WO2019105041A1 - 磁性优良的无取向电工钢板及其制造方法 - Google Patents

磁性优良的无取向电工钢板及其制造方法 Download PDF

Info

Publication number
WO2019105041A1
WO2019105041A1 PCT/CN2018/095237 CN2018095237W WO2019105041A1 WO 2019105041 A1 WO2019105041 A1 WO 2019105041A1 CN 2018095237 W CN2018095237 W CN 2018095237W WO 2019105041 A1 WO2019105041 A1 WO 2019105041A1
Authority
WO
WIPO (PCT)
Prior art keywords
oriented electrical
steel sheet
electrical steel
content
steel
Prior art date
Application number
PCT/CN2018/095237
Other languages
English (en)
French (fr)
Inventor
张峰
吕学钧
王波
刘宝军
宗震宇
沈侃毅
孙业中
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP18884597.8A priority Critical patent/EP3719160B1/en
Priority to MX2020004953A priority patent/MX2020004953A/es
Priority to US16/759,787 priority patent/US11371111B2/en
Priority to KR1020207009155A priority patent/KR20200050987A/ko
Priority to JP2020526230A priority patent/JP7159311B2/ja
Publication of WO2019105041A1 publication Critical patent/WO2019105041A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to an electrical steel sheet, and more particularly to a non-oriented electrical steel sheet excellent in magnetic properties and a method for producing the same.
  • Electromagnetic performance commonly known as low iron loss and high magnetic inductance, meets the urgent need for high efficiency, energy saving and environmental protection of these electrical products.
  • Chinese patent CN104399749A discloses a method for preventing edge cracking and brittle fracture of steel with ⁇ 3.5% Si content, but even so, the brittle fracture rejection rate is still 0.15%, and the equipment function accuracy is very high. .
  • Chinese patent CN103014503A added 0.20-0.45% (Sn+Cu) to the steel, and improved the texture of the material by using grain boundary segregation to obtain a good material magnetic sensation.
  • Sn and Cu are expensive metals, which will greatly increase the manufacturing cost, and Cu also easily causes quality defects on the surface of the strip.
  • Japanese Patent Laid-Open No. 10-25554 improves the magnetic induction of materials by increasing the ratio of Al/(Si+Al) under the premise that the total amount of Si and Al is constant, but the iron loss of the material decreases with the increase of Al content and Si content. Deterioration begins to occur and the mechanical properties of the material decrease.
  • the use of normalization treatment or hood furnace intermediate annealing is an effective method to improve the material iron loss and magnetic induction. It is widely used in the production of high-efficiency and high-grade non-oriented silicon steel sheets, which can effectively reduce the iron loss of materials.
  • the disadvantage of improving the magnetic induction of materials is the introduction of new production equipment, which greatly increases the manufacturing cost, and prolongs the manufacturing and delivery cycle of materials, which brings new troubles to the production site technology and quality management.
  • the electromagnetic properties of the material; or the use of rough rolling and large rolling, and the use of rough roll rolling and high temperature coiling, can also obtain high-grade non-oriented electrical steel with high magnetic sensation; if it has hot rolling flattening function, and often
  • the annealing treatment can also obtain a high magnetic induction non-oriented silicon steel.
  • the fine precipitates in the steel have an effect on the grain growth of the finished strip during continuous annealing, and in particular, the influence of the fine sulfide on the grain size causes a large increase in the iron loss of the finished strip.
  • the temperature of the rough rolling pass during the hot rolling is limited to 950 to 1150 ° C to prevent precipitation of fine MnS.
  • the reduction in the hot rolling heating temperature also causes an increase in the hot rolling load, which is disadvantageous for recrystallization and grain size growth after hot rolling.
  • An object of the present invention is to provide a non-oriented electrical steel sheet excellent in magnetic properties and a method for producing the same, wherein the non-oriented electrical steel sheet is excellent in magnetic properties, and the iron loss P 15/50 is not more than 2.4 W/kg; and the manufacturing process is simple, and the chemical of steel The composition is easy to control, the manufacturing process is stable, and the technical requirements are easy to implement.
  • a magnetic non-oriented electrical steel sheet having a chemical composition mass percentage of C: 0 to 0.005%, Si: 2.1 to 3.2%, Mn: 0.2 to 1.0%, P: 0 to 0.2%, and Al: 0.2 to 1.6. %, N: 0 to 0.005%, Ti: 0 to 0.005%, Cu: 0 to 0.2%, the balance being Fe and unavoidable impurities; at the same time, the following technical requirements are also required:
  • the amount of MnS formed is required to be ⁇ 5.0 ⁇ 10 8 /mm 3
  • the amount of MnS formed is:
  • the iron loss P 15/50 of the non-oriented electrical steel sheet of the present invention is not more than 2.4 W/kg.
  • composition design of the non-oriented electrical steel sheet excellent in magnetic properties of the present invention is the composition design of the non-oriented electrical steel sheet excellent in magnetic properties of the present invention:
  • Silicon (Si) can significantly improve the electrical resistivity of the finished steel, effectively reducing the loss of the finished steel.
  • Si content is higher than 3.2%, the magnetic sensation of the finished steel is remarkably lowered; and when it is less than 2.1%, the effect of greatly reducing the loss is not obtained. Therefore, the present invention limits the Si content to 2.1 to 3.2%.
  • Manganese (Mn) Combined with S to form MnS, it can reduce the magnetic properties of finished steel and improve the surface quality of finished steel. Therefore, it is necessary to add 0.2% or more of Mn content, and when the Mn content is more than 1.0%, it is difficult to cast by continuous casting, and it is easy to destroy the recrystallized texture of the finished steel. Therefore, the present invention limits the Mn content to 0.2 to 1.0%.
  • Phosphorus (P) When it exceeds 0.2%, it tends to cause cold and brittleness and lowers the manufacturability of the cold rolling mill. Therefore, the present invention limits the P content to 0.2% or less.
  • Aluminum (Al) can significantly improve the electrical resistivity of the finished steel, while deep deoxidation of molten steel. Therefore, it is necessary to add more than 0.2% of Al content, and when the Al content is higher than 1.6%, the magnetic properties of the finished steel are significantly reduced, and the steelmaking manufacturing cost is greatly increased. Therefore, the present invention limits the Al content to 0.2 to 1.6%.
  • N Nitrogen
  • Titanium (Ti) When it exceeds 0.005%, the C and N compound inclusions of Ti are greatly increased, which strongly hinders the grain growth of the finished steel and deteriorates the magnetic properties of the finished steel. Therefore, the present invention limits the Ti content to 0 to 0.005%.
  • Copper (Cu) combines with S to form Cu x S, which deteriorates the magnetic properties of the finished steel. When it exceeds 0.2%, it tends to cause quality defects on the surface of the hot rolled sheet. Therefore, the present invention limits the Cu content to 0 to 0.2%.
  • the non-oriented electrical steel sheet excellent in magnetic properties according to the present invention and a method for producing the same include the following steps:
  • blast furnace hot metal is pretreated by hot metal desulfurization, demanganization, and slag removal;
  • the ratio of chemical composition of each element in molten steel is: C: 0-0.005%, Si: 2.1-3.2%, Mn: 0.2-1.0%, P: 0-0.2%, Al : 0.2 to 1.6%, N: 0 to 0.005%, Ti: 0 to 0.005%, Cu: 0 to 0.2%, and the balance being Fe and unavoidable impurities;
  • the cooling rate is controlled to 2.5 to 25 ° C / min during the cooling process of the surface temperature of the casting blank from 1100 ° C to 700 ° C;
  • the cooling rate is controlled to be 2.5-20 ° C/min during the temperature drop from 1100 ° C to 700 ° C.
  • the cooling rate of the strip during the finish rolling process cannot be greater than 20 ° C / s, the time from the end of the finish rolling to the water cooling opening is not less than 5 s, and the coiling temperature cannot be lower than 600 ° C, preferably The coiling temperature is not lower than 700 °C.
  • the non-oriented electrical steel according to the present invention is subjected to hot metal pretreatment, desulfurization, demanganization, and slag removal, and then added with an appropriate proportion of scrap steel for converter smelting.
  • the slag is ensured to be in good condition, and the molten steel is decarburized and the temperature rising effect is stable.
  • the deep decarburization is first carried out in the RH refining (vacuum circulation degassing refining) process, and after the decarburization is completed, the carbon content of the molten steel is controlled to be ⁇ 0.005%. Then, the molten steel is deoxidized and alloyed by adding silicon or copper in the molten steel.
  • RH refining vacuum circulation degassing refining
  • the present invention can improve the resistivity of the material significantly, and can effectively reduce the magnetocrystalline anisotropy, make the material more susceptible to magnetization, and improve the magnetic properties of the non-oriented electrical steel sheet.
  • the most effective element therefore, the addition of appropriate Si element in the steel not only improves the magnetic induction of the steel, but also reduces the iron loss of the steel; the appropriate amount of Al element also acts as a deep deoxidation of the steel while increasing the electrical resistance.
  • the key to the invention is how to effectively control the form and amount of sulfide in the steel, since this is directly related to the electromagnetic properties of the corresponding finished strip.
  • inclusions in steel, especially finely dispersed inclusions can significantly affect the microstructure of hot-rolled and finished sheets, and finely dispersed inclusions can significantly hinder grain growth and prevent finished grain size from reaching the finished product.
  • the optimum grain size increases the corresponding hysteresis loss. Therefore, the number and size of inclusions in the steel must be effectively controlled.
  • experience has shown that the degree of damage to the magnetic properties of finely dispersed inclusions is acicular > strip, dendritic > spherical.
  • the shape is elliptical or nearly spherical, and the magnetic properties of the finished strip are The effect is relatively small, and the inclusions in the range of 0.2-0.5 um are mainly produced in the late stage of hot rolling, such as Cu2S inclusions. As the number thereof increases, the magnetic properties of the finished product deteriorate significantly.
  • S in steel can be combined with elements such as Mn, Cu, Ca, Mg, etc., and individual or composite inclusions are formed depending on hot rolling conditions.
  • the method of analysis and testing of sulfide is non-aqueous electrolysis extraction + scanning electron microscope observation.
  • inclusions having a size of 1 ⁇ m or more were observed at a magnification of 1000, and inclusions having a size of 0.5 to 1.0 ⁇ m were observed at a rate of 5000 times, and inclusions having a size of 0.2 to 0.5 ⁇ m were observed at a magnification of 10,000.
  • the amount of MnS formed is required to be ⁇ 5.0 ⁇ 10 8 /mm 3
  • the amount of MnS formed is:
  • the hot rolling process is crucial for the control of sulfide precipitation.
  • the slab before hot rolling is heated at 900-1100 ° C, and the effect after soaking for 30 min is more obvious. This is mainly because the higher the temperature in the high temperature stage and the longer the time, the more the solid solution of the sulfide is. In the cooling stage, the smaller the inclusions are, the more the amount is.
  • the heating temperature of the slab is low, the corresponding final rolling and coiling temperatures are lower, which has a certain inhibitory effect on the formation of sulfides, but also affects the growth of the hot-rolled recrystallized structure.
  • a more suitable hot rolling method is to control the temperature, time, history and cooling rate during hot rolling.
  • the slab can be heated at 900-1100 °C in advance, soaking for 30 min or more to ensure uniform temperature, and then raised to above 1150 °C for short-time high-temperature heating to ensure the slab is rolling.
  • the growth of the hot-rolled recrystallized structure is affected by the decrease in the surface temperature. This makes it possible to control the type, quantity and size of sulfides by controlling the finishing temperature and the cooling rate of the strip during hot rolling.
  • the cooling rate of the strip during the finish rolling is preferably not more than 20 ° C / s
  • the time from the end of the finish rolling to the opening of the water cooling is not less than 5 s
  • the coiling temperature Not less than 600 ° C, preferably not less than 700 ° C, in order to control the form and amount of Cu-containing sulfide.
  • the present invention does not undergo normalization treatment or intermediate annealing of a cover furnace, and has a relatively low cost, high magnetic induction, low iron loss non-oriented electrical steel sheet and a method for producing the same.
  • Table 1 is a chemical composition of an electrical steel sheet and a comparative electrical steel sheet according to an embodiment of the present invention
  • Table 2 is an embodiment of the present invention, a comparative process design, and an electromagnetic property.
  • the molten iron and scrap of the examples were mixed according to the chemical composition ratio in Table 1, and after being smelted in a 300-ton converter, decarburization, deoxidation, and alloying were carried out in RH refining.
  • the content of Mn and Cu is dynamically adjusted according to the S content in steel, and the content of C, N, Ti and Al is controlled to meet the design requirements.
  • a slab having a thickness of 170 mm to 250 mm and a width of 800 mm to 1400 mm is obtained; then, the slab is sequentially subjected to hot rolling, pickling, cold rolling, annealing, and coating to obtain a final product, and the process parameters thereof are obtained. See Table 2 for electromagnetic performance.
  • the slab is heated to 1150 ° C after 1100 ° C full heat and surface short-time, during the hot rolling process, the final rolling, coiling cooling rate and time are strictly controlled to ensure that the coiling temperature is not lower than 700 ° C to obtain a suitable S content of Mn, Cu sulfide, and MnS content of different size intervals.

Abstract

一种磁性优良的无取向电工钢板及其制造方法,其化学成分质量百分比为:C:0~0.005%,Si:2.1~3.2%,Mn:0.2~1.0%,P:0~0.2%,Al:0.2~1.6%,N:0~0.005%,Ti:0~0.005%,Cu:0~0.2%,其余为Fe和不可避免的杂质;同时要求:(形成MnS的S含量+形成Cu xS的S含量)/钢中的S含量≤0.2。本发明生产无取向电工钢板时制造过程简便,钢的化学成分容易控制,制造过程稳定,技术要求容易实现。

Description

磁性优良的无取向电工钢板及其制造方法 技术领域
本发明涉及电工钢板,尤其涉及一种磁性优良的无取向电工钢板及其制造方法。
背景技术
近年来,随着用户市场对高效、节能、环保需求的日益加严,要求用于制作电机、压缩机、EI铁芯原料的无取向硅钢片要在保证价格竞争优势的前提下,具有优良的电磁性能,即通常所说的低铁损、高磁感,以满足这些用电产品对高效、节能、环保的迫切需求。
之前,为了获得低铁损、高磁感,往往采用对化学成分进行设计优化,向钢中添加特殊的有益合金元素,采用热轧板常化处理,以及提高连续退火温度的加工方式。这些因素都没有考虑钢中微细析出物对材料电磁性能的巨大影响。例如,向钢中加入含量较高的Si、Al,可以提高材料电阻率,进而降低材料铁损。例如,日本专利JP2015515539A中Si含量达到2.5~4.0%,Al含量达到0.5~1.5%,这样,随着Si、Al含量增加,材料铁损迅速降低,但材料磁感也迅速降低,还容易出现冷轧断带等异常情况。
为了改善冷轧可轧性,中国专利CN104399749A公开了防止≥3.5%Si含量钢的边裂及脆断治理方法,但即使如此,脆断报废率仍有0.15%,且对设备功能精度要求很高。与此同时,为了获得良好的材料磁感,中国专利CN103014503A向钢中加入了0.20~0.45%(Sn+Cu),利用晶界偏聚改善材料的织构形态,获得了良好的材料磁感,但Sn、Cu属于昂贵金属,会大幅增加制造费用,Cu还容易使带钢表面产生质量缺陷。
日本专利特开平10-25554在Si、Al总量不变的前提下,通过增加Al/(Si+Al)比例以改善材料磁感,但随着Al含量升高、Si含量降低,材料铁损开始出现劣化,材料机械性能也随之降低。
现阶段,采用常化处理或者罩式炉中间退火是改善材料铁损、磁感行 之有效的方法,在高效、高牌号无取向硅钢片生产上得以广泛采用,可以有效降低材料铁损、大幅提高材料磁感,其缺点是引进了新的生产设备,大大增加了制造费用,并延长了材料的制造和交货周期,给生产现场技术、质量管理等带来了新的麻烦。
受此影响,技术人员开始研究在化学成分相对固定的情况下,向钢中加入稀土、钙合金等强脱氧、脱硫元素,可以有效去除或者降低非金属夹杂物,通过改善钢质洁净度以提高材料电磁性能;或者采用粗轧道次大压下,并利用粗糙辊轧制和高温卷取,也可以获得具有高磁感的高牌号无取向电工钢;如果具有热轧平整功能,并配合常化退火处理,同样可以获得高磁感无取向硅钢。
此外,钢中的微细析出物会对连续退火时,成品带钢的晶粒长大产生影响,尤其是微细的硫化物对晶粒尺寸的影响,会导致成品带钢的铁损大幅增加。从无害化角度而言,需要尽可能的减少钢中的硫化物数量,并确保其保持粗大化。减少硫化物数量与减少硫含量密切相关,这就需要在RH精炼进行深脱硫,并通过延长RH精炼脱气时间的方式提高脱硫效率,但这势必会增加钢的制造成本。
还有,有人提出降低热轧加热温度的方式,例如,将热轧过程中,粗轧道次的温度限制在950~1150℃,以防止微细的MnS析出。只是,通过这种单纯的降低热轧加热温度的方式,将钢中硫化物的种类、状态限制在特定的范围内十分困难。并且,热轧加热温度的降低,还会导致热轧负荷加大,对热轧之后的再结晶和晶粒尺寸长大十分不利。
发明内容
本发明的目的在于提供一种磁性优良的无取向电工钢板及其制造方法,所述无取向电工钢板磁性优良,铁损P 15/50不大于2.4W/kg;而且制造过程简便,钢的化学成分容易控制,制造过程稳定,技术要求容易实现。
为达到上述目的,本发明的技术方案是:
一种磁性优良的无取向电工钢板,其化学成分质量百分比为:C:0~0.005%,Si:2.1~3.2%,Mn:0.2~1.0%,P:0~0.2%,Al:0.2~1.6%,N:0~0.005%,Ti:0~0.005%,Cu:0~0.2%,其余为Fe和不可避免 的杂质;同时,还需要满足以下技术要求:
(形成MnS的S含量+形成Cu xS的S含量)/钢中的S含量≤0.2……
式(1)
进一步,在0.2~0.5μm尺寸范围内,形成的MnS数量要求≤5.0×10 8个/mm 3,并且,在0.2~1.0μm尺寸范围内,形成的MnS数量中:
(0.5~1.0μm)的MnS数量/(0.2~0.5μm)的MnS数量≤0.2……式(2)
本发明所述无取向电工钢板的铁损P 15/50不大于2.4W/kg。
在本发明磁性优良的无取向电工钢板的成分设计中:
碳(C):强烈阻碍成品钢的晶粒长大,容易与Nb、V、Ti等元素结合形成细小析出物,从而引起损耗增加并产生磁时效。因此,有必要将C含量限制在0~0.005%。
硅(Si):能显著提高成品钢的电阻率,有效降低成品钢的损耗。Si含量高于3.2%时,会显著降低成品钢的磁感;而低于2.1%时,又起不到大幅降低损耗的效果。因此,本发明将Si含量限制在2.1~3.2%。
锰(Mn):与S结合生成MnS,可以减少对成品钢的磁性能危害,并且改善成品钢的表面质量。因此,有必要添加0.2%以上Mn含量,而Mn含量高于1.0%时,会造成连铸浇铸困难,还容易破坏成品钢的再结晶织构。因此,本发明将Mn含量限制在0.2~1.0%。
磷(P):超过0.2%时,容易导致冷脆现象发生,降低冷轧机组的可制造性。因此,本发明将P含量限制在0.2%以下。
铝(Al):能显著提高成品钢的电阻率,同时进行钢液深脱氧。因此,有必要添加0.2%以上Al含量,而Al含量高于1.6%时,会导致成品钢的磁感明显降低,同时大幅增加炼钢制造成本。因此,本发明将Al含量限制在0.2~1.6%。
氮(N):超过0.005%时,将使N的Nb、V、Ti、Al等析出物大大增加,强烈阻碍成品钢的晶粒长大,恶化成品钢的磁性能。因此,本发明将N含量限制在0.005%以下。
钛(Ti):超过0.005%时,将使Ti的C、N化物夹杂物大大增加,强烈阻碍成品钢的晶粒长大,恶化成品钢的磁性能。因此,本发明将Ti 含量限制在0~0.005%。
铜(Cu):与S结合生成Cu xS,劣化成品钢的磁性能。超过0.2%时,容易导致热轧板表面出现质量缺陷。因此,本发明将Cu含量限制在0~0.2%。
本发明所述的磁性优良的无取向电工钢板及其制造方法,包括以下步骤:
1)高炉铁水经过铁水预处理脱硫、脱锰、除渣;
2)搭配废钢,进行转炉冶炼;
3)进行RH真空循环脱气精炼,并在该过程中:
a)进行深脱碳,将钢液的碳含量控制≤0.005%;
b)脱氧、合金化处理;
c)钢液化学成分优化,钢液中各元素化学成分质量百分配比为:C:0~0.005%,Si:2.1~3.2%,Mn:0.2~1.0%,P:0~0.2%,Al:0.2~1.6%,N:0~0.005%,Ti:0~0.005%,Cu:0~0.2%,其余为Fe和不可避免的杂质;
d)精炼脱气;
4)浇铸成坯,浇铸过程中,在铸坯表面温度从1100℃降至700℃的降温过程中控制冷却速率为2.5~25℃/min;
5)热轧;
6)酸洗;
7)冷轧;
8)退火;
9)涂层。
优选的,步骤4)浇铸过程中,在铸坯表面温度从1100℃降至700℃的降温过程中,控制冷却速率为2.5-20℃/min。
优选的,步骤5)热轧中,精轧过程中带钢的冷却速率不能大于20℃/s,精轧结束至水冷开启的时间不能低于5s,且卷取温度不能低于600℃,优选卷取温度不低于700℃。
本发明涉及的无取向电工钢,原料经过铁水预处理脱硫、脱锰、除渣 后,配加适当比例的废钢进行转炉冶炼。冶炼过程中,确保化渣情况良好,钢液脱碳、升温效果稳定。
经过转炉冶炼的钢液,首先在RH精炼(真空循环脱气精炼)过程进行深脱碳,在脱碳结束后,将钢液的碳含量控制≤0.005%。然后,在钢液中采用添加硅、铜方式对钢液进行脱氧、合金化。
相较于现有技术,本发明从成分设计方面来说,由于Si、Al元素能够显著提高材料的电阻率,可以有效降低磁晶各向异性,使材料更易磁化,是改善无取向电工钢板磁性最为有效的元素,因此在钢中添加适当Si元素,既提高了钢的磁感,又降低了钢的铁损;适量的Al元素在增加电阻的同时还起到了钢种的深脱氧的作用。
本发明的关键是,如何有效的控制钢中硫化物的形态和数量,因为这直接关系到了相应的成品带钢电磁性能。研究表明,钢中的夹杂物,特别是细小弥散夹杂物,会显著影响热轧板及成品板的组织,细小弥散的夹杂物还会显著阻碍晶粒长大,使成品晶粒尺寸达不到最佳晶粒尺寸,相应磁滞损耗增加。因此,必须有效控制钢中的夹杂物数量和尺寸。另一方面,有经验表明,细小分散的夹杂对磁性的危害程度,针状>条状,树枝状>球状。
基于此,研究发现了在特定的夹杂物有害尺寸条件下,钢液浇铸、凝固过程中,氧化物、氮化物的数量极少,绝大部分都是MnS、CuxS等含硫夹杂物。并且,随着钢中化学成分控制的差异,以及连铸冷却制度的设计、和热轧温度控制过程中,MnS、CuxS夹杂物的析出条件差异很大,包括其形态、尺寸等,因此,对磁性能影响截然不同。例如,与畴壁尺寸相近的夹杂物,尺寸约为百纳米级,它们优先在铸坯冷却过程中形成,尺寸约为0.5-1.0um,形态为椭圆或者近球形,对成品带钢磁性能的影响相对较小,而0.2-0.5um范围内的夹杂物,主要产生于热轧后期,如Cu2S夹杂物。随着其数量的增加,成品磁性能显著劣化。
此外,通常,钢中的S可以和Mn、Cu、Ca、Mg等元素结合,视热轧条件不同形成了单个或者复合夹杂物。其中,硫化物的分析测试采用的方法是非水溶液电解提取+扫描电镜观察。该方法在1000倍率下观察1μm及以上尺寸的夹杂物,在5000倍率下观察0.5-1.0μm尺寸的夹杂物,在 10000倍率下观察0.2-0.5μm尺寸的夹杂物。通过统计一定数量的视场中,夹杂物的尺寸、种类、数量、分布等,得出钢中的夹杂物分布规律和存在状态等信息。
研究表明,硫化物种类不同,其固溶、析出温度不尽相同,而在热轧、热处理过程中,影响晶体织构发展和晶粒尺寸长大的主要就是MnS和CuxS,并且其在钢中的尺寸、比例不同,也直接与再结晶效果密切相关。比较理想的控制效果和技术要求是:
(形成MnS的S含量+形成Cu xS的S含量)/钢中的S含量≤0.2……式(1)。
更进一步,在0.2~0.5μm尺寸范围内,形成的MnS数量要求≤5.0×10 8个/mm 3,并且,在0.2~1.0μm尺寸范围内,形成的MnS数量中:
(0.5~1.0μm)的MnS数量/(0.2~0.5μm)的MnS数量≤0.2……式(2)
其中,热轧工艺对硫化物的析出控制至关重要。特别是,在热轧之前的铸坯经过900-1100℃加热,均热30min以后的效果更为明显。这主要是考虑高温阶段温度越高、时间越长,硫化物的固溶量就越多,在冷却阶段中,析出的夹杂物就越小,数量就越多。另一方面,如果铸坯加热温度偏低,相应的终轧、卷取温度也就是越低,对硫化物的形成有一定的抑制作用,但同时也会影响到热轧再结晶组织的成长。
比较合适的热轧方法是,控制热轧过程中的温度、时间、履历和冷却速度。对于0.2%Cu以下的成分体系,可以预先将铸坯在900-1100℃加热,均热30min以上确保温度均匀,而后再升高至1150℃以上进行短时高温加热,以确保铸坯在轧制过程中,由于表面温度的降低而影响到热轧再结晶组织的成长。这样就可以通过控制热轧过程中精轧温度和带钢冷却速度控制硫化物的析出种类、数量和尺寸。
另外,由于含Cu硫化物的生成所需的温度更低,精轧过程中带钢的冷却速率优选不大于20℃/s,精轧结束至水冷开启的时间不低于5s,并且卷取温度不低于600℃,优选不低于700℃,目的是控制含Cu硫化物的形态和数量。
本发明不经过常化处理或者罩式炉中间退火,并且制造成本相对低廉的高磁感、低铁损无取向电工钢板及其制造方法。
具体实施方式
下面结合实施例对本发明做进一步说明。
表1为本发明实施例电工钢板和对比例电工钢板的化学成分,以及表2为本发明实施例、对比例工艺设计及电磁性能。
实施例的铁水、废钢按照表1中化学成分比例进行搭配,经300吨转炉冶炼之后,在RH精炼进行脱碳、脱氧、合金化。根据钢中S含量动态调整Mn、Cu含量,控制C、N、Ti、Al含量满足设计要求。钢液经连铸浇铸后,得到170mm~250mm厚、800mm~1400mm宽的铸坯;然后,对铸坯依次进行热轧、酸洗、冷轧、退火、涂层后得到最终产品,其工艺参数和电磁性能参见表2。其中,热轧轧制时,铸坯经过1100℃的充分均热和表面短时加热至1150℃,热轧过程中,严格控制终轧、卷取冷却速率和时间,确保卷取温度不低于700℃,以获得合适的形成Mn、Cu硫化物的S含量,以及不同尺寸区间的MnS含量。
Figure PCTCN2018095237-appb-000001
Figure PCTCN2018095237-appb-000002
Figure PCTCN2018095237-appb-000003

Claims (7)

  1. 一种磁性优良的无取向电工钢板,其化学成分质量百分比为:C:0~0.005%,Si:2.1~3.2%,Mn:0.2~1.0%,P:0~0.2%,Al:0.2~1.6%,N:0~0.005%,Ti:0~0.005%,Cu:0~0.2%,其余为Fe和不可避免的杂质;同时,还需要满足以下要求:
    (形成MnS的S含量+形成Cu xS的S含量)/钢中的S含量≤0.2式(1)。
  2. 如权利要求1所述的磁性优良的无取向电工钢板,其特征是,在0.2~0.5μm尺寸范围内,形成的MnS数量要求≤5.0×10 8个/mm 3,并且,在0.2~1.0μm尺寸范围内,形成的MnS数量中:
    (0.5~1.0μm)的MnS数量/(0.2~0.5μm)的MnS数量≤0.2……式(2)。
  3. 如权利要求1或2所述的磁性优良的无取向电工钢板,其特征是,所述无取向电工钢板的铁损P 15/50不大于2.4W/kg。
  4. 如权利要求1或2或3所述的磁性优良的无取向电工钢板的制造方法,其特征是,包括以下步骤:
    1)高炉铁水经过铁水预处理脱硫、脱锰、除渣;
    2)搭配废钢,进行转炉冶炼;
    3)进行RH真空循环脱气精炼,并在该过程中:
    a)进行深脱碳,将钢液的碳含量控制≤0.005%;
    b)脱氧、合金化处理;
    c)钢液化学成分优化,钢液中各元素化学成分质量百分配比为:C:0~0.005%,Si:2.1~3.2%,Mn:0.2~1.0%,P:0~0.2%,Al:0.2~1.6%,N:0~0.005%,Ti:0~0.005%,Cu:0~0.2%,其余为Fe和不可避免的杂质;
    d)精炼脱气;
    4)浇铸成坯,浇铸过程中,在铸坯表面温度从1100℃降至700℃的降温过程中控制冷却速率为2.5~25℃/min;
    5)热轧;
    6)酸洗;
    7)冷轧;
    8)退火;
    9)涂层。
  5. 如权利要求4所述的磁性优良的无取向电工钢板的制造方法,其特征是,步骤4)浇铸过程中,在铸坯表面温度从1100℃降至700℃的降温过程中,控制冷却速率为2.5-20℃/min。
  6. 如权利要求4所述的磁性优良的无取向电工钢板的制造方法,其特征是,步骤5)热轧中,精轧过程中带钢的冷却速率不大于20℃/s,精轧结束至水冷开启的时间不低于5s,且卷取温度不低于600℃。
  7. 如权利要求6所述的磁性优良的无取向电工钢板的制造方法,其特征是,步骤5)热轧中,卷取温度不低于700℃。
PCT/CN2018/095237 2017-11-30 2018-07-11 磁性优良的无取向电工钢板及其制造方法 WO2019105041A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18884597.8A EP3719160B1 (en) 2017-11-30 2018-07-11 Non-oriented electrical steel sheet with excellent magnetism and manufacturing method therefor
MX2020004953A MX2020004953A (es) 2017-11-30 2018-07-11 Lamina de acero electrico no orientada con excelentes propiedades magneticas y metodo de fabricacion de la misma.
US16/759,787 US11371111B2 (en) 2017-11-30 2018-07-11 Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
KR1020207009155A KR20200050987A (ko) 2017-11-30 2018-07-11 자성 특성이 우수한 무배향 전기 강판(non-oriented electrical steel sheet) 및 이의 제조방법
JP2020526230A JP7159311B2 (ja) 2017-11-30 2018-07-11 磁気特性に優れる無方向性電磁鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711241774.3 2017-11-30
CN201711241774.3A CN109852878B (zh) 2017-11-30 2017-11-30 磁性优良的无取向电工钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2019105041A1 true WO2019105041A1 (zh) 2019-06-06

Family

ID=66664678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095237 WO2019105041A1 (zh) 2017-11-30 2018-07-11 磁性优良的无取向电工钢板及其制造方法

Country Status (7)

Country Link
US (1) US11371111B2 (zh)
EP (1) EP3719160B1 (zh)
JP (1) JP7159311B2 (zh)
KR (1) KR20200050987A (zh)
CN (1) CN109852878B (zh)
MX (1) MX2020004953A (zh)
WO (1) WO2019105041A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001451A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. CU-CONTAINING NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD OF MANUFACTURE THEREOF

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143962A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种高磁感低铁损的无取向电工钢板及其制造方法
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
CN110257613B (zh) * 2019-07-05 2021-04-30 武汉钢铁有限公司 改善低温高磁感取向硅钢磁性能的方法
CN114015931B (zh) * 2021-10-12 2022-09-06 邯郸钢铁集团有限责任公司 具有优异铁损和磁性能的无取向电工钢及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083686A (ja) * 1994-01-21 1996-01-09 Nippon Steel Corp 加工性の均一性に優れた冷延鋼板およびその製造方法
JPH1025554A (ja) 1996-07-10 1998-01-27 Nippon Steel Corp インバータ制御コンプレッサーモーター用の無方向性電磁鋼板
JP2005179710A (ja) * 2003-12-17 2005-07-07 Nippon Steel Corp 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
CN100999050A (zh) * 2006-01-11 2007-07-18 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
CN102041367A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 薄带连铸冷轧无取向电工钢的制造方法
CN102796947A (zh) * 2011-05-27 2012-11-28 宝山钢铁股份有限公司 磁性优良的高牌号无取向硅钢及其冶炼方法
CN103014503A (zh) 2012-11-30 2013-04-03 武汉钢铁(集团)公司 无需常化的高磁感低鉄损耐酸蚀无取向硅钢及生产方法
CN104399749A (zh) 2014-10-28 2015-03-11 武汉钢铁(集团)公司 一种能防止Si≥3.5%硅钢边裂及脆断的冷轧方法
JP2015515539A (ja) 2012-03-02 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド 無方向性ケイ素鋼及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967656A (ja) * 1995-08-29 1997-03-11 Nkk Corp 低磁場特性に優れた無方向性電磁鋼板
JPH0967654A (ja) * 1995-08-29 1997-03-11 Nkk Corp 鉄損特性の優れた無方向性電磁鋼板
JP4542306B2 (ja) * 2002-04-05 2010-09-15 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
CN102758150A (zh) * 2011-04-28 2012-10-31 宝山钢铁股份有限公司 高屈服强度的无取向电工钢板及其制造方法
CN103509906B (zh) * 2012-06-29 2016-01-20 宝山钢铁股份有限公司 磁性优良的无取向电工钢板的冶炼方法
CN104789862A (zh) * 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
KR20150048690A (ko) * 2015-04-17 2015-05-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101707452B1 (ko) * 2015-12-22 2017-02-16 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR101728028B1 (ko) * 2015-12-23 2017-04-18 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083686A (ja) * 1994-01-21 1996-01-09 Nippon Steel Corp 加工性の均一性に優れた冷延鋼板およびその製造方法
JPH1025554A (ja) 1996-07-10 1998-01-27 Nippon Steel Corp インバータ制御コンプレッサーモーター用の無方向性電磁鋼板
JP2005179710A (ja) * 2003-12-17 2005-07-07 Nippon Steel Corp 歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板とその製造方法
CN100999050A (zh) * 2006-01-11 2007-07-18 宝山钢铁股份有限公司 低铁损高磁感冷轧无取向电工钢板的生产方法
CN102041367A (zh) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 薄带连铸冷轧无取向电工钢的制造方法
CN102796947A (zh) * 2011-05-27 2012-11-28 宝山钢铁股份有限公司 磁性优良的高牌号无取向硅钢及其冶炼方法
JP2015515539A (ja) 2012-03-02 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド 無方向性ケイ素鋼及びその製造方法
CN103014503A (zh) 2012-11-30 2013-04-03 武汉钢铁(集团)公司 无需常化的高磁感低鉄损耐酸蚀无取向硅钢及生产方法
CN104399749A (zh) 2014-10-28 2015-03-11 武汉钢铁(集团)公司 一种能防止Si≥3.5%硅钢边裂及脆断的冷轧方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3719160A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4001451A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. CU-CONTAINING NON-ORIENTED ELECTRIC STEEL SHEET AND METHOD OF MANUFACTURE THEREOF

Also Published As

Publication number Publication date
CN109852878A (zh) 2019-06-07
EP3719160B1 (en) 2024-01-10
JP7159311B2 (ja) 2022-10-24
CN109852878B (zh) 2021-05-14
US20210180147A1 (en) 2021-06-17
EP3719160A4 (en) 2020-11-11
US11371111B2 (en) 2022-06-28
MX2020004953A (es) 2020-08-27
JP2021502489A (ja) 2021-01-28
KR20200050987A (ko) 2020-05-12
EP3719160A1 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6765448B2 (ja) 高磁気誘導かつ低鉄損の無方向性ケイ素鋼板及びその製造方法
TWI622655B (zh) 無方向性電磁鋼板及其製造方法
WO2019105041A1 (zh) 磁性优良的无取向电工钢板及其制造方法
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
CN112143964A (zh) 一种极低铁损的无取向电工钢板及其连续退火工艺
US20240011112A1 (en) Cu-containing non-oriented electrical steel sheet and manufacturing method therefor
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN110643891B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN114540711B (zh) 一种高牌号无取向电工钢及其制备方法
JPWO2005100627A1 (ja) 打抜き加工性と歪取焼鈍後の磁気特性に優れた無方向性電磁銅板とその製造方法
US20210277492A1 (en) High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therfor
WO2024017347A1 (zh) 一种无取向电工钢板及其制造方法
WO2021037062A1 (zh) 一种无取向电工钢板及其制造方法
WO2024017345A1 (zh) 一种无取向电工钢板及其制造方法
CN117385288A (zh) 一种中频磁性能优良的高强度无取向电工钢及其制造方法
JP2003064456A (ja) セミプロセス用無方向性電磁鋼板とその製造方法
CN116445806A (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN114517275A (zh) 一种超级电磁纯铁冷轧板带及其制备方法
WO2020071048A1 (ja) 無方向性電磁鋼板及びその素材となるスラブ鋳片の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207009155

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020526230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884597

Country of ref document: EP

Effective date: 20200630