WO2024103762A1 - 液冷机组及其控制方法 - Google Patents

液冷机组及其控制方法 Download PDF

Info

Publication number
WO2024103762A1
WO2024103762A1 PCT/CN2023/103916 CN2023103916W WO2024103762A1 WO 2024103762 A1 WO2024103762 A1 WO 2024103762A1 CN 2023103916 W CN2023103916 W CN 2023103916W WO 2024103762 A1 WO2024103762 A1 WO 2024103762A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat exchange
exchange medium
cooling unit
liquid
Prior art date
Application number
PCT/CN2023/103916
Other languages
English (en)
French (fr)
Inventor
张乃伟
张立智
吕福俊
宁贻江
周小光
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024103762A1 publication Critical patent/WO2024103762A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • a computer room refrigeration system in the related technology, including a cabinet body and an outdoor cold source unit, characterized in that the cabinet body is a closed cabinet body, electronic equipment is arranged inside the closed cabinet body, a cooling pipeline is provided in a side area of the electronic equipment, the liquid inlet end and the liquid outlet end of the cooling pipeline are respectively connected to the outdoor cold source unit, and the outdoor cold source unit is a water cooling module, and the electronic equipment in the closed cabinet body is cooled by circulating water through the cooling pipeline, and the heat in the closed cabinet body is transferred to the outdoor cold source unit through the circulating water; when the outdoor ambient temperature is low, an electric heater is configured on the water cooling module to heat the frozen circulating water, so that the circulating water can circulate normally to cool the closed cabinet body.
  • the disclosed embodiments provide a liquid cooling unit and a control method thereof to reduce energy consumption, reduce the cooling cost of the liquid cooling unit, accurately adjust the temperature of a heat exchange medium in a low temperature environment, and ensure the cooling effect of the heat exchange medium.
  • the liquid cooling unit includes: an evaporator, a condenser, a liquid return pipeline and a liquid outlet pipeline.
  • the liquid return pipeline includes a first flow path and a second flow path, the first flow path flows through the evaporator, and the second flow path flows through the condenser; the liquid outlet pipeline is connected to the liquid outlet ends of the first flow path and the second flow path respectively, and the heat exchange medium circulates along the liquid return pipeline and the liquid outlet pipeline.
  • a control method for a liquid cooling unit includes:
  • the flow direction of the heat exchange medium in the liquid cooling unit is controlled according to the relationship between the ambient temperature and the first set temperature.
  • the heat exchange medium flows out from the liquid outlet pipeline to cool down the module that needs heat dissipation. After the temperature rises, the heat exchange medium flows into the return liquid pipeline, flows through the evaporator through the first flow path to cool down, and then flows out from the liquid outlet pipeline again to cool down and dissipate heat.
  • the flow direction of the heat exchange medium is selectively controlled.
  • the heat exchange medium flows through the condenser through the second flow path.
  • the heat exchange medium is heated by the condenser to ensure that the heat exchange medium can flow smoothly, reduce energy consumption, and reduce the cost of the liquid cooling unit.
  • FIG1 is a schematic structural diagram of a liquid cooling unit provided by an embodiment of the present disclosure.
  • FIG2 is a schematic structural diagram of another liquid cooling unit provided by an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of the structure of the refrigerant coils of the evaporator and the condenser provided in an embodiment of the present disclosure
  • FIG4 is a schematic diagram of a control method for a liquid cooling unit provided in an embodiment of the present disclosure
  • FIG5 is a schematic diagram of another control method for a liquid cooling unit provided by an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of another control method for a liquid cooling unit provided by an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of another control method for a liquid cooling unit provided by an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of another control method for a liquid cooling unit provided by an embodiment of the present disclosure.
  • the terms “upper”, “lower”, “inside”, “middle”, “outside”, “front”, “back” and the like indicate directions or positional relationships based on the directions or positional relationships shown in the accompanying drawings. These terms are mainly intended to better describe the embodiments of the present disclosure and their embodiments, and are not intended to limit the indicated devices, elements or components to have specific directions, or to be constructed and operated in specific directions. Moreover, in addition to being used to indicate directions or positional relationships, some of the above terms may also be used to indicate other meanings. For example, the term “upper” may also be used to indicate a certain dependency or connection relationship in certain circumstances. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure may be understood according to specific circumstances.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be an internal connection between two devices, elements, or components.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be an internal connection between two devices, elements, or components.
  • the embodiment of the present disclosure provides a liquid cooling unit, including: an evaporator 200, a condenser 300, a liquid return pipeline 400 and a liquid outlet pipeline 500.
  • the liquid return pipeline 400 includes a first flow path 410 and a second flow path 420.
  • the first flow path 410 flows through the evaporator 200, and the second flow path 420 flows through the condenser 300;
  • the liquid outlet pipeline 500 is connected to the liquid outlet ends of the first flow path 410 and the second flow path 420 respectively, and the heat exchange medium circulates along the liquid return pipeline 400 and the liquid outlet pipeline 500.
  • the heat exchange medium flows out from the liquid outlet pipe 500 to cool down the module that needs heat dissipation, and the heat exchange medium with increased temperature flows in from the return liquid pipe 400, flows through the evaporator 200 through the first flow path 410 to cool down, and then flows out from the liquid outlet pipe 500 again to cool down and dissipate heat.
  • the ambient temperature of the liquid cooling unit is low, the circulation of the heat exchange medium in the low temperature environment may be affected. Therefore, the flow direction of the heat exchange medium is selectively controlled.
  • the heat exchange medium When used at low temperature, the heat exchange medium flows through the condenser 300 through the second flow path 420, and the heat exchange medium is heated by the condenser 300 to ensure that the heat exchange medium can circulate smoothly, thereby reducing energy consumption and reducing the cost of the liquid cooling unit.
  • the temperature of the heat exchange medium in the low temperature environment can be accurately adjusted to ensure the cooling effect of the heat exchange medium.
  • the liquid cooling unit further includes: a compressor 600.
  • the compressor 600 has an exhaust pipe and a return pipe, the exhaust pipe is connected to the input end of the condenser 300, and the return pipe is connected to the output end of the evaporator 200.
  • the refrigerant is compressed into a high-temperature and high-pressure gaseous refrigerant by the compressor 600 and discharged into the condenser 300 through the exhaust pipe, and the high-temperature and high-pressure gaseous refrigerant condenses and releases heat in the condenser 300.
  • the heat exchange medium flows through the condenser 300 through the second flow path 420, and the heat exchange medium flowing through is heated by the condenser 300 to ensure the normal circulation of the heat exchange medium.
  • the condensation temperature of the condenser 300 to accurately control the heating temperature of the heat exchange medium, it is possible to heat the heat exchange medium in a low-temperature environment, and to avoid the heating temperature being too high to affect the cooling and heat dissipation effect of the heat exchange medium.
  • the refrigerant flows to the evaporator 200 to evaporate and absorb heat. The temperature of the heat exchange medium returning through the return liquid pipeline 400 increases.
  • the heat exchange medium is controlled to flow through the evaporator 200 through the first flow path 410.
  • the evaporator 200 absorbs the heat of the heat exchange medium so that the heat exchange medium can flow out again for cooling and heat dissipation.
  • the output end of the condenser 300 is connected to the input end of the evaporator 200.
  • the refrigerant after condensation and heat release in the condenser 300 flows from the output end to the input end of the evaporator 200, and the refrigerant flowing into the evaporator 200 evaporates and absorbs heat in the evaporator 200.
  • the gaseous refrigerant after evaporation and heat absorption flows from the return air pipe into the compressor 600 for compression again, completing a refrigerant cycle.
  • a throttling device 700 is connected between the output end of the condenser 300 and the input end of the evaporator 200. In this way, the refrigerant flowing out of the condenser 300 is throttled and depressurized by the throttling device 700, so that the refrigerant flowing into the evaporator 200 can be evaporated and heat absorbed better.
  • the heat exchange medium is water
  • the liquid cooling unit is a water cooling unit.
  • the liquid cooling unit further includes: a cooling pipeline 800.
  • the cooling pipeline 800 is arranged in the device and is used to cool the device.
  • One end of the cooling pipeline 800 is connected to the liquid outlet pipeline 500, and the other end is connected to the liquid return pipeline 400.
  • the heat exchange medium circulates between the cooling pipeline 800, the liquid return pipeline 400 and the liquid outlet pipeline 500. In this way, the outlet The heat exchange medium flowing out of the liquid pipeline 500 flows into the cooling pipeline 800. Since the cooling pipeline 800 is arranged in the equipment that needs to dissipate heat and cool down, the heat exchange medium flowing into the cooling pipeline 800 absorbs the heat generated by the equipment and cools down the equipment.
  • the heat exchange medium that absorbs heat flows into the return liquid pipeline 400, and flows into the evaporator 200 through the first flow path 410 for cooling and refrigeration, so as to facilitate the subsequent flow into the cooling pipeline 800 for cooling and heat dissipation.
  • the heat exchange medium can flow to the condenser 300 through the second flow path 420 for heating, thereby ensuring the smooth circulation of the heat exchange medium.
  • the equipment is a heat-generating device such as a server or a terminal in a computer room
  • the cooling pipeline 800 can be arranged in the equipment or in the computer room to cool down the environment in the computer room.
  • the liquid return pipeline 400 further includes a main liquid return pipe 430, which is respectively connected to the liquid inlet ends of the first flow path 410 and the second flow path 420.
  • the heat exchange medium in the cooling pipeline 800 flows into the main liquid return pipe 430 after absorbing heat, and then the heat exchange medium in the main liquid return pipe 430 is controlled to flow into the first flow path 410 or the second flow path 420 according to the ambient temperature, thereby controlling the heat exchange medium to flow to the evaporator 200 for cooling or to flow to the condenser 300 for heating, and better controlling the flow direction of the heat exchange medium in the liquid return pipeline 400.
  • the liquid outlet of the main liquid return pipe 430 is connected to the liquid inlet of the first flow path 410 and the second flow path 420 respectively to form a three-way structure, and the heat exchange medium in the main liquid return pipe 430 can selectively flow to the first flow path 410 or the second flow path 420.
  • a three-way solenoid valve 440 is provided at the position where the main liquid return pipe 430 is connected to the first flow path 410 and the second flow path 420, which can block the second flow path 420 while conducting the first flow path 410, or conduct the second flow path 420 while blocking the first flow path 410.
  • the conduction and closing of the first flow path 410 and the second flow path 420 are controlled by the three-way solenoid valve 440, so as to more accurately control the flow direction of the heat exchange medium in the main liquid return pipe 430.
  • the three-way solenoid valve 440 When it is necessary to control the heat exchange medium in the main liquid return pipe 430 to flow to the evaporator 200 for cooling, the three-way solenoid valve 440 is controlled to conduct the first flow path 410, block the second flow path 420, and make the heat exchange medium in the main liquid return pipe 430 flow to the evaporator 200 for cooling. When it is necessary to control the heat exchange medium in the main return pipe 430 to flow to the condenser 300 for heating, the three-way solenoid valve 440 is controlled to block the first flow path 410 and open the second flow path 420, so that the heat exchange medium in the main return pipe 430 flows to the condenser 300 for heating.
  • the three-way valve has an input end and two output ends, the input end is connected to the liquid outlet end of the main liquid return pipe 430 , one of the two output ends is connected to the liquid inlet end of the first flow path 410 , and the other is connected to the liquid inlet end of the second flow path 420 .
  • the liquid cooling unit further includes: a temperature sensor 900.
  • the temperature sensor 900 is disposed in the environment where the evaporator 200 is located, and the temperature sensor 900 is electrically connected to the three-way solenoid valve 440.
  • the ambient temperature can be obtained in real time through the temperature sensor 900, and the conduction state of the three-way solenoid valve 440 can be controlled according to the ambient temperature, thereby controlling the flow direction of the heat exchange medium in the main return liquid pipe 430.
  • the temperature sensor 900 is disposed in the environment where the evaporator 200 is located, and the temperature sensor 900 is used to detect the ambient temperature of the evaporator 200 in real time, so as to more accurately determine whether the ambient temperature of the heat exchange medium at this time needs to be adjusted.
  • the medium is heated.
  • the refrigerant coil of the evaporator 200 is divided into a first outer tube 210 and a first inner tube 220.
  • the first outer tube 210 is sleeved on the outer periphery of the first inner tube 220.
  • a first circulation space 230 is defined between the inner peripheral wall of the first outer tube 210 and the outer peripheral wall of the first inner tube 220.
  • the refrigerant of the evaporator 200 circulates in the first circulation space 230, and the first inner tube 220 is connected to the first flow path 410.
  • the refrigerant coil of the evaporator 200 is arranged such that the first outer tube 210 wraps the first inner tube 220, the refrigerant in the evaporator 200 circulates in the first circulation space 230, and the heat exchange medium circulates in the first inner tube 220, so that the refrigerant that evaporates and absorbs heat forms a wrapping effect on the heat exchange medium, thereby improving the heat exchange area and heat exchange efficiency.
  • the cooling efficiency of the heat exchange medium can be improved.
  • the first outer tube 210 and the first inner tube 220 are both circular tubes, and the first outer tube 210 and the first inner tube 220 are arranged concentrically.
  • the first circulation space 230 defined between the inner circumferential wall of the first outer tube 210 and the outer circumferential wall of the first inner tube 220 is more uniform, and the refrigerant flows more smoothly in the first circulation space 230, thereby better exchanging heat with the heat exchange medium flowing in the first inner tube 220.
  • the heat exchange medium flowing in the first flow path 410 flows through the evaporator 200, it first flows into the liquid inlet end of the first inner layer tube 220, and then flows out from the liquid outlet end of the first inner layer tube 220 to the first flow path 410 again.
  • the heat exchange medium participates in heat exchange throughout the entire process when flowing through the evaporator 200.
  • the refrigerant coil of the condenser 300 is divided into a second outer tube 310 and a second inner tube 320, the second outer tube 310 is sleeved on the outer periphery of the second inner tube 320, and a second circulation space 330 is defined between the inner peripheral wall of the second outer tube 310 and the outer peripheral wall of the second inner tube 320, the refrigerant of the condenser 300 circulates in the second circulation space 330, and the second inner tube 320 is connected to the second flow path 420.
  • the refrigerant coil of the condenser 300 is configured such that the second outer tube 310 wraps the second inner tube 320, the refrigerant in the condenser 300 circulates in the second circulation space 330, and the heat exchange medium circulates in the second inner tube 320, so that the refrigerant that releases heat by condensation forms a wrapping effect on the heat exchange medium, thereby improving the heat exchange area and heat exchange efficiency.
  • the heating efficiency of the heat exchange medium can be improved.
  • the second outer tube 310 and the second inner tube 320 are both round tubes, and the second outer tube 310 and the second inner tube 320 are arranged concentrically.
  • the second circulation space 330 defined between the inner circumferential wall of the second outer tube 310 and the outer circumferential wall of the second inner tube 320 is more uniform, and the refrigerant flows more smoothly in the second circulation space 330, thereby better exchanging heat with the heat exchange medium flowing in the second inner tube 320.
  • the heat exchange medium flowing in the second flow path 420 flows through the condenser 300, it first flows into the liquid inlet end of the second inner tube 320, and then flows out from the liquid outlet end of the second inner tube 320 to the second flow path 420 again.
  • the heat exchange medium participates in heat exchange throughout the entire process when flowing through the condenser 300.
  • a control method of a liquid cooling unit includes:
  • the processor obtains the ambient temperature of the liquid cooling unit
  • the processor controls the flow direction of the heat exchange medium in the liquid cooling unit according to the relationship between the ambient temperature and the first set temperature.
  • the heat exchange medium flows out from the liquid outlet pipeline to cool down the module that needs heat dissipation, and the heat exchange medium with increased temperature flows into the return liquid pipeline, flows through the evaporator through the first flow path to cool down, and then flows out from the liquid outlet pipeline again to cool down and dissipate heat.
  • the ambient temperature of the liquid cooling unit is low, the circulation of the heat exchange medium in the low temperature environment may be affected. Therefore, the flow direction of the heat exchange medium is selectively controlled.
  • the heat exchange medium When used at low temperature, the heat exchange medium is made to flow through the condenser through the second flow path, and the heat exchange medium is heated by the condenser to ensure that the heat exchange medium can flow smoothly, thereby reducing energy consumption and reducing the cost of the liquid cooling unit.
  • the temperature of the heat exchange medium in the low temperature environment can be accurately adjusted to ensure the cooling effect of the heat exchange medium.
  • the processor obtaining the ambient temperature of the liquid cooling unit includes: the processor obtaining the ambient temperature of the evaporator in the liquid cooling unit.
  • the processor obtaining the ambient temperature of the evaporator can more intuitively reflect the ambient temperature of the heat exchange medium, and control the flow direction of the heat exchange medium according to the ambient temperature of the evaporator, more accurately control the flow direction of the heat exchange medium, and improve the stability of the operation of the liquid cooling unit.
  • the processor obtaining the ambient temperature of the evaporator in the liquid cooling unit includes: the processor obtaining the ambient temperature sent by a temperature sensor set in the environment where the evaporator is located.
  • the processor can simplify the process of obtaining the ambient temperature and improve the accuracy of obtaining the ambient temperature by obtaining the ambient temperature sent by the temperature sensor.
  • the processor controls the flow direction of the heat exchange medium in the liquid cooling unit according to the relationship between the ambient temperature and the first set temperature, including: the processor controls the conduction state of the three-way solenoid valve in the return liquid pipeline according to the relationship between the ambient temperature and the first set temperature.
  • the processor controls the conduction state of the three-way solenoid valve according to the relationship between the ambient temperature and the first set temperature, thereby controlling the flow direction of the heat exchange medium more accurately and efficiently.
  • the conduction state of the three-way solenoid valve includes: a first conduction state and a second conduction state; wherein, in the first conduction state, the first flow path is conducted while the second flow path is blocked, and in the second conduction state, the first flow path is blocked while the second flow path is conducted.
  • control method of the liquid cooling unit includes:
  • the processor obtains the ambient temperature of the liquid cooling unit
  • the processor controls the heat exchange medium to flow to the evaporator when the ambient temperature is greater than or equal to the first set temperature.
  • the control method of the liquid cooling unit provided by the embodiment of the present disclosure, when the acquired ambient temperature is greater than or equal to the first setting When the temperature is set, the ambient temperature is relatively high, and the heat exchange medium can flow smoothly in the liquid cooling unit. When the heat exchange medium absorbs heat and the temperature rises, the heat exchange medium needs to be cooled to ensure the cooling effect of the heat exchange medium. Therefore, the heat exchange medium is controlled to flow to the evaporator, and the evaporator is used to cool the heat exchange medium with increased temperature.
  • the processor controls the heat exchange medium to flow to the evaporator, including: the processor controls the three-way solenoid valve in the return liquid pipeline to be in a first conduction state. In this way, when the three-way solenoid valve is in the first conduction state, the first flow path is connected, the second flow path is blocked, and the heat exchange medium flows to the evaporator through the first flow path to cool down.
  • control method of the liquid cooling unit includes:
  • the processor obtains the ambient temperature of the liquid cooling unit
  • the control method of the liquid cooling unit provided by the embodiment of the present disclosure, when the acquired ambient temperature is less than the first set temperature, the ambient temperature is low at this time, and there is a risk of condensation of the heat exchange medium in the liquid cooling unit, so the heat exchange medium is controlled to flow to the condenser for heating to ensure the smooth flow of the heat exchange medium. Since the ambient temperature is low at this time, even the heat exchange medium heated by the condenser is much lower than the temperature inside the device, so that the heat is dissipated to the device when flowing through the cooling pipeline arranged in the device.
  • the processor controls the heat exchange medium to flow to the condenser, including: the processor controls the three-way solenoid valve in the liquid return line to be in the second conduction state.
  • the three-way solenoid valve blocks the first flow path in the second conduction state and conducts the second flow path, so that the heat exchange medium flows into the condenser through the second flow path for heating.
  • the first set temperature is 2°C.
  • the heat exchange medium has no condensation risk, so the heat exchange medium after absorbing heat is controlled to flow to the evaporator for cooling.
  • the heat exchange medium has a condensation risk, so the heat exchange medium after absorbing heat is controlled to flow to the condenser for heating.
  • control method of the liquid cooling unit includes:
  • the processor obtains the ambient temperature of the liquid cooling unit
  • the processor controls the heat exchange medium to flow to the condenser when the ambient temperature is lower than the first set temperature
  • the processor determines the magnitude relationship between the ambient temperature and the second set temperature
  • the second set temperature is lower than the first set temperature.
  • the processor determines the size relationship between the ambient temperature and the second set temperature again after controlling the heat exchange medium to flow to the condenser. Since the second set temperature is lower than the first set temperature, when the ambient temperature is greater than or equal to the second set temperature and lower than the first set temperature, although the ambient temperature is relatively low at this time, the risk of condensation of the heat exchange medium is relatively low, and there is no need to heat the heat exchange medium.
  • the heat exchange medium is cooled at a lower ambient temperature, so the compressor is controlled to stop, and the heat exchange medium is cooled by exchanging heat with the environment when flowing through the condenser. While ensuring the cooling and heat dissipation effect of the heat exchange medium, energy consumption is further reduced.
  • the processor controls the compressor of the liquid cooling unit to stop and controls the speed of the condensing fan to increase.
  • the processor controls the compressor to stop, in order to improve the heat exchange efficiency of the heat exchange medium flowing through the condenser and exchanging heat with the environment, the speed of the condensing fan is controlled to increase, thereby accelerating the heat exchange between the heat exchange medium in the condenser and the environment and improving the cooling efficiency of the heat exchange medium.
  • the second set temperature is minus 6°C.
  • the ambient temperature is greater than or equal to minus 6°C, although there is a risk of condensation of the heat exchange medium, the risk is relatively small, and the compressor can be controlled to stop in order to reduce energy consumption.
  • the ambient temperature is less than minus 6°C, the ambient temperature is low and the risk of condensation of the heat exchange medium is relatively high.
  • control method of the liquid cooling unit includes:
  • the processor obtains the ambient temperature of the liquid cooling unit
  • the processor controls the heat exchange medium to flow to the condenser when the ambient temperature is lower than the first set temperature
  • the processor determines the magnitude relationship between the ambient temperature and the second set temperature
  • the processor controls the heat exchange medium to flow to the condenser, it determines the size relationship between the ambient temperature and the second set temperature.
  • the compressor is controlled to operate, and the heat exchange medium flowing through the condenser is heated to ensure the smooth circulation of the heat exchange medium. Since the heat exchange medium after flowing through the condenser needs to flow to the equipment for cooling and heat dissipation, the heating temperature of the condenser should not be too high. Therefore, the compressor is controlled to operate at the set power so that the condenser can not only properly heat the heat exchange medium to ensure the smoothness of its circulation, but also ensure that the heat exchange medium still has a good cooling and heat dissipation effect after being heated.
  • the temperature of the heat exchange medium after passing through the condenser fluctuates within a range of greater than or equal to 6°C and less than or equal to 10°C. In this way, the temperature of the heat exchange medium heated by the condenser is between 6 and 10°C, which has good fluidity and good cooling and heat dissipation effects.
  • an embodiment of the present disclosure provides a control device for a liquid cooling unit, including a processor 100 and a memory 101.
  • the device may also include a communication interface 102 and a bus 103.
  • the processor 100, the communication interface 102, and the memory 101 may communicate with each other through the bus 103.
  • the communication interface 102 may be used for information transmission.
  • the processor 100 may call the logic instructions in the memory 101 to execute the control method for the liquid cooling unit of the above embodiment.
  • logic instructions in the memory 101 can be implemented in the form of software functional units and used as independent When the product is sold or used, it can be stored in a computer-readable storage medium.
  • the memory 101 is a computer-readable storage medium that can be used to store software programs and computer executable programs, such as program instructions/modules corresponding to the method in the embodiment of the present disclosure.
  • the processor 100 executes functional applications and data processing by running the program instructions/modules stored in the memory 101, that is, implementing the control method for the liquid cooling unit in the above embodiment.
  • the memory 101 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application required for at least one function; the data storage area may store data created according to the use of the terminal device, etc.
  • the memory 101 may include a high-speed random access memory and may also include a non-volatile memory.
  • An embodiment of the present disclosure provides a liquid cooling unit, comprising the control device of the liquid cooling unit mentioned above.
  • An embodiment of the present disclosure provides a computer-readable storage medium storing computer-executable instructions, wherein the computer-executable instructions are configured to execute the control method of the liquid cooling unit.
  • An embodiment of the present disclosure provides a computer program product, which includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions.
  • the program instructions When the program instructions are executed by a computer, the computer executes the control method of the liquid cooling unit.
  • the computer-readable storage medium mentioned above may be a transient computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the technical solution of the embodiment of the present disclosure can be embodied in the form of a software product, which is stored in a storage medium and includes one or more instructions for enabling a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in the embodiment of the present disclosure.
  • the aforementioned storage medium may be a non-transient storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes, or a transient storage medium.
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more associated listings.
  • the term “comprise” and its variants “comprises” and/or comprising refer to the stated features, The existence of a whole, step, operation, element, and/or component does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components and/or these groups.
  • the elements defined by the statement “comprising a " do not exclude the existence of other identical elements in the process, method or device comprising the elements.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the various embodiments may refer to each other. For the methods, products, etc. disclosed in the embodiments, if they correspond to the method part disclosed in the embodiments, the relevant parts may refer to the description of the method part.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units can be only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection between each other shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated in a processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit.
  • each box in the flowchart or block diagram may represent a module, a program segment, or a portion of a code, and the module, program segment, or a portion of a code contains one or more executable instructions for implementing a specified logical function.
  • the functions marked in the boxes may also occur in an order different from that marked in the accompanying drawings. For example, two consecutive boxes may actually be executed substantially in parallel, and they may sometimes be executed in the opposite order, depending on the functions involved.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种液冷机组及液冷机组的控制方法,液冷机组包括:蒸发器(200)、冷凝器(300)、回液管路(400)和出液管路(500)。回液管路(400)包括第一流路(410)和第二流路(420),第一流路(410)流经蒸发器(200),第二流路(420)流经冷凝器(300);出液管路(500)分别与第一流路(410)和第二流路(420)的出液端连通,换热介质沿回液管路(400)和出液管路(500)循环流通。能够降低能耗,减小液冷机组的降温成本,精准的调节低温环境下换热介质的温度,保障换热介质的降温效果。

Description

液冷机组及其控制方法
本申请基于申请号为202211447888.4、申请日为2022年11月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及设备降温技术领域,尤其涉及一种液冷机组及其控制方法。
背景技术
在一些放置设备的机房内,由于设备运行时会产生热量,持续产生的热量会导致机房内的环境温度升高,影响机房内的设备正常运行,机房内的设备运行故障率升高,因此需要对机房内的设备进行持续高效的降温,保障设备始终处于适宜的温度下工作。
相关技术中存在一种机房制冷系统,包括机柜柜体和室外冷源单元,其特征在于,机柜柜体为封闭柜体,封闭柜体内部布置电子设备,电子设备的一侧区域设有冷却管路,冷却管路的进液端和出液端分别连通室外冷源单元,室外冷源单元为水冷模块,通过循环水流经冷却管路对封闭柜体内的电子设备进行降温,并将封闭柜体内的热量通过循环水传导到室外冷源单元内;在室外环境温度较低时,在水冷模块上配置电加热来对冻结的循环水加热,以使循环水能够正常循环对封闭柜体降温。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
通过电加热对低温环境下的循环水进行加热的方式,增大了能耗,提高了成本;而且电加热难以精确地控制循环水的温度,影响封闭柜体内的降温效果。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种液冷机组及其控制方法,以降低能耗,减小液冷机组的降温成本,精准的调节低温环境下换热介质的温度,保障换热介质的降温效果。
在一些实施例中,液冷机组,包括:蒸发器、冷凝器、回液管路和出液管路。回液管路包括第一流路和第二流路,第一流路流经蒸发器,第二流路流经冷凝器;出液管路分别与第一流路和第二流路的出液端连通,换热介质沿回液管路和出液管路循环流通。
在一些实施例中,液冷机组的控制方法,包括:
获取液冷机组所处的环境温度;
根据环境温度与第一设定温度的大小关系控制液冷机组中换热介质的流向。
本公开实施例提供的液冷机组及其控制方法,可以实现以下技术效果:
换热介质从出液管路流出对需要散热的模块进行降温散热,温度升高后的换热介质从回液管路流入,通过第一流路流经蒸发器进行降温冷却后再次从出液管路流出进行降温散热。当该液冷机组所处的环境温度较低时,此时低温环境下的换热介质流通可能受到影响,因此选择性地控制换热介质的流向,在低温使用时使换热介质通过第二流路流经冷凝器,利用冷凝器对换热介质加热,保障换热介质能够通畅地流通,降低了能耗,减小了该液冷机组的成本。通过冷凝器对低温环境下的换热介质加温,并根据环境温度控制换热介质的流向,能够精准地调节低温环境下换热介质的温度,保障换热介质的降温效果。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个液冷机组的结构示意图;
图2是本公开实施例提供的另一个液冷机组的结构示意图;
图3是本公开实施例提供的蒸发器和冷凝器的冷媒盘管的结构示意图;
图4是本公开实施例提供的一个液冷机组的控制方法的示意图;
图5是本公开实施例提供的另一个液冷机组的控制方法的示意图;
图6是本公开实施例提供的另一个液冷机组的控制方法的示意图;
图7是本公开实施例提供的另一个液冷机组的控制方法的示意图;
图8是本公开实施例提供的另一个液冷机组的控制方法的示意图;
图9是本公开实施例提供的一个液冷机组的控制装置的示意图。
附图标记:
100、处理器(processor);101、存储器(memory);102、通信接口(Communication 
Interface);103、总线;200、蒸发器;210、第一外层管;220、第一内层管;230、第一流通空间;300、冷凝器;310、第二外层管;320、第二内层管;330、第二流通空间;400、回液管路;410、第一流路;420、第二流路;430、主回液管;440、三通电磁阀;500、出液管路;600、压缩机;700、节流装置;800、冷却管路;900、温度传感器。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
结合图1-3所示,本公开实施例提供一种液冷机组,包括:蒸发器200、冷凝器300、回液管路400和出液管路500。回液管路400包括第一流路410和第二流路420,第一流 路410流经蒸发器200,第二流路420流经冷凝器300;出液管路500分别与第一流路410和第二流路420的出液端连通,换热介质沿回液管路400和出液管路500循环流通。
采用本公开实施例提供的液冷机组,换热介质从出液管路500流出对需要散热的模块进行降温散热,温度升高后的换热介质从回液管路400流入,通过第一流路410流经蒸发器200进行降温冷却后再次从出液管路500流出进行降温散热。当该液冷机组所处的环境温度较低时,此时低温环境下的换热介质流通可能受到影响,因此选择性地控制换热介质的流向,在低温使用时使换热介质通过第二流路420流经冷凝器300,利用冷凝器300对换热介质加热,保障换热介质能够通畅地流通,降低了能耗,减小了该液冷机组的成本。通过冷凝器300对低温环境下的换热介质加温,并根据环境温度控制换热介质的流向,能够精准地调节低温环境下换热介质的温度,保障换热介质的降温效果。
可选地,该液冷机组还包括:压缩机600。压缩机600具有排气管和回气管,排气管与冷凝器300的输入端连通,回气管与蒸发器200的输出端连通。这样,通过压缩机600将冷媒压缩为高温高压的气态冷媒通过排气管排出到冷凝器300内,高温高压的气态冷媒在冷凝器300内冷凝放热。当该液冷机组运行在低温环境下时,使换热介质通过第二流路420流经冷凝器300,通过冷凝器300对流经的换热介质进行加热,保障换热介质正常流通。通过调节冷凝器300的冷凝温度来精准的控制换热介质的加热温度,既能够对低温环境下的换热介质加热,又能够避免加热温度过高影响换热介质的降温散热效果。冷凝放热后的冷媒流向蒸发器200蒸发吸热,通过回液管路400回流的换热介质温度升高,在非低温环境时控制换热介质通过第一流路410流经蒸发器200,利用蒸发器200吸收换热介质的热量,使换热介质能够再次流出进行降温散热。
具体的,冷凝器300的输出端与蒸发器200的输入端连通。这样,冷凝器300中冷凝放热后的冷媒从输出端流向蒸发器200的输入端,流入蒸发器200中的冷媒在蒸发器200中蒸发吸热,蒸发吸热后的气态冷媒从回气管流入压缩机600内再次压缩,完成一个冷媒循环。
具体的,冷凝器300的输出端和蒸发器200的输入端之间连通有节流装置700。这样,通过节流装置700对冷凝器300流出的冷媒进行节流降压,使流入蒸发器200中的冷媒更好的蒸发吸热。
具体的,换热介质为水,该液冷机组为水冷机组。
可选地,如图2所示,该液冷机组还包括:冷却管路800。冷却管路800设置在设备中,用于对设备进行降温,冷却管路800的一端连通出液管路500,另一端连通回液管路400,换热介质在冷却管路800、回液管路400以及出液管路500之间循环流通。这样,出 液管路500流出的换热介质流入冷却管路800中,由于冷却管路800布置在需要散热降温的设备中,流入冷却管路800中的换热介质吸收设备产生的热量,对设备进行降温散热。吸收热量的换热介质流入回液管路400中,通过第一流路410流入蒸发器200中进行降温制冷,便于后续再次流入冷却管路800中降温散热。但在环境温度较低时,换热介质可通过第二流路420流向冷凝器300中加热,保障换热介质的顺利流通。
可以理解的,设备为机房中的服务器、终端等发热设备,冷却管路800可布置在设备内,也可布置在机房内,对机房内的环境进行降温。
可选地,回液管路400还包括主回液管430,主回液管430分别连通第一流路410和第二流路420的进液端。这样,冷却管路800中的换热介质在吸收了热量后流入主回液管430中,然后根据环境温度的高低来控制主回液管430内的换热介质流入第一流路410或第二流路420中,从而控制换热介质流向蒸发器200降温或流向冷凝器300加热,更好的控制回液管路400中换热介质的流向。
示例性的,主回液管430的出液端分别与第一流路410第二流路420的进液端连通,形成三通的形式,主回液管430内的换热介质能够选择性地流向第一流路410或第二流路420。
可选地,主回液管430与第一流路410和第二流路420连通的位置设有三通电磁阀440,能够在导通第一流路410的同时封堵第二流路420,或在封堵第一流路410的同时导通第二流路420。这样,通过三通电磁阀440控制第一流路410和第二流路420的导通和关闭,从而更精确地控制主回液管430内换热介质的流向。在需要控制主回液管430内的换热介质流向蒸发器200降温时,控制三通电磁阀440来导通第一流路410,封堵第二流路420,使主回液管430内的换热介质流向蒸发器200进行降温。在需要控制主回液管430内的换热介质流向冷凝器300加热时,控制三通电磁阀440来封堵第一流路410,导通第二流路420,使主回液管430内的换热介质流向冷凝器300加热。
具体的,三通阀具有输入端和两个输出端,输入端连通主回液管430的出液端,两个输出端中的一个连通第一流路410的进液端,另一个连通第二流路420的进液端。
可选地,如图1所示,该液冷机组还包括:温度传感器900。温度传感器900设置于蒸发器200所处的环境中,温度传感器900与三通电磁阀440电连接。这样,通过温度传感器900能够实时获取环境温度,根据环境温度的高低来控制三通电磁阀440的导通状态,从而控制主回液管430内换热介质的流向。由于蒸发器200用于对换热介质降温制冷,因此将温度传感器900设置在蒸发器200所处的环境中,利用温度传感器900实时检测蒸发器200所处的环境温度,从而更精准地判断此时换热介质所处的环境温度需不需要对换热 介质进行加热。
结合图3所示,在一个实施例中,蒸发器200的冷媒盘管分为第一外层管210和第一内层管220,第一外层管210套设在第一内层管220外周,在第一外层管210的内周壁与第一内层管220的外周壁之间限定出第一流通空间230,蒸发器200的冷媒在第一流通空间230内流通,第一内层管220连通于第一流路410中。这样,将蒸发器200的冷媒盘管设置为第一外层管210包裹第一内层管220,蒸发器200中的冷媒在第一流通空间230内流通,换热介质在第一内层管220中流通,使蒸发吸热的冷媒对换热介质形成包裹的效果,提高换热面积和换热效率。在换热介质需要流经蒸发器200降温冷却时,能够提高换热介质的冷却效率。
可选地,第一外层管210和第一内层管220均为圆管,且第一外层管210和第一内层管220同心设置。这样,使第一外层管210的内周壁和第一内层管220的外周壁之间限定出的第一流通空间230更均匀,冷媒更顺畅地在第一流通空间230内流通,从而更好地与第一内层管220内流通的换热介质换热。
示例性的,第一流路410中流通的换热介质在流经蒸发器200时,先流入第一内层管220的进液端,然后从第一内层管220的出液端再次流出到第一流路410中,换热介质在流经蒸发器200时全程均参与换热。
可选地,冷凝器300的冷媒盘管分为第二外层管310和第二内层管320,第二外层管310套设在第二内层管320外周,在第二外层管310的内周壁与第二内层管320的外周壁之间限定出第二流通空间330,冷凝器300的冷媒在第二流通空间330内流通,第二内层管320连通于第二流路420中。这样,将冷凝器300的冷媒盘管设置为第二外层管310包裹第二内层管320,冷凝器300中的冷媒在第二流通空间330内流通,换热介质在第二内层管320中流通,使冷凝放热的冷媒对换热介质形成包裹的效果,提高换热面积和换热效率。在换热介质需要流经冷凝器300加热方凝结时,能够提高换热介质的加热效率。
可选地,第二外层管310和第二内层管320均为圆管,且第二外层管310和第二内层管320同心设置。这样,使第二外层管310的内周壁和第二内层管320的外周壁之间限定出的第二流通空间330更均匀,冷媒更顺畅地在第二流通空间330内流通,从而更好地与第二内层管320内流通的换热介质换热。
示例性的,第二流路420中流通的换热介质在流经冷凝器300时,先流入第二内层管320的进液端,然后从第二内层管320的出液端再次流出到第二流路420中,换热介质在流经冷凝器300时全程均参与换热。
结合图4所示,在一些实施例中,液冷机组的控制方法,包括:
S01,处理器获取液冷机组所处的环境温度;
S02,处理器根据环境温度与第一设定温度的大小关系控制液冷机组中换热介质的流向。
采用本公开实施例提供的液冷机组的控制方法,换热介质从出液管路流出对需要散热的模块进行降温散热,温度升高后的换热介质从回液管路流入,通过第一流路流经蒸发器进行降温冷却后再次从出液管路流出进行降温散热。当该液冷机组所处的环境温度较低时,此时低温环境下的换热介质流通可能受到影响,因此选择性地控制换热介质的流向,在低温使用时使换热介质通过第二流路流经冷凝器,利用冷凝器对换热介质加热,保障换热介质能够通畅地流通,降低了能耗,减小了该液冷机组的成本。通过冷凝器对低温环境下的换热介质加温,并根据环境温度控制换热介质的流向,能够精准地调节低温环境下换热介质的温度,保障换热介质的降温效果。
可选地,处理器获取液冷机组所处的环境温度包括:处理器获取液冷机组中蒸发器所处的环境温度。这样,由于在该液冷机组中蒸发器用来冷却换热介质,因此获取蒸发器所处的环境温度,能够更直观地反映出换热介质所处的环境温度,根据蒸发器所处的环境温度来控制换热介质的流向,更精准的控制换热介质的流向,提高该液冷机组运行的稳定性。
可选地,处理器获取液冷机组中蒸发器所处的环境温度包括:处理器获取蒸发器所处环境中设置的温度传感器发送的环境温度。这样,处理器通过获取温度传感器发送的环境温度,能够简化环境温度获取的过程,提高环境温度获取的精度。
可选地,处理器根据环境温度与第一设定温度的大小关系控制液冷机组中换热介质的流向,包括:处理器根据环境温度与第一设定温度的大小关系控制回液管路中三通电磁阀的导通状态。这样,由于换热介质的流向通过三通电磁阀来控制,因此处理器根据环境温度与第一设定温度的大小关系来控制三通电磁阀的导通状态,从而更精准高效的控制换热介质的流向。
具体的,三通电磁阀的导通状态包括:第一导通状态和第二导通状态;其中,在第一导通状态下导通第一流路的同时封堵第二流路,在第二导通状态下封堵第一流路的同时导通第二流路。
结合图5所示,在一些可选地实施例中,液冷机组的控制方法,包括:
S01,处理器获取液冷机组所处的环境温度;
S021,处理器在环境温度大于或等于第一设定温度的情况下,控制换热介质流向蒸发器。
采用本公开实施例提供的液冷机组的控制方法,在获取的环境温度大于或等于第一设 定温度时,此时环境的温度相对较高,换热介质能够在该液冷机组中顺畅地流通。而在换热介质吸收热量温度升高时,需要对换热介质进行降温来保障换热介质的降温效果,因此控制换热介质流向蒸发器,利用蒸发器来对温度升高的换热介质进行降温。
具体的,处理器控制换热介质流向蒸发器,包括:处理器控制回液管路中的三通电磁阀处于第一导通状态。这样,三通电磁阀处于第一导通状态时,第一流路导通,第二流路封堵,换热介质通过第一流路流向蒸发器中降温冷却。
结合图6所示,在一些可选地实施例中,液冷机组的控制方法,包括:
S01,处理器获取液冷机组所处的环境温度;
S022,处理器在环境温度小于第一设定温度的情况下,控制换热介质流向冷凝器。
采用本公开实施例提供的液冷机组的控制方法,在获取的环境温度小于第一设定温度时,此时环境温度较低,该液冷机组中的换热介质存在凝结的风险,因此控制换热介质流向冷凝器进行加热,保障换热介质的顺畅流通。由于此时环境温度较低,即使被冷凝器加热的换热介质也远低于设备内部的温度,从而在流经布置在设备内的冷却管路时对设备散热。
具体的,处理器控制换热介质流向冷凝器,包括:处理器控制回液管路中的三通电磁阀处于第二导通状态。这样,三通电磁阀在第二导通状态时封堵第一流路,导通第二流路,从而使换热介质通过第二流路流入冷凝器中进行加热。
具体的,第一设定温度为2℃。这样,在环境温度大于或等于2℃时,此时换热介质无凝结风险,因此控制吸热后的换热介质流向蒸发器进行降温。在环境温度小于2℃时,此时换热介质存在凝结风险,因此控制吸热后的换热介质流向冷凝器进行加热。
结合图7所示,在一些可选地实施例中,液冷机组的控制方法,包括:
S01,处理器获取液冷机组所处的环境温度;
S022,处理器在环境温度小于第一设定温度的情况下,控制换热介质流向冷凝器;
S03,处理器确定环境温度与第二设定温度之间的大小关系;
S04,处理器在环境温度大于或等于第二设定温度的情况下,控制液冷机组的压缩机停机;
其中,第二设定温度小于第一设定温度。
采用本公开实施例提供的液冷机组的控制方法,处理器在控制换热介质流向冷凝器后,再次确定环境温度与第二设定温度之间的大小关系。由于第二设定温度小于第一设定温度,在环境温度大于或等于第二设定温度,且小于第一设定温度的情况下,此时环境温度虽然相对较低,但此时换热介质的凝结风险较小,无需对换热介质进行加热的同时。可利用相 对较低的环境温度对换热介质进行冷却,因此控制压缩机停机,利用换热介质流经冷凝器时与环境换热进行冷却,在保障换热介质降温散热效果的同时,进一步降低能耗。
可选地,处理器在环境温度大于或等于第二设定温度的情况下,控制液冷机组的压缩机停机的同时,控制冷凝风机的转速提高。这样,在处理器控制压缩机停机时,为提高流经冷凝器与环境换热的换热介质的换热效率,控制冷凝风机的转速提高,从而加快冷凝器中换热介质与环境之间的换热,提高换热介质的冷却效率。
具体的,第二设定温度为零下6℃。这样,在环境温度大于或等于零下6℃的情况下,换热介质虽然存在凝结风险,但风险相对较小,为降低能耗可控制压缩机停机。在环境温度小于零下6℃的情况下,此时环境温度较低,换热介质的凝结风险相对较高。
结合图8所示,在一些可选地实施例中,液冷机组的控制方法,包括:
S01,处理器获取液冷机组所处的环境温度;
S022,处理器在环境温度小于第一设定温度的情况下,控制换热介质流向冷凝器;
S03,处理器确定环境温度与第二设定温度之间的大小关系;
S05,处理器在环境温度小于第二设定温度的情况下,控制液冷机组的压缩机以设定功率运行。
采用本公开实施例提供的液冷机组的控制方法,处理器在控制换热介质流向冷凝器后,确定环境温度与第二设定温度之间的大小关系,在环境温度小于第二设定温度时,此时换热介质的凝结风险较高,因此控制压缩机运行,通过冷凝器对流经的换热介质进行加热,保障换热介质的顺畅流通。由于流经冷凝器后的换热介质需要流向设备进行降温散热,因此冷凝器的加热温度不宜过高,因此控制压缩机以设定功率运行,使冷凝器既能够对换热介质进行适当的加热,保障其流通的顺畅性,又能够保障换热介质在被加热后依然具有较好的降温散热效果。
具体的,在压缩机以设定功率运行的情况下,流经冷凝器后的换热介质的温度在大于或等于6℃,且小于或等于10℃的范围内波动。这样,使被冷凝器加热后的换热介质的温度在6至10℃之间,具有良好的流通性的同时,具有较好的降温散热效果。
结合图9所示,本公开实施例提供一种液冷机组的控制装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的液冷机组的控制方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立 的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于液冷机组的控制方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种液冷机组,包含上述的液冷机组的控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述液冷机组的控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述液冷机组的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、 整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发 生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种液冷机组,其特征在于,包括:
    蒸发器(200);
    冷凝器(300);
    回液管路(400),包括第一流路(410)和第二流路(420),所述第一流路(410)流经所述蒸发器(200),所述第二流路(420)流经所述冷凝器(300);
    出液管路(500),分别与所述第一流路(410)和所述第二流路(420)的出液端连通,换热介质沿所述回液管路(400)和所述出液管路(500)循环流通。
  2. 根据权利要求1所述的液冷机组,其特征在于,还包括:
    冷却管路(800),设置在设备中,用于对所述设备进行降温,所述冷却管路(800)的一端连通所述出液管路(500),另一端连通所述回液管路(400),所述换热介质在所述冷却管路(800)、所述回液管路(400)以及所述出液管路(500)之间循环流通。
  3. 根据权利要求1或2所述的液冷机组,其特征在于,
    所述回液管路(400)还包括主回液管(430),所述主回液管(430)分别连通所述第一流路(410)和所述第二流路(420)的进液端。
  4. 根据权利要求3所述的液冷机组,其特征在于,
    所述主回液管(430)与所述第一流路(410)和所述第二流路(420)连通的位置设有三通电磁阀(440),能够在导通所述第一流路(410)的同时封堵所述第二流路(420),或在封堵所述第一流路(410)的同时导通所述第二流路(420)。
  5. 根据权利要求4所述的液冷机组,其特征在于,还包括:
    温度传感器(900),设置于所述蒸发器(200)所处的环境中,所述温度传感器(900)与所述三通电磁阀(440)电连接。
  6. 根据权利要求1至5任一项所述的液冷机组,其特征在于,
    所述蒸发器(200)的冷媒盘管分为第一外层管(210)和第一内层管(220),所述第一外层管(210)套设在所述第一内层管(220)外周,在所述第一外层管(210)的内周壁与所述第一内层管(220)的外周壁之间限定出第一流通空间(230),所述蒸发器(200)的冷媒在所述第一流通空间(230)内流通,所述第一内层管(220)连通于所述第一流路(410)中。
  7. 根据权利要求1至6任一项所述的液冷机组,其特征在于,
    所述冷凝器(300)的冷媒盘管分为第二外层管(310)和第二内层管(320),所 述第二外层管(310)套设在所述第二内层管(320)外周,在所述第二外层管(310)的内周壁与所述第二内层管(320)的外周壁之间限定出第二流通空间(330),所述冷凝器(300)的冷媒在所述第二流通空间(330)内流通,所述第二内层管(320)连通于所述第二流路(420)中。
  8. 一种液冷机组的控制方法,其特征在于,包括:
    获取所述液冷机组所处的环境温度;
    根据所述环境温度与第一设定温度的大小关系控制所述液冷机组中换热介质的流向。
  9. 根据权利要求8所述的液冷机组的控制方法,其特征在于,所述根据所述环境温度与第一设定温度的大小关系控制所述液冷机组中换热介质的流向,包括:
    在所述环境温度大于或等于所述第一设定温度的情况下,控制所述换热介质流向蒸发器;
    在所述环境温度小于所述第一设定温度的情况下,控制所述换热介质流向冷凝器。
  10. 根据权利要求9所述的液冷机组的控制方法,其特征在于,所述控制所述换热介质流向冷凝器后,还包括:
    确定所述环境温度与第二设定温度之间的大小关系;
    在所述环境温度大于或等于所述第二设定温度的情况下,控制所述液冷机组的压缩机停机;
    其中,所述第二设定温度小于所述第一设定温度。
PCT/CN2023/103916 2022-11-18 2023-06-29 液冷机组及其控制方法 WO2024103762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211447888.4A CN115768054A (zh) 2022-11-18 2022-11-18 液冷机组及其控制方法
CN202211447888.4 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024103762A1 true WO2024103762A1 (zh) 2024-05-23

Family

ID=85373384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103916 WO2024103762A1 (zh) 2022-11-18 2023-06-29 液冷机组及其控制方法

Country Status (2)

Country Link
CN (1) CN115768054A (zh)
WO (1) WO2024103762A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115768054A (zh) * 2022-11-18 2023-03-07 青岛海尔空调器有限总公司 液冷机组及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109508083A (zh) * 2018-12-12 2019-03-22 广东合新材料研究院有限公司 一种接触式冷却的服务器散热系统及其使用方法
DE102018002120A1 (de) * 2018-03-13 2019-09-19 Matthias Leipoldt Einrichtung zum Temperieren von durch Filtern gereinigten flüssigen Mediums
CN111585749A (zh) * 2016-10-26 2020-08-25 阿里巴巴集团控股有限公司 数据传输方法、装置、系统及设备
WO2022048547A1 (zh) * 2020-09-02 2022-03-10 中兴通讯股份有限公司 一种控温系统、通讯设备及温度控制方法
CN114447470A (zh) * 2021-12-23 2022-05-06 广州高澜节能技术股份有限公司 一种储能电池集成式冷却系统及控制方法
CN114709518A (zh) * 2022-04-20 2022-07-05 深圳市欣旺达综合能源服务有限公司 一种储能液冷系统及其应用方法
CN217520081U (zh) * 2022-08-25 2022-09-30 山东天瑞重工有限公司 一种制冷系统及温度调节设备
CN115175514A (zh) * 2021-04-07 2022-10-11 维谛技术有限公司 冷却系统以及冷却系统的控制方法
CN115235132A (zh) * 2022-09-21 2022-10-25 山东天瑞重工有限公司 一种磁悬浮冷水机组
CN115768054A (zh) * 2022-11-18 2023-03-07 青岛海尔空调器有限总公司 液冷机组及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111585749A (zh) * 2016-10-26 2020-08-25 阿里巴巴集团控股有限公司 数据传输方法、装置、系统及设备
DE102018002120A1 (de) * 2018-03-13 2019-09-19 Matthias Leipoldt Einrichtung zum Temperieren von durch Filtern gereinigten flüssigen Mediums
CN109508083A (zh) * 2018-12-12 2019-03-22 广东合新材料研究院有限公司 一种接触式冷却的服务器散热系统及其使用方法
WO2022048547A1 (zh) * 2020-09-02 2022-03-10 中兴通讯股份有限公司 一种控温系统、通讯设备及温度控制方法
CN115175514A (zh) * 2021-04-07 2022-10-11 维谛技术有限公司 冷却系统以及冷却系统的控制方法
CN114447470A (zh) * 2021-12-23 2022-05-06 广州高澜节能技术股份有限公司 一种储能电池集成式冷却系统及控制方法
CN114709518A (zh) * 2022-04-20 2022-07-05 深圳市欣旺达综合能源服务有限公司 一种储能液冷系统及其应用方法
CN217520081U (zh) * 2022-08-25 2022-09-30 山东天瑞重工有限公司 一种制冷系统及温度调节设备
CN115235132A (zh) * 2022-09-21 2022-10-25 山东天瑞重工有限公司 一种磁悬浮冷水机组
CN115768054A (zh) * 2022-11-18 2023-03-07 青岛海尔空调器有限总公司 液冷机组及其控制方法

Also Published As

Publication number Publication date
CN115768054A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024103762A1 (zh) 液冷机组及其控制方法
US20170203635A1 (en) Air conditioning device for vehicle
RU2706761C2 (ru) Транспортное средство
CN111121353A (zh) 一种可提高换热性能的空调及其控制方法
JP2019026110A5 (zh)
US11892203B2 (en) Method of operating refrigeration cycle device
JP4182494B2 (ja) 大温度差空調システム
JP2009300007A (ja) 温調装置
CN113137665A (zh) 用于空调器的变频模块散热的方法、装置和空调器
JP2015048987A (ja) 空気調和装置
JP5124952B2 (ja) 自動販売機
US9360224B2 (en) Air condition system
KR20160076858A (ko) 냉장고
EP3327374B1 (en) Refrigeration system and cooling method of electronic control unit thereof
US10254029B2 (en) Refrigeration system and cooling method of electronic control unit thereof
JP6433422B2 (ja) 冷凍サイクル装置
JP7069660B2 (ja) 空調システムおよびシステム制御方法
JP5174084B2 (ja) 冷却機及び冷凍サイクル装置
US20220186994A1 (en) Air conditioner
JP2014020678A (ja) 熱交換器
JP6211799B2 (ja) 装置冷却システムおよび装置冷却システムの制御方法
CN113137727A (zh) 用于空调器的变频模块防凝露的控制方法、装置及空调器
CN113137733A (zh) 用于空调器的变频模块防凝露的方法、装置及空调器
JP2017133727A (ja) ヒートポンプ式給湯装置
JP5935836B2 (ja) 空気調和装置