WO2024099362A1 - 无取向硅钢板及其生产方法 - Google Patents

无取向硅钢板及其生产方法 Download PDF

Info

Publication number
WO2024099362A1
WO2024099362A1 PCT/CN2023/130488 CN2023130488W WO2024099362A1 WO 2024099362 A1 WO2024099362 A1 WO 2024099362A1 CN 2023130488 W CN2023130488 W CN 2023130488W WO 2024099362 A1 WO2024099362 A1 WO 2024099362A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
oriented silicon
controlled
hot
steel sheet
Prior art date
Application number
PCT/CN2023/130488
Other languages
English (en)
French (fr)
Inventor
黄杰
谢世殊
岳重祥
陆佳栋
Original Assignee
张家港扬子江冷轧板有限公司
江苏省沙钢钢铁研究院有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港扬子江冷轧板有限公司, 江苏省沙钢钢铁研究院有限公司, 江苏沙钢集团有限公司 filed Critical 张家港扬子江冷轧板有限公司
Publication of WO2024099362A1 publication Critical patent/WO2024099362A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of alloys, and in particular to a non-oriented silicon steel plate and a production method thereof.
  • Chinese patent CN103667879A discloses a non-oriented electrical steel and production method with excellent magnetic properties and mechanical properties, which adds Sn or Sb elements, has a high alloy cost, and requires normalization, and has high manufacturing cost.
  • Chinese patent CN104195426B discloses a semi-process non-oriented silicon steel, which uses a hood furnace for recrystallization annealing, has low production efficiency, and must be flattened after hood annealing. The flattening process requires additional production equipment and the manufacturing process is complicated. The above method has high alloy and manufacturing costs, and its production process is complicated, so it is necessary to provide a low-cost, simple manufacturing process non-oriented silicon steel production method.
  • the object of the present invention is to provide a non-oriented silicon steel sheet and a production method thereof.
  • the present invention provides a production method of a non-oriented silicon steel sheet, wherein the non-oriented silicon steel comprises, by mass percentage, C ⁇ 0.005%, Si: 0.60-1.60%, Al: 0.40-0.80%, Mn: 0.20-0.80%, S ⁇ 0.003%, N ⁇ 0.003%, and the balance is Fe and unavoidable impurities, wherein the unavoidable impurities comprise: C ⁇ 0.005%, S ⁇ 0.003%, N ⁇ 0.003%;
  • the element symbol is the mass percentage of the corresponding element
  • the production method comprises the steps of:
  • recrystallization annealing treatment on the cold-rolled sheet to obtain a primary annealed steel sheet, wherein the recrystallization annealing temperature is controlled to be 800 to 950° C., and the holding time is controlled to be 50 to 200 seconds;
  • the primary annealed steel plate is subjected to secondary annealing treatment to obtain a secondary annealed steel plate, wherein the secondary annealing temperature is controlled to be 750-850° C., and the heat preservation time is controlled to be 1-3 hours.
  • the heating of the cast billet specifically comprises:
  • the ingot is heated to a temperature range of 1050-1200°C, and the heating time is controlled to be 150-200 minutes, and the temperature fluctuation is controlled within ⁇ 20°C.
  • the hot rolling treatment of the cast billet after the heating to obtain the hot rolled plate specifically comprises:
  • the hot rolling start temperature is controlled to ⁇ 1200°C
  • the final rolling temperature is controlled to ⁇ 840°C
  • the final rolling temperature fluctuation is controlled within ⁇ 20°C.
  • the casting is hot rolled after heating to obtain
  • the hot rolled plate also includes:
  • the hot-rolled plate After obtaining the hot-rolled plate, the hot-rolled plate is subjected to laminar cooling and then coiled, and the coiling temperature is controlled to be ⁇ 700°C, and the coiling temperature fluctuation is controlled within ⁇ 20°C.
  • the cold-rolling treatment of the hot-rolled plate to obtain the cold-rolled plate specifically includes:
  • the hot-rolled sheet is cold-rolled to form a cold-rolled sheet with a thickness of 0.47 to 0.51 mm.
  • the method further comprises:
  • An insulating coating is applied on the surface of the primary annealed steel sheet.
  • the cold rolled sheet is subjected to recrystallization annealing treatment in a hydrogen and nitrogen protective atmosphere; and the primary annealed steel sheet is subjected to secondary annealing treatment in a nitrogen or DX gas protective atmosphere.
  • the present invention also provides a non-oriented silicon steel sheet, which is manufactured by the above-mentioned production method of the non-oriented silicon steel sheet, and the iron loss reduction rate ⁇ P 15/50 /P 15/50 of the non-oriented silicon steel sheet is above 15%.
  • the present invention also provides a non-oriented silicon steel sheet, wherein the non-oriented silicon steel composition comprises, by mass percentage, C ⁇ 0.005%, Si: 0.60-1.60%, Al: 0.40-0.80%, Mn: 0.20-0.80%, S ⁇ 0.003%, N ⁇ 0.003%, and the balance is Fe and unavoidable impurities, wherein the unavoidable impurities include: C ⁇ 0.005%, S ⁇ 0.003%, N ⁇ 0.003%;
  • the element symbol is the mass percentage of the corresponding element.
  • the iron loss reduction rate ⁇ P 15/50 /P 15/50 of the non-oriented silicon steel sheet is above 15%.
  • the present invention promotes the production of non-oriented silicon steel by finely regulating the Si and Al contents in the non-oriented silicon steel based on the value of (Si/Al)/(Si+Al) and coordinating with the precise control of the production process.
  • the texture of silicon steel substrate is optimized, and the iron loss after secondary annealing is reduced, thereby significantly reducing the loss of motor products.
  • the total amount of Si and Al added to non-oriented silicon steel sheets is low, the alloy cost is low, and the production process is simple. Therefore, the comprehensive cost of non-oriented silicon steel sheets is relatively low, and the products are more competitive in the market.
  • FIG. 1 is a schematic flow diagram of a method for producing a non-oriented silicon steel sheet in one embodiment of the present invention.
  • FIG. 2a and FIG. 2b are texture distribution diagrams of Example 3 and Comparative Example 1, respectively.
  • the present embodiment provides a non-oriented silicon steel sheet and a production method thereof, which can effectively promote the texture optimization of the silicon steel substrate and reduce the iron loss after secondary annealing by introducing the value of (Si/Al)/(Si+Al) as the control factor of the Si and Al addition amounts (the element symbol is the mass percentage of the corresponding element) and coordinating with the production process control, thereby being able to significantly reduce the loss of the motor product when it is used as electrical steel for motor products.
  • the non-oriented silicon steel provided in this embodiment comprises, by mass percentage: C ⁇ 0.005%, Si: 0.60 ⁇ 1.60%, Al: 0.40 ⁇ 0.80%, Mn: 0.20 ⁇ 0.80%, S ⁇ 0.003%, N ⁇ 0.003%, and the balance is Fe and inevitable impurities, wherein the inevitable impurities include: C ⁇ 0.005%, S ⁇ 0.003%, and N ⁇ 0.003%.
  • the core idea of the design of the chemical composition of the steel sheet in the present invention is to improve the texture of the steel sheet by adding only a small amount of Si and Al and regulating the content of Si and Al according to the value of (Si/Al)/(Si+Al), so as to reduce the iron loss and stabilize the magnetic properties of the steel sheet after secondary annealing.
  • the steel sheet in this embodiment has a lower alloy cost, and the manufacturing method used is simple, with low manufacturing difficulty and cost.
  • Si is the most important alloying element in electrical steel, which can effectively increase the resistivity of steel and reduce eddy current loss.
  • the Si content is controlled to 0.60-1.60%.
  • Al also has a similar effect to Si, which can increase resistivity and reduce eddy current loss.
  • the size distribution of the precipitated phase AlN is different, and the hindering effect on grain growth is also different.
  • the Al content is low, Al combines with N to form fine dispersed AlN, which obviously hinders grain growth during annealing and significantly reduces the magnetic properties.
  • the Al content is between 0.005% and 0.01%, the size of the AlN inclusions formed is less than 1 ⁇ m, which has a significant pinning effect on the magnetic domain, resulting in the deterioration of the magnetic properties.
  • the Al content is high, the size of the precipitated phase AlN is larger, which is conducive to the coarsening of the grains. Therefore, increasing the Al content is very beneficial to improving the magnetic properties, especially the magnetic properties of extremely low iron loss non-oriented silicon steel.
  • Al can also reduce the austenite phase area, promote grain growth and texture improvement, and reduce iron loss.
  • ⁇ 100 ⁇ and ⁇ 110 ⁇ textures are favorable textures for magnetic properties
  • ⁇ 111 ⁇ and ⁇ 112 ⁇ textures are unfavorable textures.
  • the ⁇ 111 ⁇ texture that is unfavorable to magnetic properties is easy to nucleate at grain boundaries and inclusions. Therefore, when the grains are small, there are many grain boundaries, which is easy to nucleate unfavorable textures, resulting in increased strength of unfavorable textures and decreased magnetic properties.
  • the appropriate Al content promotes grain growth, reduces the strength of the unfavorable texture component ⁇ 111 ⁇ , and thus reduces iron loss.
  • Al reduces iron loss, it also deteriorates magnetic induction.
  • the Al content is controlled to be 0.40-0.80%.
  • the element symbol is the mass percentage of the corresponding element.
  • Si and Al reduces iron loss to a greater extent than Si, and deteriorates magnetic induction to a lesser extent than Si, and the beneficial effect becomes more obvious as the Si content increases.
  • the contents of Si and Al are limited according to the above formula. This ratio greatly affects the iron loss reduction rate ⁇ P 15/50 /P 15/50 before and after secondary annealing.
  • the formula value is less than 1.67, the texture is significantly improved, the iron loss reduction rate increases, and the secondary annealing effect is significantly improved.
  • the ratio is lower than 0.83, the magnetic properties fluctuate significantly and the stability is weak.
  • Mn can form MnS with S, which can prevent the formation of low-melting FeS along the grain boundary, thereby avoiding the hot brittleness of the hot-rolled plate. Therefore, it is necessary to ensure that a certain amount of Mn is added to the steel to improve its hot rolling plasticity.
  • Mn can expand the austenite phase area.
  • the solid solubility product of MnS in the austenite phase is lower than that in the ferrite phase, so it will promote the coarsening of MnS, reduce the pinning effect on the grain boundary, and facilitate grain growth and iron loss P 15/50 .
  • the increase in Mn content will reduce the ferrite phase area, resulting in a decrease in annealing temperature, which is not conducive to grain growth. Therefore, the Mn content is conventionally controlled at 0.20-0.80%.
  • C In non-oriented silicon steel sheets, C is a harmful element. When the C content is too high, magnetic aging is likely to occur. In addition, an increase in the C content in the finished steel sheet will increase the iron loss P 15/50 . Therefore, the C content needs to be controlled at a low level. In this embodiment, the C content is controlled to C ⁇ 0.005%.
  • S is a harmful element.
  • S and Mn form fine MnS, it can strongly hinder the grain growth during steel plate annealing.
  • the iron loss P 15/50 will increase with the increase of S content. Therefore, it is necessary to control the S content below 0.003%.
  • N is a harmful element, which can easily form fine AlN particles to inhibit grain growth.
  • the iron loss P 15/50 will increase significantly.
  • N is an element prone to magnetic aging, and has a greater impact on aging than C. Therefore, the N content needs to be controlled below 0.003%.
  • the method for producing a non-oriented silicon steel sheet comprises the following steps:
  • the primary annealed steel plate is subjected to secondary annealing treatment to obtain a secondary annealed steel plate.
  • the secondary annealing temperature is controlled at 750-850° C., and the holding time is controlled at 1-3 hours.
  • step S1 the steel may be smelted in a converter or an electric furnace, and after smelting to obtain molten steel, secondary refining and continuous casting may be performed to obtain a cast steel sheet.
  • the smelting, refining and continuous casting process methods may refer to the existing conventional steel plate production process.
  • step S2 specifically includes:
  • the ingot is heated to a temperature range of 1050-1200°C, and the heating time is controlled to be 150-200 minutes, and the temperature fluctuation is controlled within ⁇ 20°C.
  • step S2 the ingot is heated before rolling to a uniform temperature suitable for rolling, which can improve the plasticity of the steel, reduce the deformation resistance, and make the ingot easy to deform, so that a larger reduction can be used during the slab rolling process.
  • heating can improve the internal structure and performance of the slab, and the uneven structure and non-metallic inclusions can be homogenized by the diffusion effect of high-temperature heating.
  • too long heating time will reduce the magnetism of the steel plate, so it is necessary to control the heating time to avoid too long heating time, and too high heating temperature will cause the precipitates in the ingot to dissolve, and fine inclusions will precipitate during hot rolling to inhibit the growth of annealing grains, resulting in increased iron loss and reduced magnetic induction, so the heating temperature is controlled.
  • the ingot can be heated by heating it cold or by hot charging it into a heating furnace for heating.
  • step S2 the ingot is subjected to hot rolling treatment after heating to obtain a hot-rolled plate, which specifically includes:
  • the hot rolling start temperature is controlled at ⁇ 1200°C and the final rolling temperature is controlled at ⁇ 840°C. Control the rolling temperature to avoid the accelerated recrystallization rate during hot rolling, which will deteriorate the hot rolled plate structure and cause the finished plate iron The loss increases and the magnetic induction decreases.
  • the hot-rolled plate After obtaining the hot-rolled plate, the hot-rolled plate is subjected to laminar cooling and then coiled, and the coiling temperature is controlled to be ⁇ 700° C. to avoid precipitation of fine dispersed inclusions in the hot-rolled plate and inhibiting the growth of annealing grains.
  • the fluctuation of the final rolling temperature and the coiling temperature is controlled within ⁇ 20°C, thereby ensuring the magnetic stability of the steel plate.
  • the hot rolled sheet is further cold rolled to form a cold rolled sheet having a thickness of 0.47 to 0.51 mm.
  • step S4 and step S5 the cold rolled sheet is subjected to recrystallization annealing treatment in a hydrogen and nitrogen protective atmosphere, and the primary annealed steel sheet is subjected to secondary annealing treatment in a nitrogen or DX gas protective atmosphere to avoid oxidation on the surface of the cold rolled sheet.
  • An insulating coating is applied on the surface of the primary annealed steel sheet to further protect the steel sheet and prevent oxidation on the surface of the steel sheet.
  • Examples 1 to 5 and Comparative Examples 1 to 3 were all produced according to the above production method.
  • the Si and Al element contents, some process parameters and magnetic properties of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1. Except for Si and Al elements, the contents of other elements in Examples 1 to 5 and Comparative Examples 1 to 3 were added according to the contents described above.
  • the magnetic properties of the final silicon steel sheet are closely related to the value of (Si/Al)/(Si+Al).
  • the magnetic properties of the embodiment after secondary annealing are more excellent, especially the iron loss performance.
  • the iron loss before the secondary annealing is the same, the iron loss decreases more after the secondary annealing, and the iron loss reduction rate is high.
  • Example 3 and Comparative Example 1 were selected for texture analysis.
  • the total amount of Si+Al alloy in the two is similar, and the magnetic level is similar.
  • the textures of the two are quantitatively analyzed, as shown in Figures 2a and 2b, which are the texture distribution diagrams of Example 3 and Comparative Example 1, respectively.
  • the unfavorable texture ⁇ 111 ⁇ 112> in Example 3 is weaker than that in Comparative Example 1, and there are strong favorable textures ⁇ 001 ⁇ 110> and ⁇ 001 ⁇ 120>. It can be seen that for non-oriented silicon steel with similar total amount of Si+Al alloy, by adjusting the (Si/Al)/(Si+Al) ratio in the steel, the texture can be optimized, and the magnetic properties of the non-oriented silicon steel can be further improved.
  • this embodiment promotes the texture optimization of silicon steel substrates and reduces the iron loss after secondary annealing by finely regulating the Si and Al contents in non-oriented silicon steel based on the value of (Si/Al)/(Si+Al), and cooperates with the precise control of the production process, thereby significantly reducing the loss of motor products.
  • the total amount of Si and Al added to non-oriented silicon steel sheets is low, the alloy cost is low, and the production process is simple. Therefore, the comprehensive cost of non-oriented silicon steel sheets is relatively low, and the products are more competitive in the market.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

一种无取向硅钢板及其生产方法,无取向硅钢中的Si和Al含量基于(Si/Al)/(Si+Al)的值进行精细调控,并配合生产工艺的精确控制,促进硅钢基板的织构优化,降低二次退火后的铁损,从而显著降低电机产品的损耗。并且,无取向硅钢板中添加的Si和Al总量低,合金成本低,且生产工艺简单。因此,无取向硅钢板的综合成本相对低,产品更有市场竞争力。

Description

无取向硅钢板及其生产方法 技术领域
本发明涉及合金技术领域,具体地涉及一种无取向硅钢板及其生产方法。
背景技术
无取向硅钢片在电机定转子片的冲剪加工过程中,容易产生内应力和局部塑性变形,导致晶格畸变和磁畴结构破坏,使得磁导率降低,磁滞损耗增加,最终导致电机损耗增大;同时,冲压过程中定子齿部剪切区域的机械和磁不平衡还会影响电机的摩擦转矩。为提高冲剪后硅钢片的性能,硅钢下游尤其是压缩机厂家需要对定转子片进行二次退火,主要是为了消除冲剪后的残余应力和晶格畸变,恢复硅钢板的磁性能。但是,采用不同的硅钢成分和制造工艺,二次退火后所表现出的恢复和改善效果是有差异的,有的硅钢片虽经二次退火,但铁损耗下降不明显,制成的电机铁芯仍然损耗超标。
因此优化无取向硅钢成分及工艺,使得最终具有更低的损耗、更稳定的综合性能,是二次退火用户颇为关心的问题。目前大多数方案是通过添加有利元素、增加生产工序来实现磁性能提升。如中国专利CN103667879A公开了一种磁性能和机械性能优良的无取向电工钢及生产方法,其添加了Sn或Sb元素,合金成本较高,而且需要常化,制造成本高。中国专利CN104195426B公开了一种半工艺无取向硅钢,其采用罩式炉进行再结晶退火,生产效率低,而且在罩式退火之后必须进行小延伸平整,平整工序需要额外的生产设备,制造工艺复杂。上述方法合金和制造成本高,其生产工艺复杂,因此需要提供一种低成本,制造工艺简单的无取向硅钢生产方法。
发明内容
本发明的目的在于提供一种无取向硅钢板及其生产方法。
本发明提供一种无取向硅钢板的生产方法,所述无取向硅钢成分以质量百分比计包括:C≤0.005%、Si:0.60~1.60%、Al:0.40~0.80%、Mn:0.20~0.80%、S≤0.003%、N≤0.003%,余量为Fe和不可避免的杂质,其中所述不可避免的杂质包含:C≤0.005%,S≤0.003%,N≤0.003%;
并且,Si和Al的含量满足以下公式:
其中,元素符号为相应元素的质量百分数;
所述生产方法包括步骤:
按照上述化学成分配比,冶炼、铸造得到铸坯;
加热所述铸坯,加热后对所述铸坯进行热轧处理获得热轧板;
对所述热轧板冷轧处理获得冷轧板;
对所述冷轧板进行再结晶退火处理得到一次退火钢板,所述再结晶退火温度控制为800~950℃,保温时间控制为50~200s;
对所述一次退火钢板进行二次退火处理得到二次退火钢板,所述二次退火温度控制为750~850℃,保温时间控制为1~3h。
作为本发明的进一步改进,所述加热所述铸坯,具体包括:
将所述铸坯加热至温度范围为1050~1200℃,并控制加热时间为150~200min,温度波动控制在±20℃之内。
作为本发明的进一步改进,所述加热后对所述铸坯进行热轧处理获得热轧板,具体包括:
将热轧开轧温度控制为≤1200℃,终轧温度控制为≥840℃,终轧温度波动控制在±20℃之内。
作为本发明的进一步改进,所述加热后对所述铸坯进行热轧处理获 得热轧板,还包括:
在得到所述热轧板后,将所述热轧板进行层流冷却后进行卷取,并控制卷取温度≤700℃,卷取温度波动控制在±20℃之内。
作为本发明的进一步改进,所述对所述热轧板冷轧处理获得冷轧板,具体包括:
将所述热轧板冷轧至形成厚度为0.47~0.51mm的冷轧板。
作为本发明的进一步改进,在所述对所述冷轧板进行再结晶退火处理得到一次退火钢板之后,还包括:
在所述一次退火钢板表面涂覆绝缘涂层。
作为本发明的进一步改进,在氢氮保护气氛下,对所述冷轧板进行再结晶退火处理;在氮气或DX气体保护气氛下,对所述一次退火钢板进行二次退火处理。
本发明还提供一种无取向硅钢板,其采用上述的无取向硅钢板的生产方法制造得到,所述无取向硅钢板铁损下降率△P15/50/P15/50在15%以上。
本发明还提供一种无取向硅钢板,所述无取向硅钢成分以质量百分比计包括:C≤0.005%、Si:0.60~1.60%、Al:0.40~0.80%、Mn:0.20~0.80%、S≤0.003%、N≤0.003%,余量为Fe和不可避免的杂质,其中所述不可避免的杂质包含:C≤0.005%,S≤0.003%,N≤0.003%;
并且,Si和Al的含量满足以下公式:
其中,元素符号为相应元素的质量百分数。
作为本发明的进一步改进,所述无取向硅钢板铁损下降率△P15/50/P15/50在15%以上。
本发明的有益效果是:本发明通过对无取向硅钢中的Si和Al含量基于(Si/Al)/(Si+Al)的值进行精细调控,并配合生产工艺的精确控制,促 进硅钢基板的织构优化,降低二次退火后的铁损,从而显著降低电机产品的损耗。并且,无取向硅钢板中添加的Si和Al总量低,合金成本低,且生产工艺简单。因此,无取向硅钢板的综合成本相对低,产品更有市场竞争力。
附图说明
图1是本发明一实施方式中的无取向硅钢板生产方法的流程示意图。
图2a、图2b分别为实施例3和对比例1的织构分布图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施方式及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
本实施方式提供一种无取向硅钢板及其生产方法,通过引入(Si/Al)/(Si+Al)的值来作为Si和Al添加量的控制因素(元素符号为相应元素的质量百分数),并配合生产工艺控制,能够有效促进硅钢基板的织构优化,降低二次退火后的铁损,从而将其作为电工钢用于电机产品时,能够显著降低电机产品的损耗。
本实施方式提供的无取向硅钢成分以质量百分比计包括:C≤ 0.005%、Si:0.60~1.60%、Al:0.40~0.80%、Mn:0.20~0.80%、S≤0.003%、N≤0.003%,余量为Fe和不可避免的杂质,其中所述不可避免的杂质包含:C≤0.005%,S≤0.003%,N≤0.003%。
本发明中钢板的化学成分的设计,其核心思想是通过仅添加少量Si和Al,并根据(Si/Al)/(Si+Al)的值来对Si和Al的组分含量进行调控,从而来改善钢板织构,使得钢板二次退火后的铁损耗更低、磁性更稳定。相比于添加Sn或Sb等元素的无取向硅钢板,本实施方式中的钢板合金成本更低,且所使用的制造方法工艺简单,制造难度及成本低。
具体地,钢板的化学成分的设计原理说明如下:
Si:Si是电工钢中最重要的合金元素,能有效提高钢的电阻率,降低涡流损耗,但随着Si含量增大,磁通密度会降低,会恶化磁感应强度。因此,在本实施方式中,将Si含量控制为0.60~1.60%。
Al:Al也有与Si类似的作用,可以提高电阻率而减少涡流损耗。Al含量不同时,析出相AlN的大小分布不同,对晶粒长大的阻碍作用也不同。当Al含量较低时,Al与N结合形成细小弥散的AlN明显阻碍退火时晶粒长大,会显著降低磁性能,当Al含量在0.005%~0.01%时,由于所形成的AlN夹杂物尺寸小于1μm,对磁畴有明显的钉扎作用,导致磁性能的恶化。当Al含量较高时,析出相AlN的尺寸较大,有利于晶粒的粗化。因此,提高Al含量对改善磁性能尤其是极低铁损无取向硅钢磁性能十分有利。
并且,Al还可缩小奥氏体相区,促进晶粒长大和织构改善,使铁损降低。对于无取向硅钢,{100}和{110}织构是对磁性能有利的织构,{111}和{112}织构是不利织构。对磁性能不利的{111}织构易于在晶界和夹杂物处形核,因此当晶粒小的时候晶界多,易于不利织构的形核,从而导致不利织构强度增加,磁性能下降。合适的Al含量促进晶粒长大,不利织构组分{111}强度降低,从而使铁损降低。
但是,Al在降低铁损的同时,也会恶化磁感。因此,在本实施方 式中,将Al含量控制为0.40~0.80%。
进一步地,Si和Al的含量满足以下公式:
其中,元素符号为相应元素的质量百分数。
Al降低铁损幅度比Si大,恶化磁感的幅度比Si小,并且随着Si含量的提高有利作用愈明显。为了提高二次退火后的磁性能,特别是降低二次退火后黑片的铁损耗,将Si和Al的含量按照上述公式进行限定。该比值在很大程度上影响着二次退火前后的铁损下降率△P15/50/P15/50,当公式值小于1.67时,织构明显改善,铁损下降率增大,二次退火效果显著提高。当比值低于0.83,磁性能波动明显,稳定性弱。
Mn:Mn可与S形成MnS,其可防止沿晶界形成低熔点的FeS,从而避免热轧板的热脆现象,因此要保证在钢中添加有一定量的Mn来改善其热轧塑性。此外,Mn可扩大奥氏体相区,MnS在奥氏体相中的固溶度乘积比在铁素体相中的低,因此会促使MnS粗化,减小对晶界的钉扎的作用,利于晶粒长大和铁损P15/50降低。但另一方面,Mn含量增加又会减少铁素体相区,从而导致退火温度降低,不利于晶粒的长大,因此Mn含量按照常规控制在0.20~0.80%。
C:在无取向硅钢板中,C为有害元素,当C含量过高时,容易产生磁时效,而且成品钢板中C含量增高,会使铁损P15/50增大,因此需要将C含量控制在较低水平,在本实施方式中,将C含量控制为C≤0.005%。
S:S是有害元素,S与Mn形成细小的MnS时可强烈阻碍钢板退火时的晶粒长大,任何Mn含量下,铁损P15/50都会随着S含量增高而增大。因此,需要将S含量控制在0.003%以下。
N:N是有害元素,易形成细小AlN质点抑制晶粒长大,N含量超过0.0025%时易使铁损P15/50明显增高,而且N是易磁时效元素,比C对时效的影响更大,需要将N含量控制在0.003%以下。
如图1所示,无取向硅钢板生产方法包括步骤:
S1:按照上述化学成分配比,冶炼、铸造得到铸坯。
S2:加热铸坯,加热后对铸坯进行热轧处理获得热轧板。
S3:对热轧板冷轧处理获得冷轧板。
S4:对冷轧板进行再结晶退火处理得到一次退火钢板,再结晶退火温度控制为800~950℃,保温时间控制为50~200s;
对一次退火钢板进行二次退火处理得到二次退火钢板,二次退火温度控制为750~850℃,保温时间控制为1~3h。
在步骤S1中,可通过转炉冶炼或者电炉冶炼,在冶炼得到钢水后进行二次精炼和连铸后得到铸坯。所采用的冶炼、精炼和连铸工序方法可参考现有常规钢板生产流程进行。
具体的,步骤S2具体包括:
将铸坯加热至温度范围为1050~1200℃,并控制加热时间为150~200min,温度波动控制在±20℃之内。
在步骤S2中,在轧制前对铸坯进行加热,将其加热到均匀的、适合轧制的温度,能够提高钢的塑性,降低变形抗力,使铸坯容易变形,从而在板坯轧制过程中可以使用较大的压下量。并且,加热能改善板坯的内部组织和性能,不均匀组织和非金属夹杂物能够通过高温加热的扩散作用而均匀化。但是,过长的加热时间会使钢板的磁性降低,因此需要控制加热时间,避免加热时间过长,并且,过高的加热温度会使铸坯中的析出物固溶,在热轧时会析出细小的夹杂物来抑制退火晶粒的生长,导致铁损增加,磁感降低,因此对加热温度进行控制。
对铸坯进行加热可以采用冷坯加热或者热装送入加热炉加热。
进一步的,在步骤S2中,加热后对铸坯进行热轧处理获得热轧板,具体包括:
将热轧开轧温度控制为≤1200℃,终轧温度控制为≥840℃。控制轧制温度,避免热轧时再结晶速度加快,恶化热轧板组织,造成成品板铁 损增加,磁感降低。
在得到热轧板后,将热轧板进行层流冷却后进行卷曲,并控制卷曲温度≤700℃,以避免热轧板中析出细小弥散的夹杂物而抑制退火晶粒的生长。
进一步的,终轧温度和卷取温度波动控制在±20℃之内,从而保证钢板磁性的稳定性。
在热轧之后,进一步将热轧板冷轧至形成厚度为0.47~0.51mm的冷轧板。
在步骤S4和步骤S5中,在氢氮保护气氛下,对冷轧板进行再结晶退火处理,在氮气或DX气体保护气氛下,对一次退火钢板进行二次退火处理。以避免在冷轧板表面发生氧化。并在一次退火钢板表面涂覆绝缘涂层,以进一步对钢板进行保护,防止钢板表面发生氧化。
通过一次退火和二次退火处理,使钢板充分再结晶,并消除冲剪应力的影响,对钢板织构进行调整。
以下通过5个实施例及3个对比例进一步对本发明的具体实施方式予以介绍。
实施例1~5和对比例1~3均按照上述生产方法进行生产制造,实施例1~5和对比例1~3的Si、Al元素含量、部分工艺参数和磁性能如表1所示,除Si、Al元素外,实施例1~5和对比例1~3中的其他元素含量均按照上述说明的含量进行添加。

表1
由表1可知,最终硅钢板的磁性与(Si/Al)/(Si+Al)的值密切相关,与对比例相比,实施例的二次退火后磁性能更优异,尤其铁损性能,在二次退火前铁损相同的情况下,经二次退火后,铁损下降更大,铁损下降率高。
选取实施例3和对比例1进行织构分析,两者的Si+Al合金总量相近,磁性水平相近。对两者的织构进行定量分析,如图2a图2b所示,分别为实施例3和对比例1的织构分布图,实施例3中的{111}<112>不利织构弱于对比例1,并且,有较强的有利织构{001}<110>和{001}<120>。可见,对于Si+Al合金总量相近的无取向硅钢,通过调整钢中(Si/Al)/(Si+Al)比值,可以实现织构的优化,进一步提升无取向硅钢的磁性能。
综上所述,本实施方式通过对无取向硅钢中的Si和Al含量基于(Si/Al)/(Si+Al)的值进行精细调控,并配合生产工艺的精确控制,促进硅钢基板的织构优化,降低二次退火后的铁损,从而显著降低电机产品的损耗。并且,无取向硅钢板中添加的Si和Al总量低,合金成本低,且生产工艺简单。因此,无取向硅钢板的综合成本相对低,产品更有市场竞争力。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种无取向硅钢板的生产方法,其特征在于,
    所述无取向硅钢成分以质量百分比计包括:C≤0.005%、Si:0.60~1.60%、Al:0.40~0.80%、Mn:0.20~0.80%、S≤0.003%、N≤0.003%,余量为Fe和不可避免的杂质,其中所述不可避免的杂质包含:C≤0.005%,S≤0.003%,N≤0.003%;
    并且,Si和Al的含量满足以下公式:
    其中,元素符号为相应元素的质量百分数;
    所述生产方法包括步骤:
    按照上述化学成分配比,冶炼、铸造得到铸坯;
    加热所述铸坯,加热后对所述铸坯进行热轧处理获得热轧板;
    对所述热轧板冷轧处理获得冷轧板;
    对所述冷轧板进行再结晶退火处理得到一次退火钢板,所述再结晶退火温度控制为800~950℃,保温时间控制为50~200s;
    对所述一次退火钢板进行二次退火处理得到二次退火钢板,所述二次退火温度控制为750~850℃,保温时间控制为1~3h。
  2. 根据权利要求1所述的无取向硅钢板的生产方法,其特征在于,所述加热所述铸坯,具体包括:
    将所述铸坯加热至温度范围为1050~1200℃,并控制加热时间为150~200min,温度波动控制在±20℃之内。
  3. 根据权利要求2所述的无取向硅钢板的生产方法,其特征在于,所述加热后对所述铸坯进行热轧处理获得热轧板,具体包括:
    将热轧开轧温度控制为≤1200℃,终轧温度控制为≥840℃,终轧温度波动控制在±20℃之内。
  4. 根据权利要求3所述的无取向硅钢板的生产方法,其特征在于,所述加热后对所述铸坯进行热轧处理获得热轧板,还包括:
    在得到所述热轧板后,将所述热轧板进行层流冷却后进行卷取,并控制卷取温度≤700℃,卷取温度波动控制在±20℃之内。
  5. 根据权利要求1所述的无取向硅钢板的生产方法,其特征在于,所述对所述热轧板冷轧处理获得冷轧板,具体包括:
    将所述热轧板冷轧至形成厚度为0.47~0.51mm的冷轧板。
  6. 根据权利要求1所述的无取向硅钢板的生产方法,其特征在于,在所述对所述冷轧板进行再结晶退火处理得到一次退火钢板之后,还包括:
    在所述一次退火钢板表面涂覆绝缘涂层。
  7. 根据权利要求1所述的无取向硅钢板的生产方法,其特征在于,在氢氮保护气氛下,对所述冷轧板进行再结晶退火处理;在氮气或DX气体保护气氛下,对所述一次退火钢板进行二次退火处理。
  8. 一种无取向硅钢板,其特征在于,所述无取向硅钢成分以质量百分比计包括:C≤0.005%、Si:0.60~1.60%、Al:0.40~0.80%、Mn:0.20~0.80%、S≤0.003%、N≤0.003%,余量为Fe和不可避免的杂质,其中所述不可避免的杂质包含:C≤0.005%,S≤0.003%,N≤0.003%;
    并且,Si和Al的含量满足以下公式:
    其中,元素符号为相应元素的质量百分数;
    所述无取向硅钢板铁损下降率△P15/50/P15/50在15%以上。
PCT/CN2023/130488 2022-11-11 2023-11-08 无取向硅钢板及其生产方法 WO2024099362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211408849.3 2022-11-11
CN202211408849.3A CN115558868B (zh) 2022-11-11 2022-11-11 无取向硅钢板及其生产方法

Publications (1)

Publication Number Publication Date
WO2024099362A1 true WO2024099362A1 (zh) 2024-05-16

Family

ID=84770039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130488 WO2024099362A1 (zh) 2022-11-11 2023-11-08 无取向硅钢板及其生产方法

Country Status (2)

Country Link
CN (1) CN115558868B (zh)
WO (1) WO2024099362A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115558868B (zh) * 2022-11-11 2023-04-14 张家港扬子江冷轧板有限公司 无取向硅钢板及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020012643A (ko) * 2000-08-08 2002-02-20 이구택 자성이 우수한 무방향성 전기강판 및 그 제조방법
CN104152800A (zh) * 2014-08-07 2014-11-19 河北钢铁股份有限公司 低磁各向异性无取向硅钢板及其制备工艺
CN104480383A (zh) * 2014-11-24 2015-04-01 武汉钢铁(集团)公司 0.35mm厚高效电机用高磁感无取向硅钢及生产方法
CN110735088A (zh) * 2019-11-22 2020-01-31 马鞍山钢铁股份有限公司 一种薄板坯生产的无取向硅钢及其制造方法
CN110819879A (zh) * 2019-11-22 2020-02-21 马鞍山钢铁股份有限公司 一种磁性能优良的无取向硅钢及其制造方法
CN115558868A (zh) * 2022-11-11 2023-01-03 张家港扬子江冷轧板有限公司 无取向硅钢板及其生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345001A (zh) * 2011-10-09 2012-02-08 内蒙古包钢钢联股份有限公司 一种稀土处理的低牌号无取向电工钢制备方法
CN108277335B (zh) * 2018-01-29 2019-04-12 东北大学 一种增强薄带连铸无取向硅钢{100}再结晶织构的方法
CN108486453B (zh) * 2018-03-27 2020-03-31 东北大学 一种低铁损高磁感无取向硅钢板的制备方法
CN108286021B (zh) * 2018-03-27 2020-01-21 东北大学 一种高磁感无取向硅钢板的制备方法
CN109252102B (zh) * 2018-11-02 2020-07-14 东北大学 一种提高低硅无取向硅钢磁性能的方法
CN114058953B (zh) * 2021-10-25 2022-10-14 马鞍山钢铁股份有限公司 一种适宜缠绕式加工的低铁损无取向硅钢及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020012643A (ko) * 2000-08-08 2002-02-20 이구택 자성이 우수한 무방향성 전기강판 및 그 제조방법
CN104152800A (zh) * 2014-08-07 2014-11-19 河北钢铁股份有限公司 低磁各向异性无取向硅钢板及其制备工艺
CN104480383A (zh) * 2014-11-24 2015-04-01 武汉钢铁(集团)公司 0.35mm厚高效电机用高磁感无取向硅钢及生产方法
CN110735088A (zh) * 2019-11-22 2020-01-31 马鞍山钢铁股份有限公司 一种薄板坯生产的无取向硅钢及其制造方法
CN110819879A (zh) * 2019-11-22 2020-02-21 马鞍山钢铁股份有限公司 一种磁性能优良的无取向硅钢及其制造方法
CN115558868A (zh) * 2022-11-11 2023-01-03 张家港扬子江冷轧板有限公司 无取向硅钢板及其生产方法

Also Published As

Publication number Publication date
CN115558868B (zh) 2023-04-14
CN115558868A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
JP4126479B2 (ja) 無方向性電磁鋼板の製造方法
WO2019017426A1 (ja) 無方向性電磁鋼板
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
US20150013844A1 (en) Non-Oriented Silicon Steel and Manufacturing Process Thereof
JP2012132070A (ja) 無方向性電磁鋼板の製造方法
JP2015529285A (ja) 高磁束密度方向性珪素鋼及びその製造方法
CN111527218B (zh) 无取向电工钢板及其制造方法
JP4586741B2 (ja) 無方向性電磁鋼板およびその製造方法
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
WO2024099362A1 (zh) 无取向硅钢板及其生产方法
JP2015516503A (ja) 無方向性電磁鋼板及びその製造方法
JP2014173099A (ja) 無方向性電磁鋼板およびその製造方法
WO2019105041A1 (zh) 磁性优良的无取向电工钢板及其制造方法
JP7350063B2 (ja) 無方向性電磁鋼板およびその製造方法
CN113897558B (zh) 一种高饱和磁感高磁导率铁基软磁材料及其制备方法
CN112430780B (zh) 一种含Cu高洁净度无取向电工钢板及其制造方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
JP6079580B2 (ja) 方向性電磁鋼板の製造方法
JP7378585B2 (ja) 無方向性電磁鋼板及びその製造方法
JP6056675B2 (ja) 方向性電磁鋼板の製造方法
CN109652741B (zh) 一种晶粒取向纯铁及其生产方法
JP2560579B2 (ja) 高透磁率を有する高珪素鋼板の製造方法
JP2760208B2 (ja) 高い磁束密度を有する珪素鋼板の製造方法
WO2023131223A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法