WO2024101724A1 - 친환경 그리세롤 카보네이트 가소제 - Google Patents

친환경 그리세롤 카보네이트 가소제 Download PDF

Info

Publication number
WO2024101724A1
WO2024101724A1 PCT/KR2023/016657 KR2023016657W WO2024101724A1 WO 2024101724 A1 WO2024101724 A1 WO 2024101724A1 KR 2023016657 W KR2023016657 W KR 2023016657W WO 2024101724 A1 WO2024101724 A1 WO 2024101724A1
Authority
WO
WIPO (PCT)
Prior art keywords
pla
glycerol carbonate
glycerol
formula
phr
Prior art date
Application number
PCT/KR2023/016657
Other languages
English (en)
French (fr)
Inventor
이분열
서영현
서현정
박상욱
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220148841A external-priority patent/KR20240067620A/ko
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2024101724A1 publication Critical patent/WO2024101724A1/ko

Links

Images

Definitions

  • the present invention relates to a polylactide (PLA)/glycerol carbonate composite using an organic carbonate compound prepared from glycerol as a plasticizer. More specifically, the present invention relates to a composite obtained by mixing biodegradable glycerol carbonate prepared by reacting glycerol and dialkyl carbonate with the biodegradable polymer PLA.
  • PLA polylactide
  • polymer materials the interaction between molecules is strong, resulting in brittleness, so their utility is low on their own.
  • plasticity that is, ductility and malleability, at room temperature.
  • the low molecular weight substance used at this time is called a plasticizer.
  • Polyvinyl chloride (PVC) is a representative polymer material that exhibits these properties, and PVC is mainly used mixed with a plasticizer such as dioctyl phthalate (DOP).
  • DOP dioctyl phthalate
  • PLA Polylactide
  • PLA is a representative polymer, and hundreds of thousands of tons are currently manufactured and used annually, but considering the total polymer production ( ⁇ 300 million tons/year), the amount is insignificant.
  • PLA also has strong brittleness, so it is not sufficient on its own to be processed and used for various purposes, such as films.
  • plasticizers have been attempted and reported to overcome the brittleness of PLA and provide plasticity.
  • citrate esters J. Appl. Polym. Sci. 1997, 66, 1507-1513
  • polyethylene glycol PLAS ONE, 2018, 13(3), e0193520
  • Bio-based polyester oligomers Bio-based polyester oligomers
  • PLA oligomers Green Chem., 2021, 23, 7549
  • epoxidized soybean oil J. Appl. Polym. Sci. 2016, DOI: 10.1002/APP.43223
  • cardanol RSC Adv., 2018, 8, 11643
  • propylene carbonate Polymer (Korea), 2019, 43, 113-122) were attempted as PLA plasticizers.
  • plasticizer In order to be used as a plasticizer, it must first have good compatibility with the target resin. Fusibility is closely related to the chemical structure of the resin and plasticizer, and varies sensitively depending on the chemical structure of the plasticizer. Plasticizers with poor solubility do not mix with the resin, or even if mixed with the resin, they ooze out again if left for a long time. Not only compatibility, but also manufacturing cost and toxicity are important evaluation indicators for use as a plasticizer. In order to use it as a plasticizer for biodegradable polymers such as PLA, it is preferable that the plasticizer itself is biodegradable, and it is more preferable that it is manufactured using renewable resources.
  • the present disclosure provides a composite of PLA and a glycerol carbonate derivative plasticizer made from glycerol.
  • the first aspect of the present application provides a complex of a glycerol carbonate derivative and PLA represented by the following formula (1):
  • R is C 1 -C 20 alkoxy or C 1 -C 20 alkyl.
  • the PLA may have ductility due to the glycerol carbonate derivative, but is not limited thereto.
  • the glycerol carbonate derivative may be biodegradable, but is not limited thereto.
  • R may be methoxy, ethoxy, or methyl, but is not limited thereto.
  • R may be ethoxy, but is not limited thereto.
  • the composite may include 10 to 40 parts by weight of the glycerol carbonate derivative based on 100 parts by weight of the PLA, but is not limited thereto.
  • a second aspect of the present application includes reacting reactants including glycerol, dialkyl carbonate, and a transesterification catalyst in a reactor at a temperature higher than the boiling point of the dialkyl carbonate; Cooling the vapor generated in the reactor to prepare a condensate; Collecting the condensate into a collection device containing water and an organic solvent with a specific gravity of less than 1 in a separated state; fractionating by-products within the collection device; and refluxing the organic solvent from the collection device into the reactor; It provides a method for producing a glycerol carbonate derivative, including.
  • the dialkyl carbonate may be dimethyl carbonate or diethyl carbonate, but is not limited thereto.
  • the glycerol carbonate derivative may include a compound represented by the following Chemical Formula 1, but is not limited thereto:
  • R is C 1 -C 20 alkoxy or C 1 -C 20 alkyl.
  • the organic solvent may be a hydrocarbon solvent or an ether solvent having a boiling point of 90° C. or lower at atmospheric pressure, but is not limited thereto.
  • the organic solvent may include one selected from the group consisting of pentane, hexane, cyclohexane, diethyl ether, methyl-t-butyl ether, and combinations thereof. It is not limited to this.
  • the transesterification reaction catalyst may be an alkali metal base catalyst, but is not limited thereto.
  • the method for producing the glycerol carbonate derivative may be performed in a closed system, but is not limited thereto.
  • the third aspect of the present application includes heating a reactor into which the glycerol carbonate derivative and polylactide (PLA) prepared according to the second aspect of the present application are injected; and rotating the heated reactor to blend the glycerol carbonate derivative and the PLA; It provides a method for producing a composite of a glycerol carbonate derivative and PLA, including.
  • PLA polylactide
  • the heating may be performed through an oil bath, but is not limited thereto.
  • the rotation may be performed at a speed of 100 rpm to 200 rpm, but is not limited thereto.
  • the glycerol carbonate derivative has excellent compatibility with PLA, so phase separation does not occur when mixed with PLA, and the plasticizer seeps from PLA even if left for a long time after mixing. Sweat out may not occur.
  • the composite of the glycerol carbonate derivative and PLA according to the present application, as the glycerol carbonate derivative is added, the inherent brittleness of the PLA disappears and ductility (plasticity) appears, and thus the composite can be used for various purposes such as films. It can be easy to process and use.
  • the glycerol carbonate derivative is very quickly and excellently biodegradable, so it is very suitable for use as a plasticizer for biodegradable polymers such as PLA, and is an environmentally friendly material.
  • FIG. 1 is a schematic diagram of a production device that can be used in the method for producing a glycerol carbonate derivative according to an embodiment of the present application.
  • Figure 2 is a flowchart of a method for producing a glycerol carbonate derivative according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a production device that can be used in the method for producing a glycerol carbonate derivative according to an embodiment of the present application.
  • Figure 5b is Example 1/PLA blend (PLA/1) ) is a graph showing the linear correlation between the content of Example 1 and Tg.
  • Figures 6a to 6c show tand, storage modulus (E'), and loss modulus ( E").
  • Figure 7 is an SEM photograph of the tensile strength fracture surface showing the compatibility of the glycerol carbonate derivative and PLA according to an experimental example herein.
  • Figure 8 shows commercially available PLA (pristine PLA), pure PLA (Neat PLA) after heat treatment, Example 6 (PLA/1 20 phr ), Example 10 (PLA/2 20 phr ), and Example according to an experimental example of the present application. It is a GPC curve of 15 (PLA/4 20 phr ).
  • Figure 9 shows the results of TGA/DSC analysis of Example 7 (PLA/1 30 phr ) of the present application.
  • 10A is the kinematic viscosity of Example 4 (PLA/1 10phr ), Example 6 (PLA/1 20phr ), and Example 7 (PLA/1 30phr ) of the present application measured using a rotational rheometer at 170°C.
  • 10b is the Cole-Cole plot of Example 4 (PLA/1 10phr ), Example 6 (PLA/1 20phr ), and Example 7 (PLA/1 30phr ).
  • Figures 11A and 11B are DMA curves for unaged and aged (6 weeks) samples of our Comparative Example 7 (PLA/ATBC 20 phr ) and Example 6 (PLA/1 20 phr ), respectively.
  • Figure 12a is an experimental result showing the biodegradability of a glycerol carbonate derivative according to an experimental example of the present application
  • Figure 12b is an experimental result showing the biodegradability of a glycerol carbonate derivative/PLA blend according to an experimental example of the present application.
  • the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more components selected from the group consisting of the components described in the Markushi format expression, It means including one or more selected from the group consisting of.
  • the first aspect of the present application provides a complex of a glycerol carbonate derivative and PLA represented by the following formula (1):
  • R is C 1 -C 20 alkoxy or C 1 -C 20 alkyl.
  • the glycerol carbonate derivative compound represented by Formula 1 according to the present application has excellent compatibility with PLA and is suitable for use as a plasticizer.
  • the complex of glycerol carbonate derivative and PLA according to the present application has excellent compatibility with PLA and has a boiling point of 300°C or higher by using the glycerol carbonate derivative represented by Chemical Formula 1 as a plasticizer, so that when mixed with PLA, Phase separation does not occur, and the plasticizer may not sweat out from PLA even if left for a long time after mixing.
  • Methods for estimating which compound is compatible with which polymer include the solubility parameter, Huggins' interaction constant m, Flory's interaction constant c, and dielectric constant e, and are sensitive to the molecular structures of the plasticizer and polymer. It is not easy to predict commerciality as it depends on the product. That is, ethylene carbonate, glycerol carbonate, and diglycerol tricarbonate, which have a 5-membered cyclic carbonate structure and are represented by the formula below, are compatible with PLA. As there is no phase separation, phase separation occurs (see comparative example below).
  • R may be methoxy, ethoxy, or methyl, but is not limited thereto.
  • R is methoxy, ethoxy, or methyl
  • the glycerol carbonate derivative is not only compatible with PLA, but also has a boiling point of 300°C or higher, so it is preferable for use as a plasticizer (compounds where R is ethoxy) boiling point: 304°C to 306°C; boiling point of compounds where R is methyl: 340°C.
  • a glycerol carbonate derivative (i.e., glycerol dicarbonate) in which R in Formula 1 is methoxy can be prepared by reacting a dimethyl carbonate compound with glycerol.
  • glycerol carbonate is obtained as the main product, and glycerol dicarbonate and glycidol are obtained as by-products ( Green Chemistry, 2012, 14, 3368; Catalysis Science and Technology, 2019, 9, 6841).
  • a device is used to selectively remove methanol, which is inevitably produced as a by-product as the reaction progresses (J. APPL. POLYM. SCI.
  • Glycerol carbonate derivatives in which R in Formula 1 is ethoxy, can be produced by reacting diethyl carbonate compound with glycerol instead of dimethyl carbonate using the same equipment. There has been no report of an example of synthesizing a glycerol carbonate derivative, in which R in Formula 1 is ethoxy, by reacting a diethyl carbonate compound with glycerol.
  • glycerol carbonate derivatives in which R is methyl can be prepared by reacting glycerol carbonate and acetyl anhydride in the presence of an acid catalyst (US2014/378648, 2014, A1) .
  • R is methoxy, ethoxy, or methyl
  • the glycerol carbonate derivative is advantageous because it is a compound that can be produced using carbon dioxide as a raw material.
  • Dimethyl carbonate and diethyl carbonate, which are manufacturing raw materials, are manufactured using CO 2 as a raw material.
  • the glycerol carbonate derivative may be biodegradable, but is not limited thereto.
  • R is methoxy, ethoxy, or methyl.
  • Glycerol carbonate derivatives also have very rapid and excellent biodegradability, making them highly desirable for use as plasticizers for PLA, a biodegradable polymer.
  • the results of research on the biodegradability of glycerol carbonate derivative compounds in which R is methoxy, ethoxy, or methyl are disclosed for the first time through the present invention.
  • the PLA may have ductility due to the glycerol carbonate derivative, but is not limited thereto.
  • the compatibility of a plasticizer with a polymer can be proven through tensile property analysis, where the brittleness of the original polymer disappears and ductility (plasticity) appears as the plasticizer is added.
  • R is methoxy, ethoxy, or methyl.
  • the compatibility of a plasticizer with a polymer can usually be proven through DSC analysis by the phenomenon in which the glass transition temperature (T g ) of the composite decreases as the plasticizer is added.
  • T g glass transition temperature
  • R is methoxy, ethoxy, or methyl, and it was confirmed that when the glycerol carbonate derivative was mixed with PLA, the Tg was lowered in proportion to the increase in the amount added.
  • the compatibility of plasticizers with polymers can also be directly observed using a scanning electron microscope (SEM).
  • R may be ethoxy, but is not limited thereto.
  • the glycerol carbonate derivative, in which R in Formula 1 is ethoxy, is easy to synthesize and is a liquid material that has little sweat out when mixed with PLA and left for a long time, so it is most suitable as a plasticizer for PLA. Additionally, it has low toxicity because the hydrolysis products are glycerol and ethanol.
  • the composite may include 10 to 40 parts by weight of the glycerol carbonate derivative based on 100 parts by weight of the PLA, but is not limited thereto.
  • the composite of the glycerol carbonate derivative and PLA according to the present disclosure may contain 10 to 40 parts by weight (i.e., 10 phr to 40 phr) of the glycerol carbonate derivative represented by Formula 1 per 100 parts by weight of the PLA. .
  • the glycerol carbonate derivative represented by Formula 1 may preferably be included in an amount of 10 to 40 parts by weight.
  • the brittleness of PLA may be eliminated and the probability of oozing out when left for a long time may be reduced, but is not limited thereto.
  • a second aspect of the present application includes reacting reactants including glycerol, dialkyl carbonate, and a transesterification catalyst in a reactor at a temperature higher than the boiling point of the dialkyl carbonate; Cooling the vapor generated in the reactor to prepare a condensate; Collecting the condensate into a collection device containing water and an organic solvent with a specific gravity of less than 1 in a separated state; fractionating by-products within the collection device; and refluxing the organic solvent from the collection device into the reactor; It provides a method for producing a glycerol carbonate derivative, including.
  • the method for producing a glycerol carbonate derivative according to the second aspect of the present application utilizes a device that can selectively remove methanol, which is inevitably generated as a by-product as the reaction progresses (J. APPL. POLYM. SCI. 2017, DOI: 10.1002/APP.44951; Kr 10-1714375 (2017.03.03)).
  • FIG. 1 is a schematic diagram of a production apparatus used in a method for producing a glycerol carbonate derivative according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for producing a glycerol carbonate derivative according to an embodiment of the present application.
  • a method for producing a glycerol carbonate derivative according to the present application will be described with reference to FIGS. 1 and 2.
  • the reactants containing glycerol, dialkyl carbonate, and transesterification reaction catalyst are reacted at a temperature above the boiling point of the dialkyl carbonate (S100).
  • the dialkyl carbonate may be dimethyl carbonate or diethyl carbonate, but is not limited thereto.
  • this reaction step (S100) proceeds above the boiling point of dialkyl carbonate, the main component of the reactant contained in the vapor is dialkyl carbonate.
  • dialkyl carbonates the boiling point of dimethyl carbonate is about 90°C, and the boiling point of diethyl carbonate is about 125.8°C.
  • the main component of the product contained in the vapor is methanol (boiling point 64.7°C) or ethanol (boiling point 78.37°C), which are byproducts with a lower boiling point than dialkyl carbonate.
  • dialkyl carbonate and alcohol form an azeotropic mixture
  • the method for producing the glycerol carbonate derivative of the present invention effectively separates the alcohol from the dialkyl carbonate through the steps described below and increases the reflux rate of the dialkyl carbonate as a reactant, thereby improving the efficiency and economic feasibility of the overall reaction. can do.
  • the reaction temperature may be 90°C or higher, for example, 90°C to 200°C, 90°C to 150°C, or 90°C to 100°C. In this case, the efficiency of the transesterification reaction can be further improved.
  • the reactant may further include an organic solvent 320.
  • the organic solvent 320 may be added directly to the reactor 100, or may be added through a step in which the organic solvent 320 is refluxed to the reactor 100 in the collection device 300, which will be described later.
  • the transesterification reaction catalyst may be an alkali metal base catalyst, but is not limited thereto.
  • an alkali metal base catalyst may be used as the transesterification reaction catalyst, but is not limited thereto.
  • the reaction speed and reaction efficiency can be improved.
  • the supply of raw materials is easy and the unit price is low, which can further improve production efficiency and economic feasibility.
  • the cooling method, cooling device, etc. in the cooling step (S200) are not particularly limited, and the condensate includes reactants and by-products like the above-described steam.
  • the main component of the reactant may be dialkyl carbonate
  • the main component of the by-product may be alcohol
  • the dialkyl carbonate and alcohol may be in an azeotropic mixture.
  • the vapor generated in the reaction step may be cooled by moving to a cooling device 200, such as a reflux cooler. In this case, it may be more advantageous to collect the produced condensate into a collection device.
  • the condensate is collected into the collection device 300 (S300).
  • the collection device 300 includes water 310 and an organic solvent 320 with a specific gravity of less than 1 in a separated state. Since the water 310 has a specific gravity of 1 or more and the organic solvent 320 has a specific gravity of less than 1, the water 310 and the organic solvent 320 are separated into two layers within the collection device 300. It exists in a state of being formed. In this case, the condensate is collected by the collection device 300 and merged with water 310 and organic solvent 320.
  • dialkyl carbonate, alcohol, or azeotropic mixture thereof contained in the above-mentioned condensate can be fractionated with excellent efficiency.
  • water 310 is not particularly limited as long as it does not generally inhibit the reaction.
  • it may be distilled water, non-ionized water, or purified water.
  • the water 310 may further include inorganic salts.
  • the dialkyl carbonate can be prevented from dissolving in water 310 during fractionation, thereby further increasing the efficiency of the reaction.
  • the inorganic salt may be, for example, one or more of NaCl, KCl, NaBr, KBr, CaCl 2 , MgCl 2 and mixtures thereof. When using these inorganic salts, the solubility of the dialkyl carbonate in water 310 may be further reduced.
  • the organic solvent 320 may satisfy the conditions of having a specific gravity of less than 1 and being below the boiling point of dialkyl carbonate at atmospheric pressure. In this case, even when the organic solvent 320 is refluxed to the reactor 100 in the reflux step described later, it can be regenerated as vapor and re-refluxed to the collection device 300 through the cooling step. That is, since the organic solvent 320 does not disappear within the collection device 300, fractionation of alcohol and dialkyl carbonate can be performed with greater efficiency.
  • the organic solvent 320 may have a specific gravity difference between the organic solvent 320 and the water 310 as low as 0.2 or more.
  • the specific gravity of the organic solvent 320 may be, for example, 0.1 to 0.8, 0.4 to 0.8, or 0.5 to 0.7.
  • layer separation is easy and layer separation disturbance does not occur even when stirring is performed in the fractionation step described later.
  • the boiling point of the organic solvent 320 at atmospheric pressure may be 30°C to 90°C.
  • the boiling point of the organic solvent 320 may be, for example, 40°C to 80°C, 50°C to 75°C, or 55°C to 70°C.
  • atmospheric pressure means, for example, 0.8 to 1.3 atm or 1 atm.
  • the organic solvent 320 may have low solubility and affinity for alcohol.
  • the solubility of the organic solvent 320 in water 310 and the solubility of alcohol in water 310 can be used as indirect indicators, respectively.
  • the organic solvent 320 may have a solubility of 100 mg/L or less in water 310 at 20°C. Since the solubility of alcohol in water 310 is more than 90%, it can be indirectly determined that the organic solvent 320 in the above solubility range has low affinity with alcohol.
  • the organic solvent 320 may be inactive under the transesterification reaction conditions that proceed within the reactor 100. In this case, the efficiency of the overall manufacturing process can be further improved.
  • the organic solvent 320 may be a hydrocarbon solvent or an ether solvent with a boiling point of 90° C. or lower at atmospheric pressure, but is not limited thereto.
  • the organic solvent 320 includes one selected from the group consisting of pentane, hexane, cyclohexane, diethyl ether, methyl-t-butyl ether, and combinations thereof. However, it is not limited to this.
  • the fractionation step (S400) may include stirring the condensate introduced into the collection device. Stirring is performed so that the two layers of water 310 and organic solvent 320 are not disturbed and remain separated. As a result, alcohol, which is a by-product in the condensate, is fractionated into a water (310) layer, and dialkyl carbonate, which is a reactant, is fractionated into an organic solvent (320) layer.
  • the method of stirring is not particularly limited as long as it does not cause layer disturbance.
  • Layer disturbance may partially occur at the interface where water 310 and organic solvent 320 are separated, but overall, it means a state in which the two layers are not disturbed or mixed by more than 60%. If the disturbance is excessive, it may be difficult to reflux only the organic solvent 320 in the step described later. In this case, the efficiency of the transesterification reaction may be lowered.
  • the stirring method can further improve the efficiency of fractionation by adjusting the stirring speed and stirring time.
  • the condensate flows into the collection device 300, and then through a fractionation step, methanol, a by-product, is separated into the water 310 layer located at the bottom of the collection device.
  • dialkyl carbonate, a reactant is fractionated into an organic solvent (320) layer.
  • the organic solvent 320 in the reflux step (S500) contains dialkyl carbonate, which is a reactant, as described above.
  • the organic solvent 320 is refluxed into the reactor 100, so that unreacted dialkyl carbonate can be re-supplied to the reactor 100.
  • the sustainability and efficiency of the transesterification reaction can be improved, thereby further improving the yield of the glycerol carbonate derivative.
  • the process efficiency can be further improved as it can be refluxed with by-products selectively removed.
  • the method of refluxing is not particularly limited.
  • the reflux passage 321 for the organic solvent 320 may be installed at the uppermost end in the direction where the collection device 300 and the reactor 100 are adjacent to each other.
  • the organic solvent 320 may be naturally refluxed according to the degree to which its amount increases due to the inflow of the condensate. Through this, reflux control can be performed without any special energy, and process efficiency can be further improved.
  • the device for performing the method for producing the glycerol carbonate derivative is not particularly limited as long as it includes the above-described reactor 100, cooling device 200, and collection device 300 and is capable of reflux.
  • the device may be a Dean-Stark device (an exemplary diagram is shown in Figure 3). In this case, it is advantageous to control the reversible reaction of the transesterification reaction, and energy efficiency can be improved during reflux.
  • the device may be a distiller, rectifier, refluxer, etc. including the reactor 100, cooling device 200, and collection device 300, but is not limited thereto.
  • the glycerol carbonate derivative may include a compound represented by the following Chemical Formula 1, but is not limited thereto:
  • R is C 1 -C 20 alkoxy or C 1 -C 20 alkyl.
  • the glycerol carbonate derivative may include a compound in which R in Formula 1 is methoxy or ethoxy, but is not limited thereto.
  • a glycerol carbonate derivative in which R in Formula 1 is methoxy can be produced
  • diethyl carbonate as an alkyl carbonate a glycerol carbonate derivative in Formula 1 where R is ethoxy can be produced.
  • the third aspect of the present application includes heating a reactor into which the glycerol carbonate derivative and polylactide (PLA) prepared according to the second aspect of the present application are injected; and rotating the heated reactor to blend the glycerol carbonate derivative and the PLA; It provides a method for producing a composite of a glycerol carbonate derivative and PLA, including.
  • PLA polylactide
  • the glycerol carbonate derivative of the present invention has excellent compatibility with PLA and has a boiling point of over 300°C, so phase separation does not occur when mixed with PLA, and it oozes out from PLA even if left for a long time after mixing. This may not occur, so it is preferable for use as a plasticizer for PLA.
  • the glycerol carbonate derivative is very quickly and excellently biodegradable, so it is very suitable for use as a plasticizer for biodegradable polymers such as PLA, and is an environmentally friendly material.
  • the composite of the glycerol carbonate derivative and PLA according to the present application, as the glycerol carbonate derivative is added, the inherent brittleness of the PLA disappears and ductility (plasticity) appears. Accordingly, the composite can be used for various purposes such as films. It can be easy to process and use.
  • the heating may be performed through an oil bath, but is not limited thereto.
  • the rotation may be performed at a speed of 100 rpm to 200 rpm, but is not limited thereto.
  • the solution was rotary evaporated to remove some volatiles (hexane and DMC) to obtain 180 g of solution, which was stored at ambient temperature for 12 hours to obtain a crystalline solid (46.0 g, 48%).
  • the purity of the separated solid was confirmed by 1 H and 13 C NMR spectra.
  • the mass of the filtrate was reduced to 65 g using a rotary evaporator and stored overnight at room temperature, an additional yield of the product was obtained as a second harvest (14.9 g, 16%, total yield 64%).
  • PLA was dried at 70°C for 24 hours in a vacuum oven and then stored in a glove box.
  • the glass transition temperature was 37°C
  • the melting temperature was 132-148°C
  • the crystallization temperature was 96-121°C.
  • the average tensile strength was 50 ⁇ 4 MPa and elongation 3 ⁇ 1%, which was similar to PLA (tensile strength 60 ⁇ 2 MPa, elongation 3 ⁇ 0.1%).
  • DSC analysis of the recovered polymer it had a glass transition temperature of 24°C, melting temperature of 124-142°C, and crystallization temperature of 87-120°C, which was lower than that of PLA (glass transition temperature of 60°C, melting temperature of 148-156°C).
  • the average tensile strength was 30 ⁇ 2 MPa and elongation 470 ⁇ 40%, which was lower than Example 6 (tensile strength 26 ⁇ 4 MPa, elongation 260 ⁇ 30%) and high elongation.
  • the properties became similar to rubber.
  • the average tensile strength was 21 ⁇ 3 MPa and elongation 150 ⁇ 20%, which was not superior to PLA (tensile strength 60 ⁇ 2 MPa, elongation 3 ⁇ 0.1%).
  • As a result of DSC analysis of the recovered polymer it had a glass transition temperature of 43°C, melting temperature of 136-151°C, and crystallization temperature of 100-121°C, which was lower than that of PLA (glass transition temperature of 60°C, melting temperature of 148-156°C).
  • the average tensile strength was 42 ⁇ 3 MPa and elongation 4 ⁇ 2%, which was found to be similar to PLA (tensile strength 60 ⁇ 2 MPa, elongation 3 ⁇ 0.1%).
  • PLA 18 g
  • the average tensile strength was 22 ⁇ 3 MPa and elongation 440 ⁇ 160%, which was lower than PLA (tensile strength 60 ⁇ 2 MPa, elongation 3 ⁇ 0.1%), but the elongation was increased. .
  • As a result of DSC analysis of the recovered polymer it had a glass transition temperature of 24°C, melting temperature of 125-143°C, and crystallization temperature of 90-110°C, which was lower than that of PLA (glass transition temperature of 60°C, melting temperature of 148-156°C).
  • the average tensile strength was 14 ⁇ 6 MPa and the elongation was 540 ⁇ 100%.
  • PLA 18 g
  • the average tensile strength was 21 ⁇ 7 MPa and elongation 31 ⁇ 13%, which was not superior to PLA (tensile strength 60 ⁇ 2 MPa, elongation 3 ⁇ 0.1%).
  • Example 4 The same experiment as Example 4 was performed using PLA (50 g) and ethylene carbonate (15 g). It was confirmed that phase separation occurred and that it was not suitable as a plasticizer.
  • Example 4 The same experiment as Example 4 was performed using PLA (50 g) and glycerol carbonate (15 g). It was confirmed that phase separation occurred and that it was not suitable as a plasticizer.
  • Example 4 The same experiment as Example 4 was performed using PLA (50 g) and diglycerol tricarbonate (15 g). It was confirmed that phase separation occurred and that it was not suitable as a plasticizer.
  • Example 4 The same experiment as Example 4 was performed using PLA (18 g) and acetyltributylcitrate (ATBC) (1.8 g).
  • Example 4 The same experiment as Example 4 was performed using PLA (18 g) and acetyltributylcitrate (ATBC) (2.7 g).
  • Example 4 The same experiment as Example 4 was performed using PLA (18 g) and acetyltributylcitrate (ATBC) (3.6 g).
  • the compatibility of a plasticizer with a polymer can be proven through tensile property analysis, where the brittleness of the original polymer disappears and ductility (plasticity) appears as the plasticizer is added. Accordingly, an experiment was performed to confirm that the inherent brittleness of PLA disappeared and ductility appeared by mixing the glycerol carbonate derivatives according to Examples 1 to 3 of the present application with PLA.
  • the compatibility of the plasticizer with the polymer can be generally proven through DSC analysis by the phenomenon that the glass transition temperature (T g ) of the composite decreases as the plasticizer is added. Accordingly, in order to confirm the compatibility of the glycerol carbonate derivatives according to Examples 1 to 3 of the present application with PLA, an experiment was performed to confirm the change in the glass transition temperature (T g ) of the composite according to the addition of the plasticizer through DSC analysis. did.
  • Figure 5b is Example 1/PLA blend (PLA/1) ) is a graph showing the linear correlation between the content of Example 1 and T g .
  • T g was lowered in proportion to the increase in the amount of the glycerol carbonate derivative added. It was confirmed that the T g value gradually decreased from the pure PLA value of 60°C to 46, 34, 24, and 14°C as the amount of Example 1 increased (10, 20, 30, and 40 phr, respectively).
  • T g curves are quite pronounced for the PLA blends containing 10 to 30 phr of Example 1 (PLA/1 10 phr , PLA/1 20 phr and PLA/1 30 phr ), while the PLA blends containing 40 phr of Example 1 (PLA/1 /1 40 phr ), the curve was somewhat blurred.
  • DMA dynamic mechanical analysis
  • Figures 6a to 6c show tand, storage modulus (E'), and loss modulus ( E").
  • the blends containing 10, 20 and 30 phr showed a fairly narrow and unimodal loss coefficient (tan ⁇ ) curve, indicating an even distribution of Example 1 within the PLA matrix.
  • PLA/1 at 40 phr showed a broad and weak but still distinguishable tan ⁇ signal. If the distribution is uneven, a broad signal with several fluctuating peaks or shoulders is usually observed.
  • plasticizers such as triethyl citrate and ATBC, a clear tan ⁇ curve was observed up to 17.5 phr content, but it became very wide at content above 25 phr.
  • the peak of the tan ⁇ signal also known as the a-relaxation transition temperature (T a )
  • T a a-relaxation transition temperature
  • the storage modulus (E') curves of blends containing up to 40 phr of Example 1 showed similar characteristics to pure PLA. They showed a plateau line in the glassy state, with a sharp drop due to the glass transition and a subsequent increase due to cold crystallization ( Figure 6b).
  • the temperature at which the E' drop occurred i.e., T g
  • the plateau level (i.e., E' value) of the blend remained virtually unchanged after blending with Example 1, which contrasts with the results reported for blends with acetylated oligolactide.
  • the E' value in these blends decreased from 2.9 GPa for pure PLA to 0.1 to 1.3 GPa.
  • the loss coefficient (E) curves of mixtures containing 10, 20 and 30 phr showed the same characteristics as pure PLA, showing distinct peaks acceptable for determining T g values, which were close to the values obtained by DSC.
  • a signal related to the plasticizer is usually observed, however, in the blend with Example 1.
  • the E" curve shape of PLA/1 40 phr also deviated somewhat from the general characteristics.
  • the compatibility of the plasticizer with the polymer can also be directly observed through a scanning electron microscope (SEM).
  • Figure 7 is an SEM photograph of the tensile strength fracture surface showing the compatibility of the glycerol carbonate derivative and PLA according to an experimental example herein.
  • the blends containing less than 30 phr of Example 1 (PLA/1 15 phr , PLA/1 20 phr , and PLA/1 30 phr ) exhibited a smooth tensile strength fracture surface, through which the upper It was confirmed that excellent miscibility was observed without separation. On the other hand, PLA/1 40 phr was confirmed to be rough and irregular, and it was confirmed that phase separation occurred due to this.
  • Example 2 which had a melting point of 80°C, was found to be unsuitable as a plasticizer due to its crystalline nature.
  • SEM image it was confirmed that small dot-shaped particles thought to be crystals of Example 2 were present even in the blend containing 10 phr of Example 2 (PLA/2 10 phr ), and that PLA/2 20 phr had a very rough surface. was able to confirm.
  • the blend containing 20 phr of Example 3 (PLA/4 20 phr ) showed a smooth surface, whereas the blend containing 30 phr of Example 3 (PLA/4 30 phr ) showed a rough and irregular surface. , which means that phase separation has occurred.
  • Example 2 exhibited a sweat-out phenomenon in which Example 2 moves in the polymer matrix and forms solid particles on the surface of the mixture over time.
  • SEM images showed that samples showing smooth surfaces (i.e., blends containing up to 30 phr of Example 3 and blends containing up to 20 phr of Example 3) showed no detrimental sweat-out phenomenon.
  • Figure 8 shows commercially available PLA (pristine PLA), pure PLA (Neat PLA) after heat treatment, Example 6 (PLA/1 20 phr ), Example 10 (PLA/2 20 phr ), and Example according to an experimental example of the present application. It is a GPC curve of 15 (PLA/4 20 phr ).
  • the thermal stability of the PLA/1 mixture was evaluated using thermogravimetric analysis (TGA) with DSC.
  • Figure 9 shows the results of TGA/DSC analysis of Example 7 (PLA/1 30 phr ) of the present application.
  • the temperature corresponding to 5 wt% weight loss (Td 5 wt%) was found to be 244°C. This value was substantially lower than that of pure PLA (338 °C) and slightly higher than that of the previously reported acetyl end-capped oligolactide plasticizer EtO[C(O)CH(Me)O] 4.5 C(O)Me (210 -245°C).
  • the processing temperature for PLA is typically 185-250°C, depending on the melt temperature (T m ) range of PLA (130-230°C).
  • Figure 10A shows Example 4 (PLA/1 10 phr ), Example 6 (PLA/1 20 phr ), and Example 7 (PLA/1 30 phr ) herein measured using a rotational rheometer at 170°C. is the kinematic viscosity, and 10b is the Cole-Cole plot of Example 4 (PLA/1 10 phr ), Example 6 (PLA/1 20 phr ), and Example 7 (PLA/1 30 phr ).
  • the complex viscosity ( ⁇ *) obtained by rotational rheometer measurement at 170°C showed a significant decrease upon mixing, and the viscosity gradually decreased as the content of Example 1 increased (FIG. 10a).
  • the ⁇ * values for PLA/1 10 phr , PLA/1 20 phr , and PLA/1 30 phr were 1120, 660, and 450 Pa ⁇ s, respectively.
  • PLA/1 10 phr , PLA/1 20 phr , PLA/1 30 phr blends and PBAT exhibited viscous properties across the measured frequency range (i.e., loss coefficient G"> storage modulus G').
  • neat PLA A Cole-Cole plot showing the relationship between the real ( ⁇ ') and imaginary ( ⁇ ") parts of ⁇ * showed a transition from viscous to elastic behavior at a critical frequency of 126 rad/s.
  • Figures 11A and 11B are DMA curves for unaged and aged (6 weeks) samples of our Comparative Example 7 (PLA/ATBC 20 phr ) and Example 6 (PLA/1 20 phr ), respectively.
  • ATBC is widely known as one of the most efficient plasticizers for PLA due to its bio-based origin, biodegradability, biocompatibility and approval for food contact applications.
  • concerns have been raised about the morphological stability of PLA when mixed with tributyl citrate (TBC). Addition of the plasticizer TBC can cause PLA chains to crystallize even at room temperature, reducing the size of the amorphous domain. As a result, this phenomenon can lead to progressive opacity and deformation of the specimen over time.
  • TBC tributyl citrate
  • Figure 12a is an experimental result showing the biodegradability of a glycerol carbonate derivative according to an experimental example of the present application
  • Figure 12b is an experimental result showing the biodegradability of a glycerol carbonate derivative/PLA blend according to an experimental example of the present application.
  • microcrystalline cellulose which was the control, was biodegraded in the soil after 3 days, confirming the presence of soil activity, and the carbonates according to Examples 1 to 3 prepared in the present technology were All were measured to produce carbon dioxide at a rapid rate, which proves that biodegradation is progressing rapidly in the soil. In particular, it was confirmed that it exhibited faster biodegradability than the microcrystalline cellulose used as an experimental control.
  • PLA does not biodegrade in ambient soil conditions and CO 2 generation was minimal (1.1% of expected CO 2 generation) under respiratory conditions at 25°C and 50-55% moisture content even after 180 days.
  • the PLA/1 30 phr , PLA/2 30 phr , and PLA/4 30 phr mixtures showed slightly higher CO 2 emissions compared to pure PLA, but this was thought to be caused by biodegradation of the plasticizer rather than actual PLA degradation.
  • the total amount of CO 2 released over 180 days corresponded to 39, 48, and 68% of the amount estimated for complete conversion of carbon to CO 2 gas in Examples 1 to 3, respectively.

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본원은 글리세롤과 다이알킬카보네이트를 반응시켜 제조한 생분해성 그리세롤 카보네이트 유도체를 가소제로 사용하여 생분해성 고분자 PLA와 혼합하여 얻어진 복합체에 관한 것이다.

Description

친환경 그리세롤 카보네이트 가소제
본 발명은 그리세롤부터 제조한 유기 카보네이트 화합물을 가소제로 사용한 폴리락타이드(PLA)/그리세롤 카보네이트 복합체에 관한 것이다. 보다 상세하게는, 본 발명은 그리세롤과 다이알킬카보네이트를 반응시켜 제조한 생분해성 그리세롤 카보네이트를 생분해성 고분자 PLA와 혼합하여 얻어진 복합체에 관한 것이다.
고분자물질 중에는 분자간 상호작용이 강하여 취성(brittleness)을 보여 그 자체로는 활용도가 낮으나, 적당한 저분자 물질을 혼합하여 상온에서 가소성(plasticity), 즉, 연성(ductility) 및 전성(Malleability)을 부여하여 용도 범위를 확장할 수 있는 것들이 있다. 이 때 사용하는 저분자 물질을 가소제라고 한다. 폴리염화비닐(PVC)이 이러한 성질을 보이는 대표적인 고분자 물질이고, PVC는 다이옥틸프탈레이트(DOP)와 같은 가소제와 혼합하여 주로 사용하고 있다.
최근들어 재생가능 자원을 활용하여 제조할 수 있고 생분해성을 보이는 고분자에 대한 관심이 대두되고 있다. 폴리락타이드(PLA)가 그 대표적인 고분자로 현재 년간 수십만톤이 제조되어 사용되고 있으나, 전체 고분자 생산량(~3억톤/년)을 고려했을 때 그 양은 미미한 수준이다. PLA도 취성(brittleness)이 강해 그 자체로는 필름 등 다양한 용도로 가공하여 사용하기에 부족하다.
PLA의 취성(brittleness)을 극복하고 가소성을 부여하기 위하여 다양한 가소제가 시도되어 보고 되었다. 예를 들어, Citrate esters (J. Appl. Polym. Sci. 1997, 66, 1507-1513), polyethylene glycol (PLoS ONE, 2018, 13(3), e0193520), Bio-based polyester oligomers (ACS Omega 2022, 7, 14305-14316), PLA oligomers (Green Chem., 2021, 23, 7549), epoxidized soybean oil (J. Appl. Polym. Sci. 2016, DOI: 10.1002/APP.43223), cardanol (RSC Adv., 2018, 8, 11643), propylene carbonate (Polymer(Korea), 2019, 43, 113-122)이 PLA 가소제로 시도되었다.
가소제로 사용되기 위해서는 우선 대상 수지와 상용성(compatability)이 좋아야 한다. 융합성은 수지와 가소제의 화학구조에 밀접한 관계가 있어, 가소제의 화학 구조에 따라 민감하게 차이가 난다. 융합성이 좋지 않은 가소제는 수지와 혼합이 되지 않거나, 수지와 혼합이 될지라도 장시간 방치하면 다시 스며나오는 현상 (sweat out)이 나타난다. 상용성뿐만 아니라 제조 단가, 독성 등도 가소제로 사용하기 위한 중요한 평가 지표이다. PLA와 같은 생분해성 고분자의 가소제로 사용하기 위해서는 가소제 자체가 생분해성을 가지는 것이 바람직하고, 아울러 재생가능자원을 사용하여 제조한 것이 더욱 바람직하다.
본원은 글리세롤로부터 제조한 그리세롤 카보네이트 유도체 가소제와 PLA의 복합체를 제공한다.
또한, 상기 그리세롤 카보네이트 유도체의 제조 방법을 제공한다.
또한, 상기 그리세롤 카보네이트와 PLA의 복합체의 제조 방법을 제공한다.
다만, 본원의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 하기 화학식 1로 표시되는 그리세롤 카보네이트 유도체와 PLA의 복합체를 제공한다:
[화학식 1]
Figure PCTKR2023016657-appb-img-000001
(상기 화학식 1 에서, R은 C1-C20의 알콕시 또는 C1-C20의 알킬임).
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체에 의해 상기 PLA가 연성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체는 생분해성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 화학식1에서 R은 메톡시, 에톡시, 또는 메틸인 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 화학식1에서 R은 에톡시인 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 복합체는 상기 PLA 100 중량부를 기준으로 상기 그리세롤 카보네이트 유도체 10중량부 내지 40 중량부를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본원의 제 2 측면은 반응기에서 글리세롤, 다이알킬카보네이트, 및 에스터 교환 반응 촉매를 포함하는 반응물을 상기 다이알킬카보네이트의 끓는점 이상의 온도로 반응시키는 단계; 상기 반응기에서 생성된 증기를 냉각하여 응축액으로 제조하는 단계; 물 및 비중이 1 미만인 유기 용매가 층분리된 상태로 포함된 수집장치 내로, 상기 응축액을 수집하는 단계; 상기 수집 장치 내에서 부산물을 분별하는 단계; 및 상기 수집 장치의 유기 용매를 반응기로 환류하는 단계; 를 포함하는, 그리세롤 카보네이트 유도체의 제조 방법을 제공한다.
본원의 일 구현예에 따르면, 상기 다이알킬카보네이트는 다이메틸 카보네이트 또는 다이에틸 카보네이트인 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체는 하기 화학식 1 로 표시되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다:
[화학식 1]
Figure PCTKR2023016657-appb-img-000002
(상기 화학식 1 에서, R은 C1-C20의 알콕시 또는 C1-C20의 알킬임).
본원의 일 구현예에 따르면, 상기 유기 용매는 대기압에서의 끓는점이 90℃ 이하인 탄화수소 용매 또는 에테르 용매인 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 유기 용매는 펜테인, 헥세인, 사이클로헥세인, 다이에틸에테르, 메틸-t-부틸에테르 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 에스터 교환 반응 촉매는 알칼리금속의 염기 촉매인 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체의 제조 방법은 닫힌계에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 본원의 제 3 측면은 본원의 제 2 측면에 따라 제조된 그리세롤 카보네이트 유도체 및 폴리락타이드(PLA)가 주입된 반응기를 가열하는 단계; 및 상기 가열된 반응기를 회전시켜 상기 그리세롤 카보네이트 유도체 및 상기 PLA를 블렌딩하는 단계; 를 포함하는, 그리세롤 카보네이트 유도체와 PLA의 복합체의 제조 방법을 제공한다.
본원의 일 구현예에 따르면, 상기 가열은 오일 중탕을 통해 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 회전은 100 rpm 내지 200 rpm의 속도로 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
본원에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체는, 상기 그리세롤 카보네이트 유도체가 PLA와 상용성(compatability)이 우수하여 PLA 와 혼합 시 상분리가 발생하지 않으며, 혼합 후 장시간 방치하여도 PLA로부터 가소제가 스며나오는 현상(sweat out)이 발생하지 않을 수 있다.
또한, 본원에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체는, 상기 그리세롤 카보네이트 유도체를 투임함에 따라 상기 PLA 고유의 취성이 사라지고 연성(가소성)이 나타나며, 이에 따라 상기 복합체를 필름 등의 다양한 용도로 가공하여 사용하기에 용이할 수 있다.
또한, 상기 그리세롤 카보네이트 유도체는 생분해성이 매우 빠르고 우수하여 PLA와 같은 생분해성 고분자의 가소제로 사용하기에 매우 적합하며, 친환경적인 물질이다.
다만, 본원에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.
도 1은 본원의 일 구현예에 따른 그리세롤 카보네이트 유도체의 제조 방법에 사용될 수 있는 제조 장치의 모식도이다.
도 2 는 본원의 일 구현예에 따른 그리세롤 카보네이트 유도체의 제조 방법의 순서도이다.
도 3은 본원의 일 구현예에 따른 그리세롤 카보네이트 유도체의 제조 방법에 사용될 수 있는 제조 장치의 모식도이다.
도 4 는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체 (화학식1 (R = 에톡시))와 PLA의 융합성을 증명하여 보여주는 인장 성질 측정 데이터이다.
도 5a 는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체 (화학식1 (R = 에톡시))와 PLA의 융합성을 증명하여 보여주는 DSC 데이터이고, 도 5b는 실시예 1/PLA 블렌드(PLA/1) 내의 실시예 1 의 함량과 Tg 사이의 선형 상관 관계를 나타낸 그래프이다.
도 6a 내지 6c는 본원의 일 실험예에 따른 순수 PLA 및 실시예 1/PLA 블렌드(PLA/1)의 DMA(dynamic mechanical analysis) 수행 결과로부터 얻어진 tand, 저장 탄성률 (E'), 및 손실 탄성률 (E")이다.
도 7 은 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체와 PLA의 융합성을 증명하여 보여주는 인장강도 파단면 SEM 사진이다.
도 8 은 본원의 일 실험예에 따른 시판 PLA(pristine PLA), 열처리 후 순수 PLA(Neat PLA), 실시예 6(PLA/120 phr), 실시예 10(PLA/220 phr) 및 실시예 15(PLA/420 phr)의 GPC 곡선이다.
도 9 는 본원의 일 실시예 7(PLA/130 phr)의 TGA/DSC 분석 결과이다.
도 10a 는 170℃에서 회전형 레오미터를 사용하여 측정한 본원의 실시예 4(PLA/110phr), 실시예 6(PLA/120phr), 및 실시예 7(PLA/130phr)의 동점도이고, 10b는 실시예 4(PLA/110phr), 실시예 6(PLA/120phr), 및 실시예 7(PLA/130phr)의 Cole-Cole 플롯이다.
도 11a 및 11b 는 각각 본원의 비교예 7(PLA/ATBC20 phr) 및 실시예 6(PLA/120phr)의 비노화 및 숙성(6주) 표본에 대한 DMA 곡선이다.
도 12a는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체의 생분해성을 보여주는 실험 결과이고, 도 12b는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체/PLA 블렌드 생분해성을 보여주는 실험 결과이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다.
이하, 본원의 그리세롤 카보네이트 유도체와 PLA의 복합체에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제 1 측면은 하기 화학식 1로 표시되는 그리세롤 카보네이트 유도체와 PLA의 복합체를 제공한다:
[화학식 1]
Figure PCTKR2023016657-appb-img-000003
(상기 화학식 1 에서, R은 C1-C20의 알콕시 또는 C1-C20의 알킬임).
본원에 따른 상기 화학식 1로 표시되는 그리세롤 카보네이트 유도체 화합물은 PLA와 상용성이 우수하여 가소제로 사용하기에 적합함을 본 발명은 통하여 처음 공지한다.
본원에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체는, PLA와 상용성(compatability)이 우수하고, 300℃ 이상의 끓는점을 가지고 있는 상기 화학식 1 로 표시되는 그리세롤 카보네이트 유도체를 가소제로 사용함으로써 PLA와 혼합 시 상분리가 발생하지 않으며, 혼합 후 장시간 방치하여도 PLA로부터 가소제가 스며나오는 현상(sweat out)이 발생하지 않을 수 있다.
상기 배경기술에서 기술한 바 다양한 화합물이 PLA의 가소제로 시도되었고, 본 발명에서 공지하는 그리세롤 카보네이트 유도체 화합물과 유사한 프로필렌 카보네이트 화합물이 PLA와 상용성이 있음이 보고 되었다(Polymer(Korea), 2019, 43, 113-122). 그러나, 통상적으로 끓는점이 300℃ 이상인 비휘발성 물질이 가소제로 사용되는 것을 고려했을 때 끓는점이 242℃인 프로필렌 카보네이트는 PLA 가소제로 사용하기에 적당하지 않다.
어떤 화합물이 어떤 고분자와 상용성이 있는지를 추정하는 방법으로는 용해도 파라미터(solubility parameter), Huggins의 상호작용상수 m, Flory의 상호작용상수 c, 유전율 e 등이 있으며 가소제와 고분자의 분자 구조에 민감하게 좌우되어 상용성을 예측하는 것은 쉽지 않다. 즉, 5각고리 고리형 카보네이트(cyclic carbonate) 구조를 가지고 있는 하기 화학식으로 표시되는 에틸렌 카보네이트(ethylene carbonate), 그리세롤 카보네이트(glycerol carbonate), 및 디그리세롤 트리카보네이트(diglycerol tricarbonate)는 PLA와 상용성이 없어 상분리가 발생한다(하기 비교예 참조).
Figure PCTKR2023016657-appb-img-000004
본원의 일 구현예에 따르면, 상기 화학식1에서 R은 메톡시, 에톡시, 또는 메틸인 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식1에서 R은 메톡시, 에톡시, 또는 메틸인 것인 그리세롤 카보네이트 유도체는 PLA와 상용성이 있을뿐 아니라 끓는점이 300℃ 이상으로 가소제로 사용하기에 바람직하다(R이 에톡시인 화합물의 끓는점: 304℃ 내지 306℃; R이 메틸인 화합물의 끓는점: 340℃).
후술하겠지만, 상기 화학식1에서 R이 메톡시인 것인 그리세롤 카보네이트 유도체(즉, glycerol dicarbonate)는 다이메틸 카보네이트 화합물과 글리세롤을 반응시켜 제조할 수 있다. 특별한 조치를 취하고 않고 다이메틸 카보네이트 화합물과 글리세롤을 반응시키면 그리세롤 카보네이트(glycerol carbonate)가 주생성물로 얻어지고 부산물로 그리세롤 디카보네이트(glycerol dicarbonate) 및 글리시돌(glycidol)이 부산물로 얻어진다(Green Chemistry, 2012, 14, 3368; Catalysis Science and Technology, 2019, 9, 6841). 본 발명에서는 반응이 진행됨에 따라 부산물로 필히 생성되는 메탄올을 선택적으로 제거할 수 있는 장치를 활용하여(J. APPL. POLYM. SCI. 2017, DOI: 10.1002/APP.44951; Kr 10-1714375 (2017.03.03)), 과량의 다이메틸 카보네이트 화합물와 글리세롤을 반응시켜 선택적으로 고효율로 상기 화학식1에서 R이 메톡시인 것인 그리세롤 카보네이트 유도체를 제조하였다.
상기 화학식1에서 R은 에톡시인 것인 그리세롤 카보네이트 유도체는, 동일한 장치를 활용하여, 다이메틸 카보네이트 대신 다이에틸 카보네이트 화합물을 글리세롤과 반응시켜 제조할 수 있다. 다이에틸 카보네이트 화합물을 글리세롤과 반응시켜 상기 화학식1에서 R은 에톡시인 것인 그리세롤 카보네이트 유도체를 합성한 예는 보고된 바가 없다.
상기 화학식 1 에서 R이 메틸인 것인 그리세롤 카보네이트 유도체는 산촉매 존재 하에 그리세롤 카보네이트(glycerol carbonate)와 아세틸 안하이드라이드(acetyl anhydride)를 반응시켜 제조할 수 있다(US2014/378648, 2014, A1).
상기 화학식 1 에서 R은 메톡시, 에톡시, 또는 메틸인 것인 그리세롤 카보네이트 유도체는 이산화탄소를 원료로 사용하여 제조할 수 있는 화합물인 이유에서 이득이 있다. 제조 원료 물질인 다이메틸 카보네이트 및 다이에틸 카보네이트는 CO2를 원료로 하여 제조되고 있다.
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체는 생분해성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식 1 에서 R은 메톡시, 에톡시, 또는 메틸인 것인 그리세롤 카보네이트 유도체는 또한 생분해성이 매우 빠르고 우수하여 생분해성 고분자인 PLA의 가소제로 사용하기에 매우 바람직하다. R은 메톡시, 에톡시, 또는 메틸인 것인 그리세롤 카보네이트 유도체 화합물의 생분해성 연구 결과는 본 발명을 통해 최초로 공개된다.
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체에 의해 상기 PLA가 연성을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.
가소제의 고분자와의 상용성은 인장 특성 분석에서, 가소제를 투입함에 따라 원래 고분자의 취성이 사라지고 연성(가소성)이 나타는 현상을 통하여 증명할 수 있다. 상기 화학식1에서 R은 메톡시, 에톡시, 또는 메틸인 것인 그리세롤 카보네이트 유도체를 PLA와 혼합하여 PLA 고유의 취성이 사라지고 연성이 나타남을 확인하였다.
가소제의 고분자와의 상용성은 통상적으로 DSC 분석을 통하여 가소제를 투입함에 따라 복합체의 유리전이온도(Tg)가 낮아지는 현상으로 증명될 수 있다. 상기 화학식1에서 R은 메톡시, 에톡시, 또는 메틸인 것인 그리세롤 카보네이트 유도체를 PLA와 혼합하면 투입한 양이 증가함에 비례하여 Tg가 낮아짐을 확인하였다.
가소제의 고분자와의 상용성은 주사전자현미경(SEM)으로 직접 관찰할 수도 있다.
본원의 일 구현예에 따르면, 상기 화학식1에서 R은 에톡시인 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 화학식1에서 R은 에톡시인 것인 그리세롤 카보네이트 유도체는 합성이 용이하고 액상형 물질로 PLA와 혼합된 후 장시간 방치할 때 스며나오는 현상(sweat out) 이 적어 PLA의 가소제로 가장 적격이다. 또한 가수 분해 산물이 glycerol 및 ethanol인 이유로 독성이 낮다.
본원의 일 구현예에 따르면, 상기 복합체는 상기 PLA 100 중량부를 기준으로 상기 그리세롤 카보네이트 유도체 10중량부 내지 40 중량부를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체는, 상기 PLA 100 중량부 당 상기 화학식 1로 표시되는 그리세롤 카보네이트 유도체가 10 중량부 내지 40 중량부(즉, 10 phr 내지 40 phr)로 포함될 수 있다.
상기 화학식 1로 표시되는 그리세롤 카보네이트 유도체의 함량이 10 phr이하이면 PLA의 취성이 사라지지 않을 수 있으며, 함량이 40 phr이상이면 상용성이 떨어질 수 있고 장시간 방치할 때 스며나올 수 있으므로, 상기 PLA 100 중량부를 기준으로 상기 그리세롤 카보네이트 유도체는 10중량부 내지 40 중량부로 포함되는 것이 바람직할 수 있다.
더욱 바람직하게는 상기 화학식 1로 표시되는 그리세롤 카보네이트 유도체의 함량이 20 phr 내지 30 phr 범위일 때 PLA의 취성을 없애면서 장시간 방치할 때 스며나올 확률이 적을 수 있으나, 이에 제한되는 것은 아니다.
또한, 본원의 제 2 측면은 반응기에서 글리세롤, 다이알킬카보네이트, 및 에스터 교환 반응 촉매를 포함하는 반응물을 상기 다이알킬카보네이트의 끓는점 이상의 온도로 반응시키는 단계; 상기 반응기에서 생성된 증기를 냉각하여 응축액으로 제조하는 단계; 물 및 비중이 1 미만인 유기 용매가 층분리된 상태로 포함된 수집장치 내로, 상기 응축액을 수집하는 단계; 상기 수집 장치 내에서 부산물을 분별하는 단계; 및 상기 수집 장치의 유기 용매를 반응기로 환류하는 단계; 를 포함하는, 그리세롤 카보네이트 유도체의 제조 방법을 제공한다.
본원의 제 2 측면에 따른 그리세롤 카보네이트 유도체의 제조 방법은 반응이 진행됨에 따라 부산물로 필히 생성되는 메탄올을 선택적으로 제거할 수 있는 장치를 활용하여(J. APPL. POLYM. SCI. 2017, DOI: 10.1002/APP.44951; Kr 10-1714375 (2017.03.03)) 수행된다.
도 1 은 본원의 일 구현예에 따른 그리세롤 카보네이트 유도체의 제조 방법에 사용되는 제조 장치의 모식도이고, 도 2 는 본원의 일 구현예에 따른 그리세롤 카보네이트 유도체의 제조 방법의 순서도이다. 이하에서는 도 1 및 도 2를 참조하여, 본원에 따른 그리세롤 카보네이트 유도체의 제조 방법을 설명한다.
먼저, 글리세롤, 다이알킬카보네이트, 및 에스터 교환 반응 촉매를 포함하는 반응물을 다이알킬카보네이트의 끓는점 이상의 온도로 반응시킨다 (S100).
본원의 일 구현예에 따르면, 상기 다이알킬카보네이트는 다이메틸 카보네이트 또는 다이에틸 카보네이트인 것일 수 있으나, 이에 제한되는 것은 아니다.
이러한, 반응 단계(S100)는 다이알킬카보네이트의 끓는점 이상에서 진행되기 때문에 증기에 포함되는 반응물의 주성분은 다이알킬카보네이트다. 상기 다이알킬카보네이트 중 다이메틸 카보네이트의 끓는점은 약 90℃이고, 다이에틸 카보네이트의 끓는점은 약 125.8℃이다. 또한, 같은 이유로 증기에 포함되는 생성물의 주성분은 끓는점이 다이알킬카보네이트보다 낮은 부산물인 메탄올 (끓는점 64.7℃) 또는 에탄올 (끓는점 78.37℃)이다.
이러한 다이알킬카보네이트 및 알코올(메탄올 또는 에탄올)은 공비혼합물을 이루기 때문에 종래의 증류 방법으로는 분리가 어렵다. 이러한 점은 그리세롤 카보네이트 유도체 제조 공정의 생산성 및 경제성을 저하시키는 주요한 요인이다. 그러나, 본 발명의 그리세롤 카보네이트 유도체의 제조 방법은 후술하는 단계들을 통해, 상기 알코올을 다이알킬카보네이트로부터 효과적으로 분리하고, 반응물인 다이알킬카보네이트의 환류율을 높임으로써, 전체 반응의 효율 및 경제성을 향상할 수 있다.
구체적으로, 상기 반응 온도는 90℃ 이상, 예를 들면 90℃ 내지 200℃, 90℃ 내지 150℃ 또는 90℃ 내지 100℃일 수 있다. 이러한 경우, 에스터 교환 반응의 효율을 더욱 향상시킬 수 있다.
구체적으로, 상기 반응물은 유기 용매(320)를 더 포함할 수 있다. 이러한 유기 용매(320)는 반응기(100)에 직접적으로 투입될 수도 있고, 후술하는 수집장치(300)에서의 유기 용매(320)가 반응기(100)로 환류되는 단계에 의해 투입될 수도 있다.
본원의 일 구현예에 따르면, 상기 에스터 교환 반응 촉매는 알칼리금속의 염기 촉매인 것일 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 에스터교환 반응 촉매로 알칼리금속의 염기 촉매를 사용할 수 있으나, 이에 제한 되지 않는다. 예를 들면, 알칼리금속의 염기로 LiOH, NaOH, KOH 또는 이들의 혼합물을 사용하는 경우, 반응 속도 및 반응 효율성을 향상시킬 수 있다. 뿐만 아니라 원료의 수급이 용이하고 단가가 저렴하여 생산효율 및 경제성을 더욱 향상시킬 수 있다.
이어서, 상기 반응기(100)에서 생성된 증기를 냉각하여 응축액으로 제조한다 (S200).
상기 냉각 단계(S200)에서의 냉각 방법, 냉각 장치 등은 특별히 제한되지 않으며, 상기 응축액은 전술한 증기와 같이 반응물 및 부산물을 포함한다. 마찬가지로 반응물의 주성분은 다이알킬카보네이트, 부산물의 주성분은 알코올일 수 있으며, 다이알킬카보네이트와 알코올은 공비혼합물 상태일 수 있다.
일 구체예에서, 반응 단계에서 생성된 증기는 환류 냉각기와 같은 냉각 장치(200)로 이동하여 냉각될 수 있다. 이러한 경우, 제조되는 응축액을 수집 장치로 모으기에 더욱 유리할 수 있다.
이어서, 수집장치(300) 내로 상기 응축액을 수집한다 (S300).
상기 수집장치(300)는 물(310) 및 비중이 1 미만인 유기 용매(320)가 층분리된 상태로 포함한다. 상기 물(310)은 비중이 1 이상이고, 유기 용매(320)는 비중이 1 미만이기 때문에 수집장치(300) 내에서 물(310)과 유기 용매(320)는 층이 분리되어 두 개의 층을 이루는 상태로 존재한다. 이러한 경우, 응축액은 수집장치(300)로 수집되어 물(310) 및 유기 용매(320)와 병합되게 된다.
이에 따라, 전술한 응축액에 포함된 다이알킬카보네이트, 알코올 또는 이의 공비혼합물을 매우 우수한 효율로 분별할 수 있다.
구체적으로, 물(310)은 일반적으로 반응을 저해하지 않는 것이라면 특별히 제한되지 않는다. 예를 들면, 증류수, 비이온수 또는 정제수 등일 수 있다.
더욱 구체적으로, 물(310)은 무기 염류를 추가로 포함할 수 있다. 이러한 경우, 다이알킬카보네이트가 분별 중 물(310)에 용해되는 것을 방지할 수 있어 반응의 효율을 더욱 증가시킬 수 있다. 무기 염류는 예를 들면, NaCl, KCl, NaBr, KBr, CaCl2, MgCl2 및 이들의 혼합물 중 하나 이상일 수 있다. 이러한 무기 염류를 사용하는 경우, 물(310)에 대한 다이알킬카보네이트의 용해도가 더욱 감소될 수 있다.
구체적으로, 상기 유기 용매(320)는 비중이 1 미만인 동시에 대기압에서의 다이알킬카보네이트의 끓는점 이하인 조건을 만족할 수 있다. 이러한 경우, 후술하는 환류 단계에서 유기 용매(320)가 반응기(100)로 환류되는 경우에도, 증기로 재생성 되어 냉각 단계를 통해 수집장치(300)로 재환류될 수 있다. 즉, 수집장치(300) 내에서 유기 용매(320)의 소실이 발생하지 않아 알코올과 다이알킬카보네이트의 분별을 더욱 우수한 효율로 수행할 수 있다.
더욱 구체적으로, 유기 용매(320)는 물(310)과의 비중 차이가 0.2 이상으로 낮을 수 있다. 유기 용매(320)의 비중은 예를 들면, 0.1 내지 0.8, 0.4 내지 0.8 또는 0.5 내지 0.7 일 수 있다. 상기 범위 내에서, 층 분리가 용이하고 후술하는 분별 단계에서 교반을 수행하는 경우에도 층분리 교란이 발생하지 않는다. 또한, 환류 단계에서 유기 용매(320)만을 반응기(100)로 환류하기 유리하다. 이러한 경우, 알코올과 다이알킬카보네이트의 분별을 더욱 우수한 효율로 수행할 수 있다.
더욱 구체적으로, 유기 용매(320)의 대기압에서의 끓는점은 30℃ 내지 90℃일 수 있다. 유기 용매(320)의 끓는 점은 예를 들면, 40℃ 내지 80℃, 50℃ 내지 75℃ 또는 55℃ 내지 70℃ 일 수 있다. 상기 범위 내에서 재환류 및 응축에 유리하고, 수집장치(300) 내에서 유기 용매(320)의 소실이 발생하지 않아 알코올과 다이알킬카보네이트의 분별을 더욱 우수한 효율로 수행할 수 있다. 상기에서 대기압은 예를 들면, 0.8 기압 내지 1.3 기압 또는 1 기압을 의미한다.
더욱 구체적으로, 유기 용매(320)는 알코올에 대한 용해도 및 친화도가 낮을 것일 수 있다. 예를 들면, 유기 용매(320)와 알코올의 용해도의 판단에는 물(310)에 대한 유기 용매(320)의 용해도와 물(310)에 대한 알코올의 용해도를 각각 간접적인 지표로 삼을 수 있다. 예를 들면, 유기 용매(320)는 20℃ 물(310)에 대한 용해도가 100mg/L 이하일 수 있다. 알코올은 물(310)에 대한 용해도가 90%이상이므로, 상기 용해도 범위의 유기 용매(320)는 알코올과의 친화력이 낮은 것으로 간접적으로 판단할 수 있다.
구체적으로, 유기 용매(320)는 반응기(100) 안에서 진행되는 에스터 교환 반응 조건에서 비활성일 수 있다. 이러한 경우, 전체 제조 공정의 효율이 더욱 향상될 수 있다.
본원의 일 구현예에 따르면, 상기 유기 용매(320)는 대기압에서의 끓는점이 90℃ 이하인 탄화수소 용매 또는 에테르 용매인 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 유기 용매(320)는 펜테인, 헥세인, 사이클로헥세인, 다이에틸에테르, 메틸-t-부틸에테르 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
이어서, 상기 수집 장치 내에서 부산물을 분별한다 (S400).
분별 단계(S400)는 수집 장치 내로 유입된 응축액을 교반하는 것을 포함할 수 있다. 교반은 물(310)과 유기 용매(320)가 이루는 2개의 층이 교란되지 않고, 분리된 상태를 유지하도록 수행한다. 이에 의해, 응축액 중의 부산물인 알코올은 물(310)층으로 분별되며, 반응물인 다이알킬카보네이트는 유기 용매(320)층으로 분별된다.
구체적으로, 교반하는 방법은 층 교란을 일으키지 않는 한 특별히 제한되지 않는다. 층 교란은 물(310) 및 유기용매(320)가 분리된 계면에서는 일부 일어날 수 있으나, 전반적으로 2개의 층이 60% 이상 교란 또는 혼합되지 않는 상태를 의미한다. 교란이 과하게 수행되는 경우에는 후술하는 단계에서 유기 용매(320)만을 환류하는 것이 어려울 수 있다. 이러한 경우, 에스터 교환 반응의 효율이 낮아 질 수 있다.
더욱 구체적으로 교반 하는 방법은 교반 속도 및 교반 시간 등을 조절하여 분별의 효율을 더욱 향상시킬 수 있다. 전술한 수집 단계(S300)에서 응축액은 수집장치(300)로 유입된 후 분별 단계에 의해 부산물인 메탄올이 수집장치 하단에 위치한 물(310)층으로 분별된다. 또한 같은 방법으로 반응물인 다이알킬카보네이트는 유기 용매(320)층으로 분별된다.
마지막으로, 상기 수집 장치(300)의 유기 용매(320)를 반응기(100)로 환류한다 (S500).
환류 단계(S500)에서의 유기 용매(320)는 전술한 바와 같이 반응물인 다이알킬카보네이트를 포함하고 있다. 환류 단계에서는 이러한 유기 용매(320)를 반응기(100)로 환류시킴으로서, 반응기(100)에 미반응 다이알킬카보네이트를 재공급할 수 있다. 이러한 경우, 에스터 교환 반응의 지속성 및 효율성이 향상되어 그리세롤 카보네이트 유도체의 수득률을 더욱 향상시킬 수 있다. 또한, 부산물이 선택적으로 제거된 상태로 환류할 수 있어 공정 효율성을 더욱 향상시킬 수 있다.
구체적으로, 환류시키는 방법은 특별히 제한 되지 않는다. 예를 들면, 도 1 에서와 같이 유기 용매(320)의 환류통로(321)를 수집장치(300)와 반응기(100)가 이웃한 방향의 최상단에 설치할 수 있다. 이러한 경우, 유기 용매(320)가 응축액의 유입으로 인해 양이 증가하는 정도에 따라 자연적으로 환류될 수 있다. 이를 통해, 환류의 제어를 별다른 에너지 없이 수행할 수 있고, 공정 효율을 더욱 향상시킬 수 있다.
일 실시예에서, 상기 그리세롤 카보네이트 유도체의 제조 방법을 수행하는 장치는 전술한 반응기(100), 냉각장치(200) 및 수집장치(300)을 포함하고 환류가 가능한 장치라면 특별히 제한되지 않는다. 일 구체예에서, 상기 장치는 Dean-Stark 장치일 수 있다(예시적인 도면을 도 3에 나타낸다). 이러한 경우, 에스터 교환 반응의 가역 반응을 제어하기에 유리하고, 환류 시 에너지 효율성이 향상될 수 있다. 다른 구체예에서, 상기 장치는 전술한 반응기(100), 냉각장치(200) 및 수집장치(300)를 포함하는 증류기, 정류기, 환류기 등일 수 있으나 이에 제한 되지 않는다.
본원의 일 구현예에 따르면, 상기 그리세롤 카보네이트 유도체는 하기 화학식 1 로 표시되는 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다:
[화학식 1]
Figure PCTKR2023016657-appb-img-000005
(상기 화학식 1 에서, R은 C1-C20의 알콕시 또는 C1-C20의 알킬임).
구체적으로, 상기 그리세롤 카보네이트 유도체는 상기 화학식1에서 R이 메톡시 또는 에톡시인 화합물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
더욱 구체적으로, 본원에 따른 그리세롤 카보네이트 유도체의 제조 방법에서, 다이알킬카보네이트로 다이메틸 카보네이트를 사용하여 제조하는 경우, 상기 화학식 1 에서 R 이 메톡시인 그리세롤 카보네이트 유도체를 제조할 수 있으며, 다이알킬카보네이트로 다이에틸 카보네이트를 사용하여 제조하는 경우 상기 화학식 1 에서 R 이 에톡시인 그리세롤 카보네이트 유도체를 제조할 수 있다.
또한, 본원의 제 3 측면은 본원의 제 2 측면에 따라 제조된 그리세롤 카보네이트 유도체 및 폴리락타이드(PLA)가 주입된 반응기를 가열하는 단계; 및 상기 가열된 반응기를 회전시켜 상기 그리세롤 카보네이트 유도체 및 상기 PLA를 블렌딩하는 단계; 를 포함하는, 그리세롤 카보네이트 유도체와 PLA의 복합체의 제조 방법을 제공한다.
본원의 제 3 측면에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체의 제조 방법에 있어서, 본원의 제 1 측면 및/또는 제 2 측면에 기재된 내용과 중복되는 내용에 대해서는 생략하였으나, 그 설명이 생략되었다고 하더라도 본원의 제 1 측면 및/또는 제 2 측면에 기재된 설명은 본원의 제 3 측면에 동일하게 적용될 수 있다.
본원의 그리세롤 카보네이트 유도체는 PLA와 상용성(compatability)이 우수하고, 300℃ 이상의 끓는점을 가지고 있어 PLA와 혼합 시 상분리가 발생하지 않으며, 혼합 후 장시간 방치하여도 PLA로부터 스며나오는 현상(sweat out)이 발생하지 않을 수 있어, PLA의 가소제로서 사용하기에 바람직하다.
또한, 상기 그리세롤 카보네이트 유도체는 생분해성이 매우 빠르고 우수하여 PLA와 같은 생분해성 고분자의 가소제로 사용하기에 매우 적합하며, 친환경적인 물질이다.
또한, 본원에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체는, 상기 그리세롤 카보네이트 유도체를 투임함에 따라 상기 PLA 고유의 취성이 사라지고 연성(가소성)이 나타나며, 이에 따라 상기 복합체를 필름 등의 다양한 용도로 가공하여 사용하기에 용이할 수 있다.
본원의 일 구현예에 따르면, 상기 가열은 오일 중탕을 통해 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 따르면, 상기 회전은 100 rpm 내지 200 rpm의 속도로 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.
<시약 및 실험 조건>
모든 실험은 Schlenk 기술을 사용하여 불활성 분위기에서 수행하였다. 글리세롤(≥99%)과 다이메틸 카보네이트(≥99%), 다이에틸 카보네이트(99%), 무수아세트산(≥99%), 리튬 tert-부톡사이드(97%), 이온교환수지(Amberlyst 15 hydrogen form, strongly acidic, cation exchanger, dry)는 시그마 알드리치 코리아에서 구입하였다. 1H NMR(600 MHz) 분석은 JEOL ECZ 600 기기에서 수행하였다.
[실시예 1] 화학식1에서 R은 에톡시인 것인 그리세롤 카보네이트 유도체 제조
1구 플라스크에 글리세롤(50.0 g, 0.543 mol), 다이에틸 카보네이트 (DEC) (449 g, 3.80 mol), 리튬 tert-부톡사이드(0.435 g, 5.43 mmol, 1.0 mol%) 및 사이클로헥세인(70 mL)을 투입하였다. 플라스크에 증류수(400mL)와 사이클로헥세인(130mL)의 두 층을 포함하는 트랩이 있는 Dean-Stark 장치를 연결한 후 위에 진공 및 N2 가스 라인이 장착된 매니폴드에 연결되어 있는 환류 냉각기를 연결하였다. 매니폴드 라인을 이용하여 플라스크 내부를 N2 가스로 퍼지한 후, 반응 혼합물을 120~125℃로 설정된 오일 배스에 넣고 21시간 동안 교반했다. 반응 전반에 걸쳐 생성된 부산물인 에탄올(EtOH)는 Dean-Stark 장치를 통해 지속적으로 제거하였다. 생성된 EtOH의 흡수로 인해 수상의 부피가 점차 증가하였고, 반응기로 유입되는 것을 방지하기 위해 수상의 일부를 주기적으로 폐기하였다. 기본 촉매를 제거하기 위해, 프로필렌 카보네이트로 사전 세척한 다음 DEC로 세척한 이온 교환 수지(Amberlyst® 15 수소 형태, 2.3g, 11mmol-H+)를 첨가했다. 이어서, 용액을 여과하여 이온 교환 수지를 제거하였다. 과량의 DEC는 오일 배스 온도 60℃에서 완전 진공 하 진공 증류로 제거한 후, 오일 배스 온도가 150℃로 상승함에 따라 생성물을 수집했다(86.9 g, 81% 수율). 수집된 부분의 1H 및 13C NMR 스펙트럼에서 작은 불순물 신호(주로 1.5mol% 글리세롤 카보네이트)가 관찰되었으나, 혼합 연구를 위해 추가 정제 없이 사용하였다.
1H NMR (600 MHz, (CD3)2CO): d 5.14 (m, H), 4.69 (dd, J = 9.0, 8.4 Hz, H), 4.47 (dd, J = 12.6, 3.0 Hz, H), 4.42 (dd, J = 9.0, 6.6 Hz, H), 4.39 (dd, J = 12.6, 4.8 Hz, H), 4.18 (q, J = 7.8 Hz, 2H), 1.26 (t, J = 7.8 Hz, CH3, 2H) ppm.
13C NMR (150 MHz, (CD3)2CO): 154.8, 74.4, 66.7, 66.0, 64.4, 13.8 ppm.
[실시예 2] 화학식1에서 R은 메톡시인 것인 그리세롤 카보네이트 유도체 제조
실시예 1 과 동일한 과정과 조건을 사용하여 합성하되, 글리세롤(50.0 g, 0.543 mol), 다이메틸 카보네이트(DMC) (342 g, 3.80 mol), tBuOLi(0.435 mg, 5.43 mmol, 1.0 mol%), 헥산(200mL) 및 물(400mL)을 사용하였고, 반응을 85℃의 조 온도에서 28시간 동안 진행하였다. 반응이 완료되고 반응액이 뜨거울 때 이온교환수지(Amberlyst® 15 수소형, 2.3g, 11 mmol-H+)를 첨가하고 1시간 동안 중화반응시킨 후 여과하였다. 일부 휘발성 물질(헥산 및 DMC)을 제거하기 위해 용액을 회전 증발시켜 180g의 용액을 얻었고, 이로부터 주위 온도에서 12시간 동안 저장하여 결정성 고체를 수득하였다(46.0g, 48%). 분리된 고체의 순도는 1H 및 13C NMR 스펙트럼으로 확인하였다. 여액을 회전증발기를 이용하여 질량을 65 g으로 감소시킨 후 상온에서 밤새 보관하였을 때 2차 수확물로서 생성물의 추가 수율을 얻었다(14.9 g, 16%, 총 수율 64%).
1H NMR (600 MHz, (CD3)2CO): d 5.13 (m, H), 4.69 (dd, J = 9.0, 8.4 Hz, H), 4.48 (dd, J = 12.6, 3.0 Hz, H), 4.42 (dd, J = 9.0, 6.6 Hz, H), 4.40 (dd, J = 12.6, 4.2 Hz, H), 3.77 (s, CH3, 3H) ppm. 13C NMR (150 MHz, (CD3)2CO): 155.9, 154.7, 74.5, 67.1, 66.2, 55.1 ppm.
[실시예 3] 화학식1에서 R은 메틸인 것인 그리세롤 카보네이트 유도체 제조
글리세롤 카보네이트(35.7 g, 302 mmol), 아세트산 무수물(37.0 g, 363 mmol) 및 이온 교환 수지(Amberlyst® 15 수소 형태, 0.30 g, 1.4 mmol-H+)를 1구 플라스크에 첨가했다. 이어서, 반응 혼합물을 N2 가스로 퍼징하고 60℃에서 48시간 동안 교반하였다. 냉각 후, 이온 교환 수지를 여과하여 제거하고, 회전 증발기를 사용하여 휘발성 물질을 제거하여 무색 오일(41.4g, 86%)을 얻었다. 1H NMR 스펙트럼을 분석한 결과, 분리된 생성물은 3.4mol%의 트리아세틸 글리세롤로 오염된 것으로 나타났다.
1H NMR (600 MHz, (CD3)2CO): d 5.10 (m, H), 4.67 (dd, J = 9.0, 8.4 Hz, H), 4.39 (dd, J = 9.0, 6.0 Hz, H), 4.38 (dd, J = 12.6, 3.0 Hz, H), 4.31 (dd, J = 12.6, 4.2 Hz, H), 2.06 (s, CH3, 3H) ppm. 13C NMR (150 MHz, (CD3)2CO): 170.4, 155.1, 74.7, 66.4, 63.7, 20.1 ppm.
[실시예 4] 실시예 1 (화학식 1 (R = 에톡시)) 및 PLA 의 블렌딩 (10 phr) (PLA/110 phr)
PLA를 배큠 오븐으로24시간 동안 70℃에서 건조시킨 후, 글러브 박스 안에 보관했다. PLA(18 g)와 실시예 1(화학식 1 (R = 에톡시))(1.8 g)를 반응기에 넣고, 170℃ 오일 배스에 반응 용기를 2시간 담근다. 용융과정 후 170℃ 에서 30분 동안 회전하였고 속도는 최소(120 rpm 내지 165 rpm)로 유지시킨 후, 블렌딩을 멈추고 회수하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 46℃, 용융온도 140-153℃, 결정화온도 103-125℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 50±4 MPa, 연신율 3±1%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)와 비슷한 수준임을 알 수 있었다.
[실시예 5] 실시예 1 (화학식 1 (R = 에톡시)) 및 PLA 의 블렌딩 (15 phr) (PLA/115 phr)
PLA(18 g)와 실시예 1 (화학식 1 (R = 에톡시))(2.7 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 37℃, 용융온도 132-148℃, 결정화온도 96-121℃ 였다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 50±4 MPa, 연신율 3±1%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)와 비슷한 수준임을 알 수 있었다.
[실시예 6] 실시예 1 (화학식1 (R = 에톡시)) 및 PLA 의 블렌딩 (20 phr) (PLA/120 phr)
PLA(18 g)와 실시예 1 (화학식1 (R = 에톡시))(3.6 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 34℃, 용융온도 131-147℃, 결정화온도 93-118℃로 PLA(유리전이온도 60 ℃, 용융온도 148-156 ℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 26±4 MPa, 연신율 260±30%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)보다 인장강도는 낮지만 연신율이 크게 증가하였다.
[실시예 7] 실시예 1 (화학식1 (R = 에톡시)) 및 PLA 의 블렌딩 (30 phr) (PLA/130 phr)
PLA(18 g)와 실시예 1 (화학식1 (R = 에톡시))(5.4 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 24℃, 용융온도 124-142℃, 결정화온도 87-120℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 30±2 MPa, 연신율 470±40%로 실시예 6(인장강도 26±4 MPa, 연신율 260±30%)보다 낮은 인장강도, 높은 연신율로 고무성질과 비슷해졌다.
[실시예 8] 실시예 1 (화학식1 (R = 에톡시)) 및 PLA 의 블렌딩 (40 phr) (PLA/140 phr)
PLA(18 g)와 실시예 1 (화학식1 (R = 에톡시))(7.2 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 14℃, 용융온도 118-138℃, 결정화온도 82-111℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 21±3 MPa, 연신율 150±20%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)보다 기계적 성질이 우수하지 않았다.
[실시예 9] 실시예 2 (화학식1 (R = 메톡시)) 및 PLA 의 블렌딩 (10 phr) (PLA/210 phr)
PLA(18 g)와 실시예 2(화학식1 (R = 메톡시))(1.8 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 43℃, 용융온도 136-151℃, 결정화온도 100-121℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 42±3 MPa, 연신율 4±2%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%) 와 비슷한 수준임을 알 수 있었다.
[실시예 10] 실시예 2 (화학식1 (R = 메톡시)) 및 PLA 의 블렌딩 (20 phr) (PLA/220 phr)
PLA(18 g)와 실시예 2 (화학식1 (R = 메톡시))(3.6 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 31℃, 용융온도 129-145℃, 결정화온도 94-110℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 22±3 MPa, 연신율 440±160%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)보다 인장강도는 낮지만 연신율이 증가했다.
[실시예 11] 실시예 2 (화학식1 (R = 메톡시)) 및 PLA 의 블렌딩 (30 phr) (PLA/230 phr)
PLA(18 g)와 실시예 2 (화학식1 (R = 메톡시))(5.4 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 24℃, 용융온도 125-143℃, 결정화온도 90-110℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 14±6 MPa, 연신율 540±100%였다.
[실시예 12] 실시예 2 (화학식1 (R = 메톡시)) 및 PLA 의 블렌딩 (40 phr) (PLA/240 phr)
PLA(18 g)와 실시예 2 (화학식1 (R = 메톡시))(7.2 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 15℃, 용융온도 123-138℃, 결정화온도 87-111℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다.
[실시예 13] 실시예 3 (화학식1 (R = 메틸)) 및 PLA 의 블렌딩 (10 phr) (PLA/410 phr)
PLA(18 g)와 실시예 3 (화학식1 (R = 메틸))(1.8 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 49℃, 용융온도 140-156℃, 결정화온도 107-140℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 21±7 MPa, 연신율 31±13%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)보다 기계적 성질이 우수하지 않았다.
[실시예 14] 실시예 3 (화학식1 (R = 메틸)) 및 PLA 의 블렌딩 (15 phr) (PLA/415phr)
PLA(18 g)와 실시예 3 (화학식1 (R = 메틸))(2.7 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 41℃, 용융온도 143-151℃, 결정화온도 96-116℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 17±0.4 MPa, 연신율 180±6%로 PLA(인장강도 60±2 MPa, 연신율 3±0.1%)보다 우수한 연신율을 보였다.
[실시예 15] 실시예 3 (화학식1 (R = 메틸)) 및 PLA 의 블렌딩 (20 phr) (PLA/420 phr)
PLA(18 g)와 화학식1 (R = 메틸)(3.6 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 35℃, 용융온도 142-149℃, 결정화온도 94-122℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다. 인장강도 시험으로 기계적 성질을 측정한 결과, 평균 인장강도 9±1 MPa, 연신율 110±20%로 실시예 14(인장강도 17±0.4 MPa, 연신율 180±6%)보다 기계적 성질이 우수하지 않았다.
[실시예 16] 실시예 3 (화학식1 (R = 메틸)) 과 PLA 의 블렌딩 (30 phr) (PLA/430 phr)
PLA(18 g)와 화학식1 (R = 메틸)(5.4 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 25℃, 용융온도 123-145℃, 결정화온도 88-110℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다.
[실시예 17] 실시예 3 (화학식1 (R = 메틸)) 및 PLA 의 블렌딩 (40 phr) (PLA/440 phr)
PLA(18 g)와 화학식1 (R = 메틸)(7.2 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 회수한 고분자의 DSC 분석 결과, 유리전이온도 21℃, 용융온도 134-143℃, 결정화온도 83-103℃로 PLA(유리전이온도 60℃, 용융온도 148-156℃)보다 낮았다.
[비교예 1] 가소제를 첨가하지 않은 PLA
가소제를 첨가하지 않은 PLA를 비교예 1 로서 사용하였다.
[비교예 2] 에틸렌 카보네이트(Ethylene carbonate) 및 PLA 의 블렌딩 (30 phr)
PLA(50 g)와 에틸렌 카보네이트(ethylene carbonate)(15 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 상분리가 일어나 가소제로 적합하지 않음을 확인하였다.
[비교예 3] 그리세롤 카보네이트 (Glycerol carbonate) 및 PLA 의 블렌딩 (30 phr)
PLA(50 g)와 그리세롤 카보네이트(glycerol carbonate)(15 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 상분리가 일어나 가소제로 적합하지 않음을 확인하였다.
[비교예 4] 디그리세롤 트리카보네이트(Diglycerol tricarbonate) 및 PLA 의 블렌딩 (30 phr)
PLA(50 g)와 디그리세롤 트리카보네이트(diglycerol tricarbonate)(15 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다. 상분리가 일어나 가소제로 적합하지 않음을 확인하였다.
[비교예 5] 아세틸트리부틸시트레이트(acetyltributylcitrate; ATBC) 및 PLA의 블렌딩 (10phr) (PLA/ATBC10 phr)
PLA(18 g)와 아세틸트리부틸시트레이트(acetyltributylcitrate; ATBC)(1.8 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다.
[비교예 6] 아세틸트리부틸시트레이트(acetyltributylcitrate; ATBC) 및 PLA의 블렌딩 (15 phr) (PLA/ATBC15 phr)
PLA(18 g)와 아세틸트리부틸시트레이트(acetyltributylcitrate; ATBC)(2.7 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다.
[비교예 7] 아세틸트리부틸시트레이트(acetyltributylcitrate; ATBC) 및 PLA의 블렌딩 (20 phr) (PLA/ATBC20 phr)
PLA(18 g)와 아세틸트리부틸시트레이트(acetyltributylcitrate; ATBC)(3.6 g)를 사용하여 상기 실시예 4와 동일하게 실험하였다.
[실험예 1] 본원에 따른 그리세롤 카보네이트 유도체와 PLA의 상용성 분석
가소제의 고분자와의 상용성은 인장 특성 분석에서, 가소제를 투입함에 따라 원래 고분자의 취성이 사라지고 연성(가소성)이 나타는 현상을 통하여 증명할 수 있다. 이에 따라, 본원의 일 실시예 1 내지 3 에 따른 그리세롤 카보네이트 유도체를 PLA와 혼합하여 PLA 고유의 취성이 사라지고 연성이 나타남을 확인하는 실험을 수행하였다.
도 4 는 본원의 일 실시예에 따른 그리세롤 카보네이트 유도체 (화학식1 (R = 에톡시))와 PLA의 융합성을 증명하여 보여주는 인장 성질 측정 데이터고, 하기 표 1 은 본원의 일 실시예에 따른 그리세롤 카보네이트 유도체와 PLA의 복합체의 가소제의 종류 및 함량에 따른 기계적 특성 및 열적 특성을 측정한 결과이다.
도 4 및 표 1 을 참조하면, 본원의 일 실시예 1 내지 3 에 따른 그리세롤 카보네이트 유도체를 PLA와 혼합하여 PLA 고유의 취성이 사라지고 연성이 나타남을 확인할 수 있다.
가소제 종류 및 함량에 따른 PLA 블렌딩의 기계적 특성 및 열적 특성
Sample T g
(℃)
T cc (℃); DH (J/g) T m (℃); DH (J/g) tand peak T g (℃) E" peak T g (℃) E' at 25 ℃
(MPa)
E" at 25 ℃ (MPa) Tensile strength (MPa) Strain at break (%)
비교예 1 60 - 148-156; 0.2 65 59 1600 17 60±2 3±0.1
실시예 4 46 103-125; 12 140-153; 12 54 48 1500 27 50±4 3±1
실시예 5 37 96-121; 16 132-148; 17 48 42 1100 34 41±4 76±43
실시예 6 34 93-118; 18 131-147; 14 43 33 1300 190 26±4 260±30
실시예 7 24 87-120; 12 124-142; 14 36 26 710 310 30±2 470±40
실시예 8 14 82-111; 10 118-138; 12 28 17 270 140 21±3 150±20
실시예 9 43 100-121; 17 136-151; 17 58 52 1600 38 42±3 4±2
실시예 10 31 94-110; 19 129-145; 16 45 36 1400 180 22±3 440±160
실시예 11 24 90-110; 14 125-143; 13 37 27 820 310 14±6 540±100
실시예 12 15 87-111; 7 123-138; 8 49, 30 23 580 260 - -
실시예 13 49 107-140; 20 140-156; 18 54 49 1500 35 21±7 31±13
실시예 14 41 96-116; 30 143-151; 27 39 30 680 150 17±0.4 180±6
실시예 15 35 94-122; 28 142-149; 24 43 34 1300 170 9±1 110±20
실시예 16 25 88-110; 23 123-145; 20 36 - 320 49 - -
실시예 17 21 83-103; 26 134-143; 23 33 - 360 60 - -
비교예 5 46 98-125; 25 139-155; 25 52 46 2000 43 52±3 5±3
비교예 6 37 95-119; 30 135-154; 26 47 38 1500 100 26±0.4 220±14
비교예 7 30 87-100; 28 141-152; 27 42 32 840 120 27±1 300±57
또한, 가소제의 고분자와의 상용성은 통상적으로 DSC 분석을 통하여 가소제를 투입함에 따라 복합체의 유리전이온도(Tg)가 낮아지는 현상으로 증명될 수 있다. 이에 따라, 본원의 실시예 1 내지 3 에 따른 그리세롤 카보네이트 유도체의 PLA와의 상용성을 확인하기 위해 DSC 분석을 통하여 가소제의 투입에 따른 복합체의 유리전이온도(Tg) 변화를 확인하는 실험을 수행하였다.
도 5a 는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체 (화학식1 (R = 에톡시))와 PLA의 융합성을 증명하여 보여주는 DSC 데이터이고, 도 5b는 실시예 1/PLA 블렌드(PLA/1) 내의 실시예 1 의 함량과 Tg 사이의 선형 상관 관계를 나타낸 그래프이다.
도 5 및 표 1을 참조하면, 본원의 실시예 1 내지 3 에 따른 그리세롤 카보네이트 유도체를 PLA와 혼합한 결과, 상기 그리세롤 카보네이트 유도체의 투입량이 증가함에 비례하여 Tg가 낮아짐을 확인할 수 있었고, Tg 값은 순수 PLA 값 60℃ 에서 실시예 1 의 양이 증가함에 따라(각각 10, 20, 30 및 40 phr) 46, 34, 24 및 14℃로 점차 감소하는 것을 확인할 수 있었다. Tg 곡선은 10 내지 30 phr의 실시예 1을 함유한 PLA 블렌드(PLA/110 phr, PLA/120 phr 및 PLA/130 phr) 의 경우 상당히 뚜렷한 반면, 40 phr의 실시예 1(PLA/140 phr)을 함유한 블렌드의 경우 곡선이 다소 흐릿했다.
또한, 혼합물의 상분리를 검출하기 위한 매우 민감한 기술인 동적 기계 분석(DMA)을 통해 가소제 분포의 균질성을 추가로 검증하였다.
도 6a 내지 6c는 본원의 일 실험예에 따른 순수 PLA 및 PLA/실시예 1 블렌드(PLA/1)의 DMA(dynamic mechanical analysis) 수행 결과로부터 얻어진 tand, 저장 탄성률 (E'), 및 손실 탄성률 (E")이다.
도 6a를 참조하면, 10, 20 및 30 phr을 함유한 블렌드는 상당히 좁고 단봉형인 손실 계수(tanδ) 곡선을 나타냈으며 이는 PLA 매트릭스 내에서 실시예 1의 고른 분포를 의미한다. PLA/140 phr의 경우 넓고 약하지만 여전히 구별 가능한 tanδ 신호를 나타냈다. 분포가 고르지 않은 경우 일반적으로 변동하는 여러 피크 또는 숄더가 있는 넓은 신호가 관찰된다. Triethyl citrate, ATBC 등 잘 알려진 가소제의 경우 17.5 phr 함량까지는 뚜렷한 tanδ 곡선이 관찰되었으나 25 phr 이상 함량에서는 매우 넓어졌다. a-이완 전이 온도(Ta)라고도 알려진 tanδ 신호의 피크는 DSC 연구에서 관찰된 바와 같이 실시예 1의 양이 증가함에 따라 점차 감소하는 Tg 값을 나타냈다. Ta값은 DSC를 사용하여 측정한 Tg 값보다 약 10℃ 더 높은 것으로 나타났다.
최대 40 phr의 실시예 1을 함유하는 블렌드의 저장 탄성률(E') 곡선은 순수 PLA와 유사한 특징을 나타냈다. 그들은 유리 상태에서 고원 선을 보였으며, 유리 전이로 인해 급격한 하락과 냉결정화로 인한 후속 증가가 나타났다(도 6b). E' 드롭이 발생한 온도(즉, Tg)는 DSC 연구 결과와 일치하여 점차 감소했다. 블렌드의 안정선 수준(즉, E' 값)은 실시예 1 과 블렌딩한 후 거의 변하지 않은 상태로 유지되었으며, 이는 아세틸화 올리고락타이드와의 블렌드에 대해 보고된 결과와 대조적이다. 이러한 블렌드에서 E' 값은 순수 PLA의 2.9 GPa에서 0.1 내지 1.3 GPa로 감소했다. PLA/140 phr에 대한 E' 곡선의 모양은 순수 PLA와 10, 20, 30 phr을 함유한 혼합물에서 관찰된 특징에서 다소 벗어났다. 다른 경우에는 관찰된 급격한 하락을 나타내지 않았는데, 이는 DSC에서 관찰된 넓은 Tg 신호 및 넓고 약한 tanδ 신호와 일치한다.
10, 20 및 30 phr을 함유한 혼합물의 손실 계수(E") 곡선은 순수한 PLA와 동일한 특징을 나타냈으며, Tg 값을 결정하는 데 허용되는 뚜렷한 피크를 보여 주며, 이는 DSC에서 얻은 값과 거의 동일했다(도 6c). PLA와 가소제 사이의 혼화성이 좋지 않아 상 분리가 발생하는 경우, 특히 저온 영역에서 가소제와 관련된 신호가 일반적으로 관찰된다. 그러나 실시예 1과의 혼합에서는 그러한 신호가 나타나지 않았다. PLA/140 phr의 E" 곡선 모양도 일반적인 특징에서 다소 벗어났다.
한편, 가소제의 고분자와의 상용성을 주사전자현미경(SEM)을 통해 직접 관찰할 수도 있다.
도 7 은 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체와 PLA의 융합성을 증명하여 보여주는 인장강도 파단면 SEM 사진이다.
도 7 을 참조하면, 30 phr 이하의 실시예 1을 함유한 블렌드(PLA/115 phr, PLA/120 phr, 및 PLA/130 phr)는 매끄러운 인장강도 파단면을 나타냈고, 이를 통해 상 분리 없이 우수한 혼화성을 나타내는 것을 확인할 수 있었다. 반면 PLA/140 phr은 거칠고 불규칙한 것을 확인할 수 있었고, 이로 인해 상분리가 발생하였음을 확인할 수 있었다.
또한, 80℃의 녹는점을 갖는 실시예 2의 경우 결정성 특성으로 인해 가소제로 적합하지 않은 것으로 나타났다. SEM 이미지에서 10 phr의 실시예 2를 함유한 블렌드(PLA/210 phr)에서도 실시예 2의 결정으로 생각되는 작은 점 모양 입자가 존재함을 확인할 수 있었고, PLA/220 phr에서는 매우 거친 표면을 확인할 수 있었다.
또한, 20 phr의 실시예 3 을 함유한 블렌드(PLA/420 phr)은 매끄러운 표면을 보인 반면, 30 phr의 실시예 3 을 함유한 블렌드(PLA/430 phr)는 거칠고 불규칙한 표면을 나타냈는데, 이는 상분리가 발생하였음을 의미한다.
한편, 실시예 2 를 포함하는 블렌드의 경우 시간이 지남에 따라 실시예 2가 중합체 매트릭스에서 이동하여 혼합물 표면에 고체 입자를 형성하는 스웻-아웃(sweat-out) 현상을 나타내는 것을 확인할 수 있었던 반면, SEM 이미지 결과 매끄러운 표면을 나타내는 샘플(즉, 30 phr 이하의 실시예 3 을 함유한 블렌드 및 20 phr 이하의 실시예 3 을 함유하는 블렌드)에는 유해한 스웻-아웃 현상이 없었다.
도 8 은 본원의 일 실험예에 따른 시판 PLA(pristine PLA), 열처리 후 순수 PLA(Neat PLA), 실시예 6(PLA/120 phr), 실시예 10(PLA/220 phr) 및 실시예 15(PLA/420 phr)의 GPC 곡선이다.
도 8 을 참조하면, 겔 투과 크로마토그래피(GPC) 연구에서 실시예 3과의 혼합 과정에서 PLA 사슬에서 주목할만한 사슬 절단이 관찰되었다. 이로 인해 중량 평균 분자량(Mw)이 크게 감소했다. 보다 구체적으로, 시판 PLA(Pristine PLA)의 초기 Mw는 260 kDa이고 분산도(Ð)는 2.2였다. 그러나 가소제를 첨가하지 않고 동일한 열처리를 거친 후(Neat PLA)에는 이 값이 180 kDa(Ð = 2.2)로 감소했다. PLA/420 phr의 경우 Mw 값은 44 kDa(Ð = 2.0)로 크게 감소했다(도 8). 일반적으로 상업용 PLA는 주로 주석(II) 촉매를 사용하여 락타이드의 개환 중합을 통해 합성된다. 이러한 촉매 잔류물은 에스테르 결합을 가지고 있는 PLA와 실시예 3 사이의 에스테르교환 반응을 촉매하여 결과적으로 분자량 감소를 초래할 수 있다. 흥미롭게도, 에스테르 결합을 갖는 또 다른 가소제인 ATBC는 실시예 3 과의 블렌딩에서 관찰되는 이러한 분자량 감소를 나타내지 않았다. PLA/ATBC20 phr의 경우 200 kDa(Ð = 2.2)의 Mw 값을 유지했다. 카보네이트 결합만을 특징으로 하는 실시예 1및 2와의 블렌딩에서는 식별 가능한 분자량 감소가 발생하지 않았다. PLA/120 phr 및 PLA/220 phr[각각 190 kDa(Ð = 2.2) 및 190 kDa(Ð = 2.1)]에 대한 Mw 값은 순수 PLA의 값과 거의 유사했다. 혼합 공정 중 분자량 감소는 널리 알려진 문제이며, 특히 알코올 그룹을 함유한 가소제를 사용할 때 더욱 분명해진다.
PLA/1 혼합물의 열 안정성을 DSC와 함께 열 중량 분석(TGA)을 사용하여 평가하였다.
도 9 는 본원의 일 실시예 7(PLA/130 phr)의 TGA/DSC 분석 결과이다.
도 9 를 참조하면, 5 wt% 중량 감소(Td 5wt%)에 해당하는 온도는 244℃ 인 것으로 나타났다. 이 값은 순수 PLA(338℃) 보다 실질적으로 낮았으며 이전에 보고된 아세틸 말단 캡핑된 올리고락타이드 가소제 EtO[C(O)CH(Me)O]4.5C(O)Me보다 약간 높은 결과(210-245℃)였다. PLA의 가공 온도는 일반적으로 185-250℃이며, 이는 PLA의 용융 온도(Tm) 범위(130-230°C)에 따라 달라진다. DSC 곡선에서는 340-350℃ 및 367-371℃에서 정점을 이루는 두 개의 눈에 띄는 중첩 신호가 관찰되었으며, 152, 147, 143 및 139℃에서 정점을 이루는 작은 PLA Tm 신호가 가소제의 양이 증가함에 따라 점차 감소했다. 이 두 가지 주요 신호는 각각 305℃와 286℃의 끓는점을 보고한 실시예 1과 락타이드(샘플 홀더에서 해중합에 의해 형성됨)의 증발에 기인한 것으로 생각된다. 이들 신호의 개시온도는 270℃ 이상으로 블렌드의 타당한 가공온도보다 충분히 높은 것으로 나타나 열처리 시 실시예 1의 파괴나 증발에 대한 우려를 완화시켰다.
도 10a 는 170℃에서 회전형 레오미터를 사용하여 측정한 본원의 실시예 4(PLA/110 phr), 실시예 6(PLA/120 phr), 및 실시예 7(PLA/130 phr)의 동점도이고, 10b는 실시예 4(PLA/110 phr), 실시예 6(PLA/120 phr), 및 실시예 7(PLA/130 phr)의 Cole-Cole 플롯이다.
170℃에서 회전식 레오미터 측정으로 얻은 복소 점도(η*)는 혼합 시 상당한 감소를 보였으며, 실시예 1 함량이 증가함에 따라 점도는 점차 감소했다(도 10a). 예를 들어, 0.1 rad/s의 낮은 주파수에서 PLA/110 phr, PLA/120 phr 및 PLA/130 phr에 대한 η* 값은 각각 1120, 660 및 450 Pa·s였다. 반면 neat PLA는 Mw = 230 kDa(5400 Pa·s) 인 PBAT의 값과 비교할 수 있는 6450 Pa·s의 상당히 높은 η* 값을 나타냈다. neat PLA와 블렌드 모두 η*-각진동수 곡선에서 유사한 특징을 나타냈으며, 낮은 주파수에서는 뉴턴식 고원 거동을, 높은 주파수에서는 전단박화 거동을 보여주었다. 가소제 함량이 증가함에 따라 뉴턴 평탄선은 더 높은 주파수로 확장되었다. 대조적으로, PBAT는 상용 등급 PBAT 샘플(Mw/Mn = 4.4)의 광범위한 분산으로 인해 전체 주파수 범위에 걸쳐 전단 박화 거동을 나타냈다. 이러한 전단박화 거동은 블로우 성형 및 블로운 필름 압출과 같은 폴리머 가공 기술에 유리하다. 25 wt% 글리세릴 트리아세테이트를 함유한 것과 같은 특정 PLA 혼합물은 전단 담화 거동을 나타내지 않는 것으로 보고되었다. PLA/110 phr, PLA/120 phr, PLA/130 phr 혼합물과 PBAT는 측정된 주파수 범위 전체에서 점성 특성을 나타냈다(즉, 손실 계수 G" > 저장 계수 G'). 대조적으로 neat PLA는 126 rad/s의 임계 주파수에서 점성 거동에서 탄성 거동으로의 전환을 나타냈다. η*의 실수부(η')와 허수부(η") 사이의 관계를 나타내는 Cole-Cole 플롯에서는 PLA/110 phr, PLA/120 phr 및 PLA/130 phr 혼합물에 대한 반원형 선이 나타났고, 용융 상태에서도 PLA와 실시예 1 사이의 우수한 상용성과 상 균질성을 나타냈다 (도 10b).
도 11a 및 11b 는 각각 본원의 비교예 7(PLA/ATBC20 phr) 및 실시예 6(PLA/120 phr)의 비노화 및 숙성(6주) 표본에 대한 DMA 곡선이다.
ATBC는 바이오 기반 기원, 생분해성, 생체 적합성 및 식품 접촉 적용 승인으로 인해 PLA에 가장 효율적인 가소제 중 하나로 널리 알려져 있다. 그러나 TBC(트리부틸 시트레이트)와 혼합할 때 PLA의 형태학적 안정성에 대한 우려가 제기되었다. 가소제 TBC를 첨가하면 상온에서도 PLA 사슬이 결정화되어 비정질 도메인의 크기가 감소할 수 있다. 결과적으로, 이 현상은 시간이 지남에 따라 표본의 점진적인 불투명성과 변형으로 이어질 수 있다. 놀랍게도, 실온에서 6주 동안 숙성시킨 후 이전에 투명했던 PLA/ATBC20 phr 표본이 눈에 띄게 변형되어 흐릿해졌다. DMA는 노화되지 않은 표본과 비교했을 때 tanδ 피크의 상당한 약화와 E' 및 E" 곡선의 뚜렷한 변화를 나타냈다(도 11a). Tg 영역 전체에 걸쳐 E' 및 E" 값의 감소는 숙성되지 않은 샘플에서 관찰된 것보다 덜 갑작스럽고 덜 극적이었다. 이는 실온에서 6주 저장 기간 동안 상당한 결정화 과정이 발생했음을 암시한다. 고무적으로, PLA/120 phr 표본의 DMA 곡선은 눈에 띄게 변하지 않았으며(도 11b), 표본은 6주 숙성 기간 동안 투명성을 유지했다. 이 결과는 실시예 1이 존재하는 경우 결정화가 없음을 시사한다.
[실험예 2] 본원에 따른 그리세롤 카보네이트 유도체의 생분해성 연구
본원의 일 실시예 1 내지 3 에 따른 그리세롤 카보네이트 유도체의 생분해성을 확인하기 위한 실험을 수행하였다.
실시예 1 내지 3 에 따른 그리세롤 카보네이트를 상온 토양환경 조건하 생분해정도를 시중에서 구입한 실험대조구인 생분해성 마이크로크리스탈 셀룰로스 (microcrystal cellulose: Sigma-Aldrich, ~ 20μm 크기) 샘플과 함께 실험실 수준 생분해 분석장비(Respirometer)를 이용하여 호기조건(공기 주입 속도: 200 mL/min)에서 이산화탄소 발생량 (CO2 evolution) 을 NIR분석기로 측정하여 분석하였다. 토양 내 생분해 조건은 25℃, pH 6.8, 50% 내지 55% 상대습도로 유지하였다.
도 12a는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체의 생분해성을 보여주는 실험 결과이고, 도 12b는 본원의 일 실험예에 따른 그리세롤 카보네이트 유도체/PLA 블렌드 생분해성을 보여주는 실험 결과이다.
도 12a 를 참조하면, 실험 결과 대조구인 마이크로크리스탈 셀룰로스(5g)는 토양에서 3 일 부터 생분해가 진행되어 토양의 활성이 존재함을 확인하였고, 본 기술에서 제조된 실시예 1 내지 3 에 따른 카보네이트는 모두 빠른 속도 로 이산화탄소가 발생됨이 측정되었으며, 이는 토양에서 생분해가 빠르게 진행되고 있음을 증명한다. 특히, 실험대조구로 사용된 마이크로크리스탈 셀룰로스 보다 빠른 생분해성을 나타냄을 확인하였다.
도 12b를 참조하면, PLA는 토양의 주변 조건에서 생분해되지 않으며 180일 후에도 25℃ 및 50-55% 수분 함량의 호흡계 조건에서 CO2 발생이 최소화되었다(예상 CO2 발생의 1.1%). PLA/130 phr, PLA/230 phr 및 PLA/430 phr 혼합물은 순수 PLA에 비해 약간 더 높은 CO2 발생률을 나타냈지만 이는 실질적인 PLA 분해보다는 가소제의 생분해에 의해 발생한 것으로 생각된다. 180일 동안 총 방출된 CO2 양은 각각 실시예 1 내지 3의 탄소가 CO2 가스로 완전히 전환되는 것으로 추정된 양의 39, 48, 및 68%에 해당하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 하기 화학식 1로 표시되는 그리세롤 카보네이트 유도체와 PLA의 복합체:
    [화학식 1]
    Figure PCTKR2023016657-appb-img-000006
    (상기 화학식 1 에서, R은 C1-C20의 알콕시 또는 C1-C20의 알킬임).
  2. 제 1 항에 있어서,
    상기 그리세롤 카보네이트 유도체에 의해 상기 PLA가 연성을 가지는 것인,
    그리세롤 카보네이트 유도체와 PLA의 복합체.
  3. 제 1 항에 있어서,
    상기 그리세롤 카보네이트 유도체는 생분해성을 가지는 것인,
    그리세롤 카보네이트 유도체와 PLA의 복합체.
  4. 제 1 항에 있어서,
    상기 화학식 1 에서 R은 메톡시, 에톡시, 또는 메틸인 것인, 그리세롤 카보네이트 유도체와 PLA의 복합체.
  5. 제 4 항에 있어서,
    상기 화학식 1 에서 R은 에톡시인 것인, 그리세롤 카보네이트 유도체와 PLA의 복합체.
  6. 제 1 항에 있어서,
    상기 복합체는 상기 PLA 100 중량부를 기준으로 상기 그리세롤 카보네이트 유도체 10중량부 내지 40 중량부를 포함하는 것인,
    그리세롤 카보네이트 유도체와 PLA의 복합체.
  7. 반응기에서 글리세롤, 다이알킬카보네이트, 및 에스터 교환 반응 촉매를 포함하는 반응물을 상기 다이알킬카보네이트의 끓는점 이상의 온도로 반응시키는 단계;
    상기 반응기에서 생성된 증기를 냉각하여 응축액으로 제조하는 단계;
    물 및 비중이 1 미만인 유기 용매가 층분리된 상태로 포함된 수집장치 내로, 상기 응축액을 수집하는 단계;
    상기 수집 장치 내에서 부산물을 분별하는 단계; 및
    상기 수집 장치의 유기 용매를 반응기로 환류하는 단계;
    를 포함하는,
    그리세롤 카보네이트 유도체의 제조 방법.
  8. 제 7 항에 있어서,
    상기 다이알킬카보네이트는 다이메틸 카보네이트 또는 다이에틸 카보네이트인 것인,
    그리세롤 카보네이트 유도체의 제조 방법.
  9. 제 7 항에 있어서,
    상기 그리세롤 카보네이트 유도체는 하기 화학식 1 로 표시되는 화합물을 포함하는 것인, 그리세롤 카보네이트 유도체의 제조 방법:
    [화학식 1]
    Figure PCTKR2023016657-appb-img-000007
    (상기 화학식 1 에서, R은 C1-C20의 알콕시 또는 C1-C20의 알킬임).
  10. 제 7 항에 있어서,
    상기 유기 용매는 대기압에서의 끓는점이 90℃ 이하인 탄화수소 용매 또는 에테르 용매인 것인,
    그리세롤 카보네이트 유도체의 제조 방법.
  11. 제 10 항에 있어서,
    상기 유기 용매는 펜테인, 헥세인, 사이클로헥세인, 다이에틸에테르, 메틸-t-부틸에테르 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인,
    그리세롤 카보네이트 유도체의 제조 방법.
  12. 제 7 항에 있어서,
    상기 에스터 교환 반응 촉매는 알칼리금속의 염기 촉매인 것인,
    그리세롤 카보네이트 유도체의 제조 방법.
  13. 제 7 항 내지 제 12 항 중 어느 한 항에 따라 제조된 그리세롤 카보네이트 유도체 및 폴리락타이드(PLA)가 주입된 반응기를 가열하는 단계; 및
    상기 가열된 반응기를 회전시켜 상기 그리세롤 카보네이트 유도체 및 상기 PLA를 블렌딩하는 단계;
    를 포함하는,
    그리세롤 카보네이트 유도체와 PLA의 복합체의 제조 방법.
  14. 제 13 항에 있어서,
    상기 가열은 오일 중탕을 통해 수행되는 것인,
    그리세롤 카보네이트 유도체와 PLA의 복합체의 제조 방법.
  15. 제 13 항에 있어서,
    상기 회전은 100 rpm 내지 200 rpm의 속도로 수행되는 것인,
    그리세롤 카보네이트 유도체와 PLA의 복합체의 제조 방법.
PCT/KR2023/016657 2022-11-09 2023-10-25 친환경 그리세롤 카보네이트 가소제 WO2024101724A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220148841A KR20240067620A (ko) 2022-11-09 친환경 그리세롤 카보네이트 가소제
KR10-2022-0148841 2022-11-09

Publications (1)

Publication Number Publication Date
WO2024101724A1 true WO2024101724A1 (ko) 2024-05-16

Family

ID=91032823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016657 WO2024101724A1 (ko) 2022-11-09 2023-10-25 친환경 그리세롤 카보네이트 가소제

Country Status (1)

Country Link
WO (1) WO2024101724A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186610A (ja) * 2006-01-13 2007-07-26 Matsumura Sekiyu Kk 生分解性ポリ乳酸樹脂組成物
JP2009023930A (ja) * 2007-07-18 2009-02-05 Ube Ind Ltd グリセリン誘導体の製造方法
KR20110064890A (ko) * 2009-12-09 2011-06-15 에스케이이노베이션 주식회사 수지 조성물용 가소제 및 이를 포함하는 수지 조성물
KR20160081103A (ko) * 2014-12-30 2016-07-08 삼성전자주식회사 열가소성 수지 조성물, 이로 이루어진 성형품 및 열가소성 수지 조성물 제조 방법
KR20160116935A (ko) * 2015-03-31 2016-10-10 아주대학교산학협력단 유기 카보네이트 화합물의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186610A (ja) * 2006-01-13 2007-07-26 Matsumura Sekiyu Kk 生分解性ポリ乳酸樹脂組成物
JP2009023930A (ja) * 2007-07-18 2009-02-05 Ube Ind Ltd グリセリン誘導体の製造方法
KR20110064890A (ko) * 2009-12-09 2011-06-15 에스케이이노베이션 주식회사 수지 조성물용 가소제 및 이를 포함하는 수지 조성물
KR20160081103A (ko) * 2014-12-30 2016-07-08 삼성전자주식회사 열가소성 수지 조성물, 이로 이루어진 성형품 및 열가소성 수지 조성물 제조 방법
KR20160116935A (ko) * 2015-03-31 2016-10-10 아주대학교산학협력단 유기 카보네이트 화합물의 제조 방법

Similar Documents

Publication Publication Date Title
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
EP2773689A1 (en) Polysiloxane-polycarbonate copolymer and method of manufacturing the same
WO2020122591A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021133048A1 (ko) 무수당 알코올 및 무수당 알코올-알킬렌 글리콜로부터 유래된 단위들을 포함하는 폴리카보네이트 공중합체 및 이의 제조방법, 및 이를 포함하는 성형품
WO2024101724A1 (ko) 친환경 그리세롤 카보네이트 가소제
Hu et al. Polyesters derived from bio-based eugenol and 10-undecenoic acid: synthesis, characterization, and structure–property relationships
WO2017164504A1 (ko) 폴리유산 수지 조성물 및 이를 포함한 성형용품
WO2024071915A1 (ko) 재생 비스(2-히드록시에틸)테레프탈레이트를 포함하는 중합 원료 및 이의 제조방법
WO2021141236A1 (ko) 기계적 물성, 성형성 및 내후성이 향상된 생분해성 수지 조성물 및 그 제조방법
WO2021010591A1 (ko) 폴리에스테르 수지 혼합물
WO2023200247A1 (ko) 재활용 플라스틱 합성용 단량체 조성물, 이의 제조방법, 그리고 이를 이용한 재활용 플라스틱, 및 성형품
WO2023153736A1 (ko) 생분해성 고분자를 포함하는 복합 소재, 이의 제조 방법 및 상기 복합 소재를 포함하는 스펀본드 부직포
WO2022240253A1 (ko) 재생 폴리염화비닐 재료
WO2023158206A1 (ko) 생분해성 고분자의 재생 방법
WO2020149469A1 (ko) 폴리에스테르 필름 및 이의 제조 방법
WO2023234688A1 (ko) 아크릴산 제조 방법
WO2024117865A1 (ko) 생분해성 필름용 조성물, 이를 포함하는 생분해성 필름 및 생분해성 필름의 제조방법
WO2024106998A1 (ko) 재활용 고리형 카보네이트 조성물의 제조방
US2721850A (en) Cellulose esters plasticized with a condensation polymer
WO2014104861A1 (ko) 친환경 가소제 및 이를 이용한 수지 조성물
WO2022085845A1 (ko) 기계적 물성, 성형성 및 내후성이 향상된 자연유래 생분해성 수지 조성물 및 그 제조방법
WO2023172085A1 (ko) 생분해성 필름
WO2021040474A1 (ko) 바이오매스 유래 환형 단량체를 포함하는 고분자 화합물 및 그의 제조방법
WO2024039113A1 (ko) 비스(글리콜)테레프탈레이트 올리고머 및 폴리에스테르 수지의 제조 방법
WO2023003277A1 (ko) 재활용 플라스틱 합성용 단량체 조성물, 이의 제조방법, 그리고 이를 이용한 재활용 플라스틱, 성형품 및 가소제 조성물