback will occur when the surgical robot stops operating, thereby increasing safety monitoring of the surgical robot and improving the safety of surgical operations.
  • FIG12 is a schematic diagram of the structure of a control system for a surgical robot provided in the embodiment of the present application.
  • the control system includes an operating system 1 and a safety monitoring system 2 for a surgical robot; the operating system 1 is electrically connected to the surgical robot and the safety monitoring system 2, respectively; the safety monitoring system 2 is electrically connected to the surgical robot.
  • the surgical operation instructions of the surgical robot may be issued based on the operating system, that is, the surgical robot performs the surgical operation according to the operating instructions of the operating system.
  • the operating system and the surgical robot are electrically connected via a fieldbus.
  • the operating system sends operating instructions to the surgical robot via the fieldbus; the robotic arm detection port of the surgical robot also sends a robotic arm connection signal to the operating system via the fieldbus.
  • the safety monitoring system and the surgical robot are connected via a safety fieldbus.
  • the safety monitoring system can send a safety monitoring signal to the surgical robot via the safety fieldbus, and the robotic arm detection port can also send a robotic arm connection signal to the safety monitoring system via the safety fieldbus.
  • the operating system and the safety monitoring system can be connected via a safety fieldbus or via a fieldbus.
  • the difference between the fieldbus and the safety fieldbus is that the two use different communication protocols.
  • the communication protocol used by the safety fieldbus has one more layer of security verification than the communication protocol used by the fieldbus to ensure the safety of the safety monitoring system when sending safety monitoring signals to the surgical robot.
  • the operating system outputs operation instructions to the surgical robot, so that the surgical robot responds to the operation instructions to perform the surgical operation.
  • the control method of the surgical robot provided in the embodiment of the present application can quickly, efficiently and reliably ensure the functional safety of the surgical robot system after the configuration structure changes, and will neither fail due to configuration changes nor interfere with the normal surgical workflow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

手术机器人的安全监控系统、安全监控方法及控制系统。安全监控系统包括安全控制模块以及至少一个机械臂状态确定模块;机械臂状态确定模块与安全控制模块电连接,设置为接收机械臂耦合状态信号和机械臂工作状态信号,并根据机械臂耦合状态信号和机械臂工作状态信号生成机械臂状态信号;安全控制模块设置为根据机械臂状态信号控制手术机器人是否工作。

Description

手术机器人的安全监控系统、安全监控方法及控制系统
本申请要求在2022年11月17日提交中国专利局、申请号为202211439575.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及手术机器人控制技术领域,例如涉及手术机器人的安全监控系统、安全监控方法及控制系统。
背景技术
对于手术机器人来说,其本身存在灵活可变拓扑组网的特性。同时基于实际手术需求,在术前及术中均存在需要增减独立机械臂的情况。
在机械臂增减的过程中,为了保证手术机器人在操作过程中的安全性,需要对手术机器人的拓扑组网变化进行监控,即确定当前对机器人下发的操作指令没有因组态变化而失效,从而确定是否控制手术机器人是否继续工作。
相关技术在对手术机器人进行监控的过程中,基于不同的组网会设置不同的监控方式,并且在发现拓扑组网变化时会立即停止手术机器人的手术操作,以及在恢复手术机器人的手术操作时会发生节点回流的问题,进而基于回流的节点继续生成手术操作指令,以实现继续手术操作。在上述操作过程中执行回流的手术操作指令会对手术患者的状态造成干扰,影响手术安全。
发明内容
本申请提供了一种手术机器人的安全监控系统、安全监控方法及控制系统,增加了对手术机器人的安全监控,提高手术操作的安全性。
第一方面,本申请实施例提供了一种手术机器人的安全监控系统,该系统包括:安全控制模块以及至少一个机械臂状态确定模块;
所述机械臂状态确定模块与所述安全控制模块电连接,设置为接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号;
所述安全控制模块设置为根据所述机械臂状态信号控制所述手术机器人是否工作。
第二方面,本申请实施例还提供了一种手术机器人的安全监控方法,该方 法应用于上述的手术机器人的安全监控系统,包括:
基于所述机械臂状态确定模块接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号;
基于所述安全控制模块根据所述机械臂状态信号控制所述手术机器人是否工作。
第三方面,本申请实施例还提供了一种手术机器人的控制系统,该系统包括:操作系统以及上述的手术机器人的安全监控系统;
所述操作系统分别与所述手术机器人和所述安全监控系统电连接;
所述安全监控系统与所述手术机器人电连接。
附图说明
图1是本申请实施例提供的一种手术机器人的安全监控系统的结构示意图;
图2是本申请实施例提供的一种手术机器人的拓扑结构的示意图;
图3是本申请实施例提供的另一种手术机器人的安全监控系统的结构示意图;
图4是本申请实施例提供的另一种手术机器人的安全监控系统的结构示意图;
图5是本申请实施例提供的另一种手术机器人的安全监控系统的结构示意图;
图6是本申请实施例提供的另一种手术机器人的安全监控系统的结构示意图;
图7是本申请实施例提供的另一种手术机器人的安全监控系统的结构示意图;
图8是本申请实施例提供的一种脉冲信号的时序图;
图9是本申请实施例提供的另一种脉冲信号的时序图;
图10是本申请实施例提供的另一种脉冲信号的时序图;
图11是本申请实施例提供的一种手术机器人的安全监控方法的流程图;
图12是本申请实施例提供的一种手术机器人的控制系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例仅仅是本申请一部分的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
本申请实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
在使用本申请实施例公开的技术方案之前,均应当依据相关法律法规通过恰当的方式对本申请所涉及个人信息的类型、使用范围、使用场景等告知用户并获得用户的授权。
例如,在响应于接收到用户的主动请求时,向用户发送提示信息,以明确地提示用户,其请求执行的操作将需要获取和使用到用户的个人信息。从而,使得用户可以根据提示信息来自主地选择是否向执行本申请技术方案的操作的电子设备、应用程序、服务器或存储介质等软件或硬件提供个人信息。
作为一种实现方式,响应于接收到用户的主动请求,向用户发送提示信息的方式例如可以是弹窗的方式,弹窗中可以以文字的方式呈现提示信息。此外,弹窗中还可以承载供用户选择“同意”或者“不同意”向电子设备提供个人信息的选择控件。
上述通知和获取用户授权过程仅是示意性的,不对本申请的实现方式构成限定,其它满足相关法律法规的方式也可应用于本申请的实现方式中。
本技术方案所涉及的数据(包括数据本身、数据的获取或使用)应当遵循相应法律法规及相关规定的要求。
本申请实施例提供了一种手术机器人的安全监控系统。图1为本申请实施例提供的一种手术机器人的安全监控系统的结构示意图。本实施例可适用于对手术中的手术机器人的机械臂进行增减的情况。参见图1,安全监控系统包括:安全控制模块10以及至少一个机械臂状态确定模块20;所述机械臂状态确定模块20与所述安全控制模块10电连接,设置为接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号;所述安全控制模块10设置为根据所述机械臂状态信号控制所述手术机器人是否工作。
在本实施例中,手术机器人可以是一个多立柱机器人,即本实施例中的手术机器人包括至少一个机械臂,对于多立柱手术机器人,多个机械臂之间不同 的连接关系会生成不同的拓扑结构。参见图2,拓扑结构基于硬件的接口设计存在多种拓扑连接方式。基于手术需求在手术操作过程中可能需要对机械臂进行移除与接入。由于多立柱手术机器人拓扑结构的多样性,即机械臂信号的接入数量和接入位置都是可变的,所以机械臂的移除与接入会导致手术机器人的多个机械臂组成的拓扑结构发生变化,以至于之前的监控系统不能再继续对拓扑结构发生变化后的手术机器人进行监控。换言之,对于多机械臂的手术机器人,需要多套监控系统分别对不同拓扑结构的手术机器人进行监控,导致手术机器人在手术操作中的安全性监控难度加大。为了增加手术机器人在手术操作中的安全监控的适配性,本实施例的技术方案通过预先搭建一套安全监控系统同时对不同拓扑结构的手术机器人进行安全监控。安全监控系统设置为监控进行手术操作的手术机器人在增减机械臂的过程中手术机器人的拓扑组网的变化状态,并且在拓扑组网发生变化时,获取机械臂连接状态信号以及安全监控系统中生成的机械臂工作状态信号生成对于手术机器人的安全监控指令,以实现对手术机器人进行安全监控。安全监控指令可以包括控制手术机器人是否工作的控制指令。上述实施方式可以增加对手术机器人控制的全面性,从而增加手术操作的安全性。
安全控制模块10需要获取机械臂的机械臂状态信号,才能实现对手术机器人的安全控制。本实施例中的手术机器人包括至少一个机械臂,安全监控系统包括至少一个机械臂状态确定模块20,并且机械臂状态确定模块20的模块数量与所述机械臂的数量相等,且所述至少一个机械臂状态确定模块20与所述至少一个机械臂一一对应。
至少一个机械臂状态确定模块20与所述至少一个机械臂一一对应的方法可以包括预先将机械臂状态确定模块20与对应的机械臂上硬件的编码进行一一映射,基于硬件编码的校验,机械臂的接入和移除动作会触发对应的机械臂状态确定模块20执行逻辑判断,从而实现机械臂的机械臂状态信号可以基于对应的机械臂状态确定模块20进行确定。
本实施例中,在将机械臂从手术机器人的机械臂端口移除时,手术机器人的拓扑组网发生改变,需要将该机械臂与手术机器人解耦,基于手术机器人剩余的机械臂生成新的拓扑组网,并对新的拓网对应的机械臂进行监控,以控制手术机器人执行手术操作。在上述过程中,若不对手术机器人移除的机械臂进行解耦,则安全控制模块会继续监控该已经移除的机械臂,但是该机械臂已经被移除,安全控制模块无法正常获取该机械臂的机械臂工作状态信号,即会导致安全控制模块认为该机械臂的工作状态出现异常,会触发手术机器人的急停信号,即控制手术机器人无法继续执行操作,从而会影响手术机器人的正常操作;若对机器人进行解耦,安全控制模块不再对该移除的机械臂的工作状态进 行安全监控,可以使手术机器人继续正常执行手术操作,保证了手术操作的安全性。
若需要对手术机器人接入机械臂,需要将该机械臂与手术机器人耦合,基于手术机器人原有的机械臂以及新接入的机械臂形成新的拓扑组网,并对新的拓网对应的多个机械臂进行监控,以控制手术机器人执行手术操作。在上述过程中,若不对手术机器人接入的机械臂进行耦合处理,则安全控制模块不知道该机械臂已经接入,并不会对其进行安全监控,导致在该机械臂出现问题时,安全控制模块并不会控制手术机器人停止操作,会影响手术机器人的操作安全性;若对机器人进行耦合处理,安全控制模块可对该机械臂进行监控,以在发现异常时,及时控制手术机器人停止手术操作,从而可以使手术机器人执行手术操作的安全性得到保障。基于上述内容,本实施例的技术方案中需要获知机械臂的机械臂耦合状态信号,并基于机械臂耦合状态信号对手术机器人进行安全监控。
机械臂耦合状态信号可以为指示当前机械臂与手术机器人的耦合状态的信号,耦合状态用于表征当前机械臂的信号是否对整个手术机器人的信号有影响。若当前机械臂与手术机器人为耦合状态,该机械臂的机械臂工作状态信号将被纳入系统的安全控制器所监控,当手术机器人的任一机械臂的机械臂工作状态信号异常,均会触发该系统的安全停机,从而机械臂的机械臂工作状态信号会对整个手术机器人的信号产生影响;若当前机械臂与手术机器人为解耦状态,则该机械臂的机械臂工作状态信号将不被系统的安全控制器所监控,该机械臂的机械臂工作状态信号的异常不会触发系统的安全停机,从而当前机械臂的机械臂工作状态信号不对整个手术机器人的信号产生影响。在实际应用中,若机械臂与手术机器人为耦合状态,则机械臂耦合状态信号为低电平信号;若机械臂与手术机器人为解耦状态,则机械臂耦合状态信号为高电平信号。可以基于操作系统以及机械臂端口检测传感器输出的机械臂连接状态信号共同确定机械臂的机械臂耦合状态信号。
本实施例中,手术机器人的每个机械臂预设有机械臂参数检测传感器,包括速度传感器、电流检测装置定位装置等,设置为检测机械臂的状态参数信号,该状态参数信号用于确定机械臂的工作状态。例如,基于上述任一传感器或者装置检测到的状态参数信号确定该机械臂的机械臂工作状态信号。当基于状态参数信号确定机械臂处于异常状态时,及时控制该机械臂暂停工作,避免因为机械臂异常导致手术机器人执行的手术操作出现问题,从而引发手术安全风险。例如,当机械臂出现异常,即当出现机械臂工作状态信号异常时,安全控制模块会执行该机械臂的安全停机,其余系统内的机械臂依然可以进行正常的操作,不会中断手术工作流。其中,中断指工作流需要回退到上一个节点,即重新装 载器械,匹配姿态等。
在实际运行过程中,机械臂工作状态信号可以为表征机械臂是否正常工作的状态信号。示例性的,若基于上述传感器或者装置的信号确定机械臂为正常工作状态,则输出的机械臂工作状态信号为高电平信号;若确定机械臂为异常工作状态,则输出的机械臂工作状态信号为低电平信号。
基于机械臂状态确定模块20接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号。例如,基于每个机械臂状态确定模块20将其对应的机械臂状态信号输出至安全控制模块10,以使安全控制模块10对手术机器人进行安全控制。
在上述实施方式的基础上,安全控制模块10根据接收到的连接状态信号和所述机械臂状态信号控制所述手术机器人是否工作。安全控制模块10可以是与门计算模块。即,当接收到的连接状态信号和机械臂状态信号均为高电平信号时,安全控制模块10输出的安全控制信号也为高电平信号,即可以控制手术机器人继续工作;若连接状态信号和机械臂状态信号中任一信号为低电平信号,则安全控制模块10输出的安全控制信号即为低电平信号,即可以控制手术机器人立即停止工作,并在收到继续工作的控制指令之后,不中断工作流,从中断节点继续执行手术操作,以保证手术机器人在手术操作过程中的连贯性和安全性。
示例性的,安全控制模块10根据机械臂状态信号控制机械臂在手术机器人中是否工作,若机械臂状态确定模块20输入低电平信号,则安全控制模块10输出低电平信号;若机械臂状态确定模块20输入高电平信号,则安全控制模块10输出高电平信号。换言之,当机械臂接入手术机器人,即处于耦合状态时,安全控制模块10可以基于机械臂状态信号控制该机械臂在手术机器人中是否工作,或当该机械臂从手术机器人中移除,即该机械臂处于解耦状态时,安全控制模块10可以继续控制剩余处于耦合状态的机械臂在手术机器人中的工作。与此同时,操作系统可以基于当前的拓扑组网发送新的操作指令给手术机器人,以使手术机器人可以正常工作。
本申请实施例提供的安全监控系统中,包括安全控制模块以及至少一个机械臂状态确定模块。机械臂状态确定模块基于操作系统和机械臂端口检测传感器输出的机械臂连接状态信号以及机械臂预设的传感器检测到的信号所确定的机械臂工作状态信号确定手术机器人的机械臂状态信号,安全控制模块基于连接状态信号和机械臂状态信号控制所述手术机器人是否工作。解决了相关技术中因手术机器人增减导致手术节点回流,从而使手术操作存在安全风险的问题,通过基于一套监控系统在监控到不同拓扑组网发生变化时均 可以生成对应的控制指令,并且在手术机器人发生停止操作时不会发生节点退回,增加了对手术机器人的安全监控,提高手术操作的安全性。
图3为本申请实施例提供的另一种手术机器人的安全监控系统。参见图3,在上述实施方式的基础上,机械臂状态确定模块20包括机械臂耦合状态确定单元201、机械臂工作状态确定单元202以及机械臂状态确定单元203;所述机械臂耦合状态确定单元201与所述机械臂状态确定单元203电连接,设置为接收所述操作系统输出的第一机械臂连接状态信号和机械臂端口检测传感器输出的第二机械臂连接状态信号,并根据所述第一机械臂连接状态信号和所述第二机械臂连接状态信号确定所述机械臂耦合状态信号;所述机械臂工作状态确定单元202与所述机械臂状态确定单元203电连接,设置为接收所述机械臂状态检测传感器发出的机械臂检测信号,并根据所述机械臂检测信号生成所述机械臂工作状态信号;所述机械臂状态确定单元203作为所述机械臂状态确定模块20的输出端与所述安全控制模块10电连接,设置为根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号,并将所述机械臂状态信号输入至所述安全控制模块10。
机械臂耦合状态确定单元201的输入端作为机械臂状态确定模块20的第一输入端,设置为被输入机械臂的连接状态信号,并输出机械臂耦合状态信号;机械臂工作状态确定单元202作为机械臂状态确定模块20的第二输入端,设置为被输入机械臂的工作信号,并输出机械臂工作状态信号;机械臂状态确定单元203的输入端分别与机械臂耦合状态确定单元201的输出端和机械臂工作状态确定单元202的输出端电连接,设置为被输入机械臂耦合状态信号以及机械臂工作状态信号,并生成机械臂状态信号;机械臂状态确定单元203的输出端作为机械臂状态确定模块20的输出端与安全控制模块10的输入端电连接,设置为将机械臂状态信号输入至安全控制模块10,以使其对手术机器人进行安全控制。
将操作系统输出的第一机械臂连接状态信号以及机械臂端口检测传感器输出的第二机械臂连接状态信号输入至机械臂耦合状态确定单元201,以得到生成的机械臂耦合状态信号。机械臂耦合状态确定单元201可以是与门计算单元,即,当输入的第一机械臂连接状态信号与第二机械臂连接状态信号均为高电平信号时,生成的机械臂耦合状态信号才为高电平;若当输入的第一机械臂连接状态信号与第二机械臂连接状态信号中任一信号为低电平信号,则生成的机械臂耦合状态信号也为低电平信号。
本实施例中,若根据手术操作需要移除或者接入手术机器人中的任一机械臂,则该机械臂的机械臂端口检测传感器在检测到机械臂移除或者接入时 分别将机械臂的移除或者接入信号发送至操作系统,操作系统基于移除或者接入信号向安全监控系统中的机械臂耦合状态确定单元201输入该机械臂对应的第一机械臂连接状态信号。与此同时,机械臂端口检测传感器还将机械臂的移除或者接入信号发送至安全监控系统,安全监控系统基于移除或者接入信号向机械臂耦合状态确定单元201输入该机械臂对应的第二机械臂连接状态信号,以使安全监控系统对手术机器人进行安全监控。
一实施例中,若根据手术操作需要移除或者接入手术机器人中的任一机械臂,用户需通过交互界面/按键选择对应的机械臂,该操作信号会发送至操作系统,操作系统基于移除或者接入信号向安全监控系统中的机械臂耦合状态确定单元201输入该机械臂对应的第一机械臂连接状态信号。与此同时,机械臂端口检测传感器还将基于实际机械臂移除或接入的硬件信号发送至安全监控系统,安全监控系统基于移除或者接入信号向机械臂耦合状态确定单元201输入该机械臂对应的第二机械臂连接状态信号。
在上述实施方式的基础上,当移除手术机械臂时,由于系统拓扑结构的变化,安全监控系统在收到机械臂端口检测传感器发送的移除或者接入信号时,会立即控制手术机器人进入安全状态,即手术机器人无法进行任何手术操作,避免在机械臂移除或者接入时手术机器人出现误操作的情况,提高了手术机器人在操作过程中的安全性。
在上述实施方式的基础上,当操作系统接收到机械臂端口检测传感器发送的移除或者接入信号时,向前端页面进行机械臂的结构变化提示信息,并在得到操作人员在交互界面进行操作确认后将该移除或者接入信号对应的机械臂解耦状态信号输入到机械臂耦合状态确定单元201进行状态判断,以增加手术机器人的监控安全性。其中,机械臂解耦状态信号为高电平,表示该机械臂处在解耦状态;机械臂解耦状态信号为低电平,表示该机械臂处在耦合状态。
本实施例中机械臂的状态参数包括急停参数、速度参数以及电流参数等。将上述状态参数对应的机械臂检测信号输入至机械臂工作状态确定单元202,得到其输出的机械臂工作状态信号。机械臂工作状态确定单元202可以是与门计算单元,即当被输入的多个机械臂检测信号均为高电平信号时,输出的机械臂工作状态信号为高电平信号;若任意机械臂检测信号为低电平信号时,输出的机械臂工作状态信号为低电平信号。
本实施例中,当机械臂出现异常启动急停状态时,例如系统触发安全停机信号,输入机械臂工作状态确定单元202的急停参数对应的机械臂检测信号为低电平信号,在此情况下无论其他信号为高电平或低电平,机械臂工作 状态确定单元202输出的机械臂工作状态信号均为低电平信号;当速度检测传感器检测到机械臂的移动速度超过预设的速度阈值时,输入机械臂工作状态确定单元202的速度参数对应的机械臂检测信号为低电平信号,在此情况下同样无论其他信号为高电平或低电平,机械臂工作状态确定单元202输出的机械臂工作状态信号均为低电平信号;若上述多个状态参数对应的机械臂检测信号均输入高电平信号时机械臂工作状态确定单元202,输出的机械臂工作状态信号为高电平信号。
机械臂状态确定单元203可以为或门计算单元,即,当输入机械臂状态确定单元203的机械臂耦合状态信号与机械臂工作状态信号中任一为高电平信号时,生成的机械臂状态信号为高电平;若当输入机械臂状态确定单元203的械臂耦合状态信号与机械臂工作状态信号中均为低电平信号,则生成的机械臂状态信号才为低电平信号。
示例性的,若机械臂耦合状态确定单元201输入机械臂状态确定单元203高电平信号,则基于或门计算逻辑无论机械臂工作状态确定单元202输入机械臂状态确定单元203何种状态信号,机械臂状态确定单元203均输出高电平信号;若机械臂耦合状态确定单元201输入机械臂状态确定单元203低电平信号,则仅当机械臂工作状态确定单元202输入机械臂状态确定单元203低电平信号时,机械臂状态确定单元203才会输出低电平信号;在上述情况下,若机械臂工作状态确定单元202输入机械臂状态确定单元203高电平信号,则安全控制模块输出为高电平信号。同样的,若机械臂工作状态确定单元202输入机械臂状态确定单元203高电平信号,则无论机械臂耦合状态确定单元201输入机械臂状态确定单元203何种状态信号,机械臂状态确定单元203输出均为高电平信号;若机械臂工作状态确定单元202输入为低电平信号,则仅当机械臂耦合状态确定单元201输入机械臂状态确定单元203的信号也为低电平信号时,机械臂状态确定单元203才会输出低电平信号;在机械臂工作状态信号为低电平信号的情况下,若机械臂耦合状态确定单元201输入机械臂状态确定单元203的机械臂耦合状态信号为高电平信号时,机械臂状态确定单元203会输出高电平信号。
一实施例中,上述机械臂状态确定单元203的确定机械臂状态信号的方式还可以为:在机械臂的耦合状态和工作状态任一出现问题,即机械臂耦合状态信号和/或机械臂工作状态信号为低电平信号时,输出的机械臂状态均为低电平信号,即处于异常状态,以使安全监控系统在对手术机器人进行安全控制的过程中安全性更高。
图4为本申请实施例提供的另一种手术机器人的安全监控系统。参见图4, 在上述实施方式的基础上,机械臂耦合状态确定单元201包括第一非门子单元2011以及第一状态确定子单元2012;所述第一非门子单元2011与所述第一状态确定子单元2012电连接,设置为接收所述第二机械臂连接状态信号,并对所述第二机械臂连接状态信号处理生成所述第二机械臂连接状态信号对应的机械臂连接状态处理信号;所述第一状态确定子单元2012设置为根据所述第一机械臂连接状态信号和所述机械臂连接状态处理信号生成所述机械臂耦合状态信号。
第一非门子单元2011的输入端作为机械臂耦合状态确定单元201的第一输入端,设置为接收安全监控系统输入的第二机械臂连接状态信号,并生成机械臂连接状态处理信号;第一非门子单元2011的输出端与第一状态确定子单元2012的第一输入端连接,设置为将机械臂连接状态处理信号输入至第一状态确定子单元2012中。第一状态确定子单元2012的第二输入端设置为接收操作系统输入的第一机械臂连接状态信号,并同时基于第一机械臂连接状态信号和机械臂连接状态处理信号,生成机械臂的机械臂耦合状态信号。第一状态确定子单元2012的输出端作为机械臂耦合状态确定单元201的输出端还与机械臂状态确定单元203电连接,设置为将生成的机械臂耦合状态信号发送至机械臂状态确定单元203,以确定机械臂的机械臂状态信号。
当机械臂从手术机器人中移除时,机械臂端口检测传感器基于拓扑结构的变化以及对应机械臂编码信号的缺失,立即向操作系统端发出解耦信号(高电平信号)。操作系统将该解耦信号输入至机械臂耦合状态确定单元201中进行机械臂耦合状态的确定。与此同时,安全监控系统在接收到机械臂端口检测传感器发送的解耦信号时,生成该机械臂的硬件解耦信号,并将该硬件解耦信号(低电平信号)发送至机械臂耦合状态确定单元201的第一非门子单元2011中进行逻辑非运算,得到第一非门子单元2011输出的高电平信号。第一状态确定子单元2012为与门逻辑,当第一状态确定子单元2012的双路输入信号状态均为高电平信号时,该被移除的机械臂即会被解耦,该机械臂工作状态信号将不再对手术机器人内其他正在运行的机械臂产生影响。同时,操作系统通过一次网络通信告知安全监控系统重新恢复系统运行,并基于新的拓扑结构执行安全监控。
当手术中需要机械臂接入系统中,机械臂端口检测传感器基于拓扑结构的变化以及对应机械臂编码信号的接入,立即向操作系统端发出耦合信号(低电平信号)。操作系统将该耦合信号输入至机械臂耦合状态确定单元201中进行机械臂耦合状态的确定。与此同时,安全监控系统在接收到机械臂端口检测传感器发送的耦合信号时,生成该机械臂的硬件耦合信号,并将该硬件耦合信号(高电平信号)发送至机械臂耦合状态确定单元201的第一非门子单元2011中进行逻辑非运算,得到第一非门子单元2011输出的低电平信号。 第一状态确定子单元2012为与门逻辑,当第一状态确定子单元2012的双路输入信号状态中任一路状态为低电平信号时,被接入的机械臂即会被耦合,该机械臂工作状态信号与手术机器人内其他正在运行的机械臂进行关联。同时,操作系统通过一次网络通信告知安全监控系统重新恢复系统运行,并基于新的拓扑结构执行安全监控。
本实施例中,安全监控系统与操作系统连接,以使安全监控系统可以根据操作系统输出的通信信号获知操作系统处于正常连接状态,并接收操作系统生成的机械臂连接状态信号,以及根据生成的机械臂连接状态信号对手术机器人进行安全监控,以保证安全监控系统基于操作系统的机械臂连接状态信号生成的安全监控指令的准确性。
图5为本申请实施例提供的另一种手术机器人的安全监控系统。参见图5,在上述实施方式的基础上,所述系统还包括通讯状态确定模块30;所述通讯状态确定模块30与所述安全控制模块10电连接,设置为接收操作系统输出的通信信号,并根据所述通信信号生成连接状态信号;所述连接状态信号用于表征所述安全监控系统与操作系统之间的连接状态。
安全监控系统和操作系统之间的连接状态可以通过通讯状态确定模块30进行确定。通过接收操作系统输出的通信信号,并根据通信信号生成用于表征所述安全监控系统与操作系统之间的连接状态的连接状态信号。
操作系统发送脉冲信号至安全监控系统中的通讯状态确定模块30进行处理,并得到处理后的连接状态信号,以确定安全监控系统与操作系统之间的连接状态。示例性的,脉冲信号经通讯状态确定模块30后输出的连接状态信号为高电平信号,则说明安全监控系统与操作系统之间处于正常连接状态,即安全监控系统可以正常接收到操作系统生成的机械臂连接状态信号;若操作系统输出的脉冲信号经通讯状态确定模块30后输出的连接状态信号为低电平信号,则说明安全监控系统与操作系统之间处于异常连接状态,即安全监控系统收到的机械臂连接状态信号可能为错误的机械臂连接状态信号,或者不能接收操作系统输出的机械臂连接状态信号,从而使安全监控系统不能基于操作系统发送的机械臂连接状态信号对手术机器人进行安全监控。
通讯状态确定模块30与安全监控系统的安全控制模块10电连接,设置为在生成连接状态信号的情况下,将生成的连接状态信号输入至安全控制模块10,以使安全控制模块10基于连接状态信号对手术机器人进行安全控制。
在上述实施方式的基础上,安全控制模块10根据接收到的连接状态信号和所述机械臂状态信号控制所述手术机器人是否工作。安全控制模块10可以是与门计算模块。即,当接收到的连接状态信号和机械臂状态信号均为高电平信号 时,安全控制模块10输出的安全控制信号也为高电平信号,即可以控制手术机器人继续工作;若连接状态信号和机械臂状态信号中任一信号为低电平信号,则安全控制模块10输出的安全控制信号为低电平信号,可以控制手术机器人立即停止工作,以保证手术机器人在手术操作过程中的安全性。
示例性的,若通讯状态确定模块30输入安全控制模块10的连接状态信号为低电平信号,则基于与门计算逻辑,无论机械臂状态确定模块20输入安全控制模块10何种状态信号,安全控制模块10均输出低电平信号,即控制手术机器人立即停止工作;若通讯状态确定模块30输入安全控制模块10的连接状态信号为高电平信号,则仅当机械臂状态确定模块20输入安全控制模块10高电平信号时,安全控制模块10才会输出高电平信号,即可以控制手术机器人继续工作;在上述连接状态信号为高电平信号的情况下,若机械臂状态确定模块20输入安全控制模块10低电平信号,则安全控制模块10输出低电平信号。同样的,若机械臂状态确定模块20输入安全控制模块10低电平信号,则无论通讯状态确定模块30输入安全控制模块10何种状态信号,安全控制模块10的输出均为低电平信号;若机械臂状态确定模块20输入安全控制模块10的机械臂状态信号为高电平信号,则仅当通讯状态确定模块30输入安全控制模块10的连接状态信号也为高电平信号时,安全控制模块10才会输出高电平信号;在机械臂状态信号为高电平信号的情况下,若通讯状态确定模块30输入安全控制模块10的连接状态信号为低电平信号时,安全控制模块10会输出低电平信号。
换言之,安全控制模块10可以在连接状态信号指示操作系统和安全监控系统正常连接,且机械臂接入手术机器人,即处于耦合状态时,基于机械臂状态信号控制该机械臂在手术机器人中是否工作,或该机械臂从手术机器人中移除,即该机械臂处于解耦状态时,继续控制剩余处于耦合状态的机械臂在手术机器人中的工作。与此同时,操作系统可以基于当前的拓扑组网发送新的操作指令给手术机器人,以使手术机器人可以正常工作。若连接状态信号指示操作系统和安全监控系统连接异常,或者机械臂状态信号只是机械臂接入手术机器人时不为耦合状态,或者机械臂移除手术机器人时不为解耦状态的情况下,控制手术机器人立即停止工作。
继续参见图5,在上述实施方式的基础上,安全监控系统还包括:机器人状态确定模块40;所述机器人状态确定模块40与所述安全控制模块10电连接,设置为接收前端控制台输出的机器人急停信号,并根据所述机器人急停信号生成机器人安全状态信号;所述安全控制模块10还设置为根据所述连接状态信号、所述机械臂状态信号和所述机器人安全状态信号控制所述手术机器人是否工作。
本实施例中,前端控制台可以为医生向手术机器人生成操作指令的控制 台。机器人急停信号可以是医生输入的机器人状态信号,其可以是基于手术机器人当前的状态所输入的机器人急停信号。急停信号包括状态急停信号、能量急停信号以及温度急停信号等信号。
将上述机器人急停信号输入至机器人状态确定模块40的输入端,进行信号处理并输出,得到机器人安全状态信号。机器人状态确定模块40的输出端还与安全控制模块10的输入端电连接,设置为将上述机器人安全状态信号输入至安全控制模块10,以使其基于机器人安全状态信号对手术机器人进行安全监控。
机器人状态确定模块40可以为与门计算模块,即当输入机器人状态确定模块40的多个急停信号均为高电平信号时,机器人状态确定模块40输出的机器人安全状态信号为高电平信号;若任意急停信号为低电平信号时,机器人状态确定模块40输出的机器人安全状态信号为低电平信号。
本实施例中,当机器人出现操作异常时启动机器人急停状态,输入机器人状态确定模块40的状态急停信号为低电平信号,在此情况下无论其他急停信号为高电平信号或低电平信号,机器人状态确定模块40输出的机器人安全状态信号为低电平信号;当输入机器人状态确定模块40的能量急停信号或者温度急停信号为低电平信号时,在此情况下同样无论其他急停信号为高电平信号或低电平信号,机器人状态确定模块40输出的机器人安全状态信号为低电平信号;若上述多个急停信号均为高电平信号,机器人状态确定模块40输出的机器人安全状态信号为高电平信号。
在上述实施方式的基础上,安全控制模块10基于通讯状态确定模块30输入的连接状态信号、机械臂状态确定模块20输入的机械臂状态信号和机器人状态确定模块40输入的机器人安全状态信号,共同确定手术机器人的安全控制信号。可以是在连接状态信号、所述机械臂状态信号和所述机器人安全状态信号均为高电平信号时,安全控制模块10输出高电平信号,即控制手术机器人继续工作。
本实施例引入了机器人状态确定模块40,当机器人状态确定模块40输入的机器人安全状态信号为低电平时无论其他状态信号处于什么状态,手术机器人都会被强制停止工作。这样,在紧急情况下,医生通过按下前端控制台的急停按钮,将机器人安全状态信号切换为低电平,可以强制控制手术机器人停止工作,以增强情急情况下的手术机器人操作灵活性和安全性。
图6为本申请实施例提供的另一种手术机器人的安全监控系统。参见图6,在上述实施方式的基础上,通讯状态确定模块30包括信号输入单元301以及状态输出单元302;所述信号输入单元301与所述状态输出单元302电连接;所述 信号输入单元301设置为接收所述操作系统输出的通信信号,并根据所述通信信号生成第一通信处理信号和第二通信处理信号;所述状态输出单元302,设置为根据所述第一通信处理信号和第二通信处理信号生成所述连接状态信号。
信号输入单元301的输入端作为通讯状态确定模块30的输入端,信号输入单元301的输入端可以包括第一输入端和第二输入端,分别设置为接收操作系统输出的通信信号,并分别对通信信号进行不同的信号处理,得到信号输入单元301输出的第一通信信号和第二通信处理信号;信号输入单元301的输出端和状态输出单元302的输入端电连接,将第一通信处理信号和第二通信处理信号输入至状态输出单元302进行连接状态确定,得到其输出的连接状态信号。并且,状态输出单元302的输出端作为通讯确定模块30的输出端与安全控制模块10电连接,可以将其输出的的连接状态信号输入至安全控制模块10,以使其根据连接状态信号对手术机器人进行安全控制。
本实施例中操作系统输出的通信信号可以为脉冲信号,将该脉冲信号输入至信号输入单元301,得到信号输入单元301输出的第一通信处理信号和第二通信处理信号。其中,第一通信处理信号用于表征操作系统输出的脉冲信号是否存在由于操作系统卡死等原因造成信号无法复位而导致的信号异常的情况。第二通信处理信号用于表征操作系统输出的脉冲信号是否存在由于脉冲信号时长过短导致信号过早复位而导致的信号异常的情况。
状态输出单元302基于上述信号输入单元301输出的第一通信处理信号和第二通信处理信号生成表征操作系统和安全监控系统之间的连接状态的连接状态信号。若操作系统和安全监控系统之间的连接状态正常,则输出的连接状态信号可以为高电平信号;若操作系统和安全监控系统之间的连接状态异常,则输出的连接状态信号为低电平信号。
上述实施方式基于脉冲信号生成两种通信处理信号,并生成连接状态信号的效果在于可以使安全监控系统根据操作系统可能会出现的不同异常情况生成对应的安全监控指令,提高了手术机器人的安全监控的全面性。
图7为本申请实施例提供的另一种手术机器人的安全监控系统。参见图7,在上述实施方式的基础上,信号输入单元301包括第二非门子单元3011和第一延时子单元3012;所述状态输出单元302包括第二状态确定子单元3021、第二延时子单元3022;所述非门子单元和所述第一延时子单元3012分别与所述第二状态确定子单元3021电连接;所述第二状态确定子单元3021与所述第二延时子单元3022电连接;所述非门子单元设置为接收所述操作系统输出的通信信号,并根据所述通信信号生成第一通信处理信号;所述第一延时单元设置为接收所述操作系统输出的通信信号,并根据所述通信信号生成第二通信处理信号;所 述第二状态确定子单元3021设置为根据所述第一通信处理信号和所述第二通信处理信号生成第一状态信号;所述第二延时子单元3022设置为根据所述第一状态信号生成所述连接状态信号。
第二非门子单元3011的输入端和第一延时子单元3012的输入端分别作为信号输入单元301的两个输入端,同时输入操作系统的通信信号进行处理,分别得到第一通信处理信号和第二通信处理信号,第二非门子单元3011的输出端和第一延时子单元3012的输出端作为信号输入单元301的两个输出端,同时与状态输出单元302的输入端连接,设置为将第一通信处理信号和第二通信处理信号输入至状态输出单元302中。第二状态确定子单元3021的输入端作为状态输出单元302的输入端,接收第一通信处理信号和第二通信处理信号,并生成第一状态信号,同时第二状态确定子单元3021的输出端与第二延时子单元3022的输入端连接,可以将第一状态信号输入至第二延时子单元3022中,以生成连接状态信号,第二延时子单元3022的输出端作为状态输出单元302的输出端,与安全控制模块10连接。可以将连接状态信号输入至安全控制模块10中,以使安全控制模块10基于其对手术机器人进行安全监控。
预先设置时长T1和T2,T1和T2的最小单位均为1ms。以及在操作系统内设置一个脉冲宽度为W的信号,设定时长T。时长的设置中,需满足W小于T2,T小于(T1+T2)。操作系统每隔时长T向安全监控系统发出脉冲宽度为W的脉冲信号。图8为本发明申请实施例提供的一种脉冲信号的时序图。参见图8,①通路信号为操作系统发出的第一路脉冲心跳信号,该脉冲信号正常状态下为低电平,当脉冲信号触发时,该信号从低电平变为高电平,经过时间W后再回到低电平。当该输入信号触发下降沿时,第一延时单元3012(延时逻辑块A)的计时器即会被触发,并保持第一延时子单元3012的输出信号在T1时长内为高电平,超过T1后,输出信号即会变为低电平;当该输入信号触发上升沿时,第一延时子单元3012的计时器即会被重置。与此同时,继续参见图8,操作系统每隔时长T还向安全监控系统发出第二路脉冲信号,该脉冲信号与第一路脉冲信号相同。对第二路脉冲信号进行逻辑非处理得到图8中的②通路信号,当该信号为低电平状态时,第一延时单元3012(延时逻辑块A)输入到第二状态确定子单元3021(Watchdog信号监控)的信号为高电平。第一延时单元3012(延时逻辑块A)的输出信号和②通路信号构成双路信号共同输入第二状态确定子单元3021(Watchdog信号监控)。第二状态确定子单元3021可以为与门计算单元,即当双路输入信号均为高电平信号时,则第二状态确定子单元3021的输出信号为高电平;参见图9,当任一输入到该第二状态确定子单元3021的信号为低电平,该第二状 态确定子单元3021的输出信号立即变为低电平。第二状态确定子单元3021的输出信号变为低电平时,会触发第二延时子单元3022(延时逻辑块B)的计时器,并保持T2时长内输入到安全控制模块10的信号(连接状态信号)为高电平,当超过T2后,第二延时子单元3022(延时逻辑块B)的输出信号即会变为低电平;当输入到第二延时子单元3022的信号触发上升沿时,第二延时子单元3022的计时器即会被重置。
参见图9,若安全监控系统的在经过时长T1+T2后依然未收到操作系统所发出的脉冲信号,即通讯状态确定模块30输出的连接状态信号为低电平信号时,输入到安全控制模块10中的信号即变为低电平,进而安全监控系统会输出低电平信号,控制手术机器人停止工作。
参见图10,若由于操作系统卡死等原因造成信号无法复位,脉冲信号持续输出高电平,则第二路脉冲信号在取非处理后会输出低电平信号,会引起通讯状态确定模块30的输出信号变为低电平,进而安全监控系统会输出低电平信号,控制手术机器人停止工作。
上述实施方式通过组态结构变更后,不设置复杂的人工操作系统恢复工作流,快速,高效,可靠得保证组态结构变化后的手术机器人系统功能安全。
本申请实施例还提供了一种手术机器人的安全监控方法。图11为本申请实施例提供的一种手术机器人的安全监控方法的流程图,该方法可以由手术机器人的安全监控系统来执行,该手术机器人的安全监控系统可以采用硬件和/或软件的形式实现,手术机器人的安全监控系统可配置于智能终端中。如图11所示,该方法包括:
S510、基于所述机械臂状态确定模块接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号。
S520、基于所述安全控制模块根据所述机械臂状态信号控制所述手术机器人是否工作。
手术机器人的安全监控方法,还包括基于通讯状态确定模块接收操作系统输出的通信信号,并根据所述通信信号生成连接状态信号;其中,所述连接状态信号用于表征所述安全监控系统与操作系统之间的连接状态。
所述基于安全控制模块根据所述机械臂状态信号控制所述手术机器人是否工作,包括:基于所述安全控制模块根据所述连接状态信号和所述机械臂状态信号控制所述手术机器人是否工作。
本申请实施例提供的手术机器人的安全监控方法,解决了相关技术中因手术机器人增减导致手术节点回流,从而使手术操作存在安全风险的问题,通过基于一套监控系统在监控到不同拓扑组网发生变化时均可以生成对应的控制指令,并且在手术机器人发生停止操作时不会发生节点退回,增加了对手术机器人的安全监控,提高手术操作的安全性。
本申请实施例还提供了一种手术机器人的控制系统。图12为本申请实施例提供的一种手术机器人的控制系统的结构示意图。参见图12,该控制系统包括操作系统1以及手术机器人的安全监控系统2;所述操作系统1分别与所述手术机器人和所述安全监控系统2电连接;所述安全监控系统2与所述手术机器人电连接。
本实施例中,手术机器人的手术操作指令可以是基于操作系统所下发,即手术机器人根据操作系统的操作指令进行手术操作。
操作系统与手术机器人之间通过现场总线电连接。操作系统通过现场总线向手术机器人发送操作指令;手术机器人的机械臂检测端口同样通过现场总线向操作系统发送机械臂连接信号。安全监控系统与手术机器人之间通过安全现场总线连接。安全监控系统可以通过安全现场总线向手术机器人发送安全监控信号,机械臂检测端口也可以通过安全现场总线向安全监控系统发送机械臂连接信号。操作系统和安全监控系统之间可以通过安全现场总线连接也可以通过现场总线连接。现场总线和安全现场总线的区别在于两者使用的通信协议不同,安全现场总线所采用的通信协议比现场总线所采用的通信协议多一层安全验证,以保证安全监控系统向手术机器人发送安全监控信号时的安全性。
在上述实施方式的基础上,若所述安全监控系统控制所述手术机器人工作,则基于操作系统向所述手术机器人输出操作指令,以使所述手术机器人响应所述操作指令进行手术操作。
本申请实施例提供的手术机器人的控制方法,快速,高效,可靠得保证组态结构变化后的手术机器人系统功能安全,既不会因组态变化而失效,也不会对正常手术工作流造成干扰。
可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (11)

  1. 一种手术机器人的安全监控系统,包括:安全控制模块以及至少一个机械臂状态确定模块;
    所述机械臂状态确定模块与所述安全控制模块电连接,设置为接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信号;
    所述安全控制模块设置为根据所述机械臂状态信号控制所述手术机器人是否工作。
  2. 根据权利要求1所述的系统,其中,所述机械臂状态确定模块包括机械臂耦合状态确定单元、机械臂工作状态确定单元以及机械臂状态确定单元;
    所述机械臂耦合状态确定单元与所述机械臂状态确定单元电连接,设置为接收操作系统输出的第一机械臂连接状态信号和机械臂端口检测传感器输出的第二机械臂连接状态信号,并根据所述第一机械臂连接状态信号和所述第二机械臂连接状态信号确定所述机械臂耦合状态信号;
    所述机械臂工作状态确定单元与所述机械臂状态确定单元电连接,设置为接收所述机械臂状态检测传感器发出的机械臂检测信号,并根据所述机械臂检测信号生成所述机械臂工作状态信号;
    所述机械臂状态确定单元作为所述机械臂状态确定模块的输出端与所述安全控制模块电连接,设置为根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成所述机械臂状态信号,并将所述机械臂状态信号输入至所述安全控制模块。
  3. 根据权利要求2所述的系统,其中,所述机械臂耦合状态确定单元包括第一非门子单元以及第一状态确定子单元;
    所述第一非门子单元与所述第一状态确定子单元电连接,设置为接收所述第二机械臂连接状态信号,并对所述第二机械臂连接状态信号处理生成所述第二机械臂连接状态信号对应的机械臂连接状态处理信号;
    所述第一状态确定子单元设置为根据所述第一机械臂连接状态信号和所述机械臂连接状态处理信号生成所述机械臂耦合状态信号。
  4. 根据权利要求1所述的系统,还包括通讯状态确定模块;
    所述通讯状态确定模块与所述安全控制模块电连接,设置为接收操作系统输出的通信信号,并根据所述通信信号生成连接状态信号;其中,所述连接状态信号用于表征所述安全监控系统与所述操作系统之间的连接状态。
  5. 根据权利要求4所述的系统,其中,所述通讯状态确定模块包括信号输入单元以及状态输出单元;所述信号输入单元与所述状态输出单元电连接;
    所述信号输入单元设置为接收所述操作系统输出的通信信号,并根据所述通信信号生成第一通信处理信号和第二通信处理信号;
    所述状态输出单元,设置为根据所述第一通信处理信号和所述第二通信处理信号生成所述连接状态信号。
  6. 根据权利要求5所述的系统,其中,所述信号输入单元包括第二非门子单元和第一延时子单元;所述状态输出单元包括第二状态确定子单元、第二延时子单元;
    所述第二非门子单元和所述第一延时子单元分别与所述第二状态确定子单元电连接;所述第二状态确定子单元与所述第二延时子单元电连接;
    所述第二非门子单元设置为接收所述操作系统输出的通信信号,并根据所述通信信号生成所述第一通信处理信号;
    所述第一延时单元设置为接收所述操作系统输出的通信信号,并根据所述通信信号生成所述第二通信处理信号;
    所述第二状态确定子单元设置为根据所述第一通信处理信号和所述第二通信处理信号生成第一状态信号;
    所述第二延时子单元设置为根据所述第一状态信号生成所述连接状态信号。
  7. 根据权利要求4所述的系统,还包括:机器人状态确定模块;
    所述机器人状态确定模块与所述安全控制模块电连接,设置为接收前端控制台输出的机器人急停信号,并根据所述机器人急停信号生成机器人安全状态信号;
    所述安全控制模块还设置为根据所述连接状态信号、所述机械臂状态信号和所述机器人安全状态信号控制所述手术机器人是否工作。
  8. 根据权利要求1所述的系统,其中,所述手术机器人包括至少一个机械臂,所述至少一个机械臂状态确定模块的模块数量与所述至少一个机械臂的数量相等,且所述至少一个机械臂状态确定模块与所述至少一个机械臂一一对应。
  9. 一种手术机器人的安全监控方法,应用于权利要求1-8任一所述的手术机器人的安全监控系统,包括:
    基于机械臂状态确定模块接收机械臂耦合状态信号和机械臂工作状态信号,并根据所述机械臂耦合状态信号和所述机械臂工作状态信号生成机械臂状态信 号;
    基于安全控制模块根据所述机械臂状态信号控制所述手术机器人是否工作。
  10. 根据权利要求9所述的方法,还包括:
    基于通讯状态确定模块接收操作系统输出的通信信号,并根据所述通信信号生成连接状态信号;其中,所述连接状态信号用于表征所述安全监控系统与操作系统之间的连接状态;
    所述基于安全控制模块根据所述机械臂状态信号控制所述手术机器人是否工作,包括:
    基于所述安全控制模块根据所述连接状态信号和所述机械臂状态信号控制所述手术机器人是否工作。
  11. 一种手术机器人的控制系统,包括:操作系统以及如权利要求1-8任一所述的手术机器人的安全监控系统;
    所述操作系统分别与所述手术机器人和所述安全监控系统电连接;
    所述安全监控系统与所述手术机器人电连接。
PCT/CN2023/129375 2022-11-17 2023-11-02 手术机器人的安全监控系统、安全监控方法及控制系统 WO2024104185A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211439575.4A CN118046377A (zh) 2022-11-17 2022-11-17 手术机器人的安全监控系统、安全监控方法及控制系统
CN202211439575.4 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024104185A1 true WO2024104185A1 (zh) 2024-05-23

Family

ID=91043631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129375 WO2024104185A1 (zh) 2022-11-17 2023-11-02 手术机器人的安全监控系统、安全监控方法及控制系统

Country Status (2)

Country Link
CN (1) CN118046377A (zh)
WO (1) WO2024104185A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195285A (ja) * 1993-12-29 1995-08-01 Bridgestone Corp ロボット制御装置
CN104647389A (zh) * 2014-12-30 2015-05-27 北京欣奕华科技有限公司 一种机器人控制系统、机器人设备
CN113040913A (zh) * 2021-03-02 2021-06-29 上海微创医疗机器人(集团)股份有限公司 机械臂、手术装置、手术末端装置、手术系统及工作方法
CN113057735A (zh) * 2021-03-16 2021-07-02 上海微创医疗机器人(集团)股份有限公司 手术机器人系统的控制方法、可读存储介质及机器人系统
CN114628019A (zh) * 2021-11-16 2022-06-14 瑞龙诺赋(上海)医疗科技有限公司 机械臂更换系统、方法、电子设备以及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195285A (ja) * 1993-12-29 1995-08-01 Bridgestone Corp ロボット制御装置
CN104647389A (zh) * 2014-12-30 2015-05-27 北京欣奕华科技有限公司 一种机器人控制系统、机器人设备
CN113040913A (zh) * 2021-03-02 2021-06-29 上海微创医疗机器人(集团)股份有限公司 机械臂、手术装置、手术末端装置、手术系统及工作方法
CN113057735A (zh) * 2021-03-16 2021-07-02 上海微创医疗机器人(集团)股份有限公司 手术机器人系统的控制方法、可读存储介质及机器人系统
CN114628019A (zh) * 2021-11-16 2022-06-14 瑞龙诺赋(上海)医疗科技有限公司 机械臂更换系统、方法、电子设备以及存储介质

Also Published As

Publication number Publication date
CN118046377A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
US7337355B2 (en) Method, system, and program for error handling in a dual adaptor system where one adaptor is a master
CN101072125B (zh) 集群结构及其控制单元
CN104570721B (zh) 冗余控制器主从状态确定方法
CN107895937B (zh) 一种电机控制器冗余保护电路和电子设备
EP3690576B1 (en) Control device and method for controlling a redundant connection in a flat network
CN115913906A (zh) 一种船用冗余控制系统及方法
WO2024104185A1 (zh) 手术机器人的安全监控系统、安全监控方法及控制系统
CN116699964A (zh) 一种工业过程控制器冗余运行方法和系统
US8788735B2 (en) Interrupt control apparatus, interrupt control system, interrupt control method, and interrupt control program
JPH07210472A (ja) I/oインタフェース制御方法および計算機システム
JP2603805Y2 (ja) 複数の機能要素を有するシステムのための監視回路
JP4541241B2 (ja) プラント制御システム
TWI784379B (zh) 控制系統、控制方法
CN114750161A (zh) 机器人控制装置和机器人
JPH10105490A (ja) サーバの障害監視及び対策方法
JP3604868B2 (ja) システムおよびエラー処理方法
CN112612654B (zh) 空管自动化系统多机主备切换方法及冗余服务系统
JPH05341803A (ja) プログラマブルコントローラの二重化切替装置
CN117471965A (zh) 智能驾驶域控系统健康监控方法及装置
JP2000349900A (ja) 交換装置の障害処理方式
KR20010056730A (ko) 교환 시스템의 멀티 씨 피 유 장애 복구장치 및 방법
JP2002344460A (ja) 電力系統監視制御システムおよびそのコネクション確立状態監視制御プログラムを記録した記録媒体
CN114489300A (zh) 一种Expander芯片复位方法和装置
CN113630256A (zh) 车辆底盘通讯控制方法、装置、设备及存储介质
CN115113593A (zh) 一种基于scada的工业设备远程控制系统及其方法