CN215345126U - 一种加热检测电路 - Google Patents

一种加热检测电路 Download PDF

Info

Publication number
CN215345126U
CN215345126U CN202120431363.6U CN202120431363U CN215345126U CN 215345126 U CN215345126 U CN 215345126U CN 202120431363 U CN202120431363 U CN 202120431363U CN 215345126 U CN215345126 U CN 215345126U
Authority
CN
China
Prior art keywords
circuit
heating
detection
resonant capacitor
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202120431363.6U
Other languages
English (en)
Inventor
左远洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
Guangdong Midea White Goods Technology Innovation Center Co Ltd
Original Assignee
Midea Group Co Ltd
Guangdong Midea White Goods Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Guangdong Midea White Goods Technology Innovation Center Co Ltd filed Critical Midea Group Co Ltd
Priority to CN202120431363.6U priority Critical patent/CN215345126U/zh
Priority to PCT/CN2021/134527 priority patent/WO2022179228A1/zh
Application granted granted Critical
Publication of CN215345126U publication Critical patent/CN215345126U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

本申请公开了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路,取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗。通过上述方式,本申请能够减少加热检测电路中的元件的数量。

Description

一种加热检测电路
技术领域
本申请涉及电子技术领域,特别是涉及一种加热检测电路。
背景技术
电磁炉在启动加热前,需要检测用于加热的线圈上面是否有锅具,如果线圈上面没有锅具而启动加热,则产生大量电磁辐射。目前,对于多线圈的电磁炉的锅具检测,每个线圈都需要一个完整或部分检测电路,从而导致整个产品的检测电路的元器件总数较多。
实用新型内容
本申请实施例第一方面提供了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路;取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗。
其中,取样电路包括取样电阻,取样电阻的第一端接地,取样电阻的第二端以及每个加热元件的第一端均连接公共端以实现取样电路与每个加热元件连接,每个加热元件的第二端连接选择电路,取样电阻的第二端的电信号作为检测信号。
其中,取样电路还包括补偿电容,取样电阻的第二端通过补偿电容连接公共端。
其中,第一选择电路包括第一数量个第一开关每个第一开关的第一端分别连接对应一个加热元件,每个第一开关的第二端均连接第一电源电路;和/或,第一选择电路依时序选择每个加热元件与第一电源电路和取样电路串联连接。
其中,第一电源电路为半桥逆变电路,包括第一MOS管和第二MOS 管,第一MOS管的漏极连接第一电源,第一MOS管的源极分别连接第二MOS管的漏极和第一选择电路,第二MOS管的源极接地。
其中,加热检测电路还包括第二电源电路和第一数量个第二选择电路,每个加热元件通过对应一个第二选择电路连接第一选择电路,第二选择电路用于选择第二电源电路与对应加热元件形成加热回路,或选择第一选择电路与对应加热元件接通形成检测回路,第二电源电路通过加热回路为加热元件供电以实现加热。
其中,第二选择电路为第二开关,第二开关的第一端连接对应的加热元件,第二开关的第二端连接第二电源电路,第二开关的第三端连接第一选择电路。
其中,加热检测电路还包括第一数量个谐振电容电路,每个谐振电容电路连接对应一个加热元件,且谐振电容电路连接第二电源电路,以使谐振电容电路参与至加热回路中,加热元件通过谐振电容电路连接取样电路。
其中,谐振电容电路包括第一谐振电容和第二谐振电容,第一谐振电容的第一端连接第二电源电路的第一端,第一谐振电容的第二端分别连接第二谐振电容的第一端和加热元件,第二谐振电容的第二端分别连接第二电源电路的第二端和取样电路。
其中,第二电源电路包括第一IGBT和第二IGBT,第一IGBT的集电极作为第二电源电路的第一端连接第二电源,第一IGBT的发射极连接第二IGBT的集电极,且作为第二电源电路的第三端连接第二选择电路,第二IGBT的发射极作为第二电源电路的第二端;和/或,第二电源电路的第二端和取样电路均连接公共端。
其中,第一电源电路的输出频率大于第二电源电路的输出频率的第二数量倍,第二数量大于1。
本申请的有益效果是:区别于现有技术的情况,本申请提供了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路,取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗,其中,通过第一选择电路可以选择与取样电路形成检测回路的加热元件,使得第一数量个加热元件可以共用一个取样电路,每个检测回路中的加热元件不再需要单独的取样电路,从而减少了加热检测电路中的元件的数量。
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施例描述中所需要的附图作简单的介绍,显而易见地,下面描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的加热检测电路第一实施例的一结构示意框图;
图2是本申请提供的加热检测电路第一实施例的另一结构示意图;
图3是本申请提供的加热检测电路第二实施例的一结构示意框图;
图4是本申请提供的加热检测电路第二实施例的另一结构示意图;
图5是本申请提供的加热检测电路第三实施例的一结构示意框图;
图6是本申请提供的加热检测电路第三实施例的另一结构示意图;
图7是本申请提供的加热检测电路第四实施例的一结构示意框图;
图8是本申请提供的加热检测电路第四实施例的另一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1是本申请提供的加热检测电路第一实施例的一结构示意框图,图2是本申请提供的加热检测电路第一实施例的另一结构示意图。
如图1所示,本公开实施例中,加热检测电路包括:第一电源电路 11、第一数量个(n个)加热元件12、第一选择电路13和取样电路14,第一选择电路13连接第一数量个加热元件12,用于选择其中一个加热元件12与第一电源电路11和取样电路14串联连接,形成检测回路,取样电路14用于输出检测信号,以检测检测回路中的加热元件12的阻抗。
其中,如图2所示,第一电源电路11连接第一电源,用于为检测回路供电。可选地,第一电源电路11可以为检测回路提供交流电源,输出高频方波信号。在一些实施方式中,第一电源电路11可以为半桥逆变电路,包括第一MOS管和第二MOS管,其中,第一MOS管的漏极连接第一电源,第一MOS管的源极分别连接第二MOS管的漏极和第一选择电路13,第二MOS管的源极接地。其中,第一电源电路11采用半桥逆变电路,在进行检测时,只需要参与一个谐振回路。在另一些实施方式中,第一电源电路11可以包括两个电容。
其中,MOS管全称金属氧化物半导体场效应晶体管(Metal OxideSemiconductor),属于场效应管中的绝缘栅型,因此,MOS管有时候又称为绝缘栅场效应管。和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势。MOS管可以包括N型MOS管(NMOS)和P型MOS管(PMOS)。在一些实施方式中,第一MOS管和第二MOS管可以为N型MOS管,在另一些实施方式中,第一MOS管和第二MOS管可以为P型MOS管,此处不做限定。
如图2所示,第一电源电路11包括第一NMOS管和第二NMOS管,其中第一NMOS管的漏极(D极)连接第一电源Vcc,第一NMOS管的源极(S极)分别连接第二NMOS管的漏极(D极)和第一选择电路 13的第二端,第二NMOS管的源极(S极)接入地电平GND,其中, GND为检测回路的参考地电平。
在一些实施方式中,如图2所示,一电子设备可以包括第一数量个加热元件12,每个加热元件12的第一端均连接公共端PGND,每个加热元件12的第二端均连接第一选择电路13的第一端。
加热检测电路用于检测第一数量个加热元件12上是否有待加热器件(如,锅具),若检测到加热元件12上有待加热器件,则电子设备启动加热。其中,第一数量为大于或等于1的整数,例如,2、5、10。加热元件12可以包括但不限于以下至少之一:线圈、线盘、电热线、电热板、电热棒、电热片。可选地,加热元件12可以包括一个或多个线圈。在一些实施方式中,若所述加热元件12包括多个线圈,则多个线圈可以串联连接。
第一选择电路13连接第一数量个加热元件12,用于选择其中一个加热元件12与第一电源电路11和取样电路14串联连接,形成检测回路。
在一些实施方式中,第一选择电路13可以包括第一数量个第一开关,每个第一开关的第一端分别连接对应一个加热元件12,每个第一开关的第二端均连接第一电源电路11。具体地,第一选择电路13可以为多路电子开关(如,TI的TMUX1208),多路电子开关可以包括第一数量个第一开关。多路电子开关可以为集成电路,通过输入控制信号选择其中一个加热元件12与第一电源电路11和取样电路14串联连接,形成检测回路。
在一些实施方式中,第一选择电路13可以依时序选择每个加热元件12与第一电源电路11和取样电路14串联连接,从而多个加热元件 12可以分时共用一个取样电路14。在另一些实施方式中,第一选择电路13可以同时选择多个加热元件12与第一电源电路11和取样电路14 串联连接,形成多个检测回路。
在一个具体的实施场景中,当电磁炉没有进行加热时,将第一选择电路13导通,具体地,可以将第一数量个第一开关全部闭合,等待电磁炉通过控制信号,依时序控制每路第一开关导通预设时间t(如,10 秒或1分钟),经过预设周期(如,n*t)之后,再从头开始,轮回导通。在每路线圈导通的时间里,完成取样电阻R1的电压检测,并判断是否有锅具。
如图2所示,第一数量为n,第一数量个加热元件12为n个线圈 (L1-1~L1-n),对应地,第一选择电路13包括n个第一开关(S1-1~S1-n),其中第一开关的第一端分别连接对应一个线圈,第一开关的第二端均连接第一电源电路11。具体地,第一开关S1-1的第一端连接线圈L1-1,第一开关S1-n的第一端连接线圈L1-n,第一开关S1-1和S1-n的第二端均连接于第一NMOS管(Q1)和第二NMOS管(Q2)之间。
本公开实施例中,取样电路14用于输出检测信号,以检测检测回路中的加热元件12的阻抗。可选地,检测信号可以为电流信号或电压信号。在一些实施方式中,可以基于检测电流或者检测电阻上电压的大小,确定电子设备的加热元件12的阻抗的大小;基于确定出的阻抗,确定电子设备上是否具有待加热设备。在一具体的应用场景中,电子设备为电磁炉,加热元件12为线圈,第一电源电路11输出高频信号,在检测回路中形成检测电流,通过确定电磁炉的线圈的阻抗的大小,然后基于确定出的阻抗,确定电磁炉上是否具有烹饪设备。
在一些实施方式中,如图2所示,取样电路14可以包括取样电阻R1,取样电阻R1的第一端接地(连接低电平GNG),取样电阻R1的第二端连接公共端PGND,由此,取样电阻R1的第二端和每个加热元件12的第一端均连接公共端PGND,从而可以实现取样电路14与每个加热元件12连接,进而每个加热元件12可以共用一个取样电路14进行检测。可以理解的,本申请的实施例中,元件或电路连接公共端PGND 可以是直接连接(如图1),或者间接连接(如图2)。
可选地,可以在取样电阻R1的第二端设置为取样点,并将取样电阻R1的第二端的电信号作为检测信号。
在一个具体的实施场景中,当线圈上有锅具时,线圈的阻抗发生变化,使得整个检测回路的阻抗发生变化,从而取样电阻R1上的电压发生变化,由此,可以通过检测取样电阻R1的第二端的电信号作为检测信号,根据检测信号判断线圈上是否有锅具。
在一些实施方式中,如图2所示,取样电路14还可以包括补偿电容C1,补偿电容C1的第一端连接取样电阻R1的第二端,补偿电容C1 的第二端连接公共端PGND,从而取样电阻R1的第二端可以通过补偿电容C1连接公共端PGND。其中,补偿电容C1用于将取样电阻R1第二端的电信号调整为检测条件的正常范围。
在一些实施方式中,电信号为电压信号,补偿电容C1用于调节取样电阻R1上的电压,使得取样电阻R1上的电压值位于正常范围内,从而便于电压检测设备进行检测。在一些实施场景中,不同电子设备的 Vcc的大小可能不同,故为了保证取样电阻R1上的电压值位于正常范围内,故加入补偿电容C1进行调整。一般地,在取样电阻R1的阻值确定后,通过设置对应电容值的补偿电容C1,从而可以将取样电阻R1第二端输出的电压值是调整至正常范围内。可以理解的,电信号为电流信号时,补偿电容C1也可以调节检测回路中的电流,使得检测回路中的电流值位于正常范围内,从而便于电流检测设备进行检测,此处不再赘述。
在一些实施方式中,加热检测电路还可以包括第一数量个谐振电容电路15,每个谐振电容电路15连接对应一个加热元件12。具体地,每个谐振电容电路15的第一端分别连接每个加热元件12,每个谐振电容电路15的第二端分别与补偿电容C1的第二端均连接公共端PGND,从而可以形成每个加热元件12对应的检测回路。
本公开实施例中,可以通过谐振电容电路15来确定检测回路中加热元件12的交变频率,从而使得加热元件12工作在合适的交变频率以及使得加热元件12具有合适的检测电流。
可选地,谐振电容电路15可以包括至少一个谐振电容。
如图2所示,第一数量为n,加热检测电路包括n个谐振电容电路 15,其中,第1个谐振电容电路15包括一个谐振电容CAP2-1,谐振电容CAP2-1的第一端连接线圈L1-1的第一端,谐振电容CAP2-1的第二端连接公共端PGND,从而线圈L1-1通过谐振电容电路15连接公共端;对应地,第n个谐振电容电路15包括一个谐振电容CAP2-n,谐振电容 CAP2-n的第一端连接线圈L1-n的第一端,谐振电容CAP2-n的第二端连接公共端PGND,从而线圈L1-n通过谐振电容电路15连接公共端 PGND,由于谐振电容CAP2-1的第二端、谐振电容CAP2-n的第二端和补偿电容C1的第二端均连接公共端,从而可以形成第1个线圈和第n 个线圈对应的检测回路,同理,可形成其他线圈(2~n-1个线圈)对应的检测回路,此处不再赘述。
本公开实施例中,取样电路14包括取样电阻R1和补偿电容C1,其中,取样电阻R1和补偿电容C1位于公共端PGND和低电平GND之间,且公共端PGND和低电平GND之间无其他电路连接,从而可以使得取样电阻R1被多个加热元件12共用,每个检测回路中的加热元件12 不再需要单独的补偿电容C1和取样电阻R1,从而减少了加热检测电路中的元件的数量。
上述方案,提供了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路,取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗,其中,通过第一选择电路可以选择与取样电路形成检测回路的加热元件,使得第一数量个加热元件可以共用一个取样电路、参与一个谐振回路,每个检测回路中的加热元件不再需要单独的取样电路,从而减少了加热检测电路中的元件的数量。
进一步,取样电阻的第一端连接地电平,取样电阻的第二端通过补偿电容连接公共端,由此,仅需要检测取样电阻第二端输出的电信号即可实现待加热器件(如,锅具)的检测,从而能够简化加热检测电路的结构。
进一步,基于上述结构,检测回路可以使用弱电(即电压较低的电源,一般小于36V,如5V),从而使得检测回路中的电流较小,产生的功率较低。
请参阅图3至图4,图3是本申请提供的加热检测电路第二实施例的一结构示意框图,图4是本申请提供的加热检测电路第二实施例的另一结构示意图。
区别于上述实施例,本公开实施例中,第一预设数量为1,即加热检测电路包括一个加热元件22。
如图3所示,加热检测电路包括:第一电源电路21、一个加热元件 22、第一选择电路23和取样电路24,第一选择电路23连接加热元件 22,用于与第一电源电路21和取样电路24串联连接,形成检测回路,取样电路24用于输出检测信号,以检测检测回路中的加热元件22的阻抗。其中,第一选择电路23可以用于控制检测回路的导通或断开。具体地,关于其中的元件及电路的阐述可以参见上述实施例的相应位置,此处不再赘述。
在一些实施方式中,如图3和图4所示,由于加热检测电路仅包含一个加热元件22,可以直接将第一电源电路21与加热元件22连接,为该加热元件22提供检测电流,从而可以不必再在加热元件22与第一电源的连接线上设置第一选择电路23,以用于选择多个加热元件22中的一个,进而可以省略第一选择电路23,以实现减少加热检测电路的元件的数量。
在一些实施方式中,如图4所示,加热检测电路还可以包括一个谐振电容电路25,谐振电容电路25连接加热元件22。具体地,谐振电容电路25的第一端连接加热元件22,谐振电容电路25的第二端与补偿电容C1的第二端均连接公共端,从而可以形成加热元件22的检测回路。可选地,谐振电容电路25可以包括至少一个谐振电容。
如图4所示,谐振电容电路25包括一个谐振电容CAP2,谐振电容 CAP2的第一端连接线圈L1的第一端,谐振电容CAP2的第二端连接公共端PGND,从而线圈L1通过谐振电容电路25连接公共端PGND,可以形成线圈L1的检测回路。
上述方案,提供了当第一实施例中的第一数量为1时,仅具有单个加热元件的加热检测电路,由于减少了第一选择电路,从而能够实现减少加热检测电路的元件的数量。
请参阅图5,图5是本申请提供的加热检测电路第三实施例的一结构示意框图,图6是本申请提供的加热检测电路第三实施例的另一结构示意图。
本实施例中,加热检测电路包括:第一电源电路31、第一数量个加热元件32、第一选择电路33和取样电路34,第一选择电路33连接加热元件32,用于与第一电源电路31和取样电路34串联连接,形成检测回路,取样电路34用于输出检测信号,以检测检测回路中的加热元件 32的阻抗。具体地,关于其中的元件及电路的阐述可以参见上述实施例的相应位置,此处不再赘述。
区别于上述实施例,加热检测电路还可以包括第二电源电路36和第一数量个第二选择电路37,其中,每个第二选择电路37连接一个加热元件32,每个加热元件32可以通过第二选择电路37,选择连接第一电源电路31或第二电源电路36,当加热元件32选择连接第一电源电路 31,第一电源电路31与对应加热元件32接通形成检测回路,当加热元件32选择连接第二电源电路36时,第二电源电路36与对应加热元件 32形成加热回路。
在一些实施方式中,当电子设备检测到解热元件上有待加热设备时或当电子设备接受到用户的指令时,输出控制信号,以控制第二选择电路37连接第二电源电路36,形成加热回路,进行加热操作。当电子设备接入电源时,输出控制信号,以控制第二选择电路37连接第一电源电路31,形成加热回路,启动加热检测。
可以理解的,第二选择电路37与加热元件32的数量相同,从而每个加热元件32通过对应一个第二选择电路37连接第一电源电路31或第二电源电路36,从而可以独立控制每个第二选择电路37,进而可以独立控制每个加热元件32实现检测或加热的功能。
需要注意的是,在本公开实施例中,加热检测电路包括多个加热元件32和多个第二选择电路37。
在一些实施方式中,第二电源电路36的第一端连接第二电源,第二电源电路36的第二端和取样电路34均连接公共端。其中,第二电源电路36可以用于给加热回路提供交流电源。交流电源包括但不限于以下之一:正弦波交流电源、方波交流电源。
在一实施例中,第二电源为220V直流电压。220V的直流电压经过第二电源电路36后,输出220V的交流电压。
在另一实施例中,第二电源为220V的交流电压,220V的交流电压为只有正相电压(正半波)的交流电压。第二电源提供的电压经过第二电源电路36之后,输出具有正、负两相的交流电压。
在又一实施例中,第二电源为220V的交流电压(市电)。在第二电源与第二电源电路36之间还包括整流电路,整流电路将220V交流电压变换为220V直流电压;第二电源电路36将220V直流电压变换为 220V的交流电压。
可选地,第二电源电路36可以包括IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),这里,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点,且开关速度快,载流密度大。
如图6所示,在一些实施方式中,第二电源电路36可以包括第一IGBT(IGBT1)和第二IGBT(IGBT2),通过第一IGBT和第二IGBT中导通与关断的频率,可以调节第二电源的信号频率,如此,可通过第一IGBT和第二IGBT的组成的逆变电路,将第二电源变为高频脉冲波,以实现给加热元件供电,且,由于逆变电路采用的是IGBT,因而其兼有MOS管高输入阻抗和功率晶体管的低导通压降两方面的优点,从而,本申请实施例可以提高给加热元件供电的稳定性和安全工作电压区域,进而提高给加热元件供电的安全性。
其中,第一IGBT的集电极(C)作为第二电源电路36的第一端连接第二电源AC220V,第一IGBT的发射极(E)连接第二IGBT的集电极(C),且作为第二电源电路36的第三端连接第二选择电路37,第二IGBT的发射极(E)作为第二电源电路36的第二端连接公共端PGND。其中,公共端PGND为第二电源的参考地电平。
在本公开实施例中,第一电源电路31的输出频率大于第二电源电路36的输出频率的第二数量倍,第二数量大于10。在一些实施方式中,第一数量大于10,以使得第一电源电路31的输出频率远远大于第二电源电路36的输出频率,从而使得补偿电容在加热频率下的阻抗远远大于在检测频率下的阻抗,进而可以用于降低干扰噪声在检测回路上产生的干扰电流。因为部分线圈在加热,会在未加热线圈的谐振电容CAP2 上,产生频率为加热频率的干扰噪声。
在本公开实施例中,第二选择电路37可以用于选择第二电源电路 36与对应加热元件32形成加热回路,或选择第一选择电路33与对应加热元件32接通形成检测回路,从而第二电源电路36可以通过加热回路为加热元件32供电以实现加热,或第一电源电路31通过检测回路为加热元件32供电以实现检测。
在一些实施方式中,第二选择电路37可以为第二开关。第二开关例如为单刀双掷开关。其中,第二开关的第一端(1)连接对应的加热元件32,第二开关的第二端(2)连接第二电源电路36,第二开关的第三端(5)连接第一选择电路33。其中,如图6所示,第二开关的第四端(3)和第五端(4)用于输入控制信号,从而控制第二开关连接第二电源电路36或第一选择电路33。
如图6所示,加热检测电路包括n个线圈(L1-1~L1-n),以及n 个第二开关(K1-1~K1-n),其中,第二开关K1-1的第一端连接线圈L1-1 的第二端,第二开关K1-1的第二端连接第一IGBT的发射极(E)和第二IGBT的集电极(C),第二开关K1-1的第三端连接第一开关S1-1的第一端;第二开关K1-n的第一端连接线圈L1-n的第二端,第二开关 K1-n的第二端连接第一IGBT的发射极(E)和第二IGBT的集电极(C),第二开关K1-n的第三端连接第一开关S1-n的第一端,对应地,其他第二开关(K1-2~K1-(n-1))的连接方式类似,此处不再赘述。
在一些实施方式中,加热检测电路还可以包括第一数量个谐振电容电路35。每个谐振电容电路35连接对应一个加热元件32,且谐振电容电路35连接第二电源电路36,以使谐振电容电路35参与至加热回路中。具体地,每个谐振电容电路35的第一端连接第二电源电路36的第一端,且与第二电源电路36共同连接第二电源,每个谐振电容电路35的第二端连接公共端,每个谐振电容电路35的第三端连接对应一个加热元件 32,从而加热元件32可以通过谐振电容电路35连接取样电路34。
本公开实施例中,还可以通过谐振电容电路35来确定加热回路中加热元件32的交变频率,从而使得加热元件32工作在合适的交变频率以及使得加热元件32具有合适的加热电流。
在一些实施方式中,谐振电容电路35可以包括第一谐振电容CAP1 和第二谐振电容CAP2。其中,第一谐振电容CAP1的第一端连接第二电源电路36的第一端,第一谐振电容CAP1的第二端分别连接第二谐振电容CAP2的第一端和加热元件32,第二谐振电容CAP2的第二端分别连接第二电源电路36的第二端和取样电路34。
本公开实施例中,可以通过第一谐振电容CAP1来确定加热回路中加热元件42的交变频率,从而使得加热元件42工作在合适的交变频率以及使得加热元件42具有合适的加热电流,另外,可以通过第二谐振电容CAP2来确定检测回路中加热元件42的交变频率,从而使得加热元件42工作在合适的交变频率以及使得加热元件42具有合适的检测电流。
如图6所示,加热检测电路包括n个谐振电容电路35,其中,第1 个谐振电容电路35包括第一谐振电容CAP1-1和第二谐振电容CAP2-1,其中,第一谐振电容CAP1-1的第一端与第一IGBT的集电极(C)均连接第二电源AC220V,第一谐振电容CAP1-1的第二端分别连接第二谐振电容CAP2-1的第一端和线圈L1-1的第一端,第二谐振电容CAP2-1 的第二端与第二电源电路36的第二端和取样电路34的第二端均连接公共端PGND,从而实现第二谐振电容CAP2-1的第二端分别连接第二电源电路36的第二端和取样电路34;第n个谐振电容电路35包括第一谐振电容CAP1-n和第二谐振电容CAP2-n,其中CAP1-n的第一端连接第二电源AC220V,第一谐振电容CAP1-n的第二端分别连接第二谐振电容CAP2-n的第一端和线圈L1-n的第一端,第二谐振电容CAP2-n的第二端与第二电源电路36的第二端和取样电路34的第二端均连接公共端 PGND,从而实现第二谐振电容CAP22-n的第二端分别连接第二电源电路36的第二端和取样电路34,对应地,其他谐振电容电路35的连接方式类似,此处不再赘述。
上述方案,提供了一种具有加热和检测功能的加热检测电路,该加热检测电路包括第二电源电路和第二选择电路,通过第二选择电路可以根据需要选择连接第二电源电路实现加热或连接第一电源电路实现加热检测,其次,第一电源电路的输出频率大于第二电源电路的输出频率的第二数量倍,使得补偿电容在加热频率下的阻抗远远大于在检测频率下的阻抗,进而可以用于降低干扰噪声在检测回路上产生的干扰电流,提高检测的准确性。
请参阅图7至图8,图7是本申请提供的加热检测电路第四实施例的一结构示意框图,图8是本申请提供的加热检测电路第四实施例的另一结构示意图。
本公开实施例中,加热检测电路包括:第一电源电路41、一个加热元件42和取样电路44,取样电路44用于输出检测信号,以检测检测回路A中的加热元件42的阻抗。具体地,关于其中的元件及电路的阐述可以参见上述实施例的相应位置,此处不再赘述。在一些实施方式中,加热检测电路还可以包括第一选择电路,第一选择电路的第一端连接加热元件42,第一选择电路的第二端连接第一电源电路41,用于控制检测回路A的导通或断开,具体可以参见加热检测电路的第二实施例,此处不再赘述。
区别于上述实施例,本公开实施例中,第一预设数量为1,即加热检测电路包括一个加热元件42,对应地,加热检测电路包括一个第二选择电路47,其中,第二选择电路47可以用于选择第二电源电路46与对应加热元件42形成加热回路B,或选择第一选择电路与对应加热元件 42接通形成检测回路A,从而第二电源电路46可以通过加热回路B为加热元件42供电以实现加热,或第一电源电路41通过检测回路A为加热元件42供电以实现检测。由于电子设备仅包括一个加热元件42,从而可以省略用于切换连接加热元件42的第一选择电路,进而可以减少加热检测电路的元件的数量。
如图7和图8所示,加热检测电路还可以包括一个谐振电容电路45,谐振电容电路45连接加热元件42。具体地,谐振电容电路45的第一端连接加热元件42,谐振电容电路45的第二端、补偿电容的第二端和第二电源电路46的第二端均连接公共端PGND,从而可以分别形成加热元件42的检测回路A和加热回路B。可选地,谐振电容电路45可以包括至少一个谐振电容。
如图8所示,谐振电容电路45包括第一谐振电容CAP1和第二谐振电容CAP2,其中,第一谐振电容CAP1的第一端与第一IGBT的集电极(C)均连接第二电源AC220V,第一谐振电容CAP1的第二端分别连接第二谐振电容CAP2的第一端和线圈L1的第一端,第二谐振电容CAP2的第二端与第二电源电路46的第二端和取样电路44的第二端均连接公共端PGND,从而实现第二谐振电容CAP2的第二端分别连接第二电源电路46的第二端和取样电路44,从而可以分别形成加热回路B 和检测回路A。
上述方案,提供了当第三实施例中的第一数量为1时,仅具有单个加热元件的加热检测电路,该加热检测电路包括第二电源电路和第二选择电路,通过第二选择电路可以根据需要选择连接第二电源电路实现加热或连接第一电源电路实现加热检测,其次,由于减少了第一选择电路,从而能够实现减少加热检测电路的元件的数量。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

1.一种加热检测电路,其特征在于,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,所述第一数量为大于或等于1的整数;
所述第一选择电路连接所述第一数量个加热元件,用于选择其中一个所述加热元件与所述第一电源电路和取样电路串联连接,以形成检测回路;所述取样电路用于输出检测信号,以检测所述检测回路中的所述加热元件的阻抗。
2.根据权利要求1所述的电路,其特征在于,所述取样电路包括取样电阻,所述取样电阻的第一端接地,所述取样电阻的第二端以及每个所述加热元件的第一端均连接公共端以实现所述取样电路与每个所述加热元件连接,每个所述加热元件的第二端连接所述选择电路,所述取样电阻的所述第二端的电信号作为所述检测信号。
3.根据权利要求2所述的电路,其特征在于,所述取样电路还包括补偿电容,所述取样电阻的第二端通过所述补偿电容连接公共端。
4.根据权利要求1所述的电路,其特征在于,所述第一选择电路包括所述第一数量个第一开关,每个所述第一开关的第一端分别连接对应一个所述加热元件,每个所述第一开关的第二端均连接所述第一电源电路;
和/或,所述第一选择电路依时序选择每个所述加热元件与所述第一电源电路和取样电路串联连接。
5.根据权利要求1所述的电路,其特征在于,所述第一电源电路为半桥逆变电路,包括第一MOS管和第二MOS管,所述第一MOS管的漏极连接第一电源,所述第一MOS管的源极分别连接所述第二MOS管的漏极和所述第一选择电路,所述第二MOS管的源极接地。
6.根据权利要求1所述的电路,其特征在于,所述加热检测电路还包括第二电源电路和所述第一数量个第二选择电路,每个所述加热元件通过对应一个所述第二选择电路连接所述第一选择电路,所述第二选择电路用于选择所述第二电源电路与对应所述加热元件形成加热回路,或选择所述第一选择电路与对应所述加热元件接通形成所述检测回路,所述第二电源电路通过所述加热回路为所述加热元件供电以实现加热。
7.根据权利要求6所述的电路,其特征在于,所述第二选择电路为第二开关,所述第二开关的第一端连接对应的所述加热元件,所述第二开关的第二端连接所述第二电源电路,所述第二开关的第三端连接所述第一选择电路。
8.根据权利要求6所述的电路,其特征在于,所述加热检测电路还包括所述第一数量个谐振电容电路,每个所述谐振电容电路连接对应一个所述加热元件,且所述谐振电容电路连接所述第二电源电路,以使所述谐振电容电路参与至所述加热回路中,所述加热元件通过所述谐振电容电路连接所述取样电路。
9.根据权利要求8所述的电路,其特征在于,所述谐振电容电路包括第一谐振电容和第二谐振电容,所述第一谐振电容的第一端连接所述第二电源电路的第一端,所述第一谐振电容的第二端分别连接所述第二谐振电容的第一端和所述加热元件,所述第二谐振电容的第二端分别连接所述第二电源电路的第二端和所述取样电路。
10.根据权利要求6所述的电路,其特征在于,所述第二电源电路包括第一IGBT和第二IGBT,所述第一IGBT的集电极作为所述第二电源电路的第一端连接第二电源,所述第一IGBT的发射极连接所述第二IGBT的集电极,且作为所述第二电源电路的第三端连接所述第二选择电路,所述第二IGBT的发射极作为所述第二电源电路的第二端;
和/或,所述第二电源电路的第二端和所述取样电路均连接公共端。
11.根据权利要求6所述的电路,其特征在于,所述第一电源电路的输出频率大于所述第二电源电路的输出频率的第二数量倍,所述第二数量大于10。
CN202120431363.6U 2021-02-25 2021-02-25 一种加热检测电路 Active CN215345126U (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202120431363.6U CN215345126U (zh) 2021-02-25 2021-02-25 一种加热检测电路
PCT/CN2021/134527 WO2022179228A1 (zh) 2021-02-25 2021-11-30 一种加热检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120431363.6U CN215345126U (zh) 2021-02-25 2021-02-25 一种加热检测电路

Publications (1)

Publication Number Publication Date
CN215345126U true CN215345126U (zh) 2021-12-28

Family

ID=79582482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120431363.6U Active CN215345126U (zh) 2021-02-25 2021-02-25 一种加热检测电路

Country Status (1)

Country Link
CN (1) CN215345126U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980390A (zh) * 2021-02-25 2022-08-30 广东美的白色家电技术创新中心有限公司 一种加热检测电路
WO2024099328A1 (zh) * 2022-11-08 2024-05-16 广东美的白色家电技术创新中心有限公司 一种加热电路和加热装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980390A (zh) * 2021-02-25 2022-08-30 广东美的白色家电技术创新中心有限公司 一种加热检测电路
WO2024099328A1 (zh) * 2022-11-08 2024-05-16 广东美的白色家电技术创新中心有限公司 一种加热电路和加热装置

Similar Documents

Publication Publication Date Title
KR100693231B1 (ko) 유도 가열 조리기
CN215345126U (zh) 一种加热检测电路
CN107027202B (zh) 电磁加热烹饪装置及其加热控制电路和加热控制方法
CN100525551C (zh) 逆变器电路和感应加热式烹调装置及它们的操作方法
US20190104569A1 (en) Induction heating and wireless power transferring device having improved target object detection algorithm
US11064576B2 (en) Induction heating and wireless power transferring device having improved resonant current detection accuracy
EP2753147B1 (en) Induction heat cooking apparatus
JP2003530810A (ja) 電気器具用電源
US11064575B2 (en) Induction heating device having improved target object detection accuracy and induction heating system including the same
US20160374152A1 (en) Induction heat cooking apparatus
US11805576B2 (en) Domestic appliance
CN114980390A (zh) 一种加热检测电路
US11153940B2 (en) Domestic appliance device
JP2688862B2 (ja) 誘導加熱調理器
WO2022179228A1 (zh) 一种加热检测电路
KR102336130B1 (ko) 조리 기기 및 조리 기기의 동작 방법
JP2001068260A (ja) 誘導加熱調理器
KR102165579B1 (ko) 이종의 인버터 회로들을 포함하는 유도 가열 장치
US20220361299A1 (en) Heating Circuit
JP2002299028A (ja) 誘導加熱調理器
CN211481489U (zh) 一种加热电路
US20200120762A1 (en) Induction heating device having improved switch stress reduction structure
CN216217630U (zh) 一种多线圈驱动电路及电磁炉
CN113133147B (zh) 一种加热电路
CN208079435U (zh) 电磁加热烹饪器具及其igbt管的驱动控制电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant