WO2022179228A1 - 一种加热检测电路 - Google Patents

一种加热检测电路 Download PDF

Info

Publication number
WO2022179228A1
WO2022179228A1 PCT/CN2021/134527 CN2021134527W WO2022179228A1 WO 2022179228 A1 WO2022179228 A1 WO 2022179228A1 CN 2021134527 W CN2021134527 W CN 2021134527W WO 2022179228 A1 WO2022179228 A1 WO 2022179228A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
heating
detection
resonant capacitor
Prior art date
Application number
PCT/CN2021/134527
Other languages
English (en)
French (fr)
Inventor
左远洋
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120431363.6U external-priority patent/CN215345126U/zh
Priority claimed from CN202110215237.1A external-priority patent/CN114980390A/zh
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2022179228A1 publication Critical patent/WO2022179228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a heating detection circuit.
  • each coil requires a complete or partial detection circuit, which results in a large number of components in the detection circuit of the entire product.
  • a first aspect of the embodiments of the present application provides a heating detection circuit, including: a first power supply circuit, a first selection circuit, a sampling circuit, and a first number of heating elements, wherein the first number is an integer greater than or equal to 1;
  • the first selection circuit is connected to the first number of heating elements, and is used to select one of the heating elements to be connected in series with the first power supply circuit and the sampling circuit to form a detection loop; the sampling circuit is used for outputting detection signals to detect the heating elements in the detection loop impedance.
  • the sampling circuit includes a sampling resistor, the first end of the sampling resistor is grounded, the second end of the sampling resistor and the first end of each heating element are connected to a common end to realize the connection between the sampling circuit and each heating element, and each heating element
  • the second end of the resistor is connected to the selection circuit, and the electrical signal of the second end of the sampling resistor is used as the detection signal.
  • the sampling circuit further includes a compensation capacitor, and the second end of the sampling resistor is connected to the common end through the compensation capacitor.
  • the first selection circuit includes a first number of first switches.
  • the first end of each first switch is respectively connected to a corresponding heating element, and the second end of each first switch is connected to the first power circuit; and/or,
  • the first selection circuit sequentially selects each heating element to be connected in series with the first power supply circuit and the sampling circuit.
  • the first power supply circuit is a half-bridge inverter circuit, including a first MOS transistor and a second MOS transistor, the drain of the first MOS transistor is connected to the first power supply, and the source of the first MOS transistor is respectively connected to the second MOS transistor.
  • the drain is connected to the first selection circuit, and the source of the second MOS transistor is grounded.
  • the heating detection circuit further includes a second power supply circuit and a first number of second selection circuits, each heating element is connected to the first selection circuit through a corresponding second selection circuit, and the second selection circuit is used to select the second power supply circuit and the second selection circuit.
  • the corresponding heating element forms a heating loop, or the first selection circuit is selected to be connected to the corresponding heating element to form a detection loop, and the second power circuit supplies power to the heating element through the heating loop to realize heating.
  • the second selection circuit is a second switch, the first end of the second switch is connected to the corresponding heating element, the second end of the second switch is connected to the second power circuit, and the third end of the second switch is connected to the first selection circuit.
  • the heating detection circuit further includes a first number of resonant capacitor circuits, each resonant capacitor circuit is connected to a corresponding heating element, and the resonant capacitor circuit is connected to the second power circuit, so that the resonant capacitor circuit participates in the heating loop, and the heating element passes through
  • the resonance capacitor circuit is connected to the sampling circuit.
  • the resonant capacitor circuit includes a first resonant capacitor and a second resonant capacitor, the first end of the first resonant capacitor is connected to the first end of the second power supply circuit, and the second end of the first resonant capacitor is respectively connected to the first end of the second resonant capacitor.
  • One end and the heating element, and the second end of the second resonance capacitor are respectively connected to the second end of the second power supply circuit and the sampling circuit.
  • the second power supply circuit includes a first IGBT and a second IGBT, the collector of the first IGBT is connected to the second power supply as the first end of the second power supply circuit, the emitter of the first IGBT is connected to the collector of the first IGBT tube, and The third terminal of the second power supply circuit is connected to the second selection circuit, and the emitter of the second IGBT is used as the second terminal of the second power supply circuit; and/or, the second terminal of the second power supply circuit and the sampling circuit are both connected to the common terminal .
  • the output frequency of the first power supply circuit is greater than a second number times the output frequency of the second power supply circuit, and the second number is greater than one.
  • the present application provides a heating detection circuit, comprising: a first power supply circuit, a first selection circuit, a sampling circuit and a first number of heating elements, wherein the first A number is an integer greater than or equal to 1; the first selection circuit is connected to a first number of heating elements for selecting one of the heating elements to be connected in series with the first power supply circuit and the sampling circuit to form a detection loop, and the sampling circuit is used for output detection signal to detect the impedance of the heating elements in the detection loop, wherein the heating elements forming the detection loop with the sampling circuit can be selected by the first selection circuit, so that the first number of heating elements can share one sampling circuit, and the heating elements in each detection loop can be selected.
  • the heating element no longer requires a separate sampling circuit, thereby reducing the number of elements in the heating detection circuit.
  • FIG. 1 is a schematic structural block diagram of a first embodiment of a heating detection circuit provided by the present application
  • FIG 2 is another schematic structural diagram of the first embodiment of the heating detection circuit provided by the present application.
  • FIG. 3 is a schematic structural block diagram of the second embodiment of the heating detection circuit provided by the present application.
  • FIG. 4 is another schematic structural diagram of the second embodiment of the heating detection circuit provided by the present application.
  • FIG. 5 is a schematic block diagram of the structure of the third embodiment of the heating detection circuit provided by the present application.
  • FIG. 6 is another schematic structural diagram of the third embodiment of the heating detection circuit provided by the present application.
  • FIG. 7 is a schematic block diagram of the structure of the fourth embodiment of the heating detection circuit provided by the present application.
  • FIG. 8 is another schematic structural diagram of the fourth embodiment of the heating detection circuit provided by the present application.
  • first and second in this application are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • a plurality of means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “comprising” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally also includes For other steps or units inherent to these processes, methods, products or devices.
  • FIG. 1 is a schematic structural block diagram of the first embodiment of the heating detection circuit provided by the present application
  • FIG. 2 is another structural schematic diagram of the first embodiment of the heating detection circuit provided by the present application.
  • the heating detection circuit includes: a first power supply circuit 11 , a first number (n) of heating elements 12 , a first selection circuit 13 and a sampling circuit 14 , the first selection circuit 13 A first number of heating elements 12 are connected to select one of the heating elements 12 to be connected in series with the first power supply circuit 11 and the sampling circuit 14 to form a detection loop, and the sampling circuit 14 is used to output a detection signal to detect the heating in the detection loop Impedance of element 12.
  • the first power supply circuit 11 is connected to the first power supply for supplying power to the detection loop.
  • the first power supply circuit 11 may provide an AC power supply for the detection loop, and output a high-frequency square wave signal.
  • the first power supply circuit 11 may be a half-bridge inverter circuit, including a first MOS transistor and a second MOS transistor, wherein the drain of the first MOS transistor is connected to the first power supply, and the source of the first MOS transistor The electrodes are respectively connected to the drain of the second MOS transistor and the first selection circuit 13, and the source of the second MOS transistor is grounded.
  • the first power supply circuit 11 adopts a half-bridge inverter circuit, and only needs to participate in one resonant circuit when performing detection.
  • the first power supply circuit 11 may include two capacitors.
  • MOS tube Metal Oxide Semiconductor Field Effect Transistor (Metal Oxide Semiconductor), which belongs to the insulated gate type of field effect transistors. Therefore, MOS tubes are sometimes called insulated gate field effect transistors. Compared with ordinary bipolar transistors, MOS tubes have the advantages of high input impedance, low noise, large dynamic range, low power consumption, and easy integration.
  • the MOS transistors may include N-type MOS transistors (NMOS) and P-type MOS transistors (PMOS).
  • the first MOS transistor and the second MOS transistor may be N-type MOS transistors, and in other implementations, the first MOS transistor and the second MOS transistor may be P-type MOS transistors, which are not limited here. .
  • the first power supply circuit 11 includes a first NMOS transistor and a second NMOS transistor, wherein the drain (D pole) of the first NMOS transistor is connected to the first power supply Vcc, and the source (S pole) of the first NMOS transistor is connected to the first power supply Vcc. ) are respectively connected to the drain (D pole) of the second NMOS transistor and the second end of the first selection circuit 13, and the source (S pole) of the second NMOS transistor is connected to the ground level GND, where GND is the referenced to ground level.
  • an electronic device may include a first number of heating elements 12 , the first end of each heating element 12 is connected to the common terminal PGND, and the second end of each heating element 12 is connected to the common terminal PGND.
  • the first terminal of the first selection circuit 13 is connected.
  • the heating detection circuit is used to detect whether there are devices to be heated (eg, cookware) on the first number of heating elements 12 . If it is detected that there are devices to be heated on the heating elements 12 , the electronic device starts heating.
  • the first number is an integer greater than or equal to 1, for example, 2, 5, and 10.
  • the heating element 12 may include, but is not limited to, at least one of the following: a coil, a coil, a heating wire, a heating plate, a heating rod, and a heating sheet.
  • heating element 12 may include one or more coils. In some embodiments, if the heating element 12 includes multiple coils, the multiple coils may be connected in series.
  • the first selection circuit 13 is connected to the first number of heating elements 12 for selecting one of the heating elements 12 to be connected in series with the first power supply circuit 11 and the sampling circuit 14 to form a detection loop.
  • the first selection circuit 13 may include a first number of first switches, the first end of each first switch is connected to a corresponding heating element 12, and the second end of each first switch is connected to the first switch.
  • a power circuit 11 .
  • the first selection circuit 13 may be a multi-channel electronic switch (eg, TMUX1208 of TI), and the multi-channel electronic switch may include a first number of first switches.
  • the multiplex electronic switch can be an integrated circuit, and one of the heating elements 12 is selected to be connected in series with the first power supply circuit 11 and the sampling circuit 14 by inputting a control signal to form a detection loop.
  • the first selection circuit 13 can select each heating element 12 to be connected in series with the first power supply circuit 11 and the sampling circuit 14 in sequence, so that a plurality of heating elements 12 can share one sampling circuit 14 in time. In other embodiments, the first selection circuit 13 can simultaneously select multiple heating elements 12 to be connected in series with the first power supply circuit 11 and the sampling circuit 14 to form multiple detection loops.
  • the first selection circuit 13 when the induction cooker is not heating, the first selection circuit 13 is turned on. Specifically, all the first switches of the first number can be closed, waiting for the induction cooker to pass the control signal, and control each circuit according to the sequence.
  • the first switch is turned on for a preset time t (eg, 10 seconds or 1 minute), and after a preset period (eg, n*t), it is turned on from the beginning again. In the time when each coil is turned on, the voltage detection of the sampling resistor R1 is completed, and it is judged whether there is a pot or not.
  • the first number is n
  • the first number of heating elements 12 is n coils (L1-1 to L1-n).
  • the first selection circuit 13 includes n first switches (S1- 1 to S1-n), wherein the first ends of the first switches are respectively connected to a corresponding coil, and the second ends of the first switches are both connected to the first power supply circuit 11 .
  • the first end of the first switch S1-1 is connected to the coil L1-1
  • the first end of the first switch S1-n is connected to the coil L1-n
  • the second ends of the first switches S1-1 and S1-n are both connected Connected between the first NMOS transistor (Q1) and the second NMOS transistor (Q2).
  • the sampling circuit 14 is used to output a detection signal to detect the impedance of the heating element 12 in the detection loop.
  • the detection signal may be a current signal or a voltage signal.
  • the magnitude of the impedance of the heating element 12 of the electronic device may be determined based on the magnitude of the detection current or the magnitude of the voltage on the detection resistor; based on the determined impedance, it is determined whether there is a device to be heated on the electronic device.
  • the electronic device is an induction cooker
  • the heating element 12 is a coil
  • the first power circuit 11 outputs a high-frequency signal
  • a detection current is formed in the detection loop, by determining the impedance of the coil of the induction cooker, and then based on determining The output impedance determines whether there is a cooking device on the induction hob.
  • the sampling circuit 14 may include a sampling resistor R1, the first end of the sampling resistor R1 is grounded (connected to the low level GNG), and the second end of the sampling resistor R1 is connected to the common terminal PGND, by Therefore, the second end of the sampling resistor R1 and the first end of each heating element 12 are connected to the common terminal PGND, so that the sampling circuit 14 can be connected to each heating element 12, and each heating element 12 can share a sampling circuit 14 to test.
  • the common terminal PGND of the component or circuit connection may be directly connected (as shown in FIG. 1 ) or indirectly connected (as shown in FIG. 2 ).
  • the second end of the sampling resistor R1 may be set as the sampling point, and the electrical signal at the second end of the sampling resistor R1 may be used as the detection signal.
  • the impedance of the coil changes, so that the impedance of the entire detection loop changes, so that the voltage on the sampling resistor R1 changes.
  • the electrical signal at the second end of the coil is used as a detection signal, and according to the detection signal, it is judged whether there is a pot on the coil.
  • the sampling circuit 14 may further include a compensation capacitor C1, the first end of the compensation capacitor C1 is connected to the second end of the sampling resistor R1, the second end of the compensation capacitor C1 is connected to the common end PGND, Therefore, the second terminal of the sampling resistor R1 can be connected to the common terminal PGND through the compensation capacitor C1.
  • the compensation capacitor C1 is used to adjust the electrical signal at the second end of the sampling resistor R1 to the normal range of the detection conditions.
  • the electrical signal is a voltage signal
  • the compensation capacitor C1 is used to adjust the voltage on the sampling resistor R1 so that the voltage value on the sampling resistor R1 is within a normal range, so as to facilitate detection by the voltage detection device.
  • the magnitude of Vcc of different electronic devices may be different. Therefore, in order to ensure that the voltage value on the sampling resistor R1 is within a normal range, a compensation capacitor C1 is added for adjustment.
  • the compensation capacitor C1 can also adjust the current in the detection loop, so that the current value in the detection loop is within a normal range, which facilitates detection by the current detection device, which will not be repeated here.
  • the heating detection circuit may further include a first number of resonant capacitor circuits 15 , and each resonant capacitor circuit 15 is connected to a corresponding one of the heating elements 12 .
  • the first end of each resonant capacitor circuit 15 is connected to each heating element 12 respectively, and the second end of each resonant capacitor circuit 15 and the second end of the compensation capacitor C1 are respectively connected to the common terminal PGND, so that each Each heating element 12 corresponds to the detection circuit.
  • the resonant capacitor circuit 15 can be used to determine the alternating frequency of the heating element 12 in the detection loop, so that the heating element 12 operates at a suitable alternating frequency and has a suitable detection current.
  • the resonant capacitor circuit 15 may include at least one resonant capacitor.
  • the heating detection circuit includes n resonant capacitor circuits 15, wherein the first resonant capacitor circuit 15 includes a resonant capacitor CAP2-1, and the first end of the resonant capacitor CAP2-1 is connected to The first end of the coil L1-1 and the second end of the resonance capacitor CAP2-1 are connected to the common terminal PGND, so that the coil L1-1 is connected to the common terminal through the resonance capacitor circuit 15; correspondingly, the nth resonance capacitor circuit 15 includes a resonance Capacitor CAP2-n, the first end of the resonance capacitor CAP2-n is connected to the first end of the coil L1-n, and the second end of the resonance capacitor CAP2-n is connected to the common terminal PGND, so that the coil L1-n is connected to the common terminal through the resonance capacitor circuit 15.
  • the first coil and the nth coil can be formed corresponding to the The detection loop, in the same way, can form detection loops corresponding to other coils (2 to n-1 coils), which will not be repeated here.
  • the sampling circuit 14 includes a sampling resistor R1 and a compensation capacitor C1, wherein the sampling resistor R1 and the compensation capacitor C1 are located between the common terminal PGND and the low-level GND, and between the common terminal PGND and the low-level GND There is no other circuit connection, so that the sampling resistor R1 can be shared by a plurality of heating elements 12, and the heating element 12 in each detection loop no longer needs a separate compensation capacitor C1 and sampling resistor R1, thereby reducing the number of elements in the heating detection circuit quantity.
  • the above solution provides a heating detection circuit, comprising: a first power supply circuit, a first selection circuit, a sampling circuit and a first number of heating elements, wherein the first number is an integer greater than or equal to 1; the first selection circuit A first number of heating elements are connected, for selecting one of the heating elements to be connected in series with the first power supply circuit and the sampling circuit to form a detection loop, and the sampling circuit is used to output a detection signal to detect the impedance of the heating element in the detection loop, wherein , through the first selection circuit, the heating elements that form the detection loop with the sampling circuit can be selected, so that the first number of heating elements can share a sampling circuit and participate in a resonance circuit, and the heating elements in each detection loop no longer need separate sampling circuit, thereby reducing the number of components in the heating detection circuit.
  • the first end of the sampling resistor is connected to the ground level, and the second end of the sampling resistor is connected to the common end through the compensation capacitor, so that the device to be heated can be realized only by detecting the electrical signal output by the second end of the sampling resistor (eg, cookware), so that the structure of the heating detection circuit can be simplified.
  • the second end of the sampling resistor eg, cookware
  • the detection loop can use weak current (ie, a power supply with a lower voltage, generally less than 36V, such as 5V), so that the current in the detection loop is smaller and the power generated is lower.
  • weak current ie, a power supply with a lower voltage, generally less than 36V, such as 5V
  • FIG. 3 is a schematic block diagram of the second embodiment of the heating detection circuit provided by the present application
  • FIG. 4 is another schematic structural diagram of the second embodiment of the heating detection circuit provided by the present application.
  • the first preset number is 1, that is, the heating detection circuit includes one heating element 22 .
  • the heating detection circuit includes: a first power supply circuit 21 , a heating element 22 , a first selection circuit 23 and a sampling circuit 24 .
  • the first selection circuit 23 is connected to the heating element 22 for connecting with the first power supply circuit 21 It is connected in series with the sampling circuit 24 to form a detection loop, and the sampling circuit 24 is used for outputting a detection signal to detect the impedance of the heating element 22 in the detection loop.
  • the first selection circuit 23 can be used to control the conduction or disconnection of the detection loop.
  • the heating detection circuit since the heating detection circuit includes only one heating element 22 , the first power circuit 21 can be directly connected to the heating element 22 to provide the heating element 22 with a detection current, thereby There is no need to set the first selection circuit 23 on the connection line between the heating element 22 and the first power supply, so as to select one of the plurality of heating elements 22, and then the first selection circuit 23 can be omitted to realize the reduction of the heating detection circuit the number of components.
  • the heating detection circuit may further include a resonant capacitor circuit 25 , and the resonant capacitor circuit 25 is connected to the heating element 22 .
  • the first end of the resonant capacitor circuit 25 is connected to the heating element 22
  • the second end of the resonant capacitor circuit 25 and the second end of the compensation capacitor C1 are both connected to a common end, thereby forming a detection loop of the heating element 22 .
  • the resonant capacitor circuit 25 may include at least one resonant capacitor.
  • the resonant capacitor circuit 25 includes a resonant capacitor CAP2, the first end of the resonant capacitor CAP2 is connected to the first end of the coil L1, and the second end of the resonant capacitor CAP2 is connected to the common terminal PGND, so that the coil L1 passes through the resonant capacitor circuit 25 is connected to the common terminal PGND, which can form a detection loop of the coil L1.
  • the above solution provides a heating detection circuit with only a single heating element when the first number in the first embodiment is 1. Since the first selection circuit is reduced, the number of elements of the heating detection circuit can be reduced.
  • FIG. 5 is a schematic structural block diagram of the third embodiment of the heating detection circuit provided by the present application
  • FIG. 6 is another structural schematic diagram of the third embodiment of the heating detection circuit provided by the present application.
  • the heating detection circuit includes: a first power supply circuit 31, a first number of heating elements 32, a first selection circuit 33 and a sampling circuit 34.
  • the first selection circuit 33 is connected to the heating element 32 for connecting with the first power supply
  • the circuit 31 and the sampling circuit 34 are connected in series to form a detection loop, and the sampling circuit 34 is used for outputting a detection signal to detect the impedance of the heating element 32 in the detection loop.
  • the heating detection circuit may further include a second power supply circuit 36 and a first number of second selection circuits 37, wherein each second selection circuit 37 is connected to a heating element 32, and each heating element 32 can pass through
  • the second selection circuit 37 is selected to connect to the first power supply circuit 31 or the second power supply circuit 36.
  • the heating element 32 is selected to be connected to the first power supply circuit 31
  • the first power supply circuit 31 is connected to the corresponding heating element 32 to form a detection loop.
  • the second power circuit 36 and the corresponding heating element 32 form a heating loop.
  • the electronic device when the electronic device detects that there is a device to be heated on the antipyretic element or when the electronic device receives an instruction from the user, it outputs a control signal to control the second selection circuit 37 to connect to the second power circuit 36 to form heating circuit for heating operation.
  • a control signal is output to control the second selection circuit 37 to connect to the first power supply circuit 31 to form a heating loop and start heating detection.
  • each heating element 32 is connected to the first power supply circuit 31 or the second power supply circuit 36 through a corresponding second selection circuit 37, so that each heating element 32 can be independently controlled.
  • the second selection circuit 37 can then independently control each heating element 32 to realize the function of detection or heating.
  • the heating detection circuit includes a plurality of heating elements 32 and a plurality of second selection circuits 37 .
  • the first terminal of the second power supply circuit 36 is connected to the second power supply, and the second terminal of the second power supply circuit 36 and the sampling circuit 34 are both connected to the common terminal.
  • the second power circuit 36 can be used to provide AC power to the heating circuit.
  • the AC power supply includes but is not limited to one of the following: sine wave AC power supply, square wave AC power supply.
  • the second power source is a 220V DC voltage. After the DC voltage of 220V passes through the second power supply circuit 36, an AC voltage of 220V is output.
  • the second power source is an AC voltage of 220V
  • the AC voltage of 220V is an AC voltage with only a positive phase voltage (positive half-wave).
  • the second power source is an AC voltage (mains power) of 220V.
  • a rectifier circuit is also included between the second power supply and the second power supply circuit 36, and the rectification circuit converts the 220V AC voltage into a 220V DC voltage; the second power supply circuit 36 converts the 220V DC voltage into a 220V AC voltage.
  • the second power supply circuit 36 may include an IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), where the IGBT is composed of a BJT (bipolar transistor) and a MOS (insulated gate field effect transistor).
  • IGBT Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • BJT bipolar transistor
  • MOS insulated gate field effect transistor
  • the second power supply circuit 36 may include a first IGBT (IGBT1) and a second IGBT (IGBT2), and the frequency of turn-on and turn-off in the first IGBT and the second IGBT, The signal frequency of the second power source can be adjusted. In this way, the second power source can be changed into a high-frequency pulse wave through the inverter circuit composed of the first IGBT and the second IGBT, so as to supply power to the heating element.
  • the circuit adopts IGBT, so it has the advantages of high input impedance of MOS tube and low on-voltage drop of power transistor. Therefore, the embodiment of the present application can improve the stability of power supply to the heating element and the safe working voltage range, This in turn increases the safety of powering the heating element.
  • the collector (C) of the first IGBT is connected to the second power supply AC220V as the first end of the second power supply circuit 36, and the emitter (E) of the first IGBT is connected to the collector (C) of the second IGBT tube, and is used as a
  • the third terminal of the second power supply circuit 36 is connected to the second selection circuit 37 , and the emitter (E) of the second IGBT is connected to the common terminal PGND as the second terminal of the second power supply circuit 36 .
  • the common terminal PGND is the reference ground level of the second power supply.
  • the output frequency of the first power supply circuit 31 is greater than the second number times of the output frequency of the second power supply circuit 36 , and the second number is greater than ten.
  • the first number is greater than 10, so that the output frequency of the first power supply circuit 31 is much greater than the output frequency of the second power supply circuit 36, so that the impedance of the compensation capacitor at the heating frequency is much greater than that at the detection frequency
  • the impedance at the bottom can be used to reduce the interference current generated by the interference noise on the detection loop. Because part of the coil is being heated, interference noise with a frequency of the heating frequency will be generated on the resonant capacitor CAP2 of the unheated coil.
  • the second selection circuit 37 may be used to select the second power supply circuit 36 to form a heating loop with the corresponding heating element 32, or to select the first selection circuit 33 to connect with the corresponding heating element 32 to form a detection loop, so that the first selection circuit 33 is connected to the corresponding heating element 32 to form a detection loop.
  • the second power supply circuit 36 can supply power to the heating element 32 through the heating loop to achieve heating, or the first power supply circuit 31 can supply power to the heating element 32 through the detection loop to achieve detection.
  • the second selection circuit 37 may be a second switch.
  • the second switch is, for example, a single-pole double-throw switch.
  • the first end (1) of the second switch is connected to the corresponding heating element 32
  • the second end (2) of the second switch is connected to the second power circuit 36
  • the third end (5) of the second switch is connected to the first selection circuit 33.
  • the fourth terminal ( 3 ) and the fifth terminal ( 4 ) of the second switch are used for inputting control signals, so as to control the second switch to be connected to the second power supply circuit 36 or the first selection circuit 33 .
  • the heating detection circuit includes n coils (L1-1 to L1-n) and n second switches (K1-1 to K1-n), wherein the first switch of the second switch K1-1 The end is connected to the second end of the coil L1-1, the second end of the second switch K1-1 is connected to the emitter (E) of the first IGBT and the collector (C) of the second IGBT, and the second end of the second switch K1-1
  • the three terminals are connected to the first terminal of the first switch S1-1;
  • the first terminal of the second switch K1-n is connected to the second terminal of the coil L1-n, and the second terminal of the second switch K1-n is connected to the emission of the first IGBT pole (E) and collector (C) of the second IGBT,
  • the third end of the second switch K1-n is connected to the first end of the first switch S1-n, correspondingly, the other second switches (K1-2 ⁇ K1
  • the connection method of -(n-1)) is similar and
  • the heating detection circuit may further include a first number of resonant capacitor circuits 35 .
  • Each resonant capacitor circuit 35 is connected to a corresponding heating element 32, and the resonant capacitor circuit 35 is connected to the second power circuit 36, so that the resonant capacitor circuit 35 participates in the heating loop.
  • each resonant capacitor circuit 35 is connected to the first end of the second power supply circuit 36, and is connected to the second power supply together with the second power supply circuit 36, and the second end of each resonant capacitor circuit 35 is connected to the common terminal , the third end of each resonant capacitor circuit 35 is connected to a corresponding heating element 32 , so that the heating element 32 can be connected to the sampling circuit 34 through the resonant capacitor circuit 35 .
  • the resonant capacitor circuit 35 can also determine the alternating frequency of the heating element 32 in the heating loop, so that the heating element 32 operates at a suitable alternating frequency and has a suitable heating current.
  • the resonant capacitor circuit 35 may include a first resonant capacitor CAP1 and a second resonant capacitor CAP2.
  • the first end of the first resonant capacitor CAP1 is connected to the first end of the second power supply circuit 36
  • the second end of the first resonant capacitor CAP1 is connected to the first end of the second resonant capacitor CAP2 and the heating element 32, respectively.
  • the second end of the capacitor CAP2 is connected to the second end of the second power supply circuit 36 and the sampling circuit 34, respectively.
  • the alternating frequency of the heating element 42 in the heating loop can be determined by the first resonant capacitor CAP1, so that the heating element 42 operates at a suitable alternating frequency and the heating element 42 has a suitable heating current
  • the alternating frequency of the heating element 42 in the detection loop can be determined by the second resonant capacitor CAP2, so that the heating element 42 operates at a suitable alternating frequency and the heating element 42 has a suitable detection current.
  • the heating detection circuit includes n resonant capacitor circuits 35, wherein the first resonant capacitor circuit 35 includes a first resonant capacitor CAP1-1 and a second resonant capacitor CAP2-1, wherein the first resonant capacitor CAP1
  • the first end of -1 and the collector (C) of the first IGBT are connected to the second power supply AC220V, and the second end of the first resonant capacitor CAP1-1 is connected to the first end of the second resonant capacitor CAP2-1 and the coil L1 respectively.
  • the first end of -1, the second end of the second resonance capacitor CAP2-1, the second end of the second power supply circuit 36 and the second end of the sampling circuit 34 are all connected to the common terminal PGND, thereby realizing the second resonance capacitor CAP2-
  • the second end of 1 is respectively connected to the second end of the second power supply circuit 36 and the sampling circuit 34
  • the n-th resonant capacitor circuit 35 includes a first resonant capacitor CAP1-n and a second resonant capacitor CAP2-n, wherein the CAP1-n
  • the first end is connected to the second power supply AC220V, the second end of the first resonant capacitor CAP1-n is respectively connected to the first end of the second resonant capacitor CAP2-n and the first end of the coil L1-n, the second resonant capacitor CAP2-n
  • the second end of the second power supply circuit 36 and the second end of the sampling circuit 34 are connected to the common terminal PGND, so that the second end of the second resonance capacitor CAP
  • the above scheme provides a heating detection circuit with heating and detection functions
  • the heating detection circuit includes a second power supply circuit and a second selection circuit
  • the second selection circuit can be selected and connected to the second power supply circuit as required to achieve heating or connection.
  • the first power supply circuit realizes heating detection, and secondly, the output frequency of the first power supply circuit is greater than the second number times of the output frequency of the second power supply circuit, so that the impedance of the compensation capacitor at the heating frequency is far greater than the impedance at the detection frequency, Furthermore, it can be used to reduce the interference current generated by the interference noise on the detection loop, and improve the detection accuracy.
  • FIG. 7 is a schematic block diagram of the structure of the fourth embodiment of the heating detection circuit provided by the present application
  • FIG. 8 is another schematic structural diagram of the fourth embodiment of the heating detection circuit provided by the present application.
  • the heating detection circuit includes: a first power supply circuit 41 , a heating element 42 and a sampling circuit 44 .
  • the sampling circuit 44 is used to output a detection signal to detect the impedance of the heating element 42 in the detection loop A.
  • the heating detection circuit may further include a first selection circuit, a first end of the first selection circuit is connected to the heating element 42, and a second end of the first selection circuit is connected to the first power supply circuit 41 for controlling the detection loop
  • the turn-on or turn-off of A may refer to the second embodiment of the heating detection circuit for details, which will not be repeated here.
  • the first preset number is 1, that is, the heating detection circuit includes a heating element 42 , and correspondingly, the heating detection circuit includes a second selection circuit 47 , wherein the second selection circuit 47 can be used to select the second power circuit 46 and the corresponding heating element 42 to form a heating loop B, or to select the first selection circuit to be connected to the corresponding heating element 42 to form a detection loop A, so that the second power circuit 46 can pass through the heating loop B.
  • the heating element 42 is powered to achieve heating, or the first power circuit 41 supplies power to the heating element 42 through the detection loop A to achieve detection. Since the electronic device includes only one heating element 42, the first selection circuit for switching and connecting the heating element 42 can be omitted, thereby reducing the number of elements of the heating detection circuit.
  • the heating detection circuit may further include a resonant capacitor circuit 45 , and the resonant capacitor circuit 45 is connected to the heating element 42 .
  • the first end of the resonant capacitor circuit 45 is connected to the heating element 42
  • the second end of the resonant capacitor circuit 45, the second end of the compensation capacitor and the second end of the second power supply circuit 46 are all connected to the common terminal PGND, so that the respective A detection loop A and a heating loop B of the heating element 42 are formed.
  • the resonant capacitor circuit 45 may include at least one resonant capacitor.
  • the resonant capacitor circuit 45 includes a first resonant capacitor CAP1 and a second resonant capacitor CAP2, wherein the first end of the first resonant capacitor CAP1 and the collector (C) of the first IGBT are both connected to the second power supply AC220V , the second end of the first resonant capacitor CAP1 is respectively connected to the first end of the second resonant capacitor CAP2 and the first end of the coil L1, the second end of the second resonant capacitor CAP2 is connected to the second end of the second power supply circuit 46 and the sampling
  • the second end of the circuit 44 is connected to the common terminal PGND, so that the second end of the second resonant capacitor CAP2 is connected to the second end of the second power supply circuit 46 and the sampling circuit 44 respectively, so that the heating loop B and the detection loop A can be formed respectively.
  • the heating detection circuit includes a second power supply circuit and a second selection circuit, and the second selection circuit can The second power supply circuit is selectively connected to realize heating or the first power supply circuit is connected to realize heating detection as required. Secondly, since the first selection circuit is reduced, the number of elements of the heating detection circuit can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

公开了一种加热检测电路,包括:第一电源电路(11)、第一选择电路(13)、取样电路(14)和第一数量个加热元件(12),其中,第一数量为大于或等于1的整数;第一选择电路(13)连接第一数量个加热元件(12),用于选择其中一个加热元件(12)与第一电源电路(11)和取样电路(14)串联连接,形成检测回路,取样电路用于输出检测信号,以检测检测回路中的加热元件(12)的阻抗,能够减少加热检测电路中的元件的数量。

Description

一种加热检测电路
本申请要求于2021年2月25日提交的申请号为2021102152371,发明名称为“一种加热检测电路”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及电子技术领域,特别是涉及一种加热检测电路。
【背景技术】
电磁炉在启动加热前,需要检测用于加热的线圈上面是否有锅具,如果线圈上面没有锅具而启动加热,则产生大量电磁辐射。目前,对于多线圈的电磁炉的锅具检测,每个线圈都需要一个完整或部分检测电路,从而导致整个产品的检测电路的元器件总数较多。
【发明内容】
本申请实施例第一方面提供了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路;取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗。
其中,取样电路包括取样电阻,取样电阻的第一端接地,取样电阻的第二端以及每个加热元件的第一端均连接公共端以实现取样电路与每个加热元件连接,每个加热元件的第二端连接选择电路,取样电阻的第二端的电信号作为检测信号。
其中,取样电路还包括补偿电容,取样电阻的第二端通过补偿电容连接公共端。
其中,第一选择电路包括第一数量个第一开关每个第一开关的第一端分别连接对应一个加热元件,每个第一开关的第二端均连接第一电源电路;和/或,第一选择电路依时序选择每个加热元件与第一电源电路和取样电路串联连接。
其中,第一电源电路为半桥逆变电路,包括第一MOS管和第二MOS管, 第一MOS管的漏极连接第一电源,第一MOS管的源极分别连接第二MOS管的漏极和第一选择电路,第二MOS管的源极接地。
其中,加热检测电路还包括第二电源电路和第一数量个第二选择电路,每个加热元件通过对应一个第二选择电路连接第一选择电路,第二选择电路用于选择第二电源电路与对应加热元件形成加热回路,或选择第一选择电路与对应加热元件接通形成检测回路,第二电源电路通过加热回路为加热元件供电以实现加热。
其中,第二选择电路为第二开关,第二开关的第一端连接对应的加热元件,第二开关的第二端连接第二电源电路,第二开关的第三端连接第一选择电路。
其中,加热检测电路还包括第一数量个谐振电容电路,每个谐振电容电路连接对应一个加热元件,且谐振电容电路连接第二电源电路,以使谐振电容电路参与至加热回路中,加热元件通过谐振电容电路连接取样电路。
其中,谐振电容电路包括第一谐振电容和第二谐振电容,第一谐振电容的第一端连接第二电源电路的第一端,第一谐振电容的第二端分别连接第二谐振电容的第一端和加热元件,第二谐振电容的第二端分别连接第二电源电路的第二端和取样电路。
其中,第二电源电路包括第一IGBT和第二IGBT,第一IGBT的集电极作为第二电源电路的第一端连接第二电源,第一IGBT的发射极连接第IGBT管的集电极,且作为第二电源电路的第三端连接第二选择电路,第二IGBT的发射极作为第二电源电路的第二端;和/或,第二电源电路的第二端和取样电路均连接公共端。
其中,第一电源电路的输出频率大于第二电源电路的输出频率的第二数量倍,第二数量大于1。
本申请的有益效果是:区别于现有技术的情况,本申请提供了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路,取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗,其中,通过第一选择电路可以选择与取样电路形成检测回路的加热元件,使得第一数量个加热元件可以共用一个取样电路,每个检测回路中的加热元件不再需要单独的取样电路,从而减少了加热检测电路中的元件的数量。
【附图说明】
为了更清楚地说明本申请中的技术方案,下面将对实施例描述中所需要的附图作简单的介绍,显而易见地,下面描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的加热检测电路第一实施例的一结构示意框图;
图2是本申请提供的加热检测电路第一实施例的另一结构示意图;
图3是本申请提供的加热检测电路第二实施例的一结构示意框图;
图4是本申请提供的加热检测电路第二实施例的另一结构示意图;
图5是本申请提供的加热检测电路第三实施例的一结构示意框图;
图6是本申请提供的加热检测电路第三实施例的另一结构示意图;
图7是本申请提供的加热检测电路第四实施例的一结构示意框图;
图8是本申请提供的加热检测电路第四实施例的另一结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的 实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1是本申请提供的加热检测电路第一实施例的一结构示意框图,图2是本申请提供的加热检测电路第一实施例的另一结构示意图。
如图1所示,本公开实施例中,加热检测电路包括:第一电源电路11、第一数量个(n个)加热元件12、第一选择电路13和取样电路14,第一选择电路13连接第一数量个加热元件12,用于选择其中一个加热元件12与第一电源电路11和取样电路14串联连接,形成检测回路,取样电路14用于输出检测信号,以检测检测回路中的加热元件12的阻抗。
其中,如图2所示,第一电源电路11连接第一电源,用于为检测回路供电。可选地,第一电源电路11可以为检测回路提供交流电源,输出高频方波信号。在一些实施方式中,第一电源电路11可以为半桥逆变电路,包括第一MOS管和第二MOS管,其中,第一MOS管的漏极连接第一电源,第一MOS管的源极分别连接第二MOS管的漏极和第一选择电路13,第二MOS管的源极接地。其中,第一电源电路11采用半桥逆变电路,在进行检测时,只需要参与一个谐振回路。在另一些实施方式中,第一电源电路11可以包括两个电容。
其中,MOS管全称金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor),属于场效应管中的绝缘栅型,因此,MOS管有时候又称为绝缘栅场效应管。和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势。MOS管可以包括N型MOS管(NMOS)和P型MOS管(PMOS)。在一些实施方式中,第一MOS管和第二MOS管可以为N型MOS管,在另一些实施方式中,第一MOS管和第二MOS管可以为P型MOS管,此处不做限定。
如图2所示,第一电源电路11包括第一NMOS管和第二NMOS管,其中第一NMOS管的漏极(D极)连接第一电源Vcc,第一NMOS管的源极(S极)分别连接第二NMOS管的漏极(D极)和第一选择电路13的第二端,第二NMOS管的源极(S极)接入地电平GND,其中,GND为检测回路的参考地电平。
在一些实施方式中,如图2所示,一电子设备可以包括第一数量个加热元件12,每个加热元件12的第一端均连接公共端PGND,每个加热元件12的第二端均连接第一选择电路13的第一端。
加热检测电路用于检测第一数量个加热元件12上是否有待加热器件(如, 锅具),若检测到加热元件12上有待加热器件,则电子设备启动加热。其中,第一数量为大于或等于1的整数,例如,2、5、10。加热元件12可以包括但不限于以下至少之一:线圈、线盘、电热线、电热板、电热棒、电热片。可选地,加热元件12可以包括一个或多个线圈。在一些实施方式中,若所述加热元件12包括多个线圈,则多个线圈可以串联连接。
第一选择电路13连接第一数量个加热元件12,用于选择其中一个加热元件12与第一电源电路11和取样电路14串联连接,形成检测回路。
在一些实施方式中,第一选择电路13可以包括第一数量个第一开关,每个第一开关的第一端分别连接对应一个加热元件12,每个第一开关的第二端均连接第一电源电路11。具体地,第一选择电路13可以为多路电子开关(如,TI的TMUX1208),多路电子开关可以包括第一数量个第一开关。多路电子开关可以为集成电路,通过输入控制信号选择其中一个加热元件12与第一电源电路11和取样电路14串联连接,形成检测回路。
在一些实施方式中,第一选择电路13可以依时序选择每个加热元件12与第一电源电路11和取样电路14串联连接,从而多个加热元件12可以分时共用一个取样电路14。在另一些实施方式中,第一选择电路13可以同时选择多个加热元件12与第一电源电路11和取样电路14串联连接,形成多个检测回路。
在一个具体的实施场景中,当电磁炉没有进行加热时,将第一选择电路13导通,具体地,可以将第一数量个第一开关全部闭合,等待电磁炉通过控制信号,依时序控制每路第一开关导通预设时间t(如,10秒或1分钟),经过预设周期(如,n*t)之后,再从头开始,轮回导通。在每路线圈导通的时间里,完成取样电阻R1的电压检测,并判断是否有锅具。
如图2所示,第一数量为n,第一数量个加热元件12为n个线圈(L1-1~L1-n),对应地,第一选择电路13包括n个第一开关(S1-1~S1-n),其中第一开关的第一端分别连接对应一个线圈,第一开关的第二端均连接第一电源电路11。具体地,第一开关S1-1的第一端连接线圈L1-1,第一开关S1-n的第一端连接线圈L1-n,第一开关S1-1和S1-n的第二端均连接于第一NMOS管(Q1)和第二NMOS管(Q2)之间。
本公开实施例中,取样电路14用于输出检测信号,以检测检测回路中的加热元件12的阻抗。可选地,检测信号可以为电流信号或电压信号。在一些实施方式中,可以基于检测电流或者检测电阻上电压的大小,确定电子设备的加热 元件12的阻抗的大小;基于确定出的阻抗,确定电子设备上是否具有待加热设备。在一具体的应用场景中,电子设备为电磁炉,加热元件12为线圈,第一电源电路11输出高频信号,在检测回路中形成检测电流,通过确定电磁炉的线圈的阻抗的大小,然后基于确定出的阻抗,确定电磁炉上是否具有烹饪设备。
在一些实施方式中,如图2所示,取样电路14可以包括取样电阻R1,取样电阻R1的第一端接地(连接低电平GNG),取样电阻R1的第二端连接公共端PGND,由此,取样电阻R1的第二端和每个加热元件12的第一端均连接公共端PGND,从而可以实现取样电路14与每个加热元件12连接,进而每个加热元件12可以共用一个取样电路14进行检测。可以理解的,本申请的实施例中,元件或电路连接公共端PGND可以是直接连接(如图1),或者间接连接(如图2)。
可选地,可以在取样电阻R1的第二端设置为取样点,并将取样电阻R1的第二端的电信号作为检测信号。
在一个具体的实施场景中,当线圈上有锅具时,线圈的阻抗发生变化,使得整个检测回路的阻抗发生变化,从而取样电阻R1上的电压发生变化,由此,可以通过检测取样电阻R1的第二端的电信号作为检测信号,根据检测信号判断线圈上是否有锅具。
在一些实施方式中,如图2所示,取样电路14还可以包括补偿电容C1,补偿电容C1的第一端连接取样电阻R1的第二端,补偿电容C1的第二端连接公共端PGND,从而取样电阻R1的第二端可以通过补偿电容C1连接公共端PGND。其中,补偿电容C1用于将取样电阻R1第二端的电信号调整为检测条件的正常范围。
在一些实施方式中,电信号为电压信号,补偿电容C1用于调节取样电阻R1上的电压,使得取样电阻R1上的电压值位于正常范围内,从而便于电压检测设备进行检测。在一些实施场景中,不同电子设备的Vcc的大小可能不同,故为了保证取样电阻R1上的电压值位于正常范围内,故加入补偿电容C1进行调整。一般地,在取样电阻R1的阻值确定后,通过设置对应电容值的补偿电容C1,从而可以将取样电阻R1第二端输出的电压值是调整至正常范围内。可以理解的,电信号为电流信号时,补偿电容C1也可以调节检测回路中的电流,使得检测回路中的电流值位于正常范围内,从而便于电流检测设备进行检测,此处不再赘述。
在一些实施方式中,加热检测电路还可以包括第一数量个谐振电容电路15,每个谐振电容电路15连接对应一个加热元件12。具体地,每个谐振电容电路15的第一端分别连接每个加热元件12,每个谐振电容电路15的第二端分别与补偿电容C1的第二端均连接公共端PGND,从而可以形成每个加热元件12对应的检测回路。
本公开实施例中,可以通过谐振电容电路15来确定检测回路中加热元件12的交变频率,从而使得加热元件12工作在合适的交变频率以及使得加热元件12具有合适的检测电流。
可选地,谐振电容电路15可以包括至少一个谐振电容。
如图2所示,第一数量为n,加热检测电路包括n个谐振电容电路15,其中,第1个谐振电容电路15包括一个谐振电容CAP2-1,谐振电容CAP2-1的第一端连接线圈L1-1的第一端,谐振电容CAP2-1的第二端连接公共端PGND,从而线圈L1-1通过谐振电容电路15连接公共端;对应地,第n个谐振电容电路15包括一个谐振电容CAP2-n,谐振电容CAP2-n的第一端连接线圈L1-n的第一端,谐振电容CAP2-n的第二端连接公共端PGND,从而线圈L1-n通过谐振电容电路15连接公共端PGND,由于谐振电容CAP2-1的第二端、谐振电容CAP2-n的第二端和补偿电容C1的第二端均连接公共端,从而可以形成第1个线圈和第n个线圈对应的检测回路,同理,可形成其他线圈(2~n-1个线圈)对应的检测回路,此处不再赘述。
本公开实施例中,取样电路14包括取样电阻R1和补偿电容C1,其中,取样电阻R1和补偿电容C1位于公共端PGND和低电平GND之间,且公共端PGND和低电平GND之间无其他电路连接,从而可以使得取样电阻R1被多个加热元件12共用,每个检测回路中的加热元件12不再需要单独的补偿电容C1和取样电阻R1,从而减少了加热检测电路中的元件的数量。
上述方案,提供了一种加热检测电路,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,第一数量为大于或等于1的整数;第一选择电路连接第一数量个加热元件,用于选择其中一个加热元件与第一电源电路和取样电路串联连接,形成检测回路,取样电路用于输出检测信号,以检测检测回路中的加热元件的阻抗,其中,通过第一选择电路可以选择与取样电路形成检测回路的加热元件,使得第一数量个加热元件可以共用一个取样电路、参与一个谐振回路,每个检测回路中的加热元件不再需要单独的取样电路, 从而减少了加热检测电路中的元件的数量。
进一步,取样电阻的第一端连接地电平,取样电阻的第二端通过补偿电容连接公共端,由此,仅需要检测取样电阻第二端输出的电信号即可实现待加热器件(如,锅具)的检测,从而能够简化加热检测电路的结构。
进一步,基于上述结构,检测回路可以使用弱电(即电压较低的电源,一般小于36V,如5V),从而使得检测回路中的电流较小,产生的功率较低。
请参阅图3至图4,图3是本申请提供的加热检测电路第二实施例的一结构示意框图,图4是本申请提供的加热检测电路第二实施例的另一结构示意图。
区别于上述实施例,本公开实施例中,第一预设数量为1,即加热检测电路包括一个加热元件22。
如图3所示,加热检测电路包括:第一电源电路21、一个加热元件22、第一选择电路23和取样电路24,第一选择电路23连接加热元件22,用于与第一电源电路21和取样电路24串联连接,形成检测回路,取样电路24用于输出检测信号,以检测检测回路中的加热元件22的阻抗。其中,第一选择电路23可以用于控制检测回路的导通或断开。具体地,关于其中的元件及电路的阐述可以参见上述实施例的相应位置,此处不再赘述。
在一些实施方式中,如图3和图4所示,由于加热检测电路仅包含一个加热元件22,可以直接将第一电源电路21与加热元件22连接,为该加热元件22提供检测电流,从而可以不必再在加热元件22与第一电源的连接线上设置第一选择电路23,以用于选择多个加热元件22中的一个,进而可以省略第一选择电路23,以实现减少加热检测电路的元件的数量。
在一些实施方式中,如图4所示,加热检测电路还可以包括一个谐振电容电路25,谐振电容电路25连接加热元件22。具体地,谐振电容电路25的第一端连接加热元件22,谐振电容电路25的第二端与补偿电容C1的第二端均连接公共端,从而可以形成加热元件22的检测回路。可选地,谐振电容电路25可以包括至少一个谐振电容。
如图4所示,谐振电容电路25包括一个谐振电容CAP2,谐振电容CAP2的第一端连接线圈L1的第一端,谐振电容CAP2的第二端连接公共端PGND,从而线圈L1通过谐振电容电路25连接公共端PGND,可以形成线圈L1的检测回路。
上述方案,提供了当第一实施例中的第一数量为1时,仅具有单个加热元 件的加热检测电路,由于减少了第一选择电路,从而能够实现减少加热检测电路的元件的数量。
请参阅图5至图6,图5是本申请提供的加热检测电路第三实施例的一结构示意框图,图6是本申请提供的加热检测电路第三实施例的另一结构示意图。
本实施例中,加热检测电路包括:第一电源电路31、第一数量个加热元件32、第一选择电路33和取样电路34,第一选择电路33连接加热元件32,用于与第一电源电路31和取样电路34串联连接,形成检测回路,取样电路34用于输出检测信号,以检测检测回路中的加热元件32的阻抗。具体地,关于其中的元件及电路的阐述可以参见上述实施例的相应位置,此处不再赘述。
区别于上述实施例,加热检测电路还可以包括第二电源电路36和第一数量个第二选择电路37,其中,每个第二选择电路37连接一个加热元件32,每个加热元件32可以通过第二选择电路37,选择连接第一电源电路31或第二电源电路36,当加热元件32选择连接第一电源电路31,第一电源电路31与对应加热元件32接通形成检测回路,当加热元件32选择连接第二电源电路36时,第二电源电路36与对应加热元件32形成加热回路。
在一些实施方式中,当电子设备检测到解热元件上有待加热设备时或当电子设备接受到用户的指令时,输出控制信号,以控制第二选择电路37连接第二电源电路36,形成加热回路,进行加热操作。当电子设备接入电源时,输出控制信号,以控制第二选择电路37连接第一电源电路31,形成加热回路,启动加热检测。
可以理解的,第二选择电路37与加热元件32的数量相同,从而每个加热元件32通过对应一个第二选择电路37连接第一电源电路31或第二电源电路36,从而可以独立控制每个第二选择电路37,进而可以独立控制每个加热元件32实现检测或加热的功能。
需要注意的是,在本公开实施例中,加热检测电路包括多个加热元件32和多个第二选择电路37。
在一些实施方式中,第二电源电路36的第一端连接第二电源,第二电源电路36的第二端和取样电路34均连接公共端。其中,第二电源电路36可以用于给加热回路提供交流电源。交流电源包括但不限于以下之一:正弦波交流电源、方波交流电源。
在一实施例中,第二电源为220V直流电压。220V的直流电压经过第二电 源电路36后,输出220V的交流电压。
在另一实施例中,第二电源为220V的交流电压,220V的交流电压为只有正相电压(正半波)的交流电压。第二电源提供的电压经过第二电源电路36之后,输出具有正、负两相的交流电压。
在又一实施例中,第二电源为220V的交流电压(市电)。在第二电源与第二电源电路36之间还包括整流电路,整流电路将220V交流电压变换为220V直流电压;第二电源电路36将220V直流电压变换为220V的交流电压。
可选地,第二电源电路36可以包括IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),这里,IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点,且开关速度快,载流密度大。
如图6所示,在一些实施方式中,第二电源电路36可以包括第一IGBT(IGBT1)和第二IGBT(IGBT2),通过第一IGBT和第二IGBT中导通与关断的频率,可以调节第二电源的信号频率,如此,可通过第一IGBT和第二IGBT的组成的逆变电路,将第二电源变为高频脉冲波,以实现给加热元件供电,且,由于逆变电路采用的是IGBT,因而其兼有MOS管高输入阻抗和功率晶体管的低导通压降两方面的优点,从而,本申请实施例可以提高给加热元件供电的稳定性和安全工作电压区域,进而提高给加热元件供电的安全性。
其中,第一IGBT的集电极(C)作为第二电源电路36的第一端连接第二电源AC220V,第一IGBT的发射极(E)连接第二IGBT管的集电极(C),且作为第二电源电路36的第三端连接第二选择电路37,第二IGBT的发射极(E)作为第二电源电路36的第二端连接公共端PGND。其中,公共端PGND为第二电源的参考地电平。
在本公开实施例中,第一电源电路31的输出频率大于第二电源电路36的输出频率的第二数量倍,第二数量大于10。在一些实施方式中,第一数量大于10,以使得第一电源电路31的输出频率远远大于第二电源电路36的输出频率,从而使得补偿电容在加热频率下的阻抗远远大于在检测频率下的阻抗,进而可以用于降低干扰噪声在检测回路上产生的干扰电流。因为部分线圈在加热,会在未加热线圈的谐振电容CAP2上,产生频率为加热频率的干扰噪声。
在本公开实施例中,第二选择电路37可以用于选择第二电源电路36与对应加热元件32形成加热回路,或选择第一选择电路33与对应加热元件32接通 形成检测回路,从而第二电源电路36可以通过加热回路为加热元件32供电以实现加热,或第一电源电路31通过检测回路为加热元件32供电以实现检测。
在一些实施方式中,第二选择电路37可以为第二开关。第二开关例如为单刀双掷开关。其中,第二开关的第一端(1)连接对应的加热元件32,第二开关的第二端(2)连接第二电源电路36,第二开关的第三端(5)连接第一选择电路33。其中,如图6所示,第二开关的第四端(3)和第五端(4)用于输入控制信号,从而控制第二开关连接第二电源电路36或第一选择电路33。
如图6所示,加热检测电路包括n个线圈(L1-1~L1-n),以及n个第二开关(K1-1~K1-n),其中,第二开关K1-1的第一端连接线圈L1-1的第二端,第二开关K1-1的第二端连接第一IGBT的发射极(E)和第二IGBT的集电极(C),第二开关K1-1的第三端连接第一开关S1-1的第一端;第二开关K1-n的第一端连接线圈L1-n的第二端,第二开关K1-n的第二端连接第一IGBT的发射极(E)和第二IGBT的集电极(C),第二开关K1-n的第三端连接第一开关S1-n的第一端,对应地,其他第二开关(K1-2~K1-(n-1))的连接方式类似,此处不再赘述。
在一些实施方式中,加热检测电路还可以包括第一数量个谐振电容电路35。每个谐振电容电路35连接对应一个加热元件32,且谐振电容电路35连接第二电源电路36,以使谐振电容电路35参与至加热回路中。具体地,每个谐振电容电路35的第一端连接第二电源电路36的第一端,且与第二电源电路36共同连接第二电源,每个谐振电容电路35的第二端连接公共端,每个谐振电容电路35的第三端连接对应一个加热元件32,从而加热元件32可以通过谐振电容电路35连接取样电路34。
本公开实施例中,还可以通过谐振电容电路35来确定加热回路中加热元件32的交变频率,从而使得加热元件32工作在合适的交变频率以及使得加热元件32具有合适的加热电流。
在一些实施方式中,谐振电容电路35可以包括第一谐振电容CAP1和第二谐振电容CAP2。其中,第一谐振电容CAP1的第一端连接第二电源电路36的第一端,第一谐振电容CAP1的第二端分别连接第二谐振电容CAP2的第一端和加热元件32,第二谐振电容CAP2的第二端分别连接第二电源电路36的第二端和取样电路34。
本公开实施例中,可以通过第一谐振电容CAP1来确定加热回路中加热元 件42的交变频率,从而使得加热元件42工作在合适的交变频率以及使得加热元件42具有合适的加热电流,另外,可以通过第二谐振电容CAP2来确定检测回路中加热元件42的交变频率,从而使得加热元件42工作在合适的交变频率以及使得加热元件42具有合适的检测电流。
如图6所示,加热检测电路包括n个谐振电容电路35,其中,第1个谐振电容电路35包括第一谐振电容CAP1-1和第二谐振电容CAP2-1,其中,第一谐振电容CAP1-1的第一端与第一IGBT的集电极(C)均连接第二电源AC220V,第一谐振电容CAP1-1的第二端分别连接第二谐振电容CAP2-1的第一端和线圈L1-1的第一端,第二谐振电容CAP2-1的第二端与第二电源电路36的第二端和取样电路34的第二端均连接公共端PGND,从而实现第二谐振电容CAP2-1的第二端分别连接第二电源电路36的第二端和取样电路34;第n个谐振电容电路35包括第一谐振电容CAP1-n和第二谐振电容CAP2-n,其中CAP1-n的第一端连接第二电源AC220V,第一谐振电容CAP1-n的第二端分别连接第二谐振电容CAP2-n的第一端和线圈L1-n的第一端,第二谐振电容CAP2-n的第二端与第二电源电路36的第二端和取样电路34的第二端均连接公共端PGND,从而实现第二谐振电容CAP22-n的第二端分别连接第二电源电路36的第二端和取样电路34,对应地,其他谐振电容电路35的连接方式类似,此处不再赘述。
上述方案,提供了一种具有加热和检测功能的加热检测电路,该加热检测电路包括第二电源电路和第二选择电路,通过第二选择电路可以根据需要选择连接第二电源电路实现加热或连接第一电源电路实现加热检测,其次,第一电源电路的输出频率大于第二电源电路的输出频率的第二数量倍,使得补偿电容在加热频率下的阻抗远远大于在检测频率下的阻抗,进而可以用于降低干扰噪声在检测回路上产生的干扰电流,提高检测的准确性。
请参阅图7至图8,图7是本申请提供的加热检测电路第四实施例的一结构示意框图,图8是本申请提供的加热检测电路第四实施例的另一结构示意图。
本公开实施例中,加热检测电路包括:第一电源电路41、一个加热元件42和取样电路44,取样电路44用于输出检测信号,以检测检测回路A中的加热元件42的阻抗。具体地,关于其中的元件及电路的阐述可以参见上述实施例的相应位置,此处不再赘述。在一些实施方式中,加热检测电路还可以包括第一选择电路,第一选择电路的第一端连接加热元件42,第一选择电路的第二端连接第一电源电路41,用于控制检测回路A的导通或断开,具体可以参见加热检 测电路的第二实施例,此处不再赘述。
区别于上述实施例,本公开实施例中,第一预设数量为1,即加热检测电路包括一个加热元件42,对应地,加热检测电路包括一个第二选择电路47,其中,第二选择电路47可以用于选择第二电源电路46与对应加热元件42形成加热回路B,或选择第一选择电路与对应加热元件42接通形成检测回路A,从而第二电源电路46可以通过加热回路B为加热元件42供电以实现加热,或第一电源电路41通过检测回路A为加热元件42供电以实现检测。由于电子设备仅包括一个加热元件42,从而可以省略用于切换连接加热元件42的第一选择电路,进而可以减少加热检测电路的元件的数量。
如图7和图8所示,加热检测电路还可以包括一个谐振电容电路45,谐振电容电路45连接加热元件42。具体地,谐振电容电路45的第一端连接加热元件42,谐振电容电路45的第二端、补偿电容的第二端和第二电源电路46的第二端均连接公共端PGND,从而可以分别形成加热元件42的检测回路A和加热回路B。可选地,谐振电容电路45可以包括至少一个谐振电容。
如图8所示,谐振电容电路45包括第一谐振电容CAP1和第二谐振电容CAP2,其中,第一谐振电容CAP1的第一端与第一IGBT的集电极(C)均连接第二电源AC220V,第一谐振电容CAP1的第二端分别连接第二谐振电容CAP2的第一端和线圈L1的第一端,第二谐振电容CAP2的第二端与第二电源电路46的第二端和取样电路44的第二端均连接公共端PGND,从而实现第二谐振电容CAP2的第二端分别连接第二电源电路46的第二端和取样电路44,从而可以分别形成加热回路B和检测回路A。
上述方案,提供了当第三实施例中的第一数量为1时,仅具有单个加热元件的加热检测电路,该加热检测电路包括第二电源电路和第二选择电路,通过第二选择电路可以根据需要选择连接第二电源电路实现加热或连接第一电源电路实现加热检测,其次,由于减少了第一选择电路,从而能够实现减少加热检测电路的元件的数量。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种加热检测电路,其特征在于,包括:第一电源电路、第一选择电路、取样电路和第一数量个加热元件,其中,所述第一数量为大于或等于1的整数;
    所述第一选择电路连接所述第一数量个加热元件,用于选择其中一个所述加热元件与所述第一电源电路和取样电路串联连接,以形成检测回路;所述取样电路用于输出检测信号,以检测所述检测回路中的所述加热元件的阻抗。
  2. 根据权利要求1所述的电路,其特征在于,所述取样电路包括取样电阻,所述取样电阻的第一端接地,所述取样电阻的第二端以及每个所述加热元件的第一端均连接公共端以实现所述取样电路与每个所述加热元件连接,每个所述加热元件的第二端连接所述选择电路,所述取样电阻的所述第二端的电信号作为所述检测信号。
  3. 根据权利要求2所述的电路,其特征在于,所述取样电路还包括补偿电容,所述取样电阻的第二端通过所述补偿电容连接公共端。
  4. 根据权利要求1所述的电路,其特征在于,所述第一选择电路包括所述第一数量个第一开关,每个所述第一开关的第一端分别连接对应一个所述加热元件,每个所述第一开关的第二端均连接所述第一电源电路;
    和/或,所述第一选择电路依时序选择每个所述加热元件与所述第一电源电路和取样电路串联连接。
  5. 根据权利要求1所述的电路,其特征在于,所述第一电源电路为半桥逆变电路,包括第一MOS管和第二MOS管,所述第一MOS管的漏极连接第一电源,所述第一MOS管的源极分别连接所述第二MOS管的漏极和所述第一选择电路,所述第二MOS管的源极接地。
  6. 根据权利要求1所述的电路,其特征在于,所述加热检测电路还包括第二电源电路和所述第一数量个第二选择电路,每个所述加热元件通过对应一个所述第二选择电路连接所述第一选择电路,所述第二选择电路用于选择所述第二电源电路与对应所述加热元件形成加热回路,或选择所述第一选择电路与对应所述加热元件接通形成所述检测回路,所述第二电源电路通过所述加热回路为所述加热元件供电以实现加热。
  7. 根据权利要求6所述的电路,其特征在于,所述第二选择电路为第二开关,所述第二开关的第一端连接对应的所述加热元件,所述第二开关的第二端 连接所述第二电源电路,所述第二开关的第三端连接所述第一选择电路。
  8. 根据权利要求6所述的电路,其特征在于,所述加热检测电路还包括所述第一数量个谐振电容电路,每个所述谐振电容电路连接对应一个所述加热元件,且所述谐振电容电路连接所述第二电源电路,以使所述谐振电容电路参与至所述加热回路中,所述加热元件通过所述谐振电容电路连接所述取样电路。
  9. 根据权利要求8所述的电路,其特征在于,所述谐振电容电路包括第一谐振电容和第二谐振电容,所述第一谐振电容的第一端连接所述第二电源电路的第一端,所述第一谐振电容的第二端分别连接所述第二谐振电容的第一端和所述加热元件,所述第二谐振电容的第二端分别连接所述第二电源电路的第二端和所述取样电路。
  10. 根据权利要求6所述的电路,其特征在于,所述第二电源电路包括第一IGBT和第二IGBT,所述第一IGBT的集电极作为所述第二电源电路的第一端连接第二电源,所述第一IGBT的发射极连接所述第二IGBT管的集电极,且作为所述第二电源电路的第三端连接所述第二选择电路,所述第二IGBT的发射极作为所述第二电源电路的第二端;
    和/或,所述第二电源电路的第二端和所述取样电路均连接公共端。
  11. 根据权利要求6所述的电路,其特征在于,所述第一电源电路的输出频率大于所述第二电源电路的输出频率的第二数量倍,所述第二数量大于10。
PCT/CN2021/134527 2021-02-25 2021-11-30 一种加热检测电路 WO2022179228A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120431363.6U CN215345126U (zh) 2021-02-25 2021-02-25 一种加热检测电路
CN202120431363.6 2021-02-25
CN202110215237.1A CN114980390A (zh) 2021-02-25 2021-02-25 一种加热检测电路
CN202110215237.1 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022179228A1 true WO2022179228A1 (zh) 2022-09-01

Family

ID=83047777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134527 WO2022179228A1 (zh) 2021-02-25 2021-11-30 一种加热检测电路

Country Status (1)

Country Link
WO (1) WO2022179228A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126584A (ja) * 1985-11-27 1987-06-08 株式会社東芝 誘導加熱調理器
JP2003282232A (ja) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd 誘導加熱装置
US20050127065A1 (en) * 2003-08-26 2005-06-16 General Electric Company Dual coil induction heating system
JP2014041753A (ja) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp 誘導加熱調理器およびその制御方法
CN104754789A (zh) * 2013-12-25 2015-07-01 美的集团股份有限公司 智能识别锅具大小的电磁加热装置及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126584A (ja) * 1985-11-27 1987-06-08 株式会社東芝 誘導加熱調理器
JP2003282232A (ja) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd 誘導加熱装置
US20050127065A1 (en) * 2003-08-26 2005-06-16 General Electric Company Dual coil induction heating system
JP2014041753A (ja) * 2012-08-22 2014-03-06 Mitsubishi Electric Corp 誘導加熱調理器およびその制御方法
CN104754789A (zh) * 2013-12-25 2015-07-01 美的集团股份有限公司 智能识别锅具大小的电磁加热装置及其控制方法

Similar Documents

Publication Publication Date Title
CN107027202B (zh) 电磁加热烹饪装置及其加热控制电路和加热控制方法
CN215345126U (zh) 一种加热检测电路
CN106993348B (zh) 一种带有上拉有源钳位支路的微波炉磁控管电源控制方法
WO2022179228A1 (zh) 一种加热检测电路
CN107027200B (zh) 电磁加热装置及其加热控制电路和加热控制方法
JP2004014218A (ja) 電磁誘導加熱装置
CN208434139U (zh) 加热电路及电磁炉
JPS5836473B2 (ja) 誘導加熱装置
CN106813276A (zh) 一种电磁炉
CN103167656A (zh) 商用电磁炉芯片电路及商用电磁炉
JP2003347019A (ja) 電磁誘導加熱装置
KR102165579B1 (ko) 이종의 인버터 회로들을 포함하는 유도 가열 장치
CN109982466A (zh) 电磁加热设备及其加热控制装置和方法
CN114980390A (zh) 一种加热检测电路
JPH10106738A (ja) 誘導加熱装置
CN110446287B (zh) 电烹饪器具及电烹饪器具的igbt控制装置、方法
JP7107746B2 (ja) 電磁誘導加熱調理器
CN109561531B (zh) 电磁加热设备及其功率开关管的驱动控制装置和方法
WO2021136306A1 (zh) 一种加热电路
CN203086768U (zh) 商用电磁炉集成芯片
CN211481489U (zh) 一种加热电路
CN110049590B (zh) 过零自检处理方法、电磁加热电路及电磁加热器具
CN111988876B (zh) 电磁加热电路及装置、驱动控制方法和加热控制方法
CN110049589B (zh) 谷值校准的确定方法、电磁加热电路及电磁加热器具
CN206533567U (zh) 感应加热电器及其控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927652

Country of ref document: EP

Kind code of ref document: A1