WO2024101354A1 - 基板搬送システムおよび基板位置調整方法 - Google Patents

基板搬送システムおよび基板位置調整方法 Download PDF

Info

Publication number
WO2024101354A1
WO2024101354A1 PCT/JP2023/040045 JP2023040045W WO2024101354A1 WO 2024101354 A1 WO2024101354 A1 WO 2024101354A1 JP 2023040045 W JP2023040045 W JP 2023040045W WO 2024101354 A1 WO2024101354 A1 WO 2024101354A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
movement
substrates
wafer
displacement amount
Prior art date
Application number
PCT/JP2023/040045
Other languages
English (en)
French (fr)
Inventor
圭祐 近藤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024101354A1 publication Critical patent/WO2024101354A1/ja

Links

Images

Definitions

  • This disclosure relates to a substrate transport system and a substrate position adjustment method.
  • Patent Document 1 discloses an apparatus including a transfer arm for transferring the wafer, a mounting table on which the wafer is placed, a substrate transfer device for transferring the wafer from the transfer arm to the mounting table, and a substrate position detection device for detecting the horizontal position of the wafer when transferring the wafer.
  • the substrate transfer device has a plurality of pins for supporting the wafer and a driving means for driving the pins in the horizontal direction (X direction and Y direction).
  • the substrate position detection device has a plurality of imaging means for imaging the peripheral portion of the wafer.
  • the pins are driven horizontally together with the wafer based on the imaging results of each imaging means to correct the horizontal positional deviation of the wafer.
  • the technology disclosed herein improves throughput when transporting at least two substrates.
  • One aspect of the technology disclosed herein includes a transport means having a holding member that holds at least two substrates in a horizontal line and together, and transporting each of the substrates held by the holding member from a source to a destination, a plurality of mounting tables provided at the destination on which each of the substrates held by the holding member is placed at the destination, a support member provided on each of the mounting tables that is movable in the vertical direction relative to each of the mounting tables and that temporarily supports each of the substrates as they are being placed from the holding member to each of the mounting tables, and separates each of the substrates from the holding member, and a plurality of moving means that independently move each of the support members in the horizontal direction, and the position adjustment of each of the substrates relative to each of the mounting tables is performed by a first substrate movement that moves each of the substrates held by the holding member on each of the mounting tables by the transport means, and a second substrate movement that moves each of the substrates supported by the support members on each of the mounting tables by the moving means.
  • FIG. 1 is a schematic top view illustrating an example of a configuration of a substrate transfer system according to a first embodiment of the technology disclosed herein;
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • FIG. 2A to 2C are three-view diagrams sequentially illustrating an example of an operating state of the substrate transport system shown in FIG. 1 .
  • 11 is a schematic top view illustrating an example of a configuration of a substrate transfer system according to a second embodiment of the technology disclosed herein.
  • FIG. 11 is a schematic top view illustrating an example of a configuration of a substrate transfer system according to a second embodiment of the technology disclosed herein.
  • FIG. 1 is a schematic top view showing an example of the configuration of a substrate transfer system as a first embodiment of the technology according to the present disclosure.
  • the substrate transfer system 1 shown in FIG. 1 is a schematic top view showing an example of the configuration of a substrate transfer system as a first embodiment of the technology according to the present disclosure.
  • the substrate transfer system 1 shown in FIG. 1 is a schematic top view showing an example of the configuration of a substrate transfer system as a first embodiment of the technology according to the present disclosure.
  • the substrate transfer system 1 is a system for transferring a semiconductor wafer (hereinafter referred to as "wafer W") having a diameter of, for example, 300 mm to 450 mm ( ⁇ 300 mm to ⁇ 450 mm) as a substrate.
  • the substrate transfer system 1 includes a load port 11, a loader module (loader chamber) 12, a load lock module (load lock chamber) 13, a transfer module (substrate transfer chamber) 14, and a process module (substrate processing chamber) 15.
  • a FOUP (not shown), which is a container for accommodating multiple wafers W, is placed on the load port 11.
  • four load ports 11 are arranged along the Y direction, but the number of load ports 11 is not limited to four.
  • a loader module 12 is arranged adjacent to the negative side of these four load ports 11 in the X direction. The inside of the loader module 12 is always atmospheric pressure.
  • a transfer robot (not shown) is also arranged inside the loader module 12 for loading and unloading the wafer W into and from the FOUP. As a result, the loader module 12 transfers the wafer W between the FOUP placed on the load port 11 and the load lock module 13.
  • Two load lock modules 13 are arranged adjacent to the negative side of the loader module 12 in the X direction.
  • the two load lock modules 13 are arranged along the Y direction. Each load lock module 13 is configured so that its interior can be selectively switched to a vacuum atmosphere or an atmospheric pressure atmosphere. The interior of each load lock module 13 is kept at atmospheric pressure when communicating with the loader module 12, and is kept at vacuum pressure when communicating with the transfer module 14. Each load lock module 13 serves as an intermediate transfer chamber for transferring the wafer W between the loader module 12 and the transfer module 14.
  • a transfer module 14 is disposed adjacent to the two load lock modules 13 on the negative side in the X direction. The interior of the transfer module 14 is always maintained at a predetermined vacuum level.
  • a transport robot 16 is disposed in the transfer module 14 as a transport means for transporting the wafer W.
  • the transport robot 16 has a multi-joint arm 161 and a fork (pick) 162 attached to the tip of the multi-joint arm 161 and having an approximately U-shape (long) in a plan view.
  • the fork 162 is a holding member that holds at least two wafers W together by arranging them in a matrix in the horizontal direction.
  • the number of wafers W that can be held by the fork 162 is a maximum of four (see, for example, FIG. 2A), but is not limited to this.
  • the fork 162 can stably hold each wafer W by, for example, static electricity.
  • the transport robot 16 can transport each wafer W from the transport source to the transport destination by the multi-joint arm 161 expanding and contracting while each wafer W is held by the fork 162. This transfer includes transfer between each process module 15 and transfer between the process module 15 and the load lock module 13.
  • the substrate transport system 1 also includes a pair of sensors 23 as detection means for detecting the position of each wafer W relative to the forks 162 during transport.
  • the pair of sensors 23 are disposed in front of each process module 15 inside the transfer module 14 so as to face each other, and include a left sensor 23L on the left side facing the process module 15 and a right sensor 23R on the right side facing the process module 15.
  • the right sensor 23R and the left sensor 23L are spaced apart from each other by a distance smaller than the diameter of the wafer W, and are disposed so as to face the back surface of the wafer W transported by the transport robot 16.
  • the substrate transport system 1 also includes a control unit 17 that controls the operation of each component of the substrate transport system 1 (e.g., the transport robot 16, etc.).
  • the control unit 17 includes a CPU, a memory, etc.
  • the CPU executes a substrate position adjustment method described later according to a program stored in the memory, etc.
  • the control unit 17 calculates the position of each wafer W relative to the fork 162 when the edge of the wafer W passes above the right sensor 23R or the left sensor 23L, specifically, the position of the center of gravity of each wafer W, from the encoder values of the three motors of the transfer robot 16. Note that the positions of the sensor pairs 23 that detect the position of each wafer W are not limited to the positions of the sensor pairs 23 shown in FIG. 1.
  • Six process modules 15 are arranged adjacent to the transfer module 14 via gate valves 18.
  • three of the six process modules 15 are arranged along the X direction on the positive side of the Y direction of the transfer module 14, and the remaining three process modules 15 are arranged along the X direction on the negative side of the Y direction of the transfer module 14.
  • the gate valve 18 controls communication between the transfer module 14 and the process module 15.
  • the interior of each process module 15 is kept at a predetermined vacuum level.
  • multiple mounting tables 19 are arranged in each process module 15.
  • the wafers W held by the forks 162 are placed on the mounting tables 19 one by one.
  • the wafers W placed on the mounting tables 19 are then subjected to a predetermined plasma process, such as a plasma etching process.
  • four mounting tables 19 are arranged in each process module 15. Two of these four mounting tables 19 are arranged along the X direction and two along the Y direction.
  • the number and arrangement of the mounting tables 19 are not limited to those shown in FIG. 1.
  • each mounting table 19 is provided with a lifter 24 that can move in the vertical direction, i.e., in the Z direction, relative to the mounting table 19.
  • the lifter 24 is a support member that lifts up and supports each wafer W from below while the wafer W on the fork 162 is being placed on the mounting table 19 from the fork 162. This support allows each wafer W to be separated from the fork 162.
  • Each lifter 24 has three pins 25 that protrude upward, i.e., toward the positive side of the Z direction, and are arranged horizontally spaced apart from each other. These three pins 25 allow the wafer W to be supported at three points. This allows the attitude of the wafer W to be stably maintained horizontally.
  • the number of pins 25 on the lifter 24 is not limited as long as it is at least three.
  • the lifter 24 is connected to a drive source (not shown) such as a motor or an air cylinder, and can be moved in the vertical direction by the drive source.
  • Each lifter 24 is connected to a piezoelectric actuator 26 as a moving means for independently moving the lifter 24 in the horizontal direction.
  • the direction in which each piezoelectric actuator 26 moves the lifter 24 is either the X direction or the Y direction, depending on the lifter 24 to which the piezoelectric actuator 26 is connected.
  • the piezoelectric actuator 26 is used for position adjustment (fine adjustment) when the wafer W is placed on the mounting table 19. Although it depends on the type, the piezoelectric actuator 26 is relatively small, can be easily connected to the lifter 24, and has high resolution in position adjustment.
  • the piezoelectric actuator 26 is used as a moving means for independently moving the lifter 24 in the horizontal direction, but this is not limited thereto, and for example, a servo motor or the like can also be used.
  • FIGS 2A to 2J are three-view diagrams sequentially showing an example of the operating state of the substrate transfer system shown in Figure 1.
  • FIG. 1 is a top view
  • FIG. 1 is a top view
  • FIG. 1 is a side view
  • FIG. 1 is a top view
  • FIG. 1 is a side view
  • FIG. 1 is a top view
  • FIG. 1 is a side view
  • FIG. 1 is a top view
  • the substrate position adjustment method has a position adjustment process in which the substrate transfer system 1 is used to adjust the position of each wafer W relative to each mounting table 19.
  • one of the six process modules 15 will be representatively described as the destination of the wafer W to be transferred to for the position adjustment process.
  • two wafers W are held side by side in the X direction at the tip end (positive side in the Y direction) of the fork 162, and two wafers W are also held side by side in the X direction at the base end (negative side in the Y direction). That is, in the process module 15, two wafers W are held along the X direction and two along the Y direction on the fork 162.
  • wafer W1 the wafer W located most positive in the X and Y directions
  • wafer W2 the wafer W located on the negative side of wafer W1 in the X direction
  • wafer W3 the wafer W located on the negative side of wafer W1 in the Y direction
  • wafer W4 the wafer W located on the negative side of wafer W3 in the X direction
  • the mounting table 19 on which the wafer W1 is placed is referred to as the "mounting table 191
  • the mounting table 19 on which the wafer W2 is placed is referred to as the “mounting table 192
  • the mounting table 19 on which the wafer W3 is placed is referred to as the “mounting table 193”
  • the mounting table 19 on which the wafer W4 is placed is referred to as the “mounting table 194.”
  • the lifter 24 that lifts and lowers the wafer W1 is referred to as the “lifter 241
  • the lifter 24 that lifts and lowers the wafer W2 is referred to as the “lifter 242
  • the lifter 24 that lifts and lowers the wafer W3 is referred to as the “lifter 243”
  • the lifter 24 that lifts and lowers the wafer W4 is referred to as the "lifter 244.”
  • the piezo actuator 26 that moves the lifter 241 in the horizontal direction is referred to as the “piezo actuator 261
  • the direction in which the piezo actuator 261 moves the lifter 241 is the Y direction
  • the direction in which the piezo actuator 262 moves the lifter 242 is the X direction
  • the direction in which the piezo actuator 263 moves the lifter 243 is the Y direction
  • the direction in which the piezo actuator 264 moves the lifter 244 is the X direction.
  • the fork 162 enters and stops inside the process module 15 while holding the wafers W1 to W4.
  • the wafer W1 is positioned on the mounting table 191
  • the wafer W2 is positioned on the mounting table 192
  • the wafer W3 is positioned on the mounting table 193
  • the wafer W4 is positioned on the mounting table 194.
  • the wafers W1 to W4 have not yet been aligned. That is, the wafer W1 is misaligned by "+ ⁇ X1" in the X direction and by "+ ⁇ Y1" in the Y direction.
  • the wafer W2 is misaligned by "+ ⁇ X2" in the X direction and by "+ ⁇ Y2" in the Y direction.
  • the wafer W3 is misaligned by "+ ⁇ X3" in the X direction and by "+ ⁇ Y3" in the Y direction.
  • Wafer W4 is in a state where a positional deviation of "+ ⁇ X4" has occurred in the X direction and a positional deviation of "+ ⁇ Y4" has occurred in the Y direction.
  • These positional deviation amounts are calculated by the control unit 17 based on the detection results detected by the sensor pair 23. Therefore, in this embodiment, the control unit 17 functions as a calculation means. The position adjustment process starts from this state.
  • the total misalignment amount in the X-direction of wafer W3 becomes "+ ⁇ X3-(+ ⁇ X1)."
  • a new misalignment amount "+ ⁇ X1" on the negative X-direction side is added to the original misalignment amount "+ ⁇ X4" in the X-direction during the first substrate movement of wafer W1.
  • the total misalignment amount in the X-direction of wafer W4 becomes "+ ⁇ X4-(+ ⁇ X1).”
  • the calculation of each total misalignment amount is also performed by the control unit 17 (the same applies to the total misalignment amounts below, i.e., the movement amounts during each substrate movement).
  • the misalignment in the Y direction of wafer W2 (the other wafer W) is eliminated from the state shown in FIG. 2B.
  • the fork 162 is moved by "+ ⁇ Y2" to the negative side in the Y direction (first substrate movement).
  • This first substrate movement eliminates the misalignment in the Y direction of wafer W2 (no misalignment in the Y direction), and the Y direction position adjustment for wafer W2 is completed.
  • a new misalignment amount "+ ⁇ Y2" on the negative side in the Y direction is added to the original misalignment amount "+ ⁇ Y1" in the Y direction for wafer W1.
  • lifter 241 is moved to the positive side (upward) in the Z direction, and lifter 242 is also moved to the positive side in the Z direction.
  • wafer W1 rises while its positional deviation in the X direction is eliminated, and moves away from fork 162.
  • Wafer W2 rises while its positional deviation in the Y direction is eliminated, and moves away from fork 162.
  • the misalignment in the Y direction of wafer W4 (the other wafer W) is eliminated from the state shown in FIG. 2E.
  • the fork 162 is moved in the negative Y direction by the total misalignment amount "+ ⁇ Y4 - (+ ⁇ Y2)" described above (first substrate movement).
  • This first substrate movement eliminates the misalignment in the Y direction of wafer W4 (no misalignment in the Y direction), and the Y direction position adjustment for wafer W4 is completed.
  • lifter 243 is moved to the positive side (upward) in the Z direction, and lifter 244 is also moved to the positive side in the Z direction.
  • wafer W3 rises while its positional deviation in the X direction is eliminated, and moves away from fork 162.
  • Wafer W4 rises while its positional deviation in the Y direction is eliminated, and moves away from fork 162.
  • wafers W1 to W4 are all spaced apart from fork 162. From this state, as shown in FIG. 2H, fork 162 is moved to the negative side in the Y direction and removed from process module 15.
  • the piezo actuator 261 moves the lifter 241 in the negative Y-direction by "+ ⁇ Y1" (second substrate movement).
  • This second substrate movement eliminates the Y-direction misalignment of wafer W1 (no Y-direction misalignment), completing the Y-direction position adjustment for wafer W1.
  • the piezo actuator 262 moves the lifter 242 in the negative X-direction by the total misalignment amount "+ ⁇ X2-(+ ⁇ X1)" described above (second substrate movement).
  • This second substrate movement eliminates the misalignment of wafer W2 in the X direction (no misalignment in the X direction), and the X-direction position adjustment for wafer W2 is completed.
  • the piezo actuator 263 moves the lifter 243 to the negative Y direction by the total misalignment amount described above, "+ ⁇ Y3-(+ ⁇ Y2)-(+ ⁇ Y4-(+ ⁇ Y2))” (second substrate movement).
  • This second substrate movement eliminates the misalignment of wafer W3 in the Y direction (no misalignment in the Y direction), and the Y-direction position adjustment for wafer W3 is completed.
  • the piezo actuator 264 moves the lifter 244 to the negative X direction by the total misalignment amount described above, “+ ⁇ X4-(+ ⁇ X1)-(+ ⁇ X3-(+ ⁇ X1))” (second substrate movement).
  • This second substrate movement eliminates the misalignment of wafer W4 in the X direction (no misalignment in the X direction), and the X-direction position adjustment for wafer W4 is completed.
  • wafer W1 is lowered with its positional deviations in the X and Y directions eliminated, and is placed on mounting table 191 in an accurately positioned state.
  • wafer W2 is lowered with its positional deviations in the X and Y directions eliminated, and is placed on mounting table 192 in an accurately positioned state.
  • Wafer W3 is also lowered with its positional deviations in the X and Y directions eliminated, and is placed on mounting table 193 in an accurately positioned state.
  • Wafer W4 is also lowered with its positional deviations in the X and Y directions eliminated, and is placed on mounting table 194 in an accurately positioned state.
  • the position of wafer W1 is adjusted by a first substrate movement (see FIG. 2B) in which wafer W1 held by forks 162 on mounting table 191 is moved in the X direction by transport robot 16, and a second substrate movement (see FIG. 2I) in which wafer W1 supported by lifter 241 on mounting table 191 is moved in the Y direction by piezo actuator 261.
  • the position of wafer W2 is adjusted by a first substrate movement (see FIG. 2C) in which wafer W2 held by forks 162 on mounting table 192 is moved in the Y direction by transport robot 16, and a second substrate movement (see FIG.
  • the substrate transfer system 1 (substrate position adjustment method) divides the X-direction position adjustment and Y-direction position adjustment for each wafer W between the transfer robot 16 and the piezoelectric actuator 26. This eliminates the need to move the transfer robot 16 (transfer arm) in the X and Y directions when aligning wafers W1 to W4, improving the throughput of aligning wafers W1 to W4. Also, because the piezoelectric actuator 26 only needs to be responsible for position adjustment in the X or Y direction, the positioning configuration can be simplified compared to, for example, a configuration in which the piezoelectric actuator 26 is responsible for position adjustment in both the X and Y directions.
  • the position adjustment for the wafers W1 and W2 at the tip side is performed prior to the position adjustment for the wafers W3 and W4 at the base side. Therefore, the wafers W1 and W2 are separated from the fork 162 prior to the wafers W3 and W4. Conversely, consider a case in which the wafers W3 and W4 are separated from the fork 162 prior to the wafers W1 and W2.
  • the wafer W1 on the fork 162 may collide with the pins 25 of the lifter 243 and the wafer W2 on the fork 162 may collide with the pins 25 of the lifter 244, preventing the fork 162 from being evacuated.
  • the wafers W1 and W2 are separated from the fork 162 prior to the wafers W3 and W4, so that the fork 162 can be evacuated from the process module 15 quickly. If there is no possibility that the fork 162 will need to be retracted from the process module 15 during the alignment of each wafer, the position adjustments for wafers W3 and W4 may be performed prior to the position adjustments for wafers W1 and W2.
  • the operation to the position where the first substrate movement in FIG. 2A is not performed does not have to be performed, and the first substrate movement of wafer W1 in the X direction (see FIG. 2B) and the first substrate movement of wafer W2 in the Y direction (see FIG. 2C) may be performed at the same timing.
  • the first substrate movement of wafer W3 in the X direction (see FIG. 2E) and the first substrate movement of wafer W4 in the Y direction may be performed at the same timing.
  • the first substrate movement of wafers W1 and W2 and the first substrate movement of wafers W3 and W4 are performed at different timings.
  • the transfer robot 16 can only adjust one position in the X direction and one position in the Y direction at a time, and therefore, when the fork 162 holds the positional relationship of wafers W1 to W4, the first substrate movement of wafers W1 and W2 and the first substrate movement of wafers W3 and W4 cannot be performed at the same timing.
  • the second substrate movement of wafer W1 in the Y direction, the second substrate movement of wafer W2 in the X direction, the second substrate movement of wafer W3 in the Y direction, and the second substrate movement of wafer W4 in the X direction are performed at the same timing (see FIG. 2I).
  • each piezo actuator 26 is configured to operate independently, so that the second substrate movement in the X direction and the second substrate movement in the Y direction can be performed at the same timing.
  • performing the second substrate movement in the X direction and the second substrate movement in the Y direction at the same timing contributes to improving the throughput of alignment of each wafer.
  • the number of wafers W held by the fork 162 is an even number.
  • the position adjustment by the first substrate movement and the second substrate movement is repeated for each two wafers W arranged along the X direction, thereby making it possible to adjust the positions of all wafers W.
  • the second substrate movement in the Y direction of wafer W1 and the second substrate movement in the X direction of wafer W2 may be performed.
  • the second substrate movement in the Y direction of wafer W1 and the second substrate movement in the X direction of wafer W2 in the state shown in FIG. 2I are omitted.
  • Second Embodiment The second embodiment will be described below with reference to Fig. 3. The differences from the previous embodiment will be mainly described, and the description of the similarities will be omitted.
  • This embodiment is similar to the first embodiment except for the number of wafers held by the forks. Specifically, the number of wafers arranged on the forks is an odd number in this embodiment, whereas it was an even number in the first embodiment.
  • FIG. 3 is a schematic top view showing an example of the configuration of a substrate transfer system according to a second embodiment of the technology disclosed herein.
  • the wafer W1 and the wafer W2 are arranged along the X direction at the tip end of the fork 162, and the wafer W3 is arranged at the base end.
  • the X coordinate of the wafer W3 is an intermediate coordinate between the X coordinate of the wafer W1 and the X coordinate of the wafer W2.
  • the position adjustment of the wafer W1 and the wafer W2 can be performed in the same manner as the position adjustment of the wafer W1 and the wafer W2 in the first embodiment.
  • the position adjustment of the wafer W3 is performed by moving the fork 162 in the X and Y directions. This makes it possible to omit the horizontal movement of the wafer W3 while it is supported by the lifter 24.
  • position adjustment by first substrate movement and second substrate movement can be repeated for each two wafers W arranged along the X direction. Then, position adjustment is performed for the remaining wafer W by movement using the forks 162. This allows all wafers W to be placed on the mounting table 19 in an accurately positioned state. Note that position adjustment may also be performed for the remaining wafer W by horizontal movement using the piezoelectric actuator 26.
  • Substrate transport system 16 Transport robot 162 Fork (pick) 19, 191, 192, 193, 194 Placement table 24, 241, 242, 243, 244 Lifter 26, 261, 262, 263, 264 Piezo actuator W, W1, W2, W3, W4 Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

【課題】少なくとも2つの基板を搬送する際のスループットを向上させる。 【解決手段】少なくとも2つの基板を水平方向に並べて一括して保持する保持部材を有し、該保持された各基板を搬送元から搬送先に搬送する搬送手段と、搬送先に設けられ、搬送先で、保持部材に保持された各基板がそれぞれ載置される複数の載置台と、各載置台に設けられ、各載置台と相対的に上下方向に移動可能であり、各基板が保持部材から各載置台に載置される途中で一旦各基板を支持して、各基板を保持部材から離間させる支持部材と、各支持部材をそれぞれ水平方向に独立して移動させる複数の移動手段と、を備え、各載置台に対する各基板の位置調整は、各載置台上で保持部材に保持された状態の各基板を搬送手段により移動させる第1基板移動と、各載置台上で各支持部材に支持された状態の各基板を移動手段により移動させる第2基板移動とで行われる基板搬送システムが提供される。

Description

基板搬送システムおよび基板位置調整方法
 本開示は、基板搬送システムおよび基板位置調整方法に関する。
 ウエハにプラズマ処理を施す際、例えば、プロセスチャンバ内においてウエハを所定の位置へ正確に配置する必要がある。そこで、従来より、様々なウエハの位置合わせ方法が提案されている。例えば、特許文献1には、ウエハを搬送する搬送アームと、ウエハが載置される載置台と、搬送アームから載置台へのウエハの受け渡しを行う基板受け渡し装置と、ウエハ受け渡し時にウエハの水平方向の位置を検出するための基板位置検出装置とを備える装置が開示されている。この特許文献1に記載の装置では、基板受け渡し装置は、ウエハを支持する複数のピンと、ピンを水平方向(X方向およびY方向)に駆動させる駆動手段とを有する。また、基板位置検出装置は、ウエハの周縁部を撮像する複数の撮像手段を有する。そして、特許文献1に記載の装置では、搬送アームからウエハを受け取った基板受け渡し装置がウエハを載置台に載置する際に、各撮像手段での撮像結果に基づいて、ピンをウエハごと水平方向に駆動させることにより、ウエハの水平方向の位置ずれ補正を行う。
特開2008-66372号公報
 本開示に係る技術は、少なくとも2つの基板を搬送する際のスループットを向上させる。
 本開示に係る技術の一態様は、少なくとも2つの基板を水平方向に並べて一括して保持する保持部材を有し、該保持部材に保持された前記各基板を搬送元から搬送先に搬送する搬送手段と、前記搬送先に設けられ、該搬送先で、前記保持部材に保持された前記各基板がそれぞれ載置される複数の載置台と、前記各載置台に設けられ、前記各載置台と相対的に上下方向に移動可能であり、前記各基板が前記保持部材から前記各載置台に載置される途中で一旦前記各基板を支持して、該各基板を前記保持部材から離間させる支持部材と、前記各支持部材をそれぞれ水平方向に独立して移動させる複数の移動手段と、を備え、前記各載置台に対する前記各基板の位置調整は、前記各載置台上で前記保持部材に保持された状態の前記各基板を前記搬送手段により移動させる第1基板移動と、前記各載置台上で前記各支持部材に支持された状態の前記各基板を前記移動手段により移動させる第2基板移動とで行われる。
 本開示によれば、少なくとも2つの基板を搬送する際のスループットを向上させることができる。
本開示に係る技術の第1実施形態としての基板搬送システムの構成の一例を概略的に示す概略上面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。 本開示に係る技術の第2実施形態としての基板搬送システムの構成の一例を概略的に示す概略上面図である。
 上述した特許文献1の技術では、ピンをX方向およびY方向に駆動させる必要があるため、ピンの駆動手段の構造が複雑となり、コストも上昇する。そこで、ウエハの位置合わせにおいて搬送アームによる移動を行うことにより、ピンによってウエハを移動させる必要性を無くすことも提案されている。また、ウエハの搬送効率や処理効率を向上するために、搬送アームが複数のウエハを搬送することも提案されている。
 しかしながら、搬送アームが複数のウエハを搬送する際、搬送アームによってウエハの位置合わせを行うと、各ウエハの位置合わせを行う度に、搬送アームをX方向およびY方向に移動させる必要がある。したがって、全ウエハの位置合わせのスループットが悪化するおそれがある。
 以下、図面を参照して本開示に係る技術の一実施の形態を説明する。しかしながら、以下の実施形態に記載されている構成はあくまで例示に過ぎず、この構成によって限定されることはない。例えば、この構成に含まれる各部や各手段は、同様の機能を発揮し得る任意のものと置換することができる。また、任意の構成物が付加されていてもよい。
 <第1実施形態>
 以下、図1~図2Jを参照して、第1実施形態について説明する。各図中では、互いに直交する3つの方向を想定し、水平方向のうち互いに直交する2つの方向をそれぞれ「X方向」、「Y方向」と言い、鉛直方向を「Z方向」と言う。また、各方向の矢印が向く方向を「正側(または+)」、その反対方向を「負側(または-)」と言う。図1は、本開示に係る技術の第1実施形態としての基板搬送システムの構成の一例を概略的に示す概略上面図である。図1に示す基板搬送システム1は、基板として、例えば直径が300mm~450mm(φ300mm~φ450mm)の半導体ウエハ(以下「ウエハW」という)を搬送するシステムである。基板搬送システム1は、ロードポート11、ローダーモジュール(ローダー室)12、ロードロックモジュール(ロードロック室)13、トランスファモジュール(基板搬送室)14、プロセスモジュール(基板処理室)15を備える。
 ロードポート11には、複数のウエハWを収容する容器であるフープ(不図示)が載置される。ロードポート11は、本実施形態ではY方向に沿って4つ配置されているが、ロードポート11の配置数については、4つに限定されない。これら4つのロードポート11のX方向負側には、ローダーモジュール12が隣接して配置されている。ローダーモジュール12の内部は、常に大気圧雰囲気である。また、ローダーモジュール12内には、フープに対してウエハWの搬入出を行うための搬送ロボット(不図示)が配置されている。これにより、ローダーモジュール12では、ロードポート11に載置されたフープと、ロードロックモジュール13との間でウエハWが搬送される。ローダーモジュール12のX方向負側には、2つのロードロックモジュール13が隣接して配置されている。2つのロードロックモジュール13は、Y方向に沿って配置されている。各ロードロックモジュール13は、その内部が選択的に真空雰囲気または大気圧雰囲気に切り換え可能に構成されている。また、各ロードロックモジュール13の内部は、ローダーモジュール12と連通する際には大気圧雰囲気とされ、トランスファモジュール14と連通する際には真空雰囲気とされる。各ロードロックモジュール13は、ローダーモジュール12とトランスファモジュール14との間でウエハWを搬送するための中間搬送室としての役割を担う。
 2つのロードロックモジュール13のX方向負側には、トランスファモジュール14が隣接して配置されている。トランスファモジュール14の内部は、常に所定の真空度に保たれている。また、トランスファモジュール14には、ウエハWを搬送する搬送手段としての搬送ロボット16が配置されている。搬送ロボット16は、多関節アーム161と、多関節アーム161の先端部に取り付けられ、平面視で略U字状(長尺状)をなすフォーク(ピック)162とを有する。フォーク162は、少なくとも2つのウエハWを水平方向に行列状に並べて一括して保持する保持部材である。フォーク162が保持可能なウエハWの数は、本実施形態では最大で4つ(例えば図2A参照)であるが、これに限定されない。また、フォーク162は、例えば静電気により各ウエハWを安定して保持することができる。そして、搬送ロボット16は、各ウエハWがフォーク162に保持された状態で多関節アーム161が伸縮作動することにより、当該各ウエハWを搬送元から搬送先に搬送することができる。この搬送には、各プロセスモジュール15同士間の搬送や、プロセスモジュール15とロードロックモジュール13との間の搬送がある。
 また、基板搬送システム1は、この搬送の間にフォーク162に対する各ウエハWの位置を検出する検出手段として、センサ対23を備える。センサ対23は、トランスファモジュール14の内部において各プロセスモジュール15の前に対向するように配置され、プロセスモジュール15に向かって左側の左側センサ23Lと、プロセスモジュール15に向かって右側の右側センサ23Rとを有する。各センサ対23において、右側センサ23Rおよび左側センサ23Lは、ウエハWの直径よりも小さい間隔で互いに離間し、いずれも搬送ロボット16によって搬送されるウエハWの裏面に対向するように配置される。右側センサ23Rおよび左側センサ23Lの各々は、上方におけるウエハWの外縁(以下単に「エッジ」と言う)の通過を検知する。また、基板搬送システム1は、当該基板搬送システム1の各構成要素(例えば搬送ロボット16等)の動作を制御する制御部17を備える。制御部17は、CPUやメモリ等を有する。CPUは、メモリ等に格納されたプログラムに従って後述する基板位置調整方法を実行する。制御部17は、ウエハWのエッジが右側センサ23Rや左側センサ23Lの上方を通過したときのフォーク162に対する各ウエハWの位置、具体的には、各ウエハWの重心位置を搬送ロボット16の3つのモータのエンコーダ値から算出する。なお、各ウエハWの位置を検出するセンサ対23の位置については、図1に示すセンサ対23の位置に限定されない。
 トランスファモジュール14の周囲には、6つのプロセスモジュール15がそれぞれゲートバルブ18を介して隣接して配置されている。本実施形態では、6つのプロセスモジュール15のうち、3つのプロセスモジュール15がトランスファモジュール14のY方向正側でX方向に沿って配置され、残りの3つのプロセスモジュール15がトランスファモジュール14のY方向負側でX方向に沿って配置されている。ゲートバルブ18は、トランスファモジュール14とプロセスモジュール15との連通を制御する。各プロセスモジュール15の内部は、所定の真空度に真空に保たれる。また、各プロセスモジュール15内には、複数の載置台19が配置されている。フォーク162に保持されたウエハWは、それぞれ、載置台19に1つずつ載置される。そして、載置台19に載置されたウエハWは、例えばプラズマエッチング処理等の所定のプラズマ処理が施される。本実施形態では、各プロセスモジュール15内に4つの載置台19が配置されている。これら4つの載置台19は、X方向およびY方向に沿ってそれぞれ2つずつ配置されている。なお、載置台19の配置数および配置態様については、図1に示す載置台19の配置数および配置態様に限定されない。
 図2A~図2Jに示すように、各載置台19には、それぞれ、当該載置台19と相対的に上下方向、すなわち、Z方向に移動可能なリフタ24が設けられている。リフタ24は、フォーク162上の各ウエハWがフォーク162から各載置台19に載置される途中で一旦各ウエハWを下方から持ち上げて支持する支持部材である。この支持により、各ウエハWをフォーク162から離間させることができる。各リフタ24は、上方、すなわち、Z方向正側に向かって突出し、水平方向に互いに離間して配置された3つのピン25を有する。これら3つのピン25により、ウエハWを3つの点で支持することができる。これにより、ウエハWの姿勢を安定して水平に保つことができる。なお、リフタ24が有するピン25の本数は、少なくとも3つあればよく、その本数については限定されない。また、リフタ24は、モータやエアシリンダ等の駆動源(不図示)に接続されており、当該駆動源により上下方向に移動することができる。
 各リフタ24には、それぞれ、当該リフタ24を水平方向に独立して移動させる移動手段としてのピエゾアクチュエータ26が接続されている。なお、各ピエゾアクチュエータ26がリフタ24を移動させる方向は、当該ピエゾアクチュエータ26が接続されるリフタ24によって異なるが、X方向およびY方向のうちのいずれか一方である。ピエゾアクチュエータ26は、ウエハWが載置台19に載置される際の位置調整(微調整)に用いられる。ピエゾアクチュエータ26は、その種類にもよるが、比較的小型のものであり、リフタ24への接続が容易であり、また、位置調整において高分解能を有する。なお、リフタ24を水平方向に独立して移動させる移動手段としては、本実施形態ではピエゾアクチュエータ26が用いられているが、これに限定されず、例えば、サーボモータ等を用いることもできる。
 次に、基板位置調整方法について、図2A~図2Jを参照して説明する。図2A~図2Jは、それぞれ、図1に示す基板搬送システムの作動状態の一例を順に示す3面図である。これらの図面の(a)は上面図、(b)および(c)はそれぞれ側面図である。基板位置調整方法は、基板搬送システム1を用いて、各載置台19に対する各ウエハWの位置調整を行う位置調整工程を有する。また、ここでは、6つのプロセスモジュール15のうち、1つのプロセスモジュール15を、位置調整工程が行われるウエハWの搬送先として代表的に説明する。
 図2Aに示すように、プロセスモジュール15内では、フォーク162の先端側(Y方向正側)に2つのウエハWがX方向に並んで保持され、基端側(Y方向負側)にも2つのウエハWがX方向に並んで保持されている。すなわち、プロセスモジュール15内では、フォーク162にX方向およびY方向に沿って2つずつウエハWが保持されている。以下、これら4つのウエハWのうち、X方向およびY方向の最も正側に位置するウエハWを「ウエハW1」と言い、ウエハW1のX方向負側に位置するウエハWを「ウエハW2」と言い、ウエハW1のY方向負側に位置するウエハWを「ウエハW3」と言い、ウエハW3のX方向負側に位置するウエハWを「ウエハW4」と言う。また、ウエハW1が載置される載置台19を「載置台191」と言い、ウエハW2が載置される載置台19を「載置台192」と言い、ウエハW3が載置される載置台19を「載置台193」と言い、ウエハW4が載置される載置台19を「載置台194」と言う。また、ウエハW1を昇降させるリフタ24を「リフタ241」と言い、ウエハW2を昇降させるリフタ24を「リフタ242」と言い、ウエハW3を昇降させるリフタ24を「リフタ243」と言い、ウエハW4を昇降させるリフタ24を「リフタ244」と言う。また、リフタ241を水平方向に移動させるピエゾアクチュエータ26を「ピエゾアクチュエータ261」と言い、リフタ242を水平方向に移動させるピエゾアクチュエータ26を「ピエゾアクチュエータ262」と言い、リフタ243を水平方向に移動させるピエゾアクチュエータ26を「ピエゾアクチュエータ263」と言い、リフタ244を水平方向に移動させるピエゾアクチュエータ26を「ピエゾアクチュエータ264」と言う。また、ピエゾアクチュエータ261がリフタ241を移動させる方向はY方向であり、ピエゾアクチュエータ262がリフタ242を移動させる方向はX方向であり、ピエゾアクチュエータ263がリフタ243を移動させる方向はY方向であり、ピエゾアクチュエータ264がリフタ244を移動させる方向はX方向である。
 図2Aに示すように、フォーク162は、ウエハW1~ウエハW4を保持した状態でプロセスモジュール15内に進入して停止する。このとき、載置台191上にはウエハW1が位置し、載置台192上にはウエハW2が位置し、載置台193上にはウエハW3が位置し、載置台194上にはウエハW4が位置する。また、ウエハW1~ウエハW4は、未だ位置調整(アライメント)が行われていない。すなわち、ウエハW1は、X方向に「+ΔX1」の位置ズレが生じ、Y方向に「+ΔY1」の位置ズレが生じた状態となっている。ウエハW2は、X方向に「+ΔX2」の位置ズレが生じ、Y方向に「+ΔY2」の位置ズレが生じた状態となっている。ウエハW3は、X方向に「+ΔX3」の位置ズレが生じ、Y方向に「+ΔY3」の位置ズレが生じた状態となっている。ウエハW4は、X方向に「+ΔX4」の位置ズレが生じ、Y方向に「+ΔY4」の位置ズレが生じた状態となっている。このような各位置ズレ量(ズレ量)は、センサ対23で検出された検出結果に基づいて、制御部17で演算される。従って、本実施形態では、制御部17は、演算手段としての機能を有する。位置調整工程は、このような状態から開始される。
 まず、図2Aに示す状態から、先端側に位置するウエハW1およびウエハW2のうちのウエハW1(一方のウエハW)のX方向の位置ズレを解消する。図2Bに示すように、フォーク162(搬送ロボット16)をX方向負側に「+ΔX1」分移動させる(第1基板移動)。この第1基板移動により、ウエハW1のX方向の位置ズレが解消されて、すなわち、相殺されて(X方向位置ズレ無し)、ウエハW1に対するX方向の位置調整が完了する。このとき、ウエハW2は、ウエハW1の第1基板移動で、X方向負側に新たなズレ量「+ΔX1」が元のX方向のズレ量「+ΔX2」に加算される。その結果、ウエハW2のX方向の全ズレ量(総ズレ量)は、「+ΔX2-(+ΔX1)」となる。同様に、ウエハW3は、ウエハW1の第1基板移動で、X方向負側に新たなズレ量「(+ΔX1)」が元のX方向のズレ量「+ΔX3」に加算される。その結果、ウエハW3のX方向の全ズレ量は、「+ΔX3-(+ΔX1)」となる。また、ウエハW4は、ウエハW1の第1基板移動で、X方向負側に新たなズレ量「+ΔX1」が元のX方向のズレ量「+ΔX4」に加算される。その結果、ウエハW4のX方向の全ズレ量は、「+ΔX4-(+ΔX1)」となる。このような各全ズレ量の演算も制御部17で行われる(以下の全ズレ量、すなわち、各基板移動での移動量についても同様)。
 次いで、図2Bに示す状態から、ウエハW2(他方のウエハW)のY方向の位置ズレを解消する。図2Cに示すように、フォーク162をY方向負側に「+ΔY2」分移動させる(第1基板移動)。この第1基板移動により、ウエハW2のY方向の位置ズレが解消されて(Y方向位置ズレ無し)、ウエハW2に対するY方向の位置調整が完了する。このとき、ウエハW1は、ウエハW2の第1基板移動で、Y方向負側に新たなズレ量「+ΔY2」が元のY方向のズレ量「+ΔY1」に加算される。同様に、ウエハW3は、ウエハW2の第1基板移動で、Y方向負側に新たなズレ量「+ΔY2」が元のY方向のズレ量「+ΔY3」に加算される。その結果、ウエハW3のY方向の全ズレ量は、「+ΔY3-(+ΔY2)」となる。また、ウエハW4は、ウエハW2の第1基板移動で、Y方向負側に新たなズレ量「(+ΔY2」が元のY方向のズレ量「+ΔY4」に加算される。その結果、ウエハW4のY方向の全ズレ量は、「+ΔY4-(+ΔY2)」となる。
 次いで、図2Dに示すように、リフタ241をZ方向正側(上側)に移動させるとともに、リフタ242もZ方向正側に移動させる。このとき、ウエハW1は、X方向の位置ズレが解消されたまま上昇して、フォーク162から離間する。ウエハW2は、Y方向の位置ズレが解消されたまま上昇して、フォーク162から離間する。
 次いで、図2Dに示す状態から、基端側に位置するウエハW3およびウエハW4のうちのウエハW3(一方のウエハW)のX方向の位置ズレを解消する。図2Eに示すように、フォーク162をX方向負側に、前述した全ズレ量「+ΔX3-(+ΔX1)」分移動させる(第1基板移動)。この第1基板移動により、ウエハW3のX方向の位置ズレが解消されて(X方向位置ズレ無し)、ウエハW3に対するX方向の位置調整が完了する。このとき、ウエハW4は、ウエハW3の第1基板移動で、X方向負側に新たなズレ量「+ΔX3-(+ΔX1)」が先の(元の)X方向のズレ量「+ΔX4-(+ΔX1)」に加算される。その結果、ウエハW4のX方向の全ズレ量は、「+ΔX4-(+ΔX1)-(+ΔX3-(+ΔX1))」となる。
 次いで、図2Eに示す状態から、ウエハW4(他方のウエハW)のY方向の位置ズレを解消する。図2Fに示すように、フォーク162をY方向負側に、前述した全ズレ量「+ΔY4-(+ΔY2)」分移動させる(第1基板移動)。この第1基板移動により、ウエハW4のY方向の位置ズレが解消されて(Y方向位置ズレ無し)、ウエハW4に対するY方向の位置調整が完了する。このとき、ウエハW3は、ウエハW4の第1基板移動で、Y方向負側に新たなズレ量「+ΔY4-(+ΔY2)」が先のY方向のズレ量「+ΔY3-(+ΔY2)」に加算される。その結果、ウエハW3のY方向の全ズレ量は、「+ΔY3-(+ΔY2)-(+ΔY4-(+ΔY2))」となる。
 次いで、図2Gに示すように、リフタ243をZ方向正側(上側)に移動させるとともに、リフタ244もZ方向正側に移動させる。このとき、ウエハW3は、X方向の位置ズレが解消されたまま上昇して、フォーク162から離間する。ウエハW4は、Y方向の位置ズレが解消されたまま上昇して、フォーク162から離間する。
 前述したように、ウエハW1~ウエハW4は、いずれもフォーク162から離間した状態となっている。この状態から、図2Hに示すように、フォーク162をY方向負側に移動させて、プロセスモジュール15から退避させる。
 次いで、図2Hに示す状態から、ウエハW1のY方向の位置ズレの解消と、ウエハW2のX方向の位置ズレの解消と、ウエハW3のY方向の位置ズレの解消と、ウエハW4のX方向の位置ズレの解消とを行う。なお、前述したように、ウエハW1のX方向の位置ズレと、ウエハW2のY方向の位置ズレと、ウエハW3のX方向の位置ズレと、ウエハW4のY方向の位置ズレとは、いずれも既に解消されている。図2Iに示すように、ピエゾアクチュエータ261によってリフタ241をY方向負側に「+ΔY1」分移動させる(第2基板移動)。この第2基板移動により、ウエハW1のY方向の位置ズレが解消されて(Y方向位置ズレ無し)、ウエハW1に対するY方向の位置調整が完了する。また、ピエゾアクチュエータ262によってリフタ242をX方向負側に、前述した全ズレ量「+ΔX2-(+ΔX1)」分移動させる(第2基板移動)。この第2基板移動により、ウエハW2のX方向の位置ズレが解消されて(X方向位置ズレ無し)、ウエハW2に対するX方向の位置調整が完了する。また、ピエゾアクチュエータ263によってリフタ243をY方向負側に、前述した全ズレ量「+ΔY3-(+ΔY2)-(+ΔY4-(+ΔY2))」分移動させる(第2基板移動)。この第2基板移動により、ウエハW3のY方向の位置ズレが解消されて(Y方向位置ズレ無し)、ウエハW3に対するY方向の位置調整が完了する。また、ピエゾアクチュエータ264によってリフタ244をX方向負側に、前述した全ズレ量「+ΔX4-(+ΔX1)-(+ΔX3-(+ΔX1))」分移動させる(第2基板移動)。この第2基板移動により、ウエハW4のX方向の位置ズレが解消されて(X方向位置ズレ無し)、ウエハW4に対するX方向の位置調整が完了する。
 次いで、図2Jに示すように、リフタ241~リフタ244をそれぞれZ方向負側(下側)に移動させる。これにより、ウエハW1は、X方向およびY方向の位置ズレが解消されたまま下降して、正確に位置決めされた状態で載置台191上に載置される。同様に、ウエハW2も、X方向およびY方向の位置ズレが解消されたまま下降して、正確に位置決めされた状態で載置台192上に載置される。また、ウエハW3も、X方向およびY方向の位置ズレが解消されたまま下降して、正確に位置決めされた状態で載置台193上に載置される。ウエハW4も、X方向およびY方向の位置ズレが解消されたまま下降して、正確に位置決めされた状態で載置台194上に載置される。
 以上のように位置調整工程では、ウエハW1の位置調整として、載置台191上でフォーク162に保持された状態のウエハW1を搬送ロボット16によりX方向に移動させる第1基板移動(図2B参照)と、載置台191上でリフタ241に支持された状態のウエハW1をピエゾアクチュエータ261によりY方向に移動させる第2基板移動(図2I参照)とが行われる。また、ウエハW2の位置調整として、載置台192上でフォーク162に保持された状態のウエハW2を搬送ロボット16によりY方向に移動させる第1基板移動(図2C参照)と、載置台192上でリフタ242に支持された状態のウエハW2をピエゾアクチュエータ262によりX方向に移動させる第2基板移動(図2I参照)とが行われる。また、ウエハW3の位置調整として、載置台193上でフォーク162に保持された状態のウエハW3を搬送ロボット16によりX方向に移動させる第1基板移動(図2E参照)と、載置台193上でリフタ243に支持された状態のウエハW3をピエゾアクチュエータ263によりY方向に移動させる第2基板移動(図2I参照)とが行われる。また、ウエハW4の位置調整として、載置台194上でフォーク162に保持された状態のウエハW4を搬送ロボット16によりY方向に移動させる第1基板移動(図2F参照)と、載置台194上でリフタ244に支持された状態のウエハW4をピエゾアクチュエータ264によりX方向に移動させる第2基板移動(図2I参照)とが行われる。
 ところで従来は、前述したように搬送アームが複数のウエハを搬送する際、搬送アームによってウエハの位置合わせを行うと、各ウエハの位置合わせを行う度に、搬送アームをX方向およびY方向に移動させる必要がある。その結果、全ウエハの位置合わせまでのスループットが悪化するおそれがあった。
 これに対し、基板搬送システム1(基板位置調整方法)は、ウエハWごとのX方向の位置調整とY方向の位置調整とを、搬送ロボット16とピエゾアクチュエータ26とに分担させる。これにより、ウエハW1~ウエハW4の位置合わせにおいて搬送ロボット16(搬送アーム)をX方向およびY方向に移動させる必要を無くすことができ、ウエハW1~ウエハW4の位置合わせのスループットを向上させることができる。また、ピエゾアクチュエータ26がX方向またはY方向の位置調整を担えばよい構成となるため、例えばピエゾアクチュエータ26がX方向およびY方向の双方の位置調整を担う場合の構成に比べて、位置決め用の構成を簡単なものとすることができる。
 また、位置調整工程では、先端側のウエハW1およびウエハW2に対する位置調整を、基端側のウエハW3およびウエハW4に対する位置調整よりも先行して行う。従って、ウエハW1およびウエハW2が、ウエハW3およびウエハW4よりも先行してフォーク162から離間した状態となる。これとは反対に、仮にウエハW3およびウエハW4が、ウエハW1およびウエハW2よりも先行してフォーク162から離間した状態となった場合を考えてみる。この場合、例えばエラー等の諸事情によってフォーク162をプロセスモジュール15から退避させようとしても、フォーク162上のウエハW1がリフタ243のピン25に衝突するとともに、フォーク162上のウエハW2がリフタ244のピン25に衝突して、その退避を妨げるおそれがある。しかしながら、上述した位置調整工程では、ウエハW1およびウエハW2が、ウエハW3およびウエハW4よりも先行してフォーク162から離間した状態となるため、プロセスモジュール15からのフォーク162の退避を迅速に行うことができる。なお、各ウエハの位置合わせの途中でフォーク162をプロセスモジュール15から退避させる可能性が生じない場合には、ウエハW3およびウエハW4に対する位置調整を、ウエハW1およびウエハW2に対する位置調整よりも先行して行ってもよい。
 また、図2Aの第1基板移動が実施されていない位置への動作は実施しなくても構わず、ウエハW1のX方向への第1基板移動(図2B参照)と、ウエハW2のY方向への第1基板移動(図2C参照)とは、同じタイミングで行われても構わない。同様に、ウエハW3のX方向への第1基板移動(図2E参照)と、ウエハW4のY方向への第1基板移動(図2F参照)とは、同じタイミングで行われても構わない。この場合、ウエハW1およびウエハW2の第1基板移動と、ウエハW3およびウエハW4の第1基板移動とは、異なるタイミングで行われる。これは、搬送ロボット16によって一度に調整できるX方向及びY方向の位置はそれぞれ1か所であるため、フォーク162がウエハW1~ウエハW4の位置関係を保持している状態では、ウエハW1およびウエハと、ウエハW3およびウエハW4とは、X方向への第1基板移動と、Y方向への第1基板移動とを同じタイミングで行うことができないからである。一方、ウエハW1のY方向への第2基板移動、ウエハW2のX方向への第2基板移動、ウエハW3のY方向への第2基板移動、並びにウエハW4のX方向への第2基板移動は、同じタイミングで行われる(図2I参照)。これは、各ピエゾアクチュエータ26がそれぞれ独立して作動するように構成されているため、X方向への第2基板移動と、Y方向への第2基板移動とを同じタイミングで行うことができるからである。また、X方向への第2基板移動およびY方向への第2基板移動の同じタイミングでの実行は、各ウエハの位置合わせのスループットの向上に寄与する。
 本実施形態では、フォーク162に保持されているウエハWの数が偶数である。この場合の位置調整工程では、X方向に沿って配置された2つのウエハWごとに、第1基板移動と第2基板移動とによる位置調整を繰り返すことにより、全ウエハWの位置調整が可能となる。なお、図2Dに示す状態の後に、ウエハW1のY方向への第2基板移動と、ウエハW2のX方向への第2基板移動とを行ってもよい。この場合、図2Iに示す状態でのウエハW1のY方向への第2基板移動と、ウエハW2のX方向への第2基板移動とが省略される。
 <第2実施形態>
 以下、図3を参照して、第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。本実施形態は、フォークに保持されているウエハの数が異なること以外は前記第1実施形態と同様である。具体的には、フォーク上でのウエハの配置数は、前記第1実施形態では偶数であったが、本実施形態では奇数である。
 図3は、本開示に係る技術の第2実施形態としての基板搬送システムの構成の一例を概略的に示す概略上面図である。図3に示すように、プロセスモジュール15内では、フォーク162の先端側にウエハW1とウエハW2とがX方向に沿って配置され、基端側にウエハW3が配置されている。ウエハW3のX座標は、ウエハW1のX座標とウエハW2のX座標との中間の座標である。本実施形態の位置調整工程では、ウエハW1およびウエハW2の位置調整として、前記第1実施形態でのウエハW1およびウエハW2の位置調整と同様の位置調整を用いることができる。また、ウエハW3の位置調整は、フォーク162によるX方向およびY方向の移動で行われる。これにより、ウエハW3をリフタ24で支持した状態での水平方向への移動を省略することができる。
 以上のように本実施形態では、フォーク162上でのウエハWの配置数が奇数の場合に位置調整工程を行う際、X方向に沿って配置された2つのウエハWごとに、第1基板移動と第2基板移動とによる位置調整を繰り返すことができる。そして、残りの1つのウエハWに対しては、フォーク162による移動で位置調整が行われる。これにより、全ウエハWを正確に位置決めした状態で載置台19上に載置することができる。なお、前記残りの1つのウエハWに対しても、ピエゾアクチュエータ26による水平方向への移動で位置調整を行ってもよい。
 以上、本開示の好ましい実施の形態について説明したが、本開示は上述した実施の形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
本願は、2022年11月7日に出願された日本国特許出願特願2022-178163を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
1 基板搬送システム
16 搬送ロボット
162 フォーク(ピック)
19、191、192、193、194 載置台
24、241、242、243、244 リフタ
26、261、262、263、264 ピエゾアクチュエータ
W、W1、W2、W3、W4 ウエハ

Claims (19)

  1.  少なくとも2つの基板を水平方向に並べて一括して保持する保持部材を有し、該保持部材に保持された前記各基板を搬送元から搬送先に搬送する搬送手段と、
     前記搬送先に設けられ、該搬送先で、前記保持部材に保持された前記各基板がそれぞれ載置される複数の載置台と、
     前記各載置台に設けられ、前記各載置台と相対的に上下方向に移動可能であり、前記各基板が前記保持部材から前記各載置台に載置される途中で一旦前記各基板を支持して、該各基板を前記保持部材から離間させる支持部材と、
     前記各支持部材をそれぞれ水平方向に独立して移動させる複数の移動手段と、を備え、
     前記各載置台に対する前記各基板の位置調整は、前記各載置台上で前記保持部材に保持された状態の前記各基板を前記搬送手段により移動させる第1基板移動と、前記各載置台上で前記各支持部材に支持された状態の前記各基板を前記移動手段により移動させる第2基板移動とで行われる、基板搬送システム。
  2.  前記第1基板移動での移動方向と、前記第2基板移動での移動方向とは、互いに直交する、請求項1に記載の基板搬送システム。
  3.  前記2つの基板のうち、一方の基板の前記第1基板移動での移動方向と、他方の基板の前記第1基板移動での移動方向とは、互いに直交し、前記一方の基板の前記第2基板移動での移動方向と、前記他方の基板の前記第2基板移動での移動方向とは、互いに直交する、請求項2に記載の基板搬送システム。
  4.  前記一方の基板の前記第2基板移動と、前記他方の基板の前記第2基板移動とは、同じタイミングで行われる、請求項2に記載の基板搬送システム。
  5.  互いに直交するX方向とY方向とを想定し、前記一方の基板の前記第1基板移動での移動方向をX方向、前記他方の基板の前記第1基板移動での移動方向をY方向、前記一方の基板の前記第2基板移動での移動方向をY方向、前記他方の基板の前記第2基板移動での移動方向とX方向としたとき、
     前記一方の基板は、該一方の基板の前記第1基板移動でX方向の位置が調整され、
     前記他方の基板は、該他方の基板の前記第1基板移動でY方向の位置が調整される、請求項2に記載の基板搬送システム。
  6.  前記一方の基板は、前記他方の基板の前記第1基板移動でY方向の新たなズレ量が元のY方向のズレ量に加算され、該Y方向のズレ量に前記新たなズレ量を加算した全ズレ量が前記第2基板移動で相殺されて、Y方向の位置が調整され、
     前記他方の基板は、前記一方の基板の前記第1基板移動でX方向の新たなズレ量が元のX方向のズレ量に加算され、該X方向のズレ量に前記新たなズレ量を加算した全ズレ量が前記第2基板移動で相殺されて、X方向の位置が調整される、請求項5に記載の基板搬送システム。
  7.  前記保持部材は、長尺状をなし、その先端側には、2つの前記基板が保持され、基端側には、2つの前記基板が保持されており、
     前記位置調整を行う際には、前記先端側の2つの基板に対する位置調整を、前記基端側の2つの基板に対する位置調整よりも先行して行う、請求項1に記載の基板搬送システム。
  8.  前記保持部材に保持されている前記基板の数が偶数の場合に前記位置調整を行う際には、2つの前記基板ごとに、前記第1基板移動と前記第2基板移動とによる位置調整を繰り返す、請求項1に記載の基板搬送システム。
  9.  前記保持部材に保持されている前記基板の数が奇数の場合に前記位置調整を行う際には、2つの前記基板ごとに、前記第1基板移動と前記第2基板移動とによる位置調整を繰り返し、残りの1つの前記基板に対しては、前記搬送手段による移動で位置調整が行われる、請求項1に記載の基板搬送システム。
  10.  前記搬送元から前記搬送先に前記各基板を搬送する間に、前記保持部材に対する前記各基板の位置を検出する検出手段と、
     前記各基板についての前記第1基板移動での移動量と、前記第2基板移動での移動量とを、それぞれ、少なくとも前記検出手段での検出結果に基づいて演算する演算手段と、を備える、請求項1に記載の基板搬送システム。
  11.  前記移動手段は、ピエゾアクチュエータを有する、請求項1に記載の基板搬送システム。
  12.  前記支持部材は、前記位置調整後、前記各載置台に前記各基板を載置する、請求項1に記載の基板搬送システム。
  13.  前記支持部材は、前記各基板をそれぞれ少なくとも3つの点で支持する、請求項1に記載の基板搬送システム。
  14.  少なくとも2つの基板を水平方向に並べて一括して保持する保持部材を有し、該保持部材に保持された前記各基板を搬送元から搬送先に搬送する搬送手段と、
     前記搬送先に設けられ、該搬送先で前記保持部材に保持された前記各基板がそれぞれ載置される複数の載置台と、
     前記各載置台に設けられ、前記各載置台と相対的に上下方向に移動可能であり、前記各基板が前記保持部材から前記各載置台に載置される途中で一旦前記各基板を支持して、該各基板を前記保持部材から離間させる支持部材と、
     前記各支持部材をそれぞれ水平方向に独立して移動させる複数の移動手段と、を備える基板搬送システムを用いて、
     前記各載置台に対する前記各基板の位置調整を行う位置調整工程を有し、
     前記位置調整工程では、前記各載置台上で前記保持部材に保持された状態の前記各基板を前記搬送手段により移動させる第1基板移動と、前記各載置台上で前記各支持部材に支持された状態の前記各基板を前記移動手段により移動させる第2基板移動とを行う、基板位置調整方法。
  15.  前記第1基板移動での移動方向と、前記第2基板移動での移動方向とは、互いに直交する、請求項14に記載の基板位置調整方法。
  16.  前記2つの基板のうち、一方の基板の前記第1基板移動での移動方向と、他方の基板の前記第1基板移動での移動方向とは、互いに直交し、前記一方の基板の前記第2基板移動での移動方向と、前記他方の基板の前記第2基板移動での移動方向とは、互いに直交する、請求項15に記載の基板位置調整方法。
  17.  前記一方の基板の前記第2基板移動と、前記他方の基板の前記第2基板移動とは、同じタイミングで行われる、請求項15に記載の基板位置調整方法。
  18.  互いに直交するX方向とY方向とを想定し、前記一方の基板の前記第1基板移動での移動方向をX方向、前記他方の基板の前記第1基板移動での移動方向をY方向、前記一方の基板の前記第2基板移動での移動方向をY方向、前記他方の基板の前記第2基板移動での移動方向とX方向としたとき、
     前記一方の基板は、該一方の基板の前記第1基板移動でX方向の位置が調整され、
     前記他方の基板は、該他方の基板の前記第1基板移動でY方向の位置が調整される、請求項15に記載の基板位置調整方法。
  19.  前記一方の基板は、前記他方の基板の前記第1基板移動でY方向の新たなズレ量が元のY方向のズレ量に加算され、該Y方向のズレ量に前記新たなズレ量を加算した全ズレ量が前記第2基板移動で相殺されて、Y方向の位置が調整され、
     前記他方の基板は、前記一方の基板の前記第1基板移動でX方向の新たなズレ量が元のX方向のズレ量に加算され、該X方向のズレ量に前記新たなズレ量を加算した全ズレ量が前記第2基板移動で相殺されて、X方向の位置が調整される、請求項18に記載の基板位置調整方法。 
PCT/JP2023/040045 2022-11-07 2023-11-07 基板搬送システムおよび基板位置調整方法 WO2024101354A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022178163A JP2024067818A (ja) 2022-11-07 2022-11-07 基板搬送システムおよび基板位置調整方法
JP2022-178163 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101354A1 true WO2024101354A1 (ja) 2024-05-16

Family

ID=91032499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040045 WO2024101354A1 (ja) 2022-11-07 2023-11-07 基板搬送システムおよび基板位置調整方法

Country Status (2)

Country Link
JP (1) JP2024067818A (ja)
WO (1) WO2024101354A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213770A (ja) * 1996-01-29 1997-08-15 Toshiba Corp 半導体ウエハ処理装置および半導体ウエハ処理装置におけるアライメント方法
JP2006294786A (ja) * 2005-04-08 2006-10-26 Ulvac Japan Ltd 基板搬送システム
US20120014773A1 (en) * 2007-11-30 2012-01-19 Chris Gage High throughput method of in transit wafer position correction in a system using multiple robots
WO2013088547A1 (ja) * 2011-12-15 2013-06-20 タツモ株式会社 ウエハ搬送装置
JP2017157705A (ja) * 2016-03-02 2017-09-07 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP2020061472A (ja) * 2018-10-10 2020-04-16 東京エレクトロン株式会社 基板処理システム
US20200203197A1 (en) * 2018-12-24 2020-06-25 Piotech Co., Ltd. Multi-station processing chamber for semiconductor
JP2022540608A (ja) * 2019-07-12 2022-09-16 アプライド マテリアルズ インコーポレイテッド 同時基板移送用ロボット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213770A (ja) * 1996-01-29 1997-08-15 Toshiba Corp 半導体ウエハ処理装置および半導体ウエハ処理装置におけるアライメント方法
JP2006294786A (ja) * 2005-04-08 2006-10-26 Ulvac Japan Ltd 基板搬送システム
US20120014773A1 (en) * 2007-11-30 2012-01-19 Chris Gage High throughput method of in transit wafer position correction in a system using multiple robots
WO2013088547A1 (ja) * 2011-12-15 2013-06-20 タツモ株式会社 ウエハ搬送装置
JP2017157705A (ja) * 2016-03-02 2017-09-07 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP2020061472A (ja) * 2018-10-10 2020-04-16 東京エレクトロン株式会社 基板処理システム
US20200203197A1 (en) * 2018-12-24 2020-06-25 Piotech Co., Ltd. Multi-station processing chamber for semiconductor
JP2022540608A (ja) * 2019-07-12 2022-09-16 アプライド マテリアルズ インコーポレイテッド 同時基板移送用ロボット

Also Published As

Publication number Publication date
JP2024067818A (ja) 2024-05-17

Similar Documents

Publication Publication Date Title
US20200388523A1 (en) Wafer aligner
US9437469B2 (en) Inertial wafer centering end effector and transport apparatus
CN106847736B (zh) 基板处理系统和方法
KR101387585B1 (ko) 통합식 웨이퍼 운반 기구
KR100962754B1 (ko) 진공 처리 장치의 반송위치 정렬 방법, 진공 처리 장치 및컴퓨터 기억 매체
JP5323718B2 (ja) 高生産性ウエハ連続処理末端装置
JP6058004B2 (ja) マルチリンケージロボットを有するシステム及びマルチリンケージロボットにおいて位置アライメント及び回転アライメントを補正するための方法
KR100832925B1 (ko) 반송기구의 반송 어긋남 산출 방법 및 반도체 처리 장치
KR100802526B1 (ko) 진공처리방법 또는 진공처리장치
JP2006521704A (ja) 高速で対象物を取り扱う方法および装置
CN107887311B (zh) 基板搬运装置及基板搬运方法
KR20160030282A (ko) 온-더-플라이 기판 센터링을 갖는 처리 장치
KR102247038B1 (ko) 호이스트 모듈의 위치 보정 방법
JP5386238B2 (ja) パネル基板搬送装置および表示パネルモジュール組立装置
JP2008159784A (ja) ステージ装置
WO2024101354A1 (ja) 基板搬送システムおよび基板位置調整方法
TW202147495A (zh) 晶圓搬送裝置、及晶圓搬送方法
US7361920B2 (en) Substrate processing apparatus and transfer positioning method thereof
JP7429578B2 (ja) アライナ装置およびワークの位置ずれ補正方法
KR100916141B1 (ko) 얼라이너 챔버 및 그것을 구비한 멀티 챔버형 기판 처리 설비
JP7429579B2 (ja) アライナ装置および板状ワークの位置ずれ補正方法
KR20210086698A (ko) 기판 처리 장치 및 기판 반송 방법
JP2011138844A (ja) 真空処理装置および半導体デバイスの製造方法
JP7335853B2 (ja) ウェハ処理システム
US20230230862A1 (en) Substrate transport method and substrate processing system