WO2024098752A1 - 雾化芯、雾化器及气溶胶发生装置 - Google Patents
雾化芯、雾化器及气溶胶发生装置 Download PDFInfo
- Publication number
- WO2024098752A1 WO2024098752A1 PCT/CN2023/100859 CN2023100859W WO2024098752A1 WO 2024098752 A1 WO2024098752 A1 WO 2024098752A1 CN 2023100859 W CN2023100859 W CN 2023100859W WO 2024098752 A1 WO2024098752 A1 WO 2024098752A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic layer
- layer
- ceramic
- atomizer
- porosity
- Prior art date
Links
- 239000000443 aerosol Substances 0.000 title claims abstract description 23
- 239000000919 ceramic Substances 0.000 claims abstract description 303
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000011159 matrix material Substances 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 34
- 239000011521 glass Substances 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 25
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 20
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 20
- 239000011148 porous material Substances 0.000 claims description 48
- 238000000889 atomisation Methods 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 25
- 239000005909 Kieselgur Substances 0.000 claims description 16
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 abstract description 12
- 238000005245 sintering Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 description 66
- 238000004880 explosion Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 238000013517 stratification Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
Definitions
- the present invention belongs to the technical field of atomization, and in particular, relates to an atomization core, an atomizer and an aerosol generating device.
- the aerosol generating device generally includes an atomizer and a power supply device electrically connected to the atomizer.
- the atomizer core of the atomizer can heat and atomize the aerosol-forming substrate under the electric drive of the power supply device to form an aerosol that can be inhaled by the user.
- the atomizer generally uses a ceramic atomizer core to heat and atomize the aerosol-forming substrate.
- the porous ceramic matrix of the ceramic atomizer core generally includes three ceramic layers stacked in layers.
- one of the purposes of the embodiments of the present invention is to provide an atomizer core to solve the problem of stratification and deformation easily occurring between the porous ceramic substrates of the existing ceramic atomizer core, thereby affecting the atomization effect and service life of the porous ceramic atomizer core.
- an atomizing core comprising:
- a heating element used for heating and atomizing the aerosol-forming substrate after being powered on
- a porous ceramic substrate used for transmitting the aerosol-forming matrix to the heating element, the porous ceramic substrate comprising a first ceramic layer, a second ceramic layer and a third ceramic layer, the second ceramic layer being sandwiched between the first ceramic layer and the third ceramic layer, and the heating element being disposed on the first ceramic layer;
- the first ceramic layer is made of a mixed raw material including diatomaceous earth and glass powder
- the second ceramic layer is made of a mixed raw material including silicon dioxide, diatomaceous earth and glass powder
- the third ceramic layer is made of a mixed raw material including silicon dioxide and glass powder, so that when the first ceramic layer, the second ceramic layer and the third ceramic layer stacked in sequence are sintered to form the porous ceramic matrix, the second ceramic layer can combine the first ceramic layer on the third ceramic layer.
- a side of the first ceramic layer facing away from the second ceramic layer has a flat atomized surface
- the heating element is a heating layer or a heating film formed on the atomized surface.
- the thickness of the first ceramic layer is 0.1-0.2 mm
- the thickness of the second ceramic layer is 0.15-0.45 mm
- the thickness of the third ceramic layer is 1.4-1.8 mm.
- the porosity and/or pore size from the first ceramic layer to the third ceramic layer changes in a trend of increasing gradient layer by layer; or, the porosity and/or pore size from the first ceramic layer to the third ceramic layer first changes in a trend of increasing gradient and then changes in a trend of decreasing gradient.
- the porosity of the first ceramic layer is 45% to 55%.
- the porosity of the second ceramic layer is 50% to 65%.
- the porosity of the third ceramic layer is 55% to 65%.
- the pore size of the first ceramic layer is 5-15 ⁇ m.
- the pore size of the second ceramic layer is 15-30 ⁇ m.
- the pore size of the third ceramic layer is 15-45 ⁇ m.
- a second purpose of the embodiments of the present invention is to provide an atomizer having an atomizer core provided by any of the above solutions.
- the technical solution adopted by the present invention is: to provide an atomizer, comprising the atomization core provided by any of the above-mentioned solutions.
- a third object of the embodiments of the present invention is to provide an aerosol generating device having an atomizing core or atomizer provided by any of the above solutions.
- the technical solution adopted by the present invention is: to provide an aerosol generating device, comprising the atomizing core or the atomizer provided by any of the above-mentioned solutions.
- the one or more technical solutions in the embodiments of the present invention have at least one of the following beneficial effects:
- the atomizer core, atomizer and aerosol generating device in the embodiments of the present invention have an atomizer core structure in which the first ceramic layer is made of a mixed raw material comprising diatomaceous earth and glass powder, the second ceramic layer is made of a mixed raw material comprising silicon dioxide, diatomaceous earth and glass powder, and the third ceramic layer is made of a mixed raw material comprising silicon dioxide and glass powder.
- the second ceramic layer made of the mixed raw material comprising silicon dioxide, diatomaceous earth and glass powder acts as a sintering and bonding transition layer, and the first ceramic layer can be tightly and firmly bonded to the third ceramic layer, thereby solving the problem of easy stratification and deformation between layers of the porous ceramic matrix, thereby improving the atomization effect of the porous ceramic atomizer core and extending the service life of the porous ceramic atomizer core.
- FIG1 is a schematic cross-sectional view of an atomizer core provided by an embodiment of the present invention.
- FIG2 is a schematic diagram of the structure of a partial enlargement of the A portion in FIG1;
- FIG3 is a schematic cross-sectional view of an atomizer core provided by another embodiment of the present invention.
- FIG4 is a schematic diagram of the structure of a partial enlargement of the B portion in FIG3;
- FIG5 is a schematic cross-sectional view of an atomizer core provided by another embodiment of the present invention.
- FIG. 6 is a schematic diagram of the structure of a partially enlarged portion of portion C in FIG. 1 .
- the reference numerals in the figure are: 1-porous ceramic substrate; 11-first ceramic layer; 12-second ceramic layer; 13-third ceramic layer; 2-Heating element.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
- the meaning of “multiple” is two or more, unless otherwise clearly and specifically defined. The meaning of “multiple” is one or more, unless otherwise clearly and specifically defined.
- the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
- installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
- the atomizer core provided by the embodiment of the present invention is used in an atomizer, and the atomizer core can generate heat under the electrical drive of the power supply device of the aerosol generating device, and heat and atomize the aerosol-forming substrate stored in the atomizer to form an aerosol.
- the atomizing core provided in the embodiment of the present invention includes a heating element 2 and a porous ceramic substrate 1.
- the heating element 2 heats and atomizes the aerosol-forming matrix after being powered on.
- the heating element 2 can be a heating layer, a heating film, a heating wire or a heating sheet made of metal materials.
- the porous ceramic substrate 1 is respectively provided with a liquid absorption surface that can adsorb the aerosol-forming matrix and an atomization surface for aerosol release or escape.
- the porous ceramic substrate 1 can transfer the aerosol-forming matrix to the atomization surface and/or the heating element 2.
- the porous ceramic substrate 1 includes a first ceramic layer 11, a second ceramic layer 12 and a third ceramic layer 13.
- the second ceramic layer 12 is sandwiched between the first ceramic layer 11 and the third ceramic layer 13.
- the atomization surface can be set on the first ceramic layer 11.
- the heating element 2 is set on the atomization surface of the first ceramic layer 11, or the heating element 2 is set on the side of the first ceramic layer 11 having the atomization surface.
- the first ceramic layer 11 is made of a mixed raw material including diatomaceous earth and glass powder
- the second ceramic layer 12 is made of a mixed raw material including silicon dioxide, diatomaceous earth and glass powder
- the third ceramic layer 13 is made of a mixed raw material including silicon dioxide and glass powder.
- the second ceramic layer 12 When the first ceramic layer 11, the second ceramic layer 12 and the third ceramic layer 13 which are stacked in sequence are sintered to form the porous ceramic matrix 1, since the second ceramic layer 12 is prepared using a mixed raw material including silicon dioxide, diatomaceous earth and glass powder, the second ceramic layer 12 mainly serves as an intermediate transition layer for sintering and bonding, which can solve the problem of delamination and deformation caused by direct bonding and sintering of the silicon dioxide layer and the diatomaceous earth layer, so that the second ceramic layer 12 can tightly and firmly bond the first ceramic layer 11 to the third ceramic layer 13, effectively preventing delamination and deformation between the layers of the porous ceramic matrix 1.
- the atomizer core provided in the embodiment of the present invention is made of a mixed raw material including diatomite and glass powder
- the second ceramic layer 12 is made of a mixed raw material including silicon dioxide, diatomite and glass powder
- the third ceramic layer 13 is made of a mixed raw material including silicon dioxide and glass powder.
- the materials cooperate with each other, so that the second ceramic layer 12 made of the mixed raw materials including silicon dioxide, diatomaceous earth and glass powder plays the role of a sintering and bonding transition layer, and the third ceramic layer 13 can be tightly and firmly combined with the first ceramic layer 11, solving the problem of stratification and deformation between the layers of the porous ceramic substrate 1, thereby improving the atomization effect of the porous ceramic atomization core and extending the service life of the porous ceramic atomization core.
- the first ceramic layer 11 has a flat atomized surface on the side facing away from the second ceramic layer 12, the heating element 2 is a heating layer or a heating film formed on the atomized surface, and the thickness of the conductive heating layer or the conductive heating film is 300 to 800 nm.
- the first ceramic layer 11 is prepared using a mixed raw material containing diatomaceous earth and glass powder.
- the side of the first ceramic layer 11 facing away from the second ceramic layer 12 can form a flat atomized surface, which is beneficial to the uniformity of depositing the heating layer or plating the heating film on the atomized surface of the first ceramic layer 11, improving the uniformity of the temperature field of the atomized surface, and ensuring the consistency of the atomization effect.
- the thickness of the first ceramic layer 11 is 0.1-0.2 mm
- the thickness of the second ceramic layer 12 is 0.15-0.45 mm
- the thickness of the third ceramic layer 13 is 1.4-1.8 mm.
- the first ceramic layer 11 is made of a mixed raw material including diatomaceous earth and glass powder
- the second ceramic layer 12 is made of a mixed raw material including silicon dioxide, diatomaceous earth and glass powder
- the third ceramic layer 13 is made of a mixed raw material including silicon dioxide and glass powder
- the thickness of the first ceramic layer 11, the thickness of the second ceramic layer 12, and the thickness of the third ceramic layer 13 are increased layer by layer, it is beneficial to improve the stability of the second ceramic layer 12 in combining the first ceramic layer 11 with the third ceramic layer 13, and can further avoid the problem of delamination and deformation between the layers of the porous ceramic substrate 1.
- the porosity of the first ceramic layer 11 to the third ceramic layer 13 increases in a layer-by-layer gradient, or the pore size of the first ceramic layer 11 to the third ceramic layer 13 increases in a layer-by-layer gradient, or the porosity and pore size of the first ceramic layer 11 to the third ceramic layer 13 both increase in a layer-by-layer gradient.
- the entire porous ceramic matrix 1 utilizes a gradient structure of layered liquid conduction rate, which is beneficial to the transmission and atomization of the aerosol-forming matrix, thereby providing a stable atomization environment for the aerosol-forming matrix, which is beneficial to ensuring the consistency and stability of the atomization effect, thereby improving the taste of the user's aerosol.
- the porosity and/or pore size are small, and the porosity and/or pore size distribution of the first ceramic layer 11 is uniform and dense, which can achieve the purpose of refining the aerosol-forming matrix particles, provide more fog-forming cores, make the temperature distribution on the atomization surface uniform, improve the atomization efficiency of the aerosol-forming matrix, and improve the taste of the user's aerosol inhalation.
- the third ceramic layer 13 is adjacent to the aerosol-forming matrix.
- the porosity and/or pore size of the third ceramic layer 13 is large, it is conducive to the stable and smooth transmission of the aerosol-forming matrix, and plays the effect of controlling and improving the liquid conduction rate, which can avoid excessive liquid absorption at one time to cause liquid explosion and leakage, and prevent too little liquid absorption to cause dry burning and core sticking.
- the porosity and/or pore size of the first ceramic layer 11 to the third ceramic layer 13 first increase in a layer-by-layer gradient, and then decrease in a layer-by-layer gradient.
- the porosity and/or pore size of the second ceramic layer 12 is greater than the porosity and/or pore size of the first ceramic layer 11, so that the second ceramic layer 12 has a good liquid conduction rate, so as to prevent the aerosol-forming matrix from encountering resistance and reflux in the dense layer, thereby reducing the liquid conduction efficiency, thereby avoiding dry burning or liquid explosion in the atomization core.
- the porous ceramic substrate 1 includes three ceramic layers, namely a first ceramic layer 11, a second ceramic layer 12, and a third ceramic layer 13, which are stacked layer by layer.
- the second ceramic layer 12 constitutes an intermediate transition layer between the first ceramic layer 11 and the third ceramic layer 13.
- the porosity and/or pore size of the first ceramic layer 11 are smaller than the porosity and/or pore size of the second ceramic layer 12. This ensures that the intermediate transition layer has a good liquid conduction rate to prevent the aerosol-forming matrix from encountering resistance and reflux in the dense layer, thereby reducing the liquid conduction efficiency, thereby avoiding dry burning or liquid explosion in the atomization core.
- the porous ceramic substrate 1 includes three ceramic layers, namely a first ceramic layer 11, a second ceramic layer 12, and a third ceramic layer 13, which are stacked layer by layer.
- the second ceramic layer 12 constitutes an intermediate transition layer between the first ceramic layer 11 and the third ceramic layer 13.
- the porosity and/or pore size of the first ceramic layer 11 are smaller than the porosity and/or pore size of the second ceramic layer 12, and the porosity and/or pore size of the second ceramic layer 12 are smaller than the porosity and/or pore size of the third ceramic layer 13, so that the porosity and/or pore size of the first ceramic layer 11 to the third ceramic layer 13 are increased in a preset gradient, so that the porous ceramic substrate 1 includes a plurality of ceramic layers 11, 12, 13, and a plurality of ceramic layers 13.
- the ceramic substrate 1 conducts liquid progressively layer by layer, which is conducive to the stable and smooth transmission of the aerosol-forming matrix to the atomization surface, so as to achieve the purpose of controlling and improving the liquid conduction rate, and avoid the problems of dry burning, core sticking and carbon deposition caused by insufficient liquid supply to the atomization core.
- the porous ceramic substrate 1 includes three ceramic layers, namely a first ceramic layer 11, a second ceramic layer 12, and a third ceramic layer 13, which are stacked layer by layer.
- the second ceramic layer 12 constitutes an intermediate transition layer between the first ceramic layer 11 and the third ceramic layer 13.
- the porosity and/or pore size of the first ceramic layer 11 are smaller than the porosity and/or pore size of the second ceramic layer 12, and the porosity and/or pore size of the first ceramic layer 11 are smaller than or equal to the porosity and/or pore size of the third ceramic layer 13, so that the porosity and/or pore size of the first ceramic layer 11 to the third ceramic layer 13 first show a preset gradient increasing change, and then show a preset gradient decreasing change, so that the porous ceramic substrate 1 can perform layer-by-layer progressive liquid conduction, which is conducive to the stable and smooth transmission of the aerosol forming matrix to the atomization surface, so as to achieve the purpose of controlling and improving the liquid conduction rate, and avoid the problems of dry burning, core sticking, and carbon deposition caused by insufficient liquid supply to the atomization core.
- the porous ceramic substrate 1 includes three ceramic layers stacked layer by layer, namely, a first ceramic layer 11, a second ceramic layer 12, and a third ceramic layer 13.
- the second ceramic layer 12 constitutes an intermediate transition layer between the first ceramic layer 11 and the third ceramic layer 13.
- the porosity and/or pore size of the first ceramic layer 11 are smaller than the porosity and/or pore size of the second ceramic layer 12, and the porosity and/or pore size of the second ceramic layer 12 are larger than the porosity and/or pore size of the third ceramic layer 13, so that the porosity and/or pore size of the first ceramic layer 11 to the third ceramic layer 13 first increase in a preset gradient and then decrease in a preset gradient, so that the porous ceramic substrate 1 can be layered and guided layer by layer, which is conducive to the stable and smooth transmission of the aerosol forming matrix to the atomization surface, so as to achieve the purpose of controlling and improving the liquid guiding rate, and avoid the problem of dry burning, core sticking, and carbon deposition caused by insufficient liquid supply to the atomization core. .
- the porosity of the first ceramic layer 11 is 45% to 55%, so that the first ceramic layer 11 has a better liquid conduction rate, which is conducive to the uniform, stable and smooth transmission of the aerosol-forming matrix to the atomization surface and/or the heating element 2.
- the porosity of the first ceramic layer 11 is less than 45%, the liquid conduction rate of the first ceramic layer 11 is low, and it is easy to cause poor liquid conduction and insufficient liquid supply, thereby causing dry burning and liquid explosion.
- the porosity of the first ceramic layer 11 is greater than 55%, it is easy to cause the liquid conduction rate to be too high and difficult to If the control is too slow, too much liquid will be absorbed at one time, causing the ceramic atomizer core to explode or leak, affecting the user's smoking experience. It should be noted that the liquid conduction rate of the first ceramic layer 11 is controlled within 7 to 10 seconds to avoid dry burning, explosion or leakage of the ceramic atomizer core.
- the porosity of the second ceramic layer 12 is 50% to 65%, so that the second ceramic layer 12 has a better liquid conduction rate, which is conducive to the uniform, stable and smooth transmission of the aerosol-forming matrix to the first ceramic layer 11.
- the porosity of the second ceramic layer 12 is less than 50%, it is easy to have poor liquid conduction and insufficient liquid supply, and then cause dry burning and liquid explosion.
- the porosity of the second ceramic layer 12 is greater than 65%, it is easy to have a high liquid conduction rate and difficult to control, resulting in excessive liquid absorption at one time, resulting in liquid explosion and leakage.
- the porosity of the third ceramic layer 13 is 55% to 65%.
- the third ceramic layer 12 has a better liquid conduction rate, which is conducive to the uniform, stable and smooth transmission of the aerosol-forming matrix to the second ceramic layer 12.
- the porosity of the third ceramic layer 13 is less than 55%, it is easy to have poor liquid conduction and insufficient liquid supply, which leads to dry burning and liquid explosion.
- the porosity of the third ceramic layer 13 is greater than 65%, it is easy to have a high liquid conduction rate and difficult to control, resulting in excessive liquid absorption at one time, resulting in liquid explosion and leakage.
- the liquid conduction rate of the first ceramic layer 11 is controlled at 7 to 10 seconds to avoid dry burning, liquid explosion and liquid leakage in the ceramic atomization core.
- the third ceramic layer 13 prepared by containing silicon dioxide and glass powder has a porosity of 55% to 65%, a pore size of 15 to 45 ⁇ m, and silicon dioxide has a strong lyophilic property, so that the third ceramic layer 13 has a higher liquid conduction rate.
- the porosity and pore size of the third ceramic layer 13 are both high, the thickness of the third ceramic layer 13 is increased to 1.4-1.8 mm.
- the high strength requirement of the third ceramic layer 13 can also be met, that is, the third ceramic layer 13 can be used as a strength layer with a high liquid conductivity rate.
- the thickness of the third ceramic layer 13 is less than 1.4 mm, the strength of the third ceramic layer 13 will be significantly reduced.
- the thickness of the third ceramic layer 13 is greater than 1.8 mm, the liquid conductivity rate of the third ceramic layer 13 will be significantly reduced. Therefore, when the thickness of the third ceramic layer 13 is controlled in the range of 1.4-1.8 mm, the third ceramic layer 13 can have both good liquid conductivity and high strength.
- the pore size of the first ceramic layer 11 is 5 to 15 ⁇ m, so that the uniform small pores on the surface of the first ceramic layer 11 can provide more and more uniform atomization points, which can effectively refine the particles of the aerosol-forming matrix.
- the pore size of the first ceramic layer 11 is less than 5 ⁇ m, it is not conducive to the transmission of the aerosol matrix and the release or escape of the aerosol, which can easily cause insufficient liquid supply or a reduction in the amount of aerosol released, affecting the taste.
- the pore size of the first ceramic layer 11 is less than 15 ⁇ m, it is not conducive to the refinement of the particles of the aerosol-forming matrix.
- the pore size of the second ceramic layer 12 is 15 to 30 ⁇ m, so that the second ceramic layer 12 as the intermediate transition layer has good liquid conduction ability, ensures that the intermediate transition layer has a good liquid conduction rate, and prevents the aerosol-forming matrix from encountering resistance and reflux in the dense layer, thereby reducing the liquid conduction efficiency, thereby avoiding dry burning or liquid explosion in the atomization core.
- the pore size of the second ceramic layer 12 is less than 15 ⁇ m, it is not conducive to the transmission of the aerosol matrix and is prone to insufficient liquid supply.
- the pore size of the second ceramic layer 12 is greater than 30 ⁇ m, the liquid conduction rate is prone to be uncontrollable, resulting in excessive liquid absorption at one time, resulting in liquid explosion and leakage.
- the pore size of the third ceramic layer 13 is 15 to 45 ⁇ m, so that the third ceramic layer 13 as a reinforcement layer has good liquid storage and liquid conduction capabilities.
- the pore size of the third ceramic layer 13 is less than 15 ⁇ m, the liquid storage and liquid conduction capabilities of the third ceramic layer 13 are poor, which is not conducive to the transmission of the aerosol matrix and easily causes insufficient liquid supply.
- the pore size of the third ceramic layer 13 is greater than 45 ⁇ m, the liquid storage and liquid conduction capabilities of the third ceramic layer 13 are good, but the strength of the third ceramic layer 13 will be greatly deteriorated, affecting the service life of the ceramic atomization core.
- the embodiment of the present invention further provides an atomizer, which includes the atomizer core provided by any of the above embodiments. Since the atomizer has all the technical features of the atomizer core provided by any of the above embodiments, it has the same technical effects as the atomizer core.
- the embodiment of the present invention further provides an aerosol generating device, which includes the atomizing core provided by any of the above embodiments or the atomizer provided by any of the above embodiments. Since the aerosol generating device has all the technical features of the atomizing core or the atomizer provided by any of the above embodiments, it has the same technical effects as the atomizing core.
Landscapes
- Nozzles (AREA)
Abstract
本发明提供了一种雾化芯、雾化器及气溶胶发生装置,雾化芯包括多孔基体和设置于多孔基体上的发热件,多孔基体包括第一陶瓷层、第二陶瓷层和第三陶瓷层,第一陶瓷层由包含硅藻土和玻璃粉的混合原料制成,第二陶瓷层由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,第三陶瓷层由包含二氧化硅和玻璃粉的混合原料制成,则在将依次层叠设置的第一陶瓷层、第二陶瓷层和第三陶瓷层烧结形成多孔陶瓷基体时,由于第一陶瓷层、第二陶瓷层和第三陶瓷层的材料协同配合,使得第二陶瓷层起到烧结粘合过渡层的作用,可将第一陶瓷层紧密且稳固地结合于第三陶瓷层上,解决了多孔陶瓷基体层间容易出现分层变形问题。
Description
本发明属于雾化技术领域,特别地,涉及一种雾化芯、雾化器及气溶胶发生装置。
气溶胶发生装置通常包括雾化器以及与雾化器电性连接的电源装置,雾化器的雾化芯能够在电源装置的电驱动作用下,将气溶胶形成基质加热并雾化形成可供用户吸食的气溶胶。雾化器通常使用陶瓷雾化芯对气溶胶形成基质进行加热并雾化,陶瓷雾化芯的多孔陶瓷基体一般包括层叠设置的三层陶瓷陶瓷层。
当前,在采用叠片、等静压成型的工艺将三层陶瓷陶瓷层烧结制备成多孔陶瓷基体时,多孔陶瓷基体之间容易出现分层变形问题,影响多孔陶瓷雾化芯的雾化效果与使用寿命。
发明内容
基于现有技术中存在的上述问题,本发明实施例的目的之一在于提供一种雾化芯,以解决现有的陶瓷雾化芯的多孔陶瓷基体之间容易出现分层变形问题,影响多孔陶瓷雾化芯的雾化效果与使用寿命的问题。
为实现上述目的,本发明采用的技术方案是:提供一种雾化芯,包括:
发热件,用于在通电后加热并雾化气溶胶形成基质;以及
多孔陶瓷基体,用于将气溶胶形成基质传输至所述发热件,所述多孔陶瓷基体包括第一陶瓷层、第二陶瓷层和第三陶瓷层,所述第二陶瓷层夹设于所述第一陶瓷层与所述第三陶瓷层之间,所述发热件设置于所述第一陶瓷层上;
其中,所述第一陶瓷层由包含硅藻土和玻璃粉的混合原料制成,所述第二陶瓷层由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,所述第三陶瓷层由包含二氧化硅和玻璃粉的混合原料制成,以在将依次层叠设置的所述第一陶瓷层、所述第二陶瓷层和所述第三陶瓷层烧结形成所述多孔陶瓷基体时,所述第二陶瓷层可将所述第一陶瓷层结合于所述第三陶瓷层上。
进一步地,所述第一陶瓷层背离所述第二陶瓷层的一面具有平整的雾化面,所述发热件为形成于所述雾化面上的发热层或发热膜。
进一步地,所述第一陶瓷层的厚度为0.1~0.2mm,所述第二陶瓷层的厚度为0.15~0.45mm,所述第三陶瓷层的厚度为1.4~1.8mm。
进一步地,所述第一陶瓷层至所述第三陶瓷层的孔隙率和/或孔径呈逐层梯度增大的趋势变化;或者,所述第一陶瓷层至所述第三陶瓷层的孔隙率和/或孔径先呈梯度增大的趋势变化,再呈梯度减小的趋势变化。
进一步地,所述第一陶瓷层的孔隙率为45%~55%。
进一步地,所述第二陶瓷层的孔隙率为50%~65%。
进一步地,所述第三陶瓷层的孔隙率为55%~65%。
进一步地,所述第一陶瓷层的孔径为5~15μm。
进一步地,所述第二陶瓷层的孔径为15~30μm。
进一步地,所述第三陶瓷层的孔径为15~45μm。
基于现有技术中存在的上述问题,本发明实施例的目的之二在于提供一种具有上述任一方案提供的雾化芯的雾化器。
为实现上述目的,本发明采用的技术方案是:提供一种雾化器,包括上述任一方案提供的所述雾化芯。
基于现有技术中存在的上述问题,本发明实施例的目的之三在于提供一种具有上述任一方案提供的雾化芯或雾化器的气溶胶发生装置。
为实现上述目的,本发明采用的技术方案是:提供一种气溶胶发生装置,包括上述任一方案提供的所述雾化芯或所述雾化器。
本发明实施例中的上述一个或多个技术方案,与现有技术相比,至少具有如下有益效果之一:
本发明实施例中的雾化芯、雾化器及气溶胶发生装置,雾化芯结构中,第一陶瓷层由包含硅藻土和玻璃粉的混合原料制成,第二陶瓷层由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,第三陶瓷层由包含二氧化硅和玻璃粉的混合原料制成,则在将依次层叠设置的第一陶瓷层、第二陶瓷层和第三陶瓷层烧结形成多孔陶瓷基体时,由于第一陶瓷层、第二陶瓷层和第三陶瓷层的材料协同配合,使得由包含二氧化硅、硅藻土和玻璃粉的混合原料制成的第二陶瓷层起到烧结粘合过渡层的作用,可将第一陶瓷层紧密且稳固地结合于第三陶瓷层上,解决了多孔陶瓷基体层间容易出现分层变形问题,从而可提高多孔陶瓷雾化芯的雾化效果,并延长多孔陶瓷雾化芯的使用寿命。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的雾化芯的剖视结构示意图;
图2为图1中A部位局部放大的结构示意图;
图3为本发明另一实施例提供的雾化芯的剖视结构示意图;
图4为图3中B部位局部放大的结构示意图;
图5为本发明另一实施例提供的雾化芯的剖视结构示意图;
图6为图1中C部位局部放大的结构示意图。
其中,图中各附图标记:
1-多孔陶瓷基体;11-第一陶瓷层;12-第二陶瓷层;13-第三陶瓷层;
2-发热件。
1-多孔陶瓷基体;11-第一陶瓷层;12-第二陶瓷层;13-第三陶瓷层;
2-发热件。
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“连接于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“多个”的含义是一个或一个以上,除非另有明确具体的限定。
在本发明的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在整个说明书中参考“一个实施例”或“实施例”意味着结合实施例描述的特定特征,结构或特性包括在本申请的至少一个实施例中。因此,“在一个实施例中”、“在一些实施例中”或“在其中一些实施例中”的短语出现在整个说明书的各个地方,并非所有的指代都是相同的实施例。此外,在一个或多
个实施例中,可以以任何合适的方式组合特定的特征,结构或特性。
请一并参阅图1至6,现对本发明实施例提供的雾化芯进行说明。本发明实施例提供的雾化芯用于雾化器,雾化芯可在气溶胶发生装置的电源装置的电驱动下发热,将储存于雾化器中的气溶胶形成基质加热雾化形成气溶胶。
请进一步结合参阅图1和图2,本发明实施例提供的雾化芯包括发热件2和多孔陶瓷基体1,发热件2在通电后加热并雾化气溶胶形成基质,发热件2可以是采用金属材料制成的发热层、发热膜、发热丝或发热片等。多孔陶瓷基体1上分别设有可吸附气溶胶形成基质的吸液面和可供气溶胶释放或逸出的雾化面,多孔陶瓷基体1可将气溶胶形成基质传输至雾化面和/或发热件2。多孔陶瓷基体1包括第一陶瓷层11、第二陶瓷层12和第三陶瓷层13,第二陶瓷层12夹设于第一陶瓷层11与第三陶瓷层13之间,雾化面可以设置于第一陶瓷层11上,对应地,发热件2设置于第一陶瓷层11的雾化面上,或者发热件2设置于第一陶瓷层11具有雾化面的一面上。具体地,第一陶瓷层11由包含硅藻土和玻璃粉的混合原料制成,第二陶瓷层12由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,第三陶瓷层13由包含二氧化硅和玻璃粉的混合原料制成,以在将依次层叠设置的第一陶瓷层11、第二陶瓷层12和第三陶瓷层13烧结形成多孔陶瓷基体1时,由于第二陶瓷层12采用包含二氧化硅、硅藻土和玻璃粉的混合原料制备得到,使得第二陶瓷层12主要作为起到烧结粘合作用的中间过渡层,可解决二氧化硅层与硅藻土层直接贴合烧结分层变形的问题,从而使得第二陶瓷层12可将第一陶瓷层11紧密且牢固地结合于第三陶瓷层13上,有效防止多孔陶瓷基体1层间发生分层变形。
本发明实施例提供的雾化芯,与现有技术相比,第一陶瓷层11由包含硅藻土和玻璃粉的混合原料制成,第二陶瓷层12由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,第三陶瓷层13由包含二氧化硅和玻璃粉的混合原料制成,则在将依次层叠设置的第一陶瓷层11、第二陶瓷层12和第三陶瓷层13烧结形成多孔陶瓷基体1时,由于第一陶瓷层11、第二陶瓷层12和第三陶瓷层13的材
料协同配合,使得由包含二氧化硅、硅藻土和玻璃粉的混合原料制成的第二陶瓷层12起到烧结粘合过渡层的作用,可将第三陶瓷层13紧密且稳固地结合于第一陶瓷层11上,解决了多孔陶瓷基体1层间容易出现分层变形问题,从而可提高多孔陶瓷雾化芯的雾化效果,并延长多孔陶瓷雾化芯的使用寿命。
在其中一些实施例中,第一陶瓷层11背离第二陶瓷层12的一面具有平整的雾化面,发热件2为形成于雾化面上的发热层或发热膜,导电发热层或导电发热膜的厚度300~800nm。该实施例中,第一陶瓷层11采用包含硅藻土与玻璃粉的混合原料制备得到,由于采用硅藻土表面平整度效果好,使得第一陶瓷层11背离第二陶瓷层12的一面可形成平整的雾化面,从而有利于在第一陶瓷层11的雾化面上沉积发热层或镀发热膜的均匀性,提高雾化面温度场的均匀,有利于保证雾化效果的一致性。
在其中一些实施例中,第一陶瓷层11的厚度为0.1~0.2mm,第二陶瓷层12的厚度为0.15~0.45mm,第三陶瓷层13的厚度为1.4~1.8mm。该实施例中,由于第一陶瓷层11由包含硅藻土和玻璃粉的混合原料制成,第二陶瓷层12由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,且第三陶瓷层13由包含二氧化硅和玻璃粉的混合原料制成,并将第一陶瓷层11的厚度、第二陶瓷层12的厚度、第三陶瓷层13的厚度呈逐层梯度增大设置,有利于提高第二陶瓷层12将第一陶瓷层11结合于第三陶瓷层13上的稳固性,可进一步避免多孔陶瓷基体1层间出现分层变形的问题。
请结合参阅图1和图2,在其中一些实施例中,第一陶瓷层11至第三陶瓷层13的孔隙率呈逐层梯度增大的趋势变化,或者第一陶瓷层11至第三陶瓷层13的孔径呈逐层梯度增大的趋势变化,或者第一陶瓷层11至第三陶瓷层13的孔隙率和孔径均呈逐层梯度增大的趋势变化。上述实施例中,整个多孔陶瓷基体1利用梯度结构的层进式导液速率,有利于气溶胶形成基质的传输与雾化,从而为气溶胶形成基质提供一个稳定的雾化环境,有利于保证雾化效果的一致性和稳定性,进而提升用户抽吸气溶胶的口感。此外,由于第一陶瓷层11的孔
隙率和/或孔径较小,且第一陶瓷层11的孔隙率和/或孔径分布均匀细密,可以达到细化气溶胶形成基质颗粒的目的,提供更多的成雾核心,使得雾化面上的温度分布均匀,提高气溶胶形成基质的雾化效率,提升用户抽吸气溶胶的口感。第三陶瓷层13临近气溶胶形成基质,在第三陶瓷层13孔隙率和/或孔径较大的情况下,有利于气溶胶形成基质稳定、顺畅地传输,起到控制并提高导液速率的效果,既避免一次吸液过多而导致炸液、漏液,又可防止吸液过少而导致干烧、糊芯。
请结合参阅图3和图4,在其中一些实施例中,第一陶瓷层11至第三陶瓷层13的孔隙率和/或孔径先呈逐层梯度增大的趋势变化,再呈逐层梯度减小的趋势变化。这样,由于第一陶瓷层11与第三陶瓷层13之间具有作为中间过渡层的第二陶瓷层12,第二陶瓷层12的孔隙率和/或孔径大于第一陶瓷层11的孔隙率和/或孔径,保证第二陶瓷层12具有良好的导液速率,以防止气溶胶形成基质在致密层遇阻回流而造成导液效率降低,进而避免雾化芯产生干烧或炸液。
请结合参阅图3和图4,在其中一些实施例中,多孔陶瓷基体1包括由第一陶瓷层11、第二陶瓷层12、第三陶瓷层13逐层叠置的3层陶瓷层,第二陶瓷层12构成第一陶瓷层11与第三陶瓷层13之间的中间过渡层,第一陶瓷层11的孔隙率和/或孔径小于第二陶瓷层12的孔隙率和/或孔径,则可保证中间过渡层具有良好的导液速率,以防止气溶胶形成基质在致密层遇阻回流而造成导液效率降低,进而避免雾化芯产生干烧或炸液。
请结合参阅图1和图2,在其中一些实施例中,多孔陶瓷基体1包括由第一陶瓷层11、第二陶瓷层12、第三陶瓷层13逐层叠置的3层陶瓷层,第二陶瓷层12构成第一陶瓷层11与第三陶瓷层13之间的中间过渡层,第一陶瓷层11的孔隙率和/或孔径小于第二陶瓷层12的孔隙率和/或孔径,且第二陶瓷层12的孔隙率和/或孔径小于第三陶瓷层13的孔隙率和/或孔径,使得第一陶瓷层11至第三陶瓷层13的孔隙率和/或孔径呈预设的梯度递增变化,可使多孔陶
瓷基体1逐层进行层进式导液,有利于气溶胶形成基质稳定、顺畅地传输至雾化面,达到控制并提高导液速率的目的,避免雾化芯出现供液不充分而产生干烧、糊芯、积碳的问题。
请结合参阅图3至图6,在其中一些实施例中,多孔陶瓷基体1包括由第一陶瓷层11、第二陶瓷层12、第三陶瓷层13逐层叠置的3层陶瓷层,第二陶瓷层12构成第一陶瓷层11与第三陶瓷层13之间的中间过渡层,第一陶瓷层11的孔隙率和/或孔径小于第二陶瓷层12的孔隙率和/或孔径,且第一陶瓷层11的孔隙率和/或孔径小于或等于第三陶瓷层13的孔隙率和/或孔径,使得第一陶瓷层11至第三陶瓷层13的孔隙率和/或孔径先呈预设的梯度递增变化,再呈预设的梯度递减变化,可使多孔陶瓷基体1逐层进行层进式导液,有利于气溶胶形成基质稳定、顺畅地传输至雾化面,达到控制并提高导液速率的目的,避免雾化芯出现供液不充分而产生干烧、糊芯、积碳的问题。
请结合参阅图3至图6,在其中一些实施例中,多孔陶瓷基体1包括由第一陶瓷层11、第二陶瓷层12、第三陶瓷层13逐层叠置的3层陶瓷层,第二陶瓷层12构成第一陶瓷层11与第三陶瓷层13之间的中间过渡层,第一陶瓷层11的孔隙率和/或孔径小于第二陶瓷层12的孔隙率和/或孔径,且第二陶瓷层12的孔隙率和/或孔径大于第三陶瓷层13的孔隙率和/或孔径,使得第一陶瓷层11至第三陶瓷层13的孔隙率和/或孔径先呈预设的梯度递增变化,再呈预设的梯度递减变化,可使多孔陶瓷基体1逐层进行层进式导液,有利于气溶胶形成基质稳定、顺畅地传输至雾化面,达到控制并提高导液速率的目的,避免雾化芯出现供液不充分而产生干烧、糊芯、积碳的问题。。
在其中一些实施例中,第一陶瓷层11的孔隙率为45%~55%,使得第一陶瓷层11具有较佳的导液速率,有利于气溶胶形成基质的均匀、稳定、顺畅地传输至雾化面和/或发热件2。在第一陶瓷层11的孔隙率小于45%时,第一陶瓷层11导液速率较低,容易出现导液不畅而产生供液不足,进而产生干烧、炸液的现象。而在第一陶瓷层11的孔隙率大于55%时,容易出现导液速率过高而难以
控制,就会产生一次吸液过多,导致陶瓷雾化芯出现炸液、漏液现象,影响用户的抽吸体验。需要说明的是,第一陶瓷层11的导液速率控制在7~10秒,避免陶瓷雾化芯出现干烧或炸液、漏液现象。
在其中一些实施例中,第二陶瓷层12的孔隙率为50%~65%,使得第二陶瓷层12具有较佳的导液速率,有利于气溶胶形成基质的均匀、稳定、顺畅地传输至第一陶瓷层11。在第二陶瓷层12的孔隙率小于50%时,容易出现导液不畅而产生供液不足,进而产生干烧、炸液的现象。而在第二陶瓷层12的孔隙率大于65%时,容易出现导液速率过高而难以控制,产生一次吸液过多,导致炸液、漏液。
在其中一些实施例中,第三陶瓷层13的孔隙率为55%~65%。使得第三陶瓷层12具有较佳的导液速率,有利于气溶胶形成基质的均匀、稳定、顺畅地传输至第二陶瓷层12。在第三陶瓷层13的孔隙率小于55%时,容易出现导液不畅而产生供液不足,进而产生干烧、炸液的现象。而在第三陶瓷层13的孔隙率大于65%时,容易出现导液速率过高而难以控制,产生一次吸液过多,导致炸液、漏液。需要说明的是,第一陶瓷层11的导液速率控制在7~10秒,避免陶瓷雾化芯出现干烧或炸液、漏液现象。此外,采用包含二氧化硅和玻璃粉制备得到的第三陶瓷层13,由于第三陶瓷层13的孔隙率为55%~65%,第三陶瓷层13的孔径为15~45μm,加上二氧化硅具有较强的亲液特性,使得第三陶瓷层13具有较高的导液速率。在第三陶瓷层13孔隙率和孔径均较高的情况下,将第三陶瓷层13的厚度增厚设置为1.4~1.8mm,则在保证第三陶瓷层13具有高导液速率的前提下,还可满足第三陶瓷层13的高强度需求,即保证第三陶瓷层13可作为具有高导液速率的强度层。在第三陶瓷层13的厚度小于1.4mm时,第三陶瓷层13的强度会发生显著降低。在第三陶瓷层13的厚度大于1.8mm时,第三陶瓷层13的导液速率会发生明显降低。因此,在将第三陶瓷层13的厚度控制在1.4~1.8mm的范围,可使得第三陶瓷层13兼具良好的导液性能和较高的强度。
在其中一些实施例中,第一陶瓷层11的孔径为5~15μm,使得第一陶瓷层11表面均匀的小孔可提供更多更均匀的雾化点,可对气溶胶形成基质的颗粒进行良好的细化作用。在第一陶瓷层11的孔径小于5μm的情形下,不利于气溶胶基质的传输及气溶胶的释放或逸出,容易造成供液不充分或气溶胶释放的量减少,影响口感。而在第一陶瓷层11的孔径小于15μm的情形下,不利于对气溶胶形成基质的颗粒进行细化。
在其中一些实施例中,其特征在于,第二陶瓷层12的孔径为15~30μm,使得作为中间过渡层的第二陶瓷层12具有良好的导液能力,保证中间过渡层具有良好的导液速率,并防止气溶胶形成基质在致密层遇阻回流而造成导液效率降低,进而避免雾化芯产生干烧或炸液。在第二陶瓷层12的孔径小于15μm的情形下,不利于气溶胶基质的传输,容易造成供液不充分。而在第二陶瓷层12的孔径大于30μm的情形下,容易出现导液速率不可控,产生一次吸液过多,导致炸液、漏液。
在其中一些实施例中,第三陶瓷层13的孔径为15~45μm,使得作为加强层的第三陶瓷层13兼具良好的储液及导液能力。在第三陶瓷层13的孔径小于15μm的情形下,第三陶瓷层13的储液及导液能力均较差,不利于气溶胶基质的传输,容易造成供液不充分。而在第三陶瓷层13的孔径大于45μm的情形下,第三陶瓷层13的储液及导液能力均较好,但第三陶瓷层13的强度会大幅度变差,影响陶瓷雾化芯的使用寿命。
本发明实施例还提供一种雾化器,雾化器包括上述任一实施例提供的雾化芯。因雾化器具有上述任一实施例提供的雾化芯的全部技术特征,故其具有雾化芯相同的技术效果。
本发明实施例还提供一种气溶胶发生装置,气溶胶发生装置包括上述任一实施例提供的雾化芯或上述任一实施例提供的的雾化器。因气溶胶发生装置具有上述任一实施例提供的雾化芯或雾化器的全部技术特征,故其具有雾化芯相同的技术效果。
以上所述仅为本发明的较佳实施例而已,并不用于限定本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (12)
- 一种雾化芯,其特征在于,包括:发热件,用于在通电后加热并雾化气溶胶形成基质;以及多孔陶瓷基体,用于将气溶胶形成基质传输至所述发热件,所述多孔陶瓷基体包括第一陶瓷层、第二陶瓷层和第三陶瓷层,所述第二陶瓷层夹设于所述第一陶瓷层与所述第三陶瓷层之间,所述发热件设置于所述第一陶瓷层上;其中,所述第一陶瓷层由包含硅藻土和玻璃粉的混合原料制成,所述第二陶瓷层由包含二氧化硅、硅藻土和玻璃粉的混合原料制成,所述第三陶瓷层由包含二氧化硅和玻璃粉的混合原料制成,以在将依次层叠设置的所述第一陶瓷层、所述第二陶瓷层和所述第三陶瓷层烧结形成所述多孔陶瓷基体时,所述第二陶瓷层可将所述第一陶瓷层结合于所述第三陶瓷层上。
- 如权利要求1所述的雾化芯,其特征在于,所述第一陶瓷层背离所述第二陶瓷层的一面具有平整的雾化面,所述发热件为形成于所述雾化面上的发热层或发热膜。
- 如权利要求1所述的雾化芯,其特征在于,所述第一陶瓷层的厚度为0.1~0.2mm,所述第二陶瓷层的厚度为0.15~0.45mm,所述第三陶瓷层的厚度为1.4~1.8mm。
- 如权利要求1所述的雾化芯,其特征在于,所述第一陶瓷层至所述第三陶瓷层的孔隙率和/或孔径呈逐层梯度增大的趋势变化;或者,所述第一陶瓷层至所述第三陶瓷层的孔隙率和/或孔径先呈梯度增大的趋势变化,再呈梯度减小的趋势变化。
- 如权利要求1至4任一项所述的雾化芯,其特征在于,所述第一陶瓷层的孔隙率为45%~55%。
- 如权利要求1至4任一项所述的雾化芯,其特征在于,所述第二陶瓷层的孔隙率为50%~65%。
- 如权利要求1至4任一项所述的雾化芯,其特征在于,所述第三陶瓷层的孔隙率为55%~65%。
- 如权利要求1至4任一项所述的雾化芯,其特征在于,所述第一陶瓷层的孔径为5~15μm。
- 如权利要求1至4任一项所述的雾化芯,其特征在于,所述第二陶瓷层的孔径为15~30μm。
- 如权利要求1至4任一项所述的雾化芯,其特征在于,所述第三陶瓷层的孔径为15~45μm。
- 一种雾化器,其特征在于,包括如权利要求1至10任一项所述的雾化芯。
- 一种气溶胶发生装置,其特征在于,包括如权利要求1至10任一项所述的雾化芯或如权利要求11所述的雾化器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211398302.XA CN115804476A (zh) | 2022-11-09 | 2022-11-09 | 雾化芯、雾化器及气溶胶发生装置 |
CN202211398302.X | 2022-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024098752A1 true WO2024098752A1 (zh) | 2024-05-16 |
Family
ID=85482971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/100859 WO2024098752A1 (zh) | 2022-11-09 | 2023-06-16 | 雾化芯、雾化器及气溶胶发生装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115804476A (zh) |
WO (1) | WO2024098752A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115804476A (zh) * | 2022-11-09 | 2023-03-17 | 深圳市卓尔悦电子科技有限公司 | 雾化芯、雾化器及气溶胶发生装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019137099A1 (zh) * | 2018-01-13 | 2019-07-18 | 深圳市新宜康电子技术有限公司 | 雾化芯及其制造方法 |
CN111205104A (zh) * | 2020-01-14 | 2020-05-29 | 东莞市陶陶新材料科技有限公司 | 电子烟用多孔陶瓷及其制备方法 |
CN112826132A (zh) * | 2019-11-22 | 2021-05-25 | 常州市派腾电子技术服务有限公司 | 导液件、雾化芯、雾化器及气溶胶产生系统 |
CN113040430A (zh) * | 2020-04-27 | 2021-06-29 | 四川三联新材料有限公司 | 一种加热器具用加热元件及其制备方法 |
WO2021227818A1 (zh) * | 2020-05-15 | 2021-11-18 | 深圳麦克韦尔科技有限公司 | 梯度多孔材料及其制备方法、雾化器和电子雾化装置 |
US20220281775A1 (en) * | 2019-08-12 | 2022-09-08 | Shenzhen Smoore Technology Limited | Composite ceramic member and method for preparation thereof, vaporization assembly, and electronic cigarette |
CN115804476A (zh) * | 2022-11-09 | 2023-03-17 | 深圳市卓尔悦电子科技有限公司 | 雾化芯、雾化器及气溶胶发生装置 |
-
2022
- 2022-11-09 CN CN202211398302.XA patent/CN115804476A/zh active Pending
-
2023
- 2023-06-16 WO PCT/CN2023/100859 patent/WO2024098752A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019137099A1 (zh) * | 2018-01-13 | 2019-07-18 | 深圳市新宜康电子技术有限公司 | 雾化芯及其制造方法 |
US20220281775A1 (en) * | 2019-08-12 | 2022-09-08 | Shenzhen Smoore Technology Limited | Composite ceramic member and method for preparation thereof, vaporization assembly, and electronic cigarette |
CN112826132A (zh) * | 2019-11-22 | 2021-05-25 | 常州市派腾电子技术服务有限公司 | 导液件、雾化芯、雾化器及气溶胶产生系统 |
CN111205104A (zh) * | 2020-01-14 | 2020-05-29 | 东莞市陶陶新材料科技有限公司 | 电子烟用多孔陶瓷及其制备方法 |
CN113040430A (zh) * | 2020-04-27 | 2021-06-29 | 四川三联新材料有限公司 | 一种加热器具用加热元件及其制备方法 |
WO2021227818A1 (zh) * | 2020-05-15 | 2021-11-18 | 深圳麦克韦尔科技有限公司 | 梯度多孔材料及其制备方法、雾化器和电子雾化装置 |
CN115804476A (zh) * | 2022-11-09 | 2023-03-17 | 深圳市卓尔悦电子科技有限公司 | 雾化芯、雾化器及气溶胶发生装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115804476A (zh) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024098752A1 (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
US20220338543A1 (en) | Electronic atomization apparatus, and atomizer and heating body of electronic atomization apparatus | |
US11206867B2 (en) | Variable-frequency surface acoustic wave electronic cigarette | |
WO2024021923A1 (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
WO2023024812A1 (zh) | 加热器件及电子雾化装置 | |
WO2023029870A1 (zh) | 雾化组件、雾化器及气溶胶发生装置 | |
CN216701680U (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
CN215992754U (zh) | 吸液发热件、雾化器及气溶胶发生装置 | |
EP4374720A1 (en) | Electronic atomization apparatus, atomizer thereof, and atomization assembly | |
TW202214125A (zh) | 霧化裝置及其霧化元件 | |
WO2021142640A1 (zh) | 电子雾化装置及其雾化器和雾化组件 | |
WO2024041124A1 (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
WO2024125068A1 (zh) | 雾化芯、雾化器及电子雾化装置 | |
WO2024027365A1 (zh) | 雾化芯及电子雾化装置 | |
WO2024087662A1 (zh) | 雾化器及气溶胶发生装置 | |
WO2024037079A1 (zh) | 电子雾化装置及其雾化器和雾化芯 | |
WO2022252479A1 (zh) | 电子烟雾化芯和电子烟 | |
CN111165897A (zh) | 一种可变频声表面波雾化芯片 | |
CN207744310U (zh) | 一种散热性反射片 | |
CN212545549U (zh) | 一种可变频声表面波雾化芯片 | |
CN219270169U (zh) | 发热组件和雾化器 | |
WO2024103717A1 (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
WO2024027354A1 (zh) | 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法 | |
WO2024108993A1 (zh) | 雾化芯、雾化器及气溶胶发生装置 | |
CN219593710U (zh) | 电子雾化装置及其发热结构和多孔体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23887449 Country of ref document: EP Kind code of ref document: A1 |