WO2024099328A1 - 一种加热电路和加热装置 - Google Patents

一种加热电路和加热装置 Download PDF

Info

Publication number
WO2024099328A1
WO2024099328A1 PCT/CN2023/130288 CN2023130288W WO2024099328A1 WO 2024099328 A1 WO2024099328 A1 WO 2024099328A1 CN 2023130288 W CN2023130288 W CN 2023130288W WO 2024099328 A1 WO2024099328 A1 WO 2024099328A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
heating
heating module
power supply
power
Prior art date
Application number
PCT/CN2023/130288
Other languages
English (en)
French (fr)
Inventor
左远洋
胡建
刘赫
冯江平
吴梁浩
曾露添
江德勇
雷俊
王云峰
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222988602.5U external-priority patent/CN219322586U/zh
Priority claimed from CN202211403345.2A external-priority patent/CN115955736A/zh
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024099328A1 publication Critical patent/WO2024099328A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices

Definitions

  • the present application relates to the field of circuit technology, and in particular to a heating circuit and a heating device.
  • heating modules there are multiple heating modules in a heating circuit.
  • different heating modules are fixedly connected to different power circuits; in other heating circuits, when a heating module is connected to a power circuit, the selection of power circuits for other heating modules is limited.
  • the main technical problem solved by the present application is to provide a heating circuit and a heating device, which can realize flexible power supply to the heating module.
  • a technical solution adopted in the present application is: to provide a heating circuit, which includes at least two power supply circuits, at least two heating modules and a selection circuit; the selection circuit is respectively connected to the at least two power supply circuits and at least two heating modules, and is used to select at least one power supply circuit for each heating module for connection, and the selection circuit of the power supply circuit of each heating module does not affect each other.
  • the selection circuit includes at least two selection switches, each selection switch is respectively connected to a heating module and several power supply circuits, and the selection switch is used to select a power supply circuit from the several connected power supply circuits to be connected to the heating module connected to the selection switch.
  • the selection switch includes a first connection end and several second connection ends, the first connection end of the selection switch is connected to the input end of a heating module, and the second connection ends of the selection switch are respectively connected to the output ends of different power supply circuits.
  • the first connection end of the selection switch is connected to one of the second connection ends, the power supply circuit connected to the second connection end currently connected to the selection switch is connected to the heating module connected to the selection switch, and the power supply circuit connected to the second connection end currently not connected to the selection switch is disconnected from the heating module connected to the selection switch.
  • the selection switches connected to more than two heating modules are connected to the same power circuit; and/or, the selection switch connected to at least one heating module is connected to all power circuits.
  • the power supply circuit is an inverter circuit
  • the heating module is a resonant circuit
  • the inverter circuit includes a power supply, a first control switch and a second control switch, the first connection end of the first control switch is connected to the first pole of the power supply, the second connection end of the first control switch is connected to the first connection end of the second control switch, the second connection end of the second control switch is connected to the second pole of the power supply, and the second connection end of the first control switch serves as the output end of the power supply circuit; and/or, the resonant circuit includes a coil and a series capacitor circuit, the series capacitor circuit includes a first capacitor and a second capacitor connected in series, the two ends of the series capacitor circuit are respectively connected to the two poles of the power supply of the power supply circuit, one end of the coil is connected between the first capacitor and the second capacitor, and the other end serves as the input end of the heating module.
  • the device comprises a control circuit and the above-mentioned heating circuit, wherein the control circuit is used to control a selection circuit in the heating circuit to realize a power supply circuit that selects power for each heating module in the heating circuit.
  • control circuit is specifically used to select the target power circuit of the heating module from the optional power circuits of the heating module based on the required power of the heating module and/or the state of the power circuit, and control the selection circuit to connect the heating module with the target power circuit, wherein the optional power circuit of the heating module is the power circuit connected to the selection circuit connected to the heating module.
  • the output power of the target power circuit of the heating module matches the required power of the heating module; and/or, the state of the power circuit includes the power circuit being in an idle state or a non-idle state, wherein the idle state indicates that the power circuit is currently not connected to any heating module.
  • the control circuit executes to select the target power circuit of the heating module from the optional power circuits of the heating module based on the required power of the heating module and/or the state of the power circuit, specifically including: searching whether there is an idle power circuit from the optional power circuits of the heating module, the idle power circuit being an optional power circuit whose output power matches the power required by the heating module and is in an idle state; in response to the existence of an idle power circuit, using the idle power circuit as the target power circuit of the heating module; in response to the absence of an idle power circuit, using an optional power circuit whose output power matches the power required by the heating module and is in use as the target power circuit of the heating module.
  • the control circuit is also used to control the selection circuit to connect at least some of the heating modules with the same required power to the same power supply circuit.
  • the heating device also includes a detection circuit, which is used to detect whether there is a target to be heated in each heating module, and in response to the presence of the target in the heating module, generates a trigger signal for the heating module where the target exists; the control circuit is used to control the selection circuit to connect the heating module where the target exists to at least one power supply circuit in response to the trigger signal.
  • the control circuit is also used to control the selection circuit to connect several heating modules with the same target object to the same power supply circuit respectively.
  • the heating device is an electromagnetic heating device.
  • the selection circuit is respectively connected to at least two power supply circuits and at least two heating modules, and is used to select at least one power supply circuit for each heating module for connection, and the selection of the power supply circuit of each heating module by the selection circuit does not affect each other. Therefore, since the selection circuit connected to each heating module is connected to at least two power supply circuits, the selection circuit can select any power supply circuit or any multiple power supply circuits from at least two power supply circuits for the heating module connected thereto to connect, so as to realize the connection between the heating module and any power supply circuit in the heating circuit, that is, to realize flexible power supply to the heating module.
  • FIG1 is a schematic structural diagram of an embodiment of a heating circuit provided by the present application.
  • FIG2 is a schematic structural diagram of another embodiment of a heating circuit provided by the present application.
  • FIG3 is a schematic structural diagram of an embodiment of a heating device provided by the present application.
  • FIG. 4 is a schematic diagram of an embodiment of a heating module provided in the present application.
  • FIG1 is a schematic diagram of the structure of an embodiment of a heating circuit provided by the present application.
  • the heating circuit 100 includes at least two power supply circuits 10 , at least two heating modules 20 and a selection circuit 30 .
  • At least two power supply circuits 10 are power supply parts for providing power supply to the heating circuit 100, that is, at least two power supply circuits 10 are used as the power source of the heating circuit 100 to supply power to other related circuits or components in the heating circuit 100, so as to maintain or ensure the normal operation of other related circuits or components, thereby ensuring the normal operation of the heating circuit 100. It should be noted that at least two power supply circuits 10 can supply power to different circuits or components respectively, that is, at least two power supply circuits 10 do not affect each other and are not related to each other, that is, in the actual operation of the heating circuit 100, at least two power supply circuits 10 can be powered at the same time, or they can be powered separately.
  • the power supply circuit 10 is specifically powered depends on whether the related circuits or components connected to the power supply circuit 10 need to be powered. Among them, the number of power supply circuits 10 is not limited, and can be specifically set according to actual use needs. For example, the power supply circuit 10 is set to 2, 3, 4, 5 or more.
  • At least two heating modules 20 are used for heating, and the heating modules 20 are used to heat the target object to be heated in the area corresponding to the heating modules 20.
  • the at least two heating modules 20 can be used to heat different targets to be heated respectively, or can be used to heat the same target object to be heated; or, a part of the heating modules 20 is used to heat a certain target object to be heated, and another part of the heating modules 20 is used to heat another target object to be heated.
  • the heating circuit 100 includes four heating modules 20, namely, heating module A 20, heating module B 20, heating module C 20 and heating module D 20; wherein, since the area where the target object ⁇ to be heated is located is the area corresponding to the heating module A 20 and the heating module B 20, the heating module A 20 and the heating module B 20 can be controlled to heat the target object ⁇ to be heated, or the heating module A 20 or the heating module B 20 can be controlled to heat the target object ⁇ to be heated as needed; and since the area where the target object ⁇ to be heated is located is the area corresponding to the heating module C 20, the heating module C 20 can be controlled to heat the target object ⁇ to be heated; and since there is no target object to be heated in the area corresponding to the heating module C 20, the heating module C 20 does not operate.
  • the heating circuit 100 includes three heating modules 20, namely, heating module A 20, heating module B 20 and heating module C 20; wherein, since the area where the target object ⁇ to be heated is located is the area corresponding to heating module A 20, heating module B 20 and heating module C 20, heating module A 20, heating module B 20 and heating module C 20 can be controlled to heat the target object ⁇ to be heated at the same time, or any one or any two heating modules 20 can be controlled as needed to heat the target object ⁇ to be heated.
  • the number of heating modules 20 is not limited, and can be specifically set according to actual use needs.
  • the heating modules 20 are set to 2; for another example, as shown in Figure 2, Figure 2 is a structural schematic diagram of another embodiment of the heating circuit provided by the present application, and the heating modules 20 are set to multiple.
  • the selection circuit 30 is respectively connected to at least two power circuits 10 and at least two heating modules 20, and is used to select at least one power circuit 10 for connection to each heating module 20. That is, the setting of the selection circuit 30 enables each heating module 20 to be connected to at least one power circuit 10, and the power circuit 10 correspondingly connected to the heating module 20 serves as the power source of the heating module 20 to supply power to the heating module 20, ensure or maintain the normal operation of the heating module 20, so that the heating module 20 can heat the target object to be heated in the area corresponding to the heating module 20.
  • the selection of the power circuit 10 of each heating module 20 by the selection circuit 30 does not affect each other, that is, for each heating module 20, the selection circuit 30 can select any one of the at least two power circuits 10 connected thereto or any multiple power circuits 10 to connect to the heating module 20, so as to realize the connection between the heating module 20 and any one of the at least two power circuits 10 or any multiple power circuits 10, regardless of whether the power circuit 10 is connected to other heating modules 20, that is, the selection of the power circuit 10 of the heating module 20 is not restricted, thereby realizing flexible power supply to the heating module 20.
  • the selection circuit 30 selects a power supply circuit 10 for the heating module 20 to connect: the selection circuit 30 connects the two power supply circuits 10 (specifically, power supply circuit a 10 and power supply circuit b 10) and the two heating modules 20 (specifically, heating module A 20 and heating module B 20) respectively; the selection circuit 30 can select one of power supply circuit a 10 or power supply circuit b 10 for the heating module A 20 to connect, such as specifically selecting power supply circuit b 10 for connection; after the selection circuit 30 selects power supply circuit b 10 for the heating module A 20 to connect, the selection circuit 30 can select one of power supply circuit a 10 or power supply circuit b 10 for the heating module B 20 to connect.
  • the selection circuit 30 includes at least two selection switches 31, each selection switch 31 is respectively connected to a heating module 20 and a plurality of power circuits 10, and the selection switch 31 is used to select a power circuit 10 from the connected power circuits 10 to be connected to the heating module 20 connected to the selection switch 31. Since each selection switch 31 is connected to a plurality of power circuits 10, the selection switch 31 can select any power circuit 10 from the connected power circuits 10 to be connected to the heating module 20 connected to the selection switch 31, that is, each selection switch 31 does not affect each other in the selection of the power circuit 10 of the heating module 20 connected to it. Among them, the number of the selection switches 31 is not limited, and can be specifically set according to the number of the heating modules 20.
  • the heating circuit 100 includes 4 heating modules 20, and 4 selection switches 31 are set at this time, and each selection switch 31 is respectively connected to a heating module 20.
  • the selection circuit 30 can also be other structural forms, which can be set according to actual use needs, and is not specifically limited here.
  • the selection switch 31 connected to at least one heating module 20 is connected to all power circuits 10, that is, some selection switches 31 in the heating circuit 100 are connected to all power circuits 10 in the heating circuit 100, so that the selection switch 31 can select any power circuit 10 from all power circuits 10 included in the heating circuit 100 to be connected to the heating module 20 connected to the selection switch 31.
  • the number of selection switches 31 connected to all power circuits 10 is not limited, and can be specifically set according to actual use needs.
  • the selection switches 31 connected to 1, 2 or 3 heating modules 20 are connected to all power circuits 10.
  • the selection switches 31 connected to more than two heating modules 20 are connected to the same power circuit 10. That is to say, some power circuits 10 in the heating circuit 100 will be connected to two or more selection switches 31 at the same time.
  • the heating circuit 100 including A heating module 20, B heating module 20 and C heating module 20 and including a power supply circuit 10, b power supply circuit 10 and c power supply circuit 10 as an example; the selection switch 31 connected to the A heating module 20 connects the a power supply circuit 10, the b power supply circuit 10 and the c power supply circuit 10; the selection switch 31 connected to the B heating module 20 connects the a power supply circuit 10 and the c power supply circuit 10; the selection switch 31 connected to the C heating module 20 connects the a power supply circuit 10 and the b power supply circuit 10.
  • the selection switch 31 includes a first connection terminal 311 and a plurality of second connection terminals. 312, the first connection end 311 of the selection switch 31 is connected to the input end 21 of a heating module 20, and each second connection end 312 of the selection switch 31 is respectively connected to the output end 11 of a different power supply circuit 10.
  • the power supply circuit 10 connected to the second connection end 312 of the selection switch 31 is connected to the heating module 20 connected to the selection switch 31.
  • the selection circuit 30 can be regarded as a single-pole multi-throw relay, and several moving ends of the single-pole multi-throw relay are respectively connected to the output ends 11 of different power supply circuits 10, and the fixed end of the single-pole multi-throw relay is connected to the input end 21 of the heating module 20.
  • the path between the fixed end and the moving end is turned on, so that the path between the power supply circuit 10 connected to the moving end and the heating module 20 connected to the fixed end is turned on, so that the power supply circuit 10 can supply power to the heating module 20, ensure or maintain the normal operation of the heating module 20, so that the heating module 20 can heat the target object to be heated in the area corresponding to this heating module 20.
  • the power circuit 10 is an inverter circuit 10A
  • the heating module 20 is a resonant circuit 20A. Since the inverter circuit 10A can convert direct current into alternating current, when the power circuit 10 is the inverter circuit 10A, the power circuit 10 is an alternating current power source, that is, the output of the power circuit 10 is an alternating current signal; the essence of the resonant circuit 20A is that the electric field energy in the capacitor and the magnetic field energy in the inductor are mutually converted, and the sum of the electric field energy and the magnetic field energy remains unchanged at all times.
  • the power supply does not need to convert energy back and forth with the capacitor or inductor, but only needs to supply the electric energy consumed by the resistor in the circuit. That is to say, when the power supply circuit 10 is an inverter circuit 10A and the heating module 20 is a resonant circuit 20A, the heating circuit 100 is specifically an electromagnetic heating circuit, and the inverter circuit 10A in the electromagnetic heating circuit inverts the electrical signal into a high-frequency alternating current; the resonant circuit 20A in the electromagnetic heating circuit converts the high-frequency alternating current into a high-frequency alternating magnetic field, and generates eddy currents corresponding to the high-frequency alternating magnetic field.
  • the specific circuit structure of the inverter circuit 10A and the resonant circuit 20A is not limited, and can be specifically set according to actual use needs. It can be understood that in other embodiments, the heating module 20 can also be other types of circuits, etc., and the power supply circuit 10 can also be other types of circuits, etc., which are not specifically limited here.
  • the power supply circuit 10 is a rectifier circuit, etc.
  • resonant circuits in an electromagnetic heating circuit there are multiple resonant circuits in an electromagnetic heating circuit.
  • the existing method when there are multiple resonant circuits in the electromagnetic heating circuit, when a certain resonant circuit among the multiple resonant circuits is connected to the lower half bridge or the upper half bridge of the half-bridge inverter circuit, there will be a situation that affects the connection of other resonant circuits to any half bridge of the half-bridge inverter circuit.
  • each resonant circuit 20A can be connected to at least one inverter circuit 10A, and the inverter circuit 10A corresponding to the resonant circuit 20A serves as the power source of this resonant circuit 20A to power the resonant circuit 20A, to ensure or maintain the normal operation of the resonant circuit 20A, so that the resonant circuit 20A can heat the target object to be heated in the area corresponding to this resonant circuit 20A; in addition, the selection circuit 30 does not affect each other in the selection of the inverter circuit 10A of each resonant circuit 20A, that is, for each For the resonant circuit 20A, the selection circuit 30 can select any one of the at least two inverter circuits 10A connected thereto or any multiple inverter circuits 10A to connect to the resonant circuit 20A, so as to realize the connection between the resonant circuit 20A and any one of the at least two inverter circuits 10A or any multiple
  • the inverter circuit 10A is a half-bridge inverter circuit.
  • the inverter circuit 10A includes a power supply DC, a first control switch Q1, and a second control switch Q2.
  • the first connection end Q1-1 of the first control switch Q1 is connected to a first pole 12 of the power supply DC
  • the second connection end Q1-2 of the first control switch Q1 is connected to a first connection end Q2-1 of the second control switch Q2
  • the second connection end Q2-2 of the second control switch Q2 is connected to a second pole 13 of the power supply DC
  • the first control The second connection terminal Q1-2 of the switch Q1 serves as the output terminal 11 of the power supply circuit 10.
  • the inverter circuit 10A can also be a full-bridge inverter circuit, etc., which can be set according to actual use needs and is not specifically limited here.
  • the power supply DC in each inverter circuit 10A is the same power supply DC; of course, in other embodiments, the power supply DC in each inverter circuit 10A can also be a different power supply DC, which is not specifically limited here.
  • the first control switch Q1 and the second control switch Q2 are triodes, which can be specifically metal-oxide-semiconductor field-effect transistors (MOSFET), which are field effect transistors that can be widely used in analog circuits and digital circuits; or, they can be insulated gate bipolar transistors, etc.
  • MOSFET metal-oxide-semiconductor field-effect transistors
  • the insulated gate bipolar transistor is a composite fully controlled voltage-driven power semiconductor device composed of a bipolar triode and an insulated gate field effect transistor, and has the advantages of both the high input impedance of the metal-oxide-semiconductor field effect transistor and the low on-state voltage drop of the power transistor.
  • the resonant circuit 20A includes a coil L and a series capacitor circuit 22, the series capacitor circuit 22 includes a first capacitor C1 and a second capacitor C2 connected in series, the two ends of the series capacitor circuit 22 are respectively connected to the two poles of the power supply DC of the power supply circuit 10, one end of the coil L is connected between the first capacitor C1 and the second capacitor C2, and the other end serves as the input end 21 of the heating module 20.
  • the resonant circuit 20A may also be provided with only one capacitor or three, four or more capacitors, which are not specifically limited here.
  • the first capacitor C1 and the second capacitor C2 included in the series capacitor circuit 22 are resonant capacitors.
  • the present application provides a heating circuit, which includes at least two power supply circuits, at least two heating modules and a selection circuit; the selection circuit is respectively connected to the at least two power supply circuits and at least two heating modules, and is used to select at least one power supply circuit for connection for each heating module, and the selection of the power supply circuit of each heating module by the selection circuit does not affect each other; since the selection circuit connected to each heating module will be connected to at least two power supply circuits, the selection circuit can select any power supply circuit or any multiple power supply circuits from at least two power supply circuits for the heating module connected thereto for connection, so as to realize the connection between the heating module and any power supply circuit in the heating circuit.
  • FIG3 is a schematic diagram of the structure of an embodiment of a heating device provided by the present application.
  • the present application also provides a heating device 300, which includes a control circuit 200 and a heating circuit 100 in any of the above embodiments, wherein the control circuit 200 is used to control the selection circuit 30 in the heating circuit 100, so as to select a power supply circuit 10 for each heating module 20 in the heating circuit 100.
  • the control circuit 200 can control the selection circuit 30 to select any power supply circuit 10 or multiple power supply circuits 10 from at least two power supply circuits 10 for the heating module 20 connected thereto, so as to select a power supply circuit 10 for each heating module 20 in the heating circuit 100, that is, the selection of the power supply circuit 10 of the heating module 20 is not restricted, so as to realize flexible power supply to the heating module 20.
  • the heating device 300 is an electromagnetic heating device, and the heating circuit 100 is specifically an electromagnetic heating circuit.
  • the inverter circuit 10A in the electromagnetic heating circuit inverts the electrical signal into a high-frequency alternating current
  • the resonant circuit 20A in the electromagnetic heating circuit converts the high-frequency alternating current into a high-frequency alternating magnetic field.
  • the high-frequency alternating magnetic field passes through the conductor in the coil L to generate an induced current, forming a closed loop, i.e., an eddy current.
  • an eddy current flows on the surface of the material, the electrons inside the metal are very active, collide with each other, and rub against each other, so that the conductor material in the coil L is heated and heated, thereby realizing the heating of the heating device 300 on the target object to be heated.
  • the electromagnetic heating circuit can effectively improve the heat conversion rate while greatly reducing energy consumption, and has less safety hazards.
  • the heating device 300 further includes a detection circuit (not shown in the figure), which is used to detect the The control circuit 200 detects whether there is a target to be heated in the heating module 20, and generates a trigger signal for the heating module 20 with the target in response to the presence of the target in the heating module 20; at this time, the control circuit 200 is used to control the selection circuit 30 to connect the heating module 20 with the target to at least one power circuit 10 in response to the trigger signal generated by the detection circuit.
  • a detection circuit not shown in the figure
  • the detection circuit detects the area corresponding to each heating module 20 to determine whether there is a target to be heated in the area corresponding to each heating module 20; when there is a target to be heated in the area corresponding to the heating module 20, a trigger signal for the heating module 20 with the target is generated and sent to the control circuit 200; after the control circuit 200 receives the trigger signal sent by the detection circuit, the control selection circuit 30 connects the heating module 20 with the target to at least one power circuit 10, so that the power circuit 10 supplies power to the heating module 20, so that the heating module 20 can heat the target to be heated in its corresponding area.
  • the detection circuit detects the areas corresponding to the A heating module 20, the B heating module 20 and the C heating module 20, and determines that there is a target to be heated in the area corresponding to the A heating module 20.
  • the detection circuit generates a trigger signal about the A heating module 20 where the target exists and sends the trigger signal to the control circuit 200; after the control circuit 200 receives the trigger signal sent by the detection circuit, the control selection circuit 30 connects the A heating module 20 where the target exists with at least one power supply circuit 10, so that the power supply circuit 10 supplies power to the A heating module 20, so that the A heating module 20 can heat the target to be heated in its corresponding area.
  • control circuit 200 is further used to control the selection circuit 30 to connect the plurality of heating modules 20 with the same target object to the same power circuit 10. That is, the plurality of heating modules 20 with the same target object are regarded as a heating module group, and the heating modules 20 in the heating circuit 100 are combined accordingly according to the target object to be heated to obtain a heating module group corresponding to the target object to be heated, and the heating module group is connected to a power circuit 10 in the heating circuit 100, so that the power circuit 10 supplies power to each heating module 20 in the heating module group.
  • Figure 4 is a schematic diagram of an embodiment of a heating module provided in the present application, there are target objects to be heated in the areas corresponding to the a3 heating module 20, a4 heating module 20, b8 heating module 20, b9 heating module 20, a9 heating module 20, b3 heating module 20 and b4 heating module 20, and the target objects to be heated are all target objects ⁇ , and the a3 heating module 20, a4 heating module 20, b8 heating module 20, b9 heating module 20, a9 heating module 20, b3 heating module 20 and b4 heating module 20 are combined to obtain a heating module group corresponding to the target object ⁇ ; the control circuit 200 controls the selection circuit 30 connected to the a3 heating module 20, a4 heating module 20, b8 heating module 20, b9 heating module 20, a9 heating module 20, b3 heating module 20 and b4 heating module 20 where the target object ⁇ exists, and respectively connects them to the same power supply circuit 10.
  • targets to be heated in the areas corresponding to the a6 heating module 20, a7 heating module 20, a8 heating module 20 and b1 heating module 20, and the targets to be heated are all targets ⁇ , and the a6 heating module 20, a7 heating module 20, a8 heating module 20 and b1 heating module 20 are combined to obtain a heating module group corresponding to the target object ⁇ ; the control circuit 200 controls the selection circuit 30 connected to the a6 heating module 20, a7 heating module 20, a8 heating module 20 and b1 heating module 20 where the target object ⁇ exists to be respectively connected to the same power supply circuit 10.
  • control circuit 200 is specifically used to select a target power circuit of the heating module 20 from the optional power circuits of the heating module 20 based on the required power of the heating module 20 and/or the state of the power circuit 10, and control the selection circuit 30 to connect the heating module 20 with the target power circuit, wherein the optional power circuit of the heating module 20 is the power circuit 10 connected to the selection circuit 30 connected to the heating module 20. That is, the control circuit 200 first selects the target power circuit from the power circuit 10 connected to the selection circuit 30 connected to the heating module 20 based on the required power of the heating module 20 and/or the state of the power circuit 10; then, the control circuit 200 controls the selection circuit 30 to connect the heating module 20 with the target power circuit.
  • control circuit 200 selects the target power circuit from the power circuit 10 connected to the selection circuit 30 connected to the heating module 20 based on the required power of the heating module 20 and/or the state of the power circuit 10; then, the control circuit 200 controls the selection circuit 30 to connect the heating module 20 with the target power circuit. 10 and other factors, and reasonably select the power supply circuit 10 for each heating module 20 in the heating circuit 100 to improve the utilization rate of the power supply circuit 10 in the heating circuit 100, so that the heating device 300 can heat more target objects.
  • the state of the power circuit 10 includes that the power circuit 10 is in an idle state or a non-idle state, wherein the idle state indicates that the power circuit 10 is currently not connected to any heating module 20. Therefore, the control circuit 200 can select any one or more power circuits 10 in an idle state from the optional power circuits of the heating module 20 as the target power circuit, and control the selection circuit 30 to connect the heating module 20 to the target power circuit.
  • the heating circuit 100 includes a heating module 20 and a B heating module 20
  • the power circuit 10 connected to the selection circuit 30 connected to the A heating module 20 includes a power circuit 10, b power circuit 10 and c power circuit 10
  • the power circuit 10 connected to the selection circuit 30 connected to the B heating module 20 includes a power circuit 10, b power circuit 10 and c power circuit 10
  • the control circuit 200 can select the target power circuit from the b power circuit 10 and the c power circuit 10 in the idle state, and control the target power circuit to be connected to the A heating module 20.
  • the output power of the target power circuit of the heating module 20 matches the required power of the heating module 20. Therefore, the control circuit 200 can select the power circuit 10 whose output power matches the required power of the heating module 20 from the optional power circuits of the heating module 20 based on the required power of the heating module 20 as the target power circuit of the heating module 20, and control the selection circuit 30 to connect the heating module 20 with the target power circuit.
  • the heating circuit 100 includes the A heating module 20, and the power circuit 10 connected to the selection circuit 30 connected to the A heating module 20 includes the a power circuit 10, the b power circuit 10 and the c power circuit 10; since the required power of the A heating module 20 matches the output power of the a power circuit 10, the control circuit 200 can select the power circuit 10 whose output power matches the required power of the heating module 20, that is, the a power circuit 10, from the optional power circuits of the heating module 20 as the target power circuit, and control the target power circuit to be connected to the B heating module 20.
  • control circuit 200 executes to select a target power circuit of the heating module 20 from the optional power circuits of the heating module 20 based on the required power of the heating module 20 and/or the state of the power supply circuit 10, specifically including: searching whether there is an idle power circuit from the optional power circuits of the heating module 20, the idle power circuit being an optional power circuit whose output power matches the power required by the heating module 20 and is in an idle state; in response to the existence of an idle power circuit, using the idle power circuit as the target power circuit of the heating module 20; in response to the absence of an idle power circuit, using an optional power circuit whose output power matches the power required by the heating module 20 and is in use as the target power circuit of the heating module 20.
  • the heating circuit 100 includes a heating module 20, and the power supply circuit 10 connected to the selection circuit 30 connected to the A heating module 20 includes a power supply circuit 10, b power supply circuit 10 and c power supply circuit 10; first, the control circuit 200 searches whether there is an idle power supply circuit from the optional power supply circuits of the heating module 20, namely, the a power supply circuit 10, the b power supply circuit 10 and the c power supply circuit 10.
  • the a power supply circuit 10 Since the a power supply circuit 10 is currently in an idle state and the output power of the a power supply circuit 10 matches the power required by the A heating module 20, the a power supply circuit 10 is an idle power supply circuit among the optional power supply circuits of the heating module 20; secondly, the idle power supply circuit, namely, the a power supply circuit, is used as the target power supply circuit of the heating module 20.
  • the heating circuit 100 includes a heating module 20
  • the power supply circuit 10 connected to the selection circuit 30 connected to the heating module 20 includes an a power supply circuit 10 and a b power supply circuit 10
  • the control circuit 200 searches for an idle power supply circuit from the optional power supply circuits of the heating module 20, i.e., the a power supply circuit 10 and the b power supply circuit 10.
  • a power supply circuit 10 is a power supply circuit 10 whose output power matches the power required by the heating module 20 but is in a non-idle state, i.e., a use state
  • the b power supply circuit 10 is a power supply circuit 10 whose output power does not match the power required by the heating module 20
  • the optional power supply circuit a 10 that is power-matched and in use is used as the target power supply circuit of the heating module 20 .
  • the control circuit 200 is further used to control the selection circuit 30 to connect at least some of the heating modules 20 with the same required power to the same power circuit 10.
  • the heating circuit 100 includes a heating module 20, a B heating module 20, and a C heating module 20, the power circuit 10 connected to the selection circuit 30 connected to the A heating module 20 includes a power circuit 10, a b power circuit 10, and a c power circuit 10, the power circuit 10 connected to the selection circuit 30 connected to the B heating module 20 includes a power circuit 10, a b power circuit 10, and a c power circuit 10, and the power circuit 10 connected to the selection circuit 30 connected to the C heating module 20 includes a power circuit 10, a b power circuit 10, and a c power circuit 10.
  • the control circuit 200 controls the selection circuit 30 to connect the A heating module 20 and the B heating module 20 to the a power supply circuit 10 and controls the selection circuit 30 to connect the C heating module 20 to the b power supply circuit 10, or the control circuit 200 controls the selection circuit 30 to connect the A heating module 20, the B heating module 20 and the C heating module 20 to the a power supply circuit 10 or the b power supply circuit 10.

Landscapes

  • Control Of Resistance Heating (AREA)

Abstract

一种加热电路(100)和加热装置(300),该加热电路(100)包括:至少两个电源电路(10)、至少两个加热模块(20)和选择电路(30);选择电路(30)分别连接至少两个电源电路(10)和至少两个加热模块(20),用于分别为各加热模块(20)选择至少一个电源电路(10)进行连接,且选择电路(30)对每个加热模块(20)的电源电路(10)的选择不相互影响。该加热电路(100)和加热装置(300)能够实现对加热模块(20)的灵活供电。

Description

一种加热电路和加热装置
本申请要求于2022年11月08日提交的申请号为2022114033452,发明名称为“一种加热电路和加热装置”的中国专利申请的优先权,以及要求于2022年11月08日提交的申请号为2022229886025,实用新型名称为“一种加热电路和加热装置”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请涉及电路技术领域,特别是涉及一种加热电路和加热装置。
背景技术
目前,在加热电路中,会存在多个加热模块。其中,在一些加热电路中,不同加热模块与不同的电源电路都是固定连接的;而在另一些加热电路中,当一个加热模块与其在一个电源电路连接后,另外的加热模块对电源电路的选择受到限制。
发明内容
本申请主要解决的技术问题是提供一种加热电路和加热装置,能够实现对加热模块的灵活供电。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种加热电路,该加热电路包括至少两个电源电路、至少两个加热模块和选择电路;选择电路分别连接至少两个电源电路和至少两个加热模块,用于分别为各加热模块选择至少一个电源电路进行连接,且选择电路对每个加热模块的电源电路的选择不相互影响。
其中,选择电路包括至少两个选择开关,每个选择开关分别连接一加热模块和若干电源电路,选择开关用于从连接的若干电源电路中选择一电源电路与选择开关连接的加热模块连通。
其中,选择开关包括第一连接端和若干第二连接端,选择开关的第一连接端连接一加热模块的输入端,选择开关的各第二连接端分别连接不同的电源电路的输出端,在选择开关的第一连接端与其中一个第二连接端连通的情况下,选择开关当前连通的第二连接端连接的电源电路与选择开关连接的加热模块实现连通,选择开关当前未连通的第二连接端连接的电源电路与选择开关连接的加热模块实现断开。
其中,两个以上加热模块连接的选择开关连接于同一电源电路;和/或,至少一个加热模块连接的选择开关连接所有电源电路。
其中,电源电路为逆变电路,加热模块为谐振电路。
其中,逆变电路包括电源、第一控制开关和第二控制开关,第一控制开关的第一连接端连接电源的第一极,第一控制开关的第二连接端连接第二控制开关的第一连接端,第二控制开关的第二连接端连接电源的第二极,第一控制开关的第二连接端作为电源电路的输出端;和/或,谐振电路包括线圈和串联电容电路,串联电容电路包括串联连接的第一电容和第二电容,串联电容电路的两端分别连接电源电路的电源的两极,线圈的一端连接于第一电容和第二电容之间、另一端作为加热模块的输入端。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种加热装置,该加热装 置包括控制电路和上述的加热电路,其中,控制电路用于控制加热电路中的选择电路,实现为加热电路中的各加热模块选择供电的电源电路。
其中,控制电路具体用于基于加热模块的所需功率和/或电源电路所处的状态,从加热模块的可选电源电路中选出加热模块的目标电源电路,并控制选择电路将加热模块与目标电源电路连接,其中,加热模块的可选电源电路为与加热模块连接的选择电路所连接的电源电路。
其中,加热模块的目标电源电路的输出功率与加热模块的所需功率匹配;和/或,电源电路所处的状态包括电源电路处于空闲状态或者非空闲状态,其中,空闲状态表示电源电路当前与任意加热模块均无连接。
其中,控制电路执行基于加热模块的所需功率和/或电源电路所处的状态,从加热模块的可选电源电路中选出加热模块的目标电源电路,具体包括:从加热模块的可选电源电路中查找是否存在空闲电源电路,空闲电源电路为输出功率与加热模块所需的功率匹配、且处于空闲状态的可选电源电路;响应于存在空闲电源电路,将空闲电源电路作为加热模块的目标电源电路;响应于不存在空闲电源电路,将输出功率与加热模块所需的功率匹配、且处于使用状态的可选电源电路,作为加热模块的目标电源电路。
其中,控制电路还用于控制选择电路将所需功率相同的至少部分加热模块连接至同一电源电路。
其中,加热装置还包括检测电路,检测电路用于检测各加热模块是否存在待加热的目标物,并响应于加热模块存在目标物,生成关于存在目标物的加热模块的触发信号;控制电路用于响应于触发信号,控制选择电路将存在目标物的加热模块与至少一个电源电路连接。
其中,控制电路还用于控制选择电路将存在同一目标物的若干加热模块分别与相同的电源电路连接。
其中,加热装置为电磁加热设备。
上述技术方案,选择电路分别连接至少两个电源电路和至少两个加热模块,用于分别为各加热模块选择至少一个电源电路进行连接,且选择电路对每个加热模块的电源电路的选择互不影响。故,由于与各加热模块连接的选择电路会与至少两个电源电路连接,所以选择电路能够为其连接的加热模块从至少两个电源电路中选择任一电源电路或者任意多个电源电路进行连接,以实现加热模块与加热电路中的任意电源电路的连接,即,实现对加热模块的灵活供电。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本申请提供的加热电路一实施方式的结构示意图;
图2是本申请提供的加热电路另一实施方式的结构示意图;
图3是本申请提供的加热装置一实施方式的结构示意图;
图4是本申请提供的加热模块一实施方式的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时,应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
为了更好地理解本申请,下面结合附图和具体实施例对本申请提供的一种加热电路和加热电路进行更为详细的描述。
请参阅图1,图1是本申请提供的加热电路一实施方式的结构示意图。加热电路100包括至少两个电源电路10、至少两个加热模块20和选择电路30。
至少两个电源电路10为提供给加热电路100电力供应的电源部分,也就是说,至少两个电源电路10作为加热电路100的电能来源,用于给加热电路100中的其他相关电路或者元器件进行供电,以维持或者保证其他相关电路或者元器件的正常运作,从而保证加热电路100的正常运作。需要说明的是,至少两个电源电路10能够分别为不同的电路或者元器件进行供电,即至少两个电源电路10之间互不影响且互不关联,也就是说,在加热电路100实际运作过程中,至少两个电源电路10可同时进行供电运作,也可单独进行供电运作,电源电路10具体是否进行供电运作根据电源电路10连接的相关电路或者元器件是否需要供电而定。其中,不对电源电路10的个数进行限定,可根据实际使用需要具体设置。例如,电源电路10设置为2个、3个、4个、5个或者多个等。
至少两个加热模块20,加热模块20起到加热的作用,用于给对应加热模块20区域上的待加热目标物进行加热。其中,至少两个加热模块20可用于分别加热不同的待加热目标物,也可用于加热同一待加热目标物;或者,一部分加热模块20用于加热某一待加热目标物,另一部分加热模块20用于加热另一待加热目标物。例如,加热电路100包括四个加热模块20,分别为A加热模块20、B加热模块20、C加热模块20和D加热模块20;其中,由于待加热目标物α所处区域为A加热模块20和B加热模块20对应的区域,所以可控制A加热模块20和B加热模块20为待加热目标物α加热,或者也可根据需要控制A加热模块20或者B加热模块20为待加热目标物α加热;而由于待加热目标物β所处区域为C加热模块20对应的区域,所以可控制C加热模块20为待加热目标物β加热;而由于对应C加热模块20区域上没有待加热目标物,所以C加热模块20不进行运作。又例如,加热电路100包括三个加热模块20,分别为A加热模块20、B加热模块20和C加热模块20;其中,由于待加热目标物γ所处区域为A加热模块20、B加热模块20和C加热模块20对应的区域,所以可控制A加热模块20、B加热模块20和C加热模块20同时为待加热目标物γ进行加热,或者也可根据需要控制其中任意一个或者任意两个加热模块20为待加热目标物γ进行加热。可选地,不对加热模块20的个数进行限定,可根据实际使用需要具体设置。例如,如图1所示,加热模块20设置为2个;又例如,如图2所示,图2是本申请提供的加热电路另一实施方式的结构示意图,加热模块20设置为多个。
选择电路30分别连接至少两个电源电路10和至少两个加热模块20,用于分别为各加热模块20选择至少一个电源电路10进行连接。也就是说,选择电路30的设置,会使得各加热模块20能够与至少一个电源电路10连接,与加热模块20对应连接的电源电路10作为此加热模块20的电能来源,以给加热模块20进行供电,保证或维持加热模块20的正常运作,从而使得加热模块20能够给对应此加热模块20区域上的待加热目标物进行加热。另外,选择电路30对每个加热模块20的电源电路10的选择不相互影响,即,对于每个加热模块20来说,选择电路30可以选择与其连接的至少两个电源电路10中的任一电源电路10或者任意多个电源电路10与加热模块20进行连接,以实现加热模块20与至少两个电源电路10中的任一电源电路10或者任意多个电源电路10的连接,而不受电源电路10是否有连接其他加热模块20的影响,即,对加热模块20的电源电路10的选择是不受限制的,实现对加热模块20的灵活供电。举例来说,以加热电路100包括两个电源电路10和两个加热模块20、选择电路30为加热模块20选择一个电源电路10进行连接为例:选择电路30分别连接两个电源电路10(具体为a电源电路10和b电源电路10)和两个加热模块20(具体为A加热模块20和B加热模块20);选择电路30可为A加热模块20选择a电源电路10或者b电源电路10中的一者进行连接,如,具体选择b电源电路10进行连接;在选择电路30为A加热模块20选择b电源电路10进行连接后,选择电路30可为B加热模块20选择a电源电路10或者b电源电路10中的一者进行连接。
请继续参阅图1,在一实施方式中,选择电路30包括至少两个选择开关31,每个选择开关31分别连接一加热模块20和若干电源电路10,选择开关31用于从连接的若干电源电路10中选择一电源电路10与选择开关31连接的加热模块20连通。由于每个选择开关31都会与若干电源电路10连接,所以选择开关31能够从连接的若干电源电路10中选择任一电源电路10与选择开关31连接的加热模块20连通,即,各个选择开关31对其连接的加热模块20的电源电路10的选择互不影响。其中,不对选择开关31的数量进行限定,可根据加热模块20的数量具体设置。例如,加热电路100包括4个加热模块20,此时设置4个选择开关31,每个选择开关31分别连接一加热模块20。可以理解地,在其他实施方式中,选择电路30也可以是其他的结构形式,可根据实际使用需要进行设置,在此不做具体限定。
在一实施方式中,至少一个加热模块20连接的选择开关31连接所有电源电路10,也就是说,加热电路100中的部分选择开关31与加热电路100中的所有电源电路10均连接,以使选择开关31能够从加热电路100所包括的所有电源电路10中选择任一电源电路10与选择开关31连接的加热模块20连通。其中,不对与所有电源电路10连接的选择开关31的数量进行限定,可根据实际使用需要具体设置。例如,1个、2个或者3个等加热模块20连接的选择开关31连接所有电源电路10。在一实施方式中,两个以上加热模块20连接的选择开关31连接于同一电源电路10。也就是说,加热电路100中的部分电源电路10会同时与两个或两个以上的选择开关31连接。
示例性地,以加热电路100包括A加热模块20、B加热模块20和C加热模块20以及包括a电源电路10、b电源电路10和c电源电路10为例;A加热模块20连接的选择开关31连接a电源电路10、b电源电路10和c电源电路10;B加热模块20连接的选择开关31连接a电源电路10和c电源电路10;C加热模块20连接的选择开关31连接a电源电路10和b电源电路10。
在一具体实施方式中,如图1所示,选择开关31包括第一连接端311和若干第二连接端 312,选择开关31的第一连接端311连接一加热模块20的输入端21,选择开关31的各第二连接端312分别连接不同的电源电路10的输出端11,在选择开关31的第一连接端311与其中一个第二连接端312连通的情况下,选择开关31当前连通的第二连接端312连接的电源电路10与选择开关31连接的加热模块20实现连通。也就是说,选择电路30可看作是单刀多掷继电器,单刀多掷继电器的若干动端分别连接不同的电源电路10的输出端11,单刀多掷继电器的不动端连接加热模块20的输入端21,在单刀多掷继电器的不动端与任一动端连接时,不动端与动端之间的通路被导通,从而使得与动端连接的电源电路10和与不动端连接的加热模块20之间的通路被导通,以使电源电路10能够给加热模块20进行供电,保证或维持加热模块20的正常运作,从而使得加热模块20能够给对应此加热模块20区域上的待加热目标物进行加热。
请继续参阅图1,在一实施方式中,如图1所示,电源电路10为逆变电路10A,加热模块20为谐振电路20A。由于逆变电路10A能够把直流电转变为交流电,在电源电路10为逆变电路10A时,电源电路10为交流电源,即电源电路10输出为交流电信号;谐振电路20A的实质是电容中的电场能与电感中的磁场能相互转换,电场能和磁场能的总和时刻保持不变,电源不必与电容或电感往返转换能量,只需要供给电路中电阻所消耗的电能。也就是说,在电源电路10为逆变电路10A以及加热模块20为谐振电路20A时,加热电路100具体为电磁加热电路,电磁加热电路中的逆变电路10A把电信号逆变成高频交变电流;电磁加热电路中的谐振电路20A使高频交变电流转换为高频交变磁场,并对应高频交变磁场产生涡流,当涡流在电感表面流动时使金属内部电子非常活跃、相互碰撞以及摩擦,从而使得电感内的导体材料被加热而升温。其中,不对逆变电路10A和谐振电路20A的具体电路结构进行限定,可根据实际使用需要具体设置。可以理解地,在其他实施方式中,加热模块20也可以为其他类型的电路等,电源电路10也可以为其他类型的电路等,在此不做具体限定。例如,电源电路10为整流电路等。
示例性地,以电磁加热电路中会存在多个谐振电路为例。现有方式中,在电磁加热电路中存在多个谐振电路时,当多个谐振电路中的某一谐振电路连接到半桥逆变电路的下半桥或者上半桥时,会存在影响其他谐振电路连接到半桥逆变电路的任意半桥的情况。而本申请中,通过选择电路30的设置,会使得各谐振电路20A能够与至少一个逆变电路10A连接,与谐振电路20A对应连接的逆变电路10A作为此谐振电路20A的电能来源,以给谐振电路20A进行供电,保证或维持谐振电路20A的正常运作,从而使得谐振电路20A能够给对应此谐振电路20A区域上的待加热目标物进行加热;另外,选择电路30对每个谐振电路20A的逆变电路10A的选择不相互影响,即,对于每个谐振电路20A来说,选择电路30可以选择与其连接的至少两个逆变电路10A中的任一逆变电路10A或者任意多个逆变电路10A与谐振电路20A进行连接,以实现谐振电路20A与至少两个逆变电路10A中的任一逆变电路10A或者任意多个逆变电路10A的连接,而不受逆变电路10A是否有连接其他谐振电路20A的影响,即,对谐振电路20A的逆变电路10A的选择是不受限制的,实现对谐振电路20A的灵活供电。
在一实施方式中,如图1所示,逆变电路10A为半桥逆变电路。具体地,逆变电路10A包括电源DC、第一控制开关Q1和第二控制开关Q2,第一控制开关Q1的第一连接端Q1-1连接电源DC的第一极12,第一控制开关Q1的第二连接端Q1-2连接第二控制开关Q2的第一连接端Q2-1,第二控制开关Q2的第二连接端Q2-2连接电源DC的第二极13,第一控制 开关Q1的第二连接端Q1-2作为电源电路10的输出端11。可以理解地,在其他具体实施方式中,逆变电路10A也可以为全桥逆变电路等,可根据实际使用需要设置,在此不做具体限定。在一实施方式中,如图1所示,各逆变电路10A中的电源DC为同一电源DC;当然,在其他实施方式中,各逆变电路10A中的电源DC也可以为不同的电源DC,在此不做具体限定。
在一具体实施方式中,第一控制开关Q1和第二控制开关Q2为三极管,具体可以为金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),是一种可以广泛使用在模拟电路与数字电路的场效晶体管;或者,也可以为绝缘栅双极型晶体管等,绝缘栅双极型晶体管是由双极型三极管和绝缘栅型场效应管组成的复合全控型电压驱动式功率半导体器件,兼有金氧半场效晶体管的高输入阻抗和电力晶体管的低导通压降两方面的优点。
在一实施方式中,谐振电路20A包括线圈L和串联电容电路22,串联电容电路22包括串联连接的第一电容C1和第二电容C2,串联电容电路22的两端分别连接电源电路10的电源DC的两极,线圈L的一端连接于第一电容C1和第二电容C2之间、另一端作为加热模块20的输入端21。在其他实施方式中,谐振电路20A中也可只设置1个电容或者3个、4个或者多个电容,在此不做具体限定。
在一具体实施方式中,串联电容电路22所包括的第一电容C1和第二电容C2为谐振电容。
区别于现有技术,本申请提供一种加热电路,加热电路包括至少两个电源电路、至少两个加热模块和选择电路;选择电路分别连接至少两个电源电路和至少两个加热模块,用于分别为各加热模块选择至少一个电源电路进行连接,且选择电路对每个加热模块的电源电路的选择互不影响;由于与各加热模块连接的选择电路会与至少两个电源电路连接,所以选择电路能够为其连接的加热模块从至少两个电源电路中选择任一电源电路或者任意多个电源电路进行连接,以实现加热模块与加热电路中的任意电源电路的连接。
请参阅图3,图3是本申请提供的加热装置一实施方式的结构示意图。本申请还提供了一种加热装置300,加热装置300包括控制电路200和上述任一实施方式中的加热电路100,其中,控制电路200用于控制加热电路100中的选择电路30,实现为加热电路100中的各加热模块20选择供电的电源电路10。上述任一实施方式中的加热电路100中,由于与各加热模块20连接的选择电路30会与至少两个电源电路10连接,所以控制电路200能够控制选择电路30为其连接的加热模块20从至少两个电源电路10中选择任一电源电路10或者多个电源电路10进行连接,以实现为加热电路100中的各加热模块20选择供电的电源电路10,即,对加热模块20的电源电路10的选择是不受限制的,实现对加热模块20的灵活供电。在一实施方式中,加热装置300为电磁加热设备,此时加热电路100具体为电磁加热电路,电磁加热电路中的逆变电路10A把电信号逆变成高频交变电流,电磁加热电路中的谐振电路20A使高频交变电流转换为高频交变磁场,高频交变磁场穿过线圈L中的导体产生感应电流,形成一个闭合回路即涡流;当涡流在材料表面流动时使金属内部电子非常活跃、相互碰撞以及相互摩擦,从而使得线圈L内的导体材料被加热而升温,进而实现加热装置300对待加热目标物的加热。其中,电磁加热电路能够有效提高热转换率的同时大大降低能耗,并且安全隐患较小。
在一实施方式中,加热装置300还包括检测电路(图中未示出),检测电路用于检测各加 热模块20是否存在待加热的目标物,并响应于加热模块20存在目标物,生成关于存在目标物的加热模块20的触发信号;此时,控制电路200用于响应于检测电路生成的触发信号,控制选择电路30将存在目标物的加热模块20与至少一个电源电路10连接。也就是说,检测电路会对各加热模块20所对应的区域进行检测,以确定各加热模块20对应的区域是否存在待加热的目标物;在加热模块20对应的区域存在待加热的目标物时,会生成关于存在目标物的加热模块20的触发信号并向控制电路200发送触发信号;在控制电路200接收到检测电路发送的触发信号后,控制选择电路30将存在目标物的加热模块20与至少一个电源电路10连接,以使得电源电路10为加热模块20供电,从而使得加热模块20能够为其对应区域存在的待加热的目标物进行加热。
举例来说,以加热电路100包括A加热模块20、B加热模块20和C加热模块20为例;检测电路对A加热模块20、B加热模块20和C加热模块20所对应的区域进行检测,确定A加热模块20对应的区域存在待加热的目标物,此时检测电路生成关于存在目标物的A加热模块20的触发信号并向控制电路200发送触发信号;在控制电路200接收到检测电路发送的触发信号后,控制选择电路30将存在目标物的A加热模块20与至少一个电源电路10连接,以使得电源电路10为A加热模块20供电,从而使得A加热模块20能够为其对应区域存在的待加热的目标物进行加热。
在一实施方式中,控制电路200还用于控制选择电路30将存在同一目标物的若干加热模块20分别与相同的电源电路10连接。也就是说,将存同一目标物的若干加热模块20看作是加热模块组,加热电路100中的各加热模块20根据待加热的目标物进行对应的组合而得到对应待加热的目标物的加热模块组,并将加热模块组与加热电路100中的某一电源电路10连接,以使电源电路10为加热模块组中的各加热模块20供电。
举例来说,如图4所示,图4是本申请提供的加热模块一实施方式的示意图,a3加热模块20、a4加热模块20、b8加热模块20、b9加热模块20、a9加热模块20、b3加热模块20和b4加热模块20所对应的区域上存在待加热的目标物且存在的待加热的目标物均为目标物α,a3加热模块20、a4加热模块20、b8加热模块20、b9加热模块20、a9加热模块20、b3加热模块20和b4加热模块20组合得到对应目标物α的加热模块组;控制电路200控制存在目标物α的a3加热模块20、a4加热模块20、b8加热模块20、b9加热模块20、a9加热模块20、b3加热模块20和b4加热模块20所连接的选择电路30分别与相同的电源电路10连接。又例如,a6加热模块20、a7加热模块20、a8加热模块20和b1加热模块20所对应的区域上存在待加热的目标物且存在的待加热的目标物均为目标物β,a6加热模块20、a7加热模块20、a8加热模块20和b1加热模块20组合得到对应目标物β的加热模块组;控制电路200控制存在目标物β的a6加热模块20、a7加热模块20、a8加热模块20和b1加热模块20所连接的选择电路30分别与相同的电源电路10连接。
在一实施方式中,控制电路200具体用于基于加热模块20的所需功率和/或电源电路10所处的状态,从加热模块20的可选电源电路中选出加热模块20的目标电源电路,并控制选择电路30将加热模块20与目标电源电路连接,其中,加热模块20的可选电源电路为与加热模块20连接的选择电路30所连接的电源电路10。也就是说,控制电路200首先会根据加热模块20的所需功率和/或根据电源电路10所处的状态,从与加热模块20连接的选择电路30所连接的电源电路10中选出目标电源电路;然后,控制电路200控制选择电路30将加热模块20与目标电源电路连接。即,控制电路200会根据加热模块20的所需功率和/或电源电路 10所处的状态等因素,合理地为加热电路100中的各加热模块20选择供电的电源电路10,以提高加热电路100中的电源电路10的利用率,从而使得加热装置300为更多的目标物进行加热。
在一具体实施方式中,电源电路10所处的状态包括电源电路10处于空闲状态或者非空闲状态,其中,空闲状态表示电源电路10当前与任意加热模块20均无连接。故,控制电路200可从加热模块20的可选电源电路中选出任一或者多个处于空闲状态的电源电路10,作为目标电源电路,并控制选择电路30将加热模块20与目标电源电路连接。例如,以加热电路100包括A加热模块20和B加热模块20、与A加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10、与B加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10为例;由于a电源电路10已经与B加热模块20连接,所以当前处于非空闲状态的电源电路10为b电源电路10和c电源电路10,因此控制电路200可从处于空闲状态的b电源电路10和c电源电路10中选择出目标电源电路,并控制目标电源电路与A加热模块20连接。
在一具体实施方式中,加热模块20的目标电源电路的输出功率与加热模块20的所需功率匹配。故,控制电路200可基于加热模块20的所需功率,从加热模块20的可选电源电路中选出输出功率与加热模块20的所需功率匹配的电源电路10,作为加热模块20的目标电源电路,并控制选择电路30将加热模块20与目标电源电路连接。例如,以加热电路100包括A加热模块20、与A加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10为例;由于A加热模块20的所需功率与a电源电路10的输出功率匹配,所以控制电路200可从加热模块20的可选电源电路中选出输出功率与加热模块20的所需功率匹配的电源电路10即a电源电路10,作为目标电源电路,并控制目标电源电路与B加热模块20连接。
在一具体实施方式中,控制电路200执行基于加热模块20的所需功率和/或电源电路10所处的状态,从加热模块20的可选电源电路中选出加热模块20的目标电源电路,具体包括:从加热模块20的可选电源电路中查找是否存在空闲电源电路,空闲电源电路为输出功率与加热模块20所需的功率匹配、且处于空闲状态的可选电源电路;响应于存在空闲电源电路,将空闲电源电路作为加热模块20的目标电源线路;响应于不存在空闲电源电路,将输出功率与加热模块20所需的功率匹配、且处于使用状态的可选电源电路,作为加热模块20的目标电源电路。例如,以加热电路100包括A加热模块20、与A加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10为例;首先,控制电路200从加热模块20的可选电源电路即a电源电路10、b电源电路10和c电源电路10查找是否存在空闲电源电路,由于a电源电路10当前处于空闲状态且a电源电路10的输出功率与A加热模块20所需的功率匹配,所以a电源电路10为加热模块20的可选电源电路中存在空闲电源电路;其次,将空闲电源电路即a电源电路作为加热模块20的目标电源电路。又例如,以加热电路100包括A加热模块20、与A加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10和b电源电路10为例;首先,控制电路200从加热模块20的可选电源电路即a电源电路10和b电源电路10查找是否存在空闲电源电路,由于a电源电路10为输出功率与加热模块20所需的功率匹配但处于非空闲状态即使用状态的电源电路10、且b电源电路10为输出功率与加热模块20所需的功率不匹配的电源电路10,所以加热模块20的可选电源电路中不存在空闲电源电路;其次,将输出功率与加热模块20所需的 功率匹配、且处于使用状态的可选电源电路即a电源电路10,作为加热模块20的目标电源电路。
在一实施方式中,控制电路200还用于控制选择电路30将所需功率相同的至少部分加热模块20连接至同一电源电路10。举例来说,以加热电路100包括A加热模块20、B加热模块20和C加热模块20、与A加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10、与B加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10、与C加热模块20连接的选择电路30所连接的电源电路10包括a电源电路10、b电源电路10和c电源电路10为例;在A加热模块20、B加热模块20和C加热模块20所需的功率相同且与处于空闲状态的a电源电路10以及b电源电路10的输出功率匹配时,控制电路200控制选择电路30将A加热模块20和B加热模块20连接至a电源电路10以及控制选择电路30将C加热模块20连接至b电源电路10,或者,控制电路200控制选择电路30将A加热模块20、B加热模块20和C加热模块20连接至a电源电路10或者b电源电路10。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (14)

  1. 一种加热电路,其特征在于,所述加热电路包括:
    至少两个电源电路;
    至少两个加热模块;
    选择电路,所述选择电路分别连接所述至少两个电源电路和所述至少两个加热模块,用于分别为各所述加热模块选择至少一个所述电源电路进行连接,且所述选择电路对每个所述加热模块的所述电源电路的选择不相互影响。
  2. 根据权利要求1所述的加热电路,其特征在于,所述选择电路包括至少两个选择开关,每个选择开关分别连接一所述加热模块和若干所述电源电路,所述选择开关用于从连接的若干电源电路中选择一所述电源电路与所述选择开关连接的所述加热模块连通。
  3. 根据权利要求2所述的加热电路,其特征在于,所述选择开关包括第一连接端和若干第二连接端,所述选择开关的第一连接端连接一所述加热模块的输入端,所述选择开关的各所述第二连接端分别连接不同的所述电源电路的输出端,在所述选择开关的第一连接端与其中一个所述第二连接端连通的情况下,所述选择开关当前连通的所述第二连接端连接的所述电源电路与所述选择开关连接的所述加热模块实现连通,所述选择开关当前未连通的所述第二连接端连接的所述电源电路与所述选择开关连接的所述加热模块实现断开。
  4. 根据权利要求2或3所述的加热电路,其特征在于,两个以上所述加热模块连接的所述选择开关连接于同一所述电源电路;
    和/或,至少一个所述加热模块连接的所述选择开关连接所有所述电源电路。
  5. 根据权利要求1-4中任一项所述的加热电路,其特征在于,所述电源电路为逆变电路,所述加热模块为谐振电路。
  6. 根据权利要求5所述的加热电路,其特征在于,
    所述逆变电路包括电源、第一控制开关和第二控制开关,所述第一控制开关的第一连接端连接所述电源的第一极,所述第一控制开关的第二连接端连接所述第二控制开关的第一连接端,所述第二控制开关的第二连接端连接所述电源的第二极,所述第一控制开关的第二连接端作为所述电源电路的输出端;和/或,
    所述谐振电路包括线圈和串联电容电路,所述串联电容电路包括串联连接的第一电容和第二电容,所述串联电容电路的两端分别连接所述电源电路的电源的两极,所述线圈的一端连接于所述第一电容和所述第二电容之间、另一端作为所述加热模块的输入端。
  7. 一种加热装置,其特征在于,所述加热装置包括控制电路和如权利要求1-6任一项所述的加热电路,其中,所述控制电路用于控制所述加热电路中的选择电路,实现为所述加热电路中的各加热模块选择供电的电源电路。
  8. 根据权利要求7所述的加热装置,其特征在于,所述控制电路具体用于基于所述加热模块的所需功率和/或所述电源电路所处的状态,从所述加热模块的可选电源电路中选出所述加热模块的目标电源电路,并控制所述选择电路将所述加热模块与所述目标电源电路连接,其中,所述加热模块的可选电源电路为与所述加热模块连接的选择电路所连接的所述电源电路。
  9. 根据权利要求8所述的加热装置,其特征在于,所述加热模块的目标电源电路的输出功率与所述加热模块的所需功率匹配;
    和/或,所述电源电路所处的状态包括所述电源电路处于空闲状态或者非空闲状态,其中, 所述空闲状态表示所述电源电路当前与任意所述加热模块均无连接。
  10. 根据权利要求9所述的加热装置,其特征在于,所述控制电路执行所述基于所述加热模块的所需功率和/或所述电源电路所处的状态,从所述加热模块的可选电源电路中选出所述加热模块的目标电源电路,具体包括:
    从所述加热模块的可选电源电路中查找是否存在空闲电源电路,所述空闲电源电路为输出功率与所述加热模块所需的功率匹配、且处于空闲状态的所述可选电源电路;
    响应于存在所述空闲电源电路,将所述空闲电源电路作为所述加热模块的目标电源电路;
    响应于不存在所述空闲电源电路,将输出功率与所述加热模块所需的功率匹配、且处于使用状态的所述可选电源电路,作为所述加热模块的目标电源电路。
  11. 根据权利要求8-10中任一项所述的加热装置,其特征在于,所述控制电路还用于控制所述选择电路将所需功率相同的至少部分所述加热模块连接至同一所述电源电路。
  12. 根据权利要求7-11中任一项所述的加热装置,其特征在于,所述加热装置还包括检测电路,所述检测电路用于检测各所述加热模块是否存在待加热的目标物,并响应于所述加热模块存在所述目标物,生成关于存在所述目标物的所述加热模块的触发信号;
    所述控制电路用于响应于所述触发信号,控制所述选择电路将存在所述目标物的所述加热模块与至少一个所述电源电路连接。
  13. 根据权利要求12所述的加热装置,其特征在于,所述控制电路还用于控制所述选择电路将存在同一所述目标物的若干所述加热模块分别与相同的所述电源电路连接。
  14. 根据权利要求7-13中任一项所述的加热装置,其特征在于,所述加热装置为电磁加热设备。
PCT/CN2023/130288 2022-11-08 2023-11-07 一种加热电路和加热装置 WO2024099328A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222988602.5U CN219322586U (zh) 2022-11-08 2022-11-08 一种加热电路和加热装置
CN202211403345.2 2022-11-08
CN202211403345.2A CN115955736A (zh) 2022-11-08 2022-11-08 一种加热电路和加热装置
CN202222988602.5 2022-11-08

Publications (1)

Publication Number Publication Date
WO2024099328A1 true WO2024099328A1 (zh) 2024-05-16

Family

ID=91031925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130288 WO2024099328A1 (zh) 2022-11-08 2023-11-07 一种加热电路和加热装置

Country Status (1)

Country Link
WO (1) WO2024099328A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081365A (zh) * 2010-12-28 2011-06-01 美的集团有限公司 电烤箱功率控制电路
CN104197385A (zh) * 2014-08-06 2014-12-10 筷子兄弟科技有限公司 一种电磁炉自动检测装置及方法
CN104754789A (zh) * 2013-12-25 2015-07-01 美的集团股份有限公司 智能识别锅具大小的电磁加热装置及其控制方法
CN206650862U (zh) * 2017-01-06 2017-11-17 深圳拓邦股份有限公司 一种加热装置及电磁加热灶具
US9882425B1 (en) * 2013-03-15 2018-01-30 Reliance Controls Corporation Multi-circuit switching device
CN210055729U (zh) * 2019-03-19 2020-02-14 小熊电器股份有限公司 烹饪电器的功率调节电路及烹饪电器和电烤炉
CN212950318U (zh) * 2020-05-27 2021-04-13 浙江苏泊尔家电制造有限公司 可适用于车辆的烹饪器具
CN113133137A (zh) * 2019-12-31 2021-07-16 广东美的白色家电技术创新中心有限公司 一种加热电路
CN214540556U (zh) * 2021-04-27 2021-10-29 宁波爱佳电器有限公司 一种加热功率控制电路及电加热装置
CN215345126U (zh) * 2021-02-25 2021-12-28 广东美的白色家电技术创新中心有限公司 一种加热检测电路
CN219322586U (zh) * 2022-11-08 2023-07-07 广东美的白色家电技术创新中心有限公司 一种加热电路和加热装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081365A (zh) * 2010-12-28 2011-06-01 美的集团有限公司 电烤箱功率控制电路
US9882425B1 (en) * 2013-03-15 2018-01-30 Reliance Controls Corporation Multi-circuit switching device
CN104754789A (zh) * 2013-12-25 2015-07-01 美的集团股份有限公司 智能识别锅具大小的电磁加热装置及其控制方法
CN104197385A (zh) * 2014-08-06 2014-12-10 筷子兄弟科技有限公司 一种电磁炉自动检测装置及方法
CN206650862U (zh) * 2017-01-06 2017-11-17 深圳拓邦股份有限公司 一种加热装置及电磁加热灶具
CN210055729U (zh) * 2019-03-19 2020-02-14 小熊电器股份有限公司 烹饪电器的功率调节电路及烹饪电器和电烤炉
CN113133137A (zh) * 2019-12-31 2021-07-16 广东美的白色家电技术创新中心有限公司 一种加热电路
CN212950318U (zh) * 2020-05-27 2021-04-13 浙江苏泊尔家电制造有限公司 可适用于车辆的烹饪器具
CN215345126U (zh) * 2021-02-25 2021-12-28 广东美的白色家电技术创新中心有限公司 一种加热检测电路
CN214540556U (zh) * 2021-04-27 2021-10-29 宁波爱佳电器有限公司 一种加热功率控制电路及电加热装置
CN219322586U (zh) * 2022-11-08 2023-07-07 广东美的白色家电技术创新中心有限公司 一种加热电路和加热装置

Similar Documents

Publication Publication Date Title
WO2013117091A1 (zh) 无桥功率因数校正电路及其控制方法
WO2019210784A1 (zh) 多电平逆变器
WO2014067271A1 (zh) 三电平逆变器和供电设备
CN106993348B (zh) 一种带有上拉有源钳位支路的微波炉磁控管电源控制方法
CN107769575A (zh) 反激式开关电源电路
CN219322586U (zh) 一种加热电路和加热装置
US20180063891A1 (en) Induction heating device
CN110708779A (zh) 一种双频感应加热电源及其控制方法
CN105485731A (zh) 微波炉电路和微波炉
CN115085530A (zh) 一种图腾柱pfc电路的噪声抑制方法、装置和电子设备
WO2024099328A1 (zh) 一种加热电路和加热装置
WO2021088925A1 (zh) 一种正反激式开关电源电路
CN108832710A (zh) 用于不间断电源的充放电平衡变换器
CN111627735A (zh) 混合开关装置的控制方法、装置、设备和介质
CN112271800A (zh) 一种无充电回路的供电电路及电源管理系统
WO2021022809A1 (zh) 一种软开关电路及电力电子设备
CN103872893B (zh) 功率因数校正电路和包括该功率因数校正电路的电源
CN115955736A (zh) 一种加热电路和加热装置
Ma et al. A reliable voltage clamping submodule based on SiC MOSFET for solid state switch
WO2022017322A1 (zh) 图腾柱pfc电路、控制方法、线路板及空调器
CN210469778U (zh) 一种电磁加热低功率连续输出的控制电路
JP5383526B2 (ja) 誘導加熱調理器
WO2003052915A1 (fr) Procede de conversion de puissance numerique et dispositif a tension nulle
CN110278622B (zh) 一种电磁加热低功率连续输出的控制电路
CN215734042U (zh) 一种防输出电流过冲的llc谐振变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888017

Country of ref document: EP

Kind code of ref document: A1