WO2024098461A1 - 多烷基对苯二胺类防老剂、其中间体及制备方法 - Google Patents

多烷基对苯二胺类防老剂、其中间体及制备方法 Download PDF

Info

Publication number
WO2024098461A1
WO2024098461A1 PCT/CN2022/133179 CN2022133179W WO2024098461A1 WO 2024098461 A1 WO2024098461 A1 WO 2024098461A1 CN 2022133179 W CN2022133179 W CN 2022133179W WO 2024098461 A1 WO2024098461 A1 WO 2024098461A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
catalyst
compound
compound represented
rubber
Prior art date
Application number
PCT/CN2022/133179
Other languages
English (en)
French (fr)
Inventor
邢金国
郭湘云
梁干
张家强
唐志民
Original Assignee
圣奥化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣奥化学科技有限公司 filed Critical 圣奥化学科技有限公司
Publication of WO2024098461A1 publication Critical patent/WO2024098461A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/55Diphenylamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J25/00Catalysts of the Raney type
    • B01J25/02Raney nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/38Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/60Preparation of compounds containing amino groups bound to a carbon skeleton by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone imines, or aziranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/44Allylic alkylation, amination, alkoxylation or analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the invention belongs to the field of p-phenylenediamine antioxidants, and in particular relates to polyalkyl p-phenylenediamine antioxidants, intermediates thereof and a preparation method thereof.
  • p-phenylenediamine antioxidants are widely used in rubber products such as rubber tires. They have high ozone protection performance, and are also very effective in protecting against flexural aging and general aging such as oxygen and heat. They also have good protection against harmful metals such as copper and manganese.
  • the antioxidant 6PPD whose chemical name is N-(1,3-dimethylbutyl)-N′-phenyl p-phenylenediamine, is a highly effective rubber antioxidant.
  • Chinese patent application CN113072741A discloses an environmentally friendly p-phenylenediamine antioxidant and a preparation method thereof.
  • the structure of the environmentally friendly p-phenylenediamine antioxidant disclosed in the patent application is:
  • the antioxidant will not be converted into a quinone compound after the rubber material ages: at least one of x and w is 1, at least one of y and z is 1, and if x and z are both 1, y and w are not both 0.
  • the preparation process provided in the patent application is: firstly, aniline is subjected to a C-N coupling reaction with p-bromonitrobenzene having a corresponding substituent, the obtained coupling product is subjected to a reduction reaction in a hydrogen atmosphere under catalytic conditions to obtain a reaction intermediate, and the reaction intermediate is subjected to a reduction amination reaction with an aldehyde or ketone under catalytic conditions to obtain the p-phenylenediamine antioxidant.
  • This method requires the use of expensive bromide and noble metal organophosphorus complex catalysts, the reaction conversion rate and yield are not high, the separation and purification are relatively complicated, and wastewater containing metal bromide salts is generated, which is not conducive to industrial production.
  • 4-Aminodiphenylamine is an important intermediate of p-phenylenediamine antioxidants, which is prepared by condensation and reduction of aniline or its derivatives with nitrobenzene under alkaline conditions.
  • anilinonitrobenzene can also be prepared by C-N coupling reaction of aniline and p-halonitrobenzene in the presence of triphenylphosphine coordinated palladium catalyst, and then obtained by hydrogenation reduction.
  • the present invention provides a novel p-phenylenediamine antioxidant having good heat-oxidative aging resistance and ultraviolet light aging resistance.
  • the present invention also provides a preparation method of the p-phenylenediamine antioxidant, which has the advantages of being green, environmentally friendly and free of three wastes.
  • the present invention also provides an intermediate for preparing the p-phenylenediamine antioxidant.
  • one aspect of the present invention provides a compound shown in formula I:
  • each R 1 is independently selected from H, C1-C18 chain hydrocarbon group and C3-C18 alicyclic hydrocarbon group, and a is an integer from 1 to 5;
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from H, a C1-C18 chain hydrocarbon group, and a C3-C18 alicyclic hydrocarbon group, and at least one of R 2 , R 3 , R 4 , and R 5 is not H;
  • R 6 and R 7 are each independently selected from a C1-C18 chain hydrocarbon group and a C3-C18 alicyclic hydrocarbon group, or R 6 and R 7 form a C3-C18 alicyclic ring.
  • each R 1 is independently selected from H and C1-C8 alkyl.
  • a is an integer of 1-2.
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from H and C1-C8 alkyl.
  • R 2 , R 3 , R 4 , and R 5 are H.
  • R 6 and R 7 are each independently selected from C1-C8 alkyl and C3-C8 cycloalkyl, or R 6 and R 7 form a C3-C8 aliphatic ring.
  • Another aspect of the present invention provides a method for preparing the compound shown in Formula I, the preparation method comprising the following steps:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 in Formula A, Formula B, Formula C, Formula C′, Formula D, Formula II, and Formula I are as defined in any of the embodiments herein.
  • the first catalyst is selected from one or more of an alkali metal hydroxide, an alkali metal alkoxide, a quaternary ammonium base, and a combination of an alkali metal hydroxide and a tetraalkylammonium halide.
  • the second catalyst is a porous metal catalyst or a supported metal catalyst;
  • the porous metal catalyst is preferably selected from one or more of Raney nickel, Raney cobalt and Raney copper
  • the metal in the supported metal catalyst is preferably selected from one or more of nickel, cobalt, copper, platinum, palladium, ruthenium and rhodium
  • the carrier in the supported metal catalyst is preferably selected from one or more of carbon, alumina, silica gel and molecular sieves.
  • the third catalyst is a supported metal catalyst; the metal in the supported metal catalyst is preferably selected from one or more of nickel, cobalt, copper, platinum, palladium, ruthenium and rhodium, and the carrier in the supported metal catalyst is preferably selected from one or more of carbon, alumina, silica gel and molecular sieves.
  • step (1) the molar ratio of the compound represented by formula A to the compound represented by formula B is 2:1 to 15:1, preferably 4:1 to 10:1.
  • the temperature of the condensation reaction is 40 to 90°C, preferably 65 to 85°C, and the vacuum degree is -0.09 to -0.99 MPa.
  • the temperature for reacting the condensate with H2 is 40 to 120°C, preferably 60 to 90°C, and the hydrogen pressure is 0.5 to 5 MPa, preferably 0.5 to 2.5 MPa.
  • step (2) the molar ratio of the compound represented by formula D to the compound represented by formula II is 1:1 to 15:1.
  • the reaction temperature is 40 to 150° C.
  • the reaction pressure is 0.5 to 5 MPa.
  • Another aspect of the present invention provides a compound shown in formula II:
  • each R 1 is independently selected from H, C1-C18 chain hydrocarbon group and C3-C18 alicyclic hydrocarbon group, and a is an integer from 1 to 5;
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from H, a C1-C18 chain hydrocarbon group, and a C3-C18 alicyclic hydrocarbon group, and at least one of R 2 , R 3 , R 4 , and R 5 is not H.
  • each R 1 is independently selected from H and C1-C8 alkyl.
  • a is an integer of 1-2.
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from H and C1-C8 alkyl.
  • R 2 , R 3 , R 4 , and R 5 are H.
  • Another aspect of the present invention provides a method for preparing a compound of the structure shown in formula II, the preparation method comprising: subjecting a compound shown in formula A to a condensation reaction with a compound shown in formula B under the action of a first catalyst to obtain a condensate containing a compound shown in formula C and/or a compound shown in formula C′, and then subjecting the condensate to a reduction reaction under the action of H2 and a second catalyst to obtain a compound shown in formula II;
  • R 1 , R 2 , R 3 , R 4 , R 5 in Formula A, Formula B, Formula C, Formula C′ and Formula II are as defined in any of the embodiments herein.
  • the first catalyst is selected from one or more of an alkali metal hydroxide, an alkali metal alkoxide, a quaternary ammonium base, and a combination of an alkali metal hydroxide and a tetraalkylammonium halide.
  • the second catalyst is a porous metal catalyst or a supported metal catalyst;
  • the porous metal catalyst is preferably selected from one or more of Raney nickel, Raney cobalt and Raney copper
  • the metal in the supported metal catalyst is preferably selected from one or more of nickel, cobalt, copper, platinum, palladium, ruthenium and rhodium
  • the carrier in the supported metal catalyst is preferably selected from one or more of carbon, alumina, silica gel and molecular sieves.
  • step (1) the molar ratio of the compound represented by formula A to the compound represented by formula B is 2:1 to 15:1, preferably 4:1 to 10:1.
  • the temperature of the condensation reaction is 40 to 90°C, preferably 65 to 85°C, and the vacuum degree is -0.09 to -0.99 MPa.
  • the temperature for reacting the condensate with H2 is 40 to 120°C, preferably 60 to 90°C, and the hydrogen pressure is 0.5 to 5 MPa, preferably 0.5 to 2.5 MPa.
  • Another aspect of the present invention provides a rubber composition, wherein the rubber composition contains the compound of formula I described in any embodiment herein.
  • Another aspect of the present invention provides a rubber product, wherein the rubber product comprises the rubber composition described in any embodiment of the present invention; preferably, the rubber product is a tire.
  • Another aspect of the present invention provides a method for improving the heat-oxidative aging resistance and/or ultraviolet aging resistance of rubber or rubber products, the method comprising adding a compound of formula I described in any embodiment of the present invention to the rubber or rubber product.
  • percentage refers to mass percentage and ratio refers to mass ratio.
  • chain hydrocarbon refers to a straight or branched saturated hydrocarbon or unsaturated hydrocarbon, usually containing 1 to 18 carbon atoms (C1-C18 chain hydrocarbon).
  • chain hydrocarbon include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, isohexyl, 1,3-dimethylbutyl, 1,4-dimethylpentyl, tert-octyl, vinyl, propenyl, and ethynyl.
  • alicyclic hydrocarbon groups refer to groups in which carbon atoms are combined in a ring, usually containing 3 to 18 carbon atoms (C3-C18 alicyclic hydrocarbon groups).
  • Examples of alicyclic hydrocarbon groups include, but are not limited to, isobornyl, cyclohexyl, norbornyl, norbornenyl, dicyclopentadienyl, ethynylcyclohexyl, and ethynylcyclohexenyl.
  • alkyl refers to a linear or branched monovalent saturated hydrocarbon group, typically containing 1 to 18 carbon atoms (C1-C18 alkyl), for example, containing 1 to 8 carbon atoms (C1-C8 alkyl).
  • alkyl include, but are not limited to, methyl, ethyl, propyl, 1-methylpropyl, isobutyl, and 1,3-dimethylbutyl.
  • cycloalkyl refers to a monovalent saturated hydrocarbon ring containing 3 to 18 carbon atoms, preferably 3 to 8 carbon atoms.
  • Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and adamantyl.
  • a polyalkyl paraphenylenediamine compound having a structure shown in Formula I (hereinafter referred to as a compound of Formula I) can be used as a rubber antioxidant, and can impart better heat-oxidative aging resistance and UV-aging resistance to rubber than the antioxidant 6PPD:
  • each R 1 is independently selected from H, C1-C18 chain hydrocarbon group and C3-C18 alicyclic hydrocarbon group, and a is an integer of 1-5;
  • R 2 , R 3 , R 4 , and R 5 are each independently selected from H, a C1-C18 chain hydrocarbon group, and a C3-C18 alicyclic hydrocarbon group, and at least one of R 2 , R 3 , R 4 , and R 5 is not H;
  • R 6 and R 7 are each independently selected from a C1-C18 chain hydrocarbon group and a C3-C18 alicyclic hydrocarbon group, or R 6 and R 7 form a C3-C18 alicyclic ring.
  • each R 1 is independently selected from H and C1-C8 alkyl. In some embodiments, each R 1 is independently selected from H, methyl and ethyl. In some embodiments, each R 1 is independently selected from H and methyl. In some embodiments, a is 1 or 2. When a is 1, R 1 is preferably located in the ortho or para position of the -NH- group. When a is 2, preferably, two R 1s are located in the ortho and meta positions of the -NH- group, respectively, and the two R 1s are adjacent.
  • each R 1 is independently selected from C1-C8 alkyl. In some embodiments, each R 1 is independently selected from C1-C4 alkyl. In some embodiments, each R 1 is methyl. In some embodiments, a is 1 or 2. When a is 1, R 1 is preferably located in the ortho or para position of the -NH- group. When a is 2, preferably, the two R 1s are located in the ortho and meta positions of the -NH- group, respectively, and the two R 1s are adjacent.
  • R 2 , R 3 , R 4 , R 5 are each independently selected from H and C1-C8 alkyl, and preferably, 2 to 3 of R 2 , R 3 , R 4 , R 5 are H. In some embodiments, R 2 , R 3 , R 4 , R 5 are each independently selected from H and C1-C4 alkyl. In some embodiments, R 2 , R 3 , R 4 , R 5 are each independently selected from H and methyl. When 3 of R 2 , R 3 , R 4 , R 5 are H, preferably, R 2 is not H. When 2 of R 2 , R 3 , R 4 , R 5 are H, preferably, R 2 and R 4 are not H, or R 2 and R 3 are not H.
  • R 6 and R 7 are each independently selected from C1-C8 alkyl and C3-C8 cycloalkyl, or R 6 and R 7 form a C3-C8 aliphatic ring. In some embodiments, R 6 and R 7 are each independently selected from C1-C6 alkyl, such as C1-C4 alkyl, or R 6 and R 7 form a C5-C7 aliphatic ring, such as C6 aliphatic ring.
  • R 6 is selected from C1-C2 alkyl, such as methyl
  • R 7 is selected from C1-C6 alkyl, such as C1-C4 alkyl
  • R 6 and R 7 form a C5-C7 aliphatic ring, such as C6 aliphatic ring.
  • the aliphatic ring formed by R 6 and R 7 is a saturated aliphatic ring.
  • each R 1 is independently selected from H and C1-C4 alkyl, or each R 1 is independently selected from C1-C4 alkyl, a is 1 or 2;
  • R 2 , R 3 , R 4 , R 5 are independently selected from H and C1-C4 alkyl, and preferably, 2 to 3 of R 2 , R 3 , R 4 , R 5 are H;
  • R 6 and R 7 are independently selected from C1-C6 alkyl, for example, C1-C4 alkyl, or R 6 and R 7 form a C5-C7 aliphatic ring, for example, a C6 aliphatic ring.
  • each R 1 is independently selected from H and C1-C4 alkyl, preferably from H and methyl, or each R 1 is independently selected from C1-C4 alkyl, such as methyl, a is 1, and R 1 is preferably located in the ortho position of the -NH- group;
  • R 2 , R 3 , R 4 , and R 5 are independently selected from H and C1-C4 alkyl, preferably from H and methyl, and preferably, 2 to 3 of R 2 , R 3 , R 4 , and R 5 are H, wherein preferably, R 2 is not H, or R 2 and R 3 are not H;
  • R 6 and R 7 are independently selected from C1-C6 alkyl, such as C1-C4 alkyl, or R 6 and R 7 form a C5-C7 aliphatic ring, such as a C6 aliphatic ring.
  • the compound of Formula I is selected from:
  • the present invention also provides compounds of formula II which can be used as intermediates for preparing compounds of formula I:
  • R 1 , a, R 2 , R 3 , R 4 and R 5 are as defined above for R 1 , a, R 2 , R 3 , R 4 and R 5 in any of the embodiments of the compounds of formula I.
  • the compound of Formula II is selected from:
  • the preparation method of the compound of formula I and the compound of formula II provided by the present invention comprises the following steps:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 in Formula A, Formula B, Formula C, Formula C′, Formula D, Formula II, and Formula I are as defined in any embodiment herein.
  • the first catalyst used in step (1) can be one or more selected from alkali metal hydroxides, alkali metal alkoxides, quaternary ammonium bases, and combinations of alkali metal hydroxides and tetraalkylammonium halides.
  • Alkali metal hydroxides suitable for the present invention include sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.
  • Alkali metal alkoxides suitable for the present invention include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium tert-butoxide, potassium tert-butoxide, sodium tert-amyl alcoholate, potassium tert-amyl alcoholate, etc.
  • Quaternary ammonium bases are compounds of the general formula R 4 NOH, wherein R is four identical or different aliphatic groups (e.g., alkyl) or aromatic groups.
  • each R group in the quaternary ammonium base is an alkyl group, for example, each R group can be independently selected from methyl, ethyl, propyl, and butyl.
  • Examples of quaternary ammonium bases suitable for the present invention include tetraalkylammonium hydroxides, such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, etc.
  • the first catalyst can also be a combination of alkali metal hydroxides and tetraalkylammonium halides.
  • the general formula of tetraalkylammonium chloride is R 4 NX, wherein R is four identical or different aliphatic or aromatic groups, such as methyl, ethyl, propyl, butyl, etc., and X is a halogen atom, such as fluorine, chlorine, bromine, iodine.
  • Examples of the combination of alkali metal hydroxide and tetraalkylammonium halide include sodium hydroxide and tetrabutylammonium bromide, etc.
  • the first catalyst is a quaternary ammonium base, such as tetraalkylammonium hydroxide.
  • the ratio of the amount of the first catalyst to the amount of the compound of formula A can be 0.1:1 to 2:1, preferably 0.1:1 to 0.5:1, such as 0.2:1, 0.3:1, 0.4:1.
  • step (1) the compound of formula A is firstly salified with the first catalyst, and then the compound of formula B is added dropwise to carry out a condensation reaction.
  • the condensate obtained by the condensation reaction of the compound of formula A and the compound of formula B under the action of the first catalyst may be one or both of the nitro compound represented by formula C and the nitroso compound represented by formula C′, and may also contain an azobenzene compound.
  • the molar ratio of the compound of formula A to the compound of formula B may be 2:1 to 15:1, preferably 4:1 to 10:1, more preferably 5:1 to 8:1, for example 6:1, 7:1.
  • the condensation reaction can be carried out at 40 to 90° C., preferably 65 to 85° C., for example, the reaction temperature can be 60° C., 70° C., 75° C., 80° C.
  • the condensation reaction needs to be carried out under vacuum conditions, with a vacuum degree range of -0.09 to -0.99 MPa.
  • the second catalyst used in step (1) can be a porous metal catalyst or a supported metal catalyst.
  • Porous metal catalysts are also called sponge metal catalysts.
  • Porous metal catalysts suitable for the present invention include Raney nickel (also known as skeleton nickel), Raney cobalt, Raney copper, etc.
  • Supported metal catalysts include metals as catalytic active centers and carriers for supporting metals.
  • the metals in the supported metal catalysts suitable for the present invention can be nickel, cobalt, copper, platinum, palladium, ruthenium, rhodium, etc., and the carrier can be carbon, alumina, silica gel, molecular sieves, etc., and the carbon as a carrier can be activated carbon.
  • the second catalyst is a porous metal catalyst, such as Raney nickel.
  • the ratio of the amount of metal in the second catalyst to the amount of the condensate can be 0.0001: 1 to 0.2: 1.
  • step (1) the condensate generated by the condensation reaction is subjected to a hydrogenation reduction reaction under the action of a second catalyst to generate a compound of formula II.
  • the reduction reaction can be carried out at 40 to 120° C., preferably 60 to 90° C., for example, the reaction temperature can be 70° C., 75° C., or 80° C.
  • the hydrogen pressure in the reduction reaction can be 0.5 to 5 MPa, preferably 0.5 to 2.5 MPa, for example, 1 MPa, 1.5 MPa, 2 MPa, or 2.5 MPa.
  • step (1) compound C itself can be used as a solvent, or solvents such as toluene and xylene can be used.
  • the reaction solution is filtered to recover the second catalyst, the oil-water phase is separated to recover the first catalyst, and the organic phase is distilled to remove the light components to obtain the compound of formula II.
  • the third catalyst used in step (2) can be the aforementioned supported metal catalyst, such as Pt/C.
  • the molar ratio of the metal in the third catalyst to the compound of formula II can be 0.0001:1 to 0.2:1.
  • step (2) the compound of formula II and the compound of formula D are subjected to hydrogenation reduction alkylation reaction under the action of a third catalyst to generate the compound of formula I.
  • a suitable compound of formula D can be selected for reaction according to the R 6 and R 7 groups contained in the compound of formula I to be prepared.
  • the molar ratio of the compound of formula D to the compound of formula II can be 1:1 to 15:1, for example, 2:1, 3:1, 5:1, 8:1, 10:1, 14:1.
  • the reaction temperature of step (2) can be 40 to 150°C, preferably 50 to 120°C, for example, 50°C, 70°C, 80°C, 100°C, 120°C.
  • the hydrogen pressure in step (2) can be 0.5 to 5MPa, preferably 0.5 to 2.5MPa, for example, 1MPa, 1.5MPa, 2MPa, 2.5MPa.
  • step (2) the compound of formula D, which is a reaction raw material, can be used as a solvent.
  • the reaction solution is filtered to recover the third catalyst, and the light components are removed by reduced pressure distillation to obtain the compound of formula I.
  • liquid chromatography LC
  • gas chromatography GC
  • the preparation methods of the compounds of formula I and II of the present invention are green and environmentally friendly.
  • the preparation process of the intermediate compound of formula II does not produce wastewater, does not require the use of expensive bromides, and the catalysts can be recycled and reused.
  • the present invention also provides a rubber composition, which contains the compound of formula I of the present invention as an antioxidant.
  • the compound of formula I of the present invention is hereinafter referred to as the antioxidant of the present invention.
  • the raw materials of the rubber composition generally include a diene elastomer, a reinforcing filler, an antioxidant and a crosslinking agent.
  • the rubber composition includes unvulcanized rubber and vulcanized rubber.
  • the unvulcanized rubber can be vulcanized (cured) to obtain vulcanized rubber.
  • the content of the reinforcing filler is 30-70 parts by weight
  • the content of the antioxidant is 0.1-8 parts by weight
  • the content of the crosslinking agent is 0.5-3 parts by weight.
  • parts by weight are based on 100 parts by weight of the diene elastomer contained in the raw materials of the rubber composition.
  • diene elastomer refers to an elastomer whose monomers contain dienes (such as butadiene, isoprene).
  • Diene elastomers suitable for the present invention can be various diene elastomers known in the art, including but not limited to one or more selected from natural rubber (NR), butadiene rubber (BR), isoprene rubber, styrene-butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), isoprene/butadiene copolymer, isoprene/styrene copolymer and isoprene/butadiene/styrene copolymer.
  • NR natural rubber
  • BR butadiene rubber
  • SBR isoprene rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • NBR nitrile rubber
  • the diene elastomer in the raw materials of the rubber composition of the present invention, contains natural rubber and butadiene rubber, or is composed of natural rubber and butadiene rubber; the mass ratio of natural rubber and butadiene rubber can be 1: 9 to 9: 1, 2: 8 to 8: 2, 3: 7 to 7: 3, 4: 6 to 6: 4, 4.5: 5.5 to 5.5: 4.5 or 1: 1.
  • the diene elastomer is natural rubber.
  • the raw materials of the rubber composition of the present invention usually include 0.1-8 parts by weight, preferably 1-5 parts by weight, and more preferably 2 ⁇ 0.5 parts by weight of an antioxidant.
  • the rubber composition of the present invention is characterized in that the antioxidant includes the antioxidant of the present invention.
  • the antioxidant of the present invention can account for more than 50%, more than 60%, more than 80%, more than 90% or 100% of the total weight of the antioxidant contained in the rubber composition.
  • Reinforcing fillers suitable for the present invention can be conventional reinforcing fillers for rubber compositions, including but not limited to one or more selected from carbon black, titanium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, clay and talc.
  • the reinforcing filler is carbon black.
  • the raw material of the rubber composition generally includes 30-70 parts by weight, preferably 40-60 parts by weight, more preferably 45-55 parts by weight of reinforcing filler.
  • the raw material of the rubber composition of the present invention includes 30-70 parts by weight, preferably 40-60 parts by weight, more preferably 45-55 parts by weight, for example 50 ⁇ 2 parts by weight of carbon black.
  • the crosslinking agent may be sulfur.
  • the raw materials of the rubber composition generally include 0.5-3 parts by weight, preferably 1-3 parts by weight of the crosslinking agent.
  • the raw materials of the rubber composition of the present invention include 0.5-3 parts by weight, preferably 1-3 parts by weight, such as 2.5 ⁇ 0.5 parts by weight, 2.5 ⁇ 0.2 parts by weight of a crosslinking agent, such as sulfur.
  • the raw materials of the rubber composition of the present invention may also include other ingredients commonly used in rubber compositions, including but not limited to one or more of auxiliary agents and accelerators.
  • auxiliary agents and accelerators may be conventional amounts in the art.
  • Softener can include petroleum softener (process oil), such as naphthenic oil, aromatic oil, process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt and vaseline etc., and can also include fatty oil softener, such as stearic acid, castor oil, linseed oil, rapeseed oil, coconut oil, wax (such as beeswax, carnauba wax and lanolin), tall oil, linoleic acid, palmitic acid and lauric acid etc.
  • process oil such as naphthenic oil, aromatic oil, process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt and vaseline etc.
  • fatty oil softener such as stearic acid, castor oil, linseed oil, rapeseed oil, coconut oil, wax (such as beeswax, carnauba wax and lanolin), tall oil, linoleic acid, palmitic acid and lauric acid etc.
  • Auxiliary agent can also include activating agent, such as zinc oxide, can play the effect such as accelerating vulcanization speed, improving rubber thermal conductivity, wear resistance, tear resistance.
  • activating agent such as zinc oxide
  • the raw material of rubber composition of the present invention includes fatty oil softener, such as stearic acid.
  • the raw materials of the rubber composition of the present invention may include 0-5 parts by weight, preferably 0.5-4 parts by weight, more preferably 1-3 parts by weight, for example 2 ⁇ 0.5 parts by weight, 2 ⁇ 0.2 parts by weight of a fat oil softener, such as stearic acid.
  • the raw materials of the rubber composition of the present invention include an activator, such as zinc oxide.
  • the raw materials of the rubber composition of the present invention may include 0-10 parts by weight, preferably 2-8 parts by weight, more preferably 3-7 parts by weight, for example 5 ⁇ 1 parts by weight of an activator, such as zinc oxide.
  • the raw materials of the rubber composition of the present invention include a fat oil softener and an activator, and the respective amounts of the fat oil softener and the activator may be as described above.
  • Accelerator is generally a vulcanization accelerator, and can be selected from sulfonamide vulcanization accelerator, thiazole vulcanization accelerator, thiuram vulcanization accelerator, thiourea vulcanization accelerator, guanidine vulcanization accelerator, dithiocarbamate vulcanization accelerator, aldehyde amine vulcanization accelerator, aldehyde ammonia vulcanization accelerator, imidazoline vulcanization accelerator and xanthate vulcanization accelerator One or more.
  • accelerator can be accelerator CBS (N- cyclohexyl -2- benzothiazole sulfenamide).
  • the raw material of the rubber composition of the present invention includes accelerator, such as accelerator CBS.
  • the raw material of the rubber composition of the present invention can include 0-1.5 weight parts, preferably 0.2-1 weight parts, such as 0.6 ⁇ 0.2 weight parts, 0.6 ⁇ 0.1 weight parts of accelerators, such as accelerator CBS.
  • the rubber composition may also contain plasticizers such as DMP (dimethyl phthalate), DEP (diethyl phthalate), DBP (dibutyl phthalate), DHP (diheptyl phthalate), DOP (dioctyl phthalate), DINP (diisononyl phthalate), DIDP (diisodecyl phthalate), BBP (butyl benzyl phthalate), DWP (dilauryl phthalate), and DCHP (dicyclohexyl phthalate), etc.
  • the amount of the plasticizer may be the conventional amount in the art.
  • the unvulcanized rubber of the present invention can be prepared by conventional rubber mixing methods, for example, by a two-stage mixing method: one stage of mixing in an internal mixer to mix the diene elastomer, reinforcing filler, additives and antioxidant to obtain a masterbatch; and a second stage of mixing in an open mixer to mix the masterbatch obtained in the first stage with a crosslinking agent and an accelerator to obtain the unvulcanized rubber.
  • the unvulcanized rubber of the present invention can be vulcanized by conventional vulcanization methods to obtain vulcanized rubber;
  • the vulcanization temperature is usually 130°C-200°C, such as 140-160°C, 150 ⁇ 5°C;
  • the vulcanization time depends on the vulcanization temperature, the vulcanization system and the vulcanization kinetics, and is usually 10-60 minutes, such as 15 ⁇ 5 minutes, 15 ⁇ 2 minutes.
  • the kneaded unvulcanized rubber can be conventionally sheeted.
  • the present invention also provides a rubber product, the rubber product containing the rubber composition described in any embodiment of the present invention.
  • the rubber product can be a tire, a rubber shoe, a sealing strip, a sound insulation board, a shock pad, etc.
  • the rubber product is a tire, such as a tread, a belt layer and a sidewall of a tire.
  • the belt layer of the tire in addition to the rubber composition of the present invention, may also contain a reinforcing material conventionally used in the art.
  • the present invention also provides the use of the compound of formula I of the present invention in improving the heat-oxidative aging resistance and/or ultraviolet aging resistance of rubber or rubber products.
  • the rubber product is a tire.
  • the use comprises adding the compound of formula I of the present invention as an antioxidant to the rubber or rubber product.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 50 g of deionized water and 40 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75°C, hydrogen was introduced to 1.5 MPa for hydrogenation reduction reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced. Then, the reaction was filtered and phase-separated, and the organic phase was washed with water and distilled under reduced pressure (-0.1 MPa, 160°C) to evaporate aniline and light component by-products, and finally 42.6 g of the reduction product (Compound II-1) was distilled out, cooled and solidified into a yellow solid, with a yield of about 86%, and the content detected by GC was >99%.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 50 g of deionized water and 50 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75°C, hydrogen was introduced to 1.5 MPa for hydrogenation reduction reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 50 g of deionized water and 40 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75 ° C, the pressure was raised to 1.5 MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced. Then, the mixture was filtered, washed with water, and separated into phases. The organic phase was distilled under reduced pressure (-0.1 MPa, 170 ° C) to remove the light components to obtain 42.8 g of compound II-4 (yield of about 80%), the content of which was detected by GC>98%, and it was a light yellow solid at room temperature.
  • TMAOH tetramethylammonium hydroxide
  • the reaction solution gradually changed from yellow to dark red; the mixture was gradually heated to 72°C, and when the fraction was about 50% of the amount of the catalyst 25% tetramethylammonium hydroxide solution charged, 34.3g (0.25mol) of 3-methylnitrobenzene was added dropwise at 72°C under reduced pressure (-0.098MPa), and the addition time was about 3h. After the addition was completed, the mixture was kept warm for 1h, and LC was monitored until the reaction of 3-methylnitrobenzene was complete to obtain a condensation solution.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 50 g of deionized water and 40 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75 ° C, the pressure was raised to 1.5 MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced. Then, the mixture was filtered, washed with water, and separated into phases. The organic phase was distilled under reduced pressure (-0.1 MPa, 170 ° C) to remove the light components to obtain 46.1 g of compound II-6 (yield of about 86%), the content of which was detected by GC>98%, and it was a light yellow solid at room temperature.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 50 g of deionized water and 40 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75 ° C, the pressure was raised to 1.5 MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced. Then, the mixture was filtered, washed with water, and separated into phases. The organic phase was distilled under reduced pressure (-0.1 MPa, 180 ° C) to remove the light components to obtain 46.6 g of compound II-8 (yield of about 80%), and the content was detected by GC>97%, and it was a light yellow solid after cooling.
  • TMAOH tetramethylammonium hydroxide
  • reaction solution gradually changed from yellow to dark red; the mixture was gradually heated to 72°C, and when the fraction was about 50% of the amount of the catalyst 25% tetramethylammonium hydroxide solution charged, 37.8g (0.25mol) of 2,3-dimethylnitrobenzene was added dropwise at 72°C under reduced pressure (-0.098MPa), and the addition time was about 3h. After the addition was completed, the mixture was kept warm for 2h, and LC was monitored until the reaction of 2,3-dimethylnitrobenzene was complete to obtain a condensation solution.
  • the condensation liquid was transferred to a 500mL stainless steel reactor, 50g of deionized water and 40g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75°C, the pressure was raised to 1.5MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced. Then, the mixture was filtered, washed with water, and separated into phases. The organic phase was distilled under reduced pressure (-0.1MPa, 180°C) to remove the light components to obtain 47.5g of compound II-10 (yield of about 76%), and the content was detected by GC>96%, and it was a light yellow liquid after cooling.
  • the obtained rubber composition was rolled into a sheet (thickness of 2-3 mm) and vulcanized at a vulcanization temperature of 150° C. for 15 minutes.
  • SCR5 Natural rubber SCR5 from Xishuangbanna Sinochem Rubber Co., Ltd.;
  • N330 Cabot Carbon Black N330
  • Stearic acid General reagent stearic acid (AR) from Shanghai Titan Technology Co., Ltd.;
  • Zinc oxide general reagent zinc oxide (AR) from Shanghai Titan Technology Co., Ltd.;
  • CBS CBS vulcanization accelerator from Senao Chemical Technology Co., Ltd.
  • Compound I-1 the compound synthesized in Example 1;
  • Compound I-2 the compound synthesized in Example 2;
  • Compound I-4 the compound synthesized in Example 4.
  • Table 3 Original physical properties and physical properties of vulcanized rubber after aging
  • the test results in Table 3 show that the heat-oxidative aging resistance and ultraviolet aging resistance of the rubber materials 2-4 containing the antioxidant of the present invention are better than those of the rubber material 1 containing 6PPD.
  • the physical property retention rates of the rubber materials 2-4 are all about 10% higher than those of the rubber material 1.
  • the physical property retention rates of the rubber materials 2-4 are all more than 5% higher than those of the rubber material 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供式I所示结构的多烷基对苯二胺类防老剂、其中间体及制备方法,所述多烷基对苯二胺类防老剂具有良好的耐热氧老化性能和抗紫外老化性能。

Description

多烷基对苯二胺类防老剂、其中间体及制备方法 技术领域
本发明属于对苯二胺类防老剂领域,具体涉及多烷基对苯二胺类防老剂、其中间体及制备方法。
背景技术
目前,对苯二胺类防老剂广泛应用于橡胶轮胎等橡胶制品,具有高效的臭氧防护性能,对屈挠老化和氧、热等一般老化防护效果也非常好,对铜、锰等有害金属也有良好的防护作用。例如,防老剂6PPD,化学名称为N-(1,3-二甲基丁基)-N′-苯基对苯二胺,为高效的橡胶防老剂。
中国专利申请CN113072741A公开了一种环保型对苯二胺类防老剂及其制备方法。该专利申请披露的环保型对苯二胺类防老剂的结构为:
Figure PCTCN2022133179-appb-000001
其中满足以下特定条件时胶料老化后防老剂不会转化为醌化合物:x与w中至少有一个为1,y与z中至少有一个为1,且若x和z同时为1时y和w不同时为0。该专利申请提供的制备工艺是:先将苯胺与具有相应取代基的对溴硝基苯进行C-N偶联反应,所得偶联产物在催化条件下,在氢气氛围中进行还原反应得到反应中间体,所述反应中间体与醛或酮在催化条件下进行还原胺化反应得到所述对苯二胺类防老剂。该方法需要使用昂贵的溴化物以及贵金属有机磷配合物催化剂,反应转化率和收率不高,分离提纯比较复杂,而且产生含金属溴化物盐的废水,不利于工业化生产。
4-氨基二苯胺是对苯二胺类防老剂的重要中间体,以苯胺或其衍生物与硝基苯在碱性条件下通过缩合、还原后生成;另外,也可以通过苯胺和对-卤代硝基苯在三苯基磷配位钯催化剂作用下发生C-N偶联反应制备苯胺基硝基苯,然后再加氢还原后得到。
因此,本领域需要结构新颖的对苯二胺类防老剂,以及绿色环保的制备方法。
发明内容
针对现有技术中存在的问题,本发明提供一种结构新颖的对苯二胺类防老剂,具有良好的耐热氧老化性能和抗紫外光老化性能。本发明还提供该对苯二胺类防老剂的制备方法,具有绿色环保、无三废排放的优点。本发明还提供用于制备该对苯二胺类防老剂的中间体。
具体而言,本发明的一个方面提供式I所示的化合物:
Figure PCTCN2022133179-appb-000002
式I中,各R 1各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,a为1~5的整数;
R 2、R 3、R 4、R 5各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,且R 2、R 3、R 4、R 5中至少有1个基团不为H;
R 6、R 7各自独立选自C1-C18链烃基和C3-C18脂环烃基,或R 6与R 7形成C3-C18脂肪环。
在一个或多个实施方案中,式I中,各R 1各自独立选自H和C1-C8烷基。
在一个或多个实施方案中,式I中,a为1~2的整数。
在一个或多个实施方案中,式I中,R 2、R 3、R 4、R 5各自独立选自H和C1-C8烷基。
在一个或多个实施方案中,式I中,R 2、R 3、R 4、R 5中有2~3个基团为H。
在一个或多个实施方案中,式I中,R 6、R 7各自独立选自C1-C8烷基和C3-C8环烷基,或R 6与R 7形成C3-C8脂肪环。
本发明的另一个方面提供式I所示的化合物的制备方法,所述制备方法包括以下步骤:
(1)使式A所示的化合物与式B所示的化合物在第一催化剂的作用下进行缩合反应得到包含式C所示的化合物和/或式C′所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式II所示的化合物;
Figure PCTCN2022133179-appb-000003
(2)使式II所示的化合物与式D所示的化合物在H 2和第三催化剂的作用下进行还原烷基化反应得到式I所示的化合物;
Figure PCTCN2022133179-appb-000004
式A、式B、式C、式C′、式D、式II和式I中的R 1、R 2、R 3、R 4、R 5、R 6、R 7如本文任一实施方案中所定义。
在一个或多个实施方案中,所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种。
在一个或多个实施方案中,所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种。
在一个或多个实施方案中,所述第三催化剂为负载型金属催化剂;所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种。
在一个或多个实施方案中,步骤(1)中,式A所示的化合物与式B所示的化合物的物质的量之比为2∶1~15∶1,优选为4∶1~10∶1。
在一个或多个实施方案中,步骤(1)中,缩合反应的温度为40~90℃、优选65~85℃,真空度为-0.09~-0.99MPa。
在一个或多个实施方案中,步骤(1)中,所述缩合物和H 2反应的温度为40~120℃、优选60~90℃,氢气压力为0.5~5MPa、优选0.5~2.5MPa。
在一个或多个实施方案中,步骤(2)中,式D所示的化合物与式II所示的化合物的物质的量之比为1∶1~15∶1。
在一个或多个实施方案中,步骤(2)中,反应温度为40~150℃,反应压力为0.5~5MPa。
本发明的另一个方面提供式II所示的化合物:
Figure PCTCN2022133179-appb-000005
式II中,各R 1各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,a为1~5的整数;
R 2、R 3、R 4、R 5各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,且R 2、R 3、R 4、R 5中至少有1个基团不为H。
在一个或多个实施方案中,式II中,各R 1各自独立选自H和C1-C8烷基。
在一个或多个实施方案中,式II中,a为1~2的整数。
在一个或多个实施方案中,式II中,R 2、R 3、R 4、R 5各自独立选自H和C1-C8烷基。
在一个或多个实施方案中,式II中,R 2、R 3、R 4、R 5中有2~3个基团为H。
本发明的另一个方面提供式II所示结构的化合物的制备方法,所述制备方法包括:使式A所示的化合物与式B所示的化合物在第一催化剂的作用下进行缩合反应得到包含式C所示的化合物和/或式C′所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式II所示的化合物;
Figure PCTCN2022133179-appb-000006
式A、式B、式C、式C′和式II中的R 1、R 2、R 3、R 4、R 5如本文任一实施方案中所定义。
在一个或多个实施方案中,所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种。
在一个或多个实施方案中,所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种。
在一个或多个实施方案中,步骤(1)中,式A所示的化合物与式B所示的化合物的物质的量之比为2∶1~15∶1,优选为4∶1~10∶1。
在一个或多个实施方案中,步骤(1)中,缩合反应的温度为40~90℃、优选65~85℃,真空度为-0.09~-0.99MPa。
在一个或多个实施方案中,步骤(1)中,所述缩合物和H 2反应的温度为40~120℃、优选60~90℃,氢气压力为0.5~5MPa、优选0.5~2.5MPa。
本发明的另一个方面提供一种橡胶组合物,所述橡胶组合物含有本文任一实施方案所述的式I化合物。
本发明的另一个方面提供一种橡胶制品,所述橡胶制品含有本文任一实施方案所述的橡胶组合物;优选地,所述橡胶制品为轮胎。
本发明的另一个方面提供一种提高橡胶或橡胶制品的耐热氧老化性能和/或耐紫外光老化性能的方法,所述方法包括向橡胶或橡胶制品中添加本文任一实施方案所述的式I化合物。
具体实施方式
为使本领域技术人员可了解本发明的特点及效果,以下谨就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明, 否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。
本文中,“包含”、“包括”、“含有”以及类似的用语涵盖了“基本由……组成”和“由……组成”的意思,例如,当本文公开了“A包含B和C”时,“A基本由B和C组成”和“A由B和C组成”应当认为已被本文所公开。
本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。
本文中,若无特别说明,百分比是指质量百分比,比例是指质量比。
本文中,当描述实施方案或实施例时,应理解,其并非用来将本发明限定于这些实施方案或实施例。相反地,本发明所描述的方法及材料的所有的替代物、改良物及均等物,均可涵盖于权利要求书所限定的范围内。
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。
本文中,链烃基是指直链或支链饱和烃基或不饱和烃基,通常含有1~18个碳原子(C1-C18链烃基)。链烃基的例子包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正己基、异己基、1,3-二甲基丁基、1,4-二甲基戊基、叔辛基、乙烯基、丙烯基、乙炔基。
本文中,脂环烃基是指碳原子以环状结合的基团,通常含有3~18个碳原子(C3-C18脂环烃基)。脂环烃基的例子包括但不限于异冰片基、环己 基、降冰片烷基、降冰片烯基、二环戊二烯基、乙炔基环己烷基、乙炔基环己烯基。
本文中,烷基是指直链或支链的单价饱和烃基,通常含有1~18个碳原子(C1-C18烷基),例如含有1~8个碳原子(C1-C8烷基)。烷基的例子包括但不限于甲基、乙基、丙基、1-甲基丙基、异丁基、1,3-二甲基丁基。
本文中,环烷基是指含有3~18个碳原子、优选含有3~8个碳原子的单价饱和烃环。环烷基的例子包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、环辛基和金刚烷基。
式I化合物
本发明发现具有式I所示结构的多烷基对苯二胺类化合物(简称式I化合物)能够作为橡胶防老剂,与防老剂6PPD相比能够赋予橡胶更优的耐热氧老化性能和抗紫外光老化性能:
Figure PCTCN2022133179-appb-000007
式I中,各R 1各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,a为1-5的整数;
R 2、R 3、R 4、R 5各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,且R 2、R 3、R 4、R 5中至少有1个基团不为H;
R 6、R 7各自独立选自C1-C18链烃基和C3-C18脂环烃基,或R 6与R 7形成C3-C18脂肪环。
在一些优选的实施方案中,各R 1各自独立选自H和C1-C8烷基。在一些实施方案中,各R 1各自独立选自H、甲基和乙基。在一些实施方案中,各R 1各自独立选自H和甲基。在一些实施方案中,a为1或2。当a为1时,R 1优选位于-NH-基团的邻位或对位。当a为2时,优选地,两个R 1分别位于-NH-基团的邻位和间位,且两个R 1相邻。
在一些优选的实施方案中,各R 1各自独立选自C1-C8烷基。在一些实施方案中,各R 1各自独立选自C1-C4烷基。在一些实施方案中,各R 1为甲基。在一些实施方案中,a为1或2。当a为1时,R 1优选位于-NH-基团的邻位或对位。当a为2时,优选地,两个R 1分别位于-NH-基团的邻位和间位,且两个R 1相邻。
在一些优选的实施方案中,R 2、R 3、R 4、R 5各自独立选自H和C1-C8烷基,且优选地,R 2、R 3、R 4、R 5中有2~3个基团为H。在一些实施方案中,R 2、R 3、R 4、R 5各自独立选自H和C1-C4烷基。在一些实施方案中,R 2、R 3、R 4、R 5各自独立选自H和甲基。当R 2、R 3、R 4、R 5中有3个基团为H时,优选地,R 2不为H。当R 2、R 3、R 4、R 5中有2个基团为H时,优选地,R 2和R 4不为H,或R 2和R 3不为H。
在一些优选的实施方案中,R 6、R 7各自独立选自C1-C8烷基和C3-C8环烷基,或R 6与R 7形成C3-C8脂肪环。在一些实施方案中,R 6、R 7各自独立选自C1-C6烷基、例如C1-C4烷基,或R 6与R 7形成C5-C7脂肪环、例如C6脂肪环。在一些实施方案中,R 6选自C1-C2烷基、例如甲基,R 7选自C1-C6烷基、例如C1-C4烷基,或R 6与R 7形成C5-C7脂肪环、例如C6脂肪环。优选地,R 6与R 7形成的脂肪环为饱和脂肪环。
在一些实施方案中,各R 1各自独立选自H和C1-C4烷基,或各R 1各自独立选自C1-C4烷基,a为1或2;R 2、R 3、R 4、R 5各自独立选自H和C1-C4烷基,且优选地,R 2、R 3、R 4、R 5中有2~3个基团为H;R 6、R 7各自独立选自C1-C6烷基、例如C1-C4烷基,或R 6与R 7形成C5-C7脂肪环、例如C6脂肪环。
在一些实施方案中,各R 1各自独立选自H和C1-C4烷基、优选选自H和甲基,或各R 1各自独立选自C1-C4烷基、例如甲基,a为1,R 1优选位于-NH-基团的邻位;R 2、R 3、R 4、R 5各自独立选自H和C1-C4烷基、优选选自H和甲基,且优选地,R 2、R 3、R 4、R 5中有2~3个基团为H,其中优选地,R 2不为H,或R 2和R 3不为H;R 6、R 7各自独立选自C1-C6烷基、例如C1-C4烷基,或R 6与R 7形成C5-C7脂肪环、例如C6脂肪环。
在一些实施方案中,式I化合物选自:
Figure PCTCN2022133179-appb-000008
式II化合物
本发明还提供可用作制备式I化合物的中间体的式II化合物:
Figure PCTCN2022133179-appb-000009
式II中,R 1、a、R 2、R 3、R 4和R 5如前文式I化合物的任一实施方案中的R 1、a、R 2、R 3、R 4和R 5所定义。
在一些实施方案中,式II化合物选自:
Figure PCTCN2022133179-appb-000010
式I化合物和式II化合物的制备方法
本发明提供的式I化合物和式II化合物的制备方法包括以下步骤:
(1)使式A所示的化合物与式B所示的化合物在第一催化剂的作用下进行缩合反应得到包含式C所示的化合物和/或式C′所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式II所示的化合物;
Figure PCTCN2022133179-appb-000011
(2)使式II所示的化合物与式D所示的化合物在H 2和第三催化剂的作用下进行还原烷基化反应得到式I所示的化合物;
Figure PCTCN2022133179-appb-000012
式A、式B、式C、式C′、式D、式II和式I中的R 1、R 2、R 3、R 4、R 5、R 6、R 7如本文任一实施方案所定义。
步骤(1)中使用的第一催化剂可以为选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种。适用于本发明的碱金属氢氧化物包括氢氧化钠、氢氧化钾、氢氧化锂等。适用于本发明的碱金属烷氧化物包括甲醇钠、甲醇钾、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、叔戊醇钠、叔戊醇钾等。季铵碱是一类通式为R 4NOH的化 合物,式中R为四个相同或不相同的脂烃基(例如烷基)或芳烃基。在一些实施方案中,季铵碱中的各R基为烷基,例如各R基可各自独立选自甲基、乙基、丙基和丁基。适用于本发明的季铵碱的实例包括四烷基氢氧化铵,例如四甲基氢氧化铵、四乙基氢氧化铵、四丁基氢氧化铵等。第一催化剂也可以是碱金属氢氧化物和四烷基铵的卤化物的组合。四烷基铵的氯化物的通式为R 4NX,式中R为四个相同或不相同的脂烃基或芳烃基,例如甲基、乙基、丙基、丁基等,X为卤素原子,例如氟、氯、溴、碘。碱金属氢氧化物和四烷基铵的卤化物的组合的实例包括氢氧化钠和四丁基溴化铵等。在一些实施方案中,第一催化剂为季铵碱,例如四烷基氢氧化铵。第一催化剂与式A化合物的物质的量之比可以为0.1∶1~2∶1,优选为0.1∶1~0.5∶1,例如0.2∶1、0.3∶1、0.4∶1。
在一些实施方案中,步骤(1)中,先使式A化合物与第一催化剂成盐,再滴加式B化合物进行缩合反应。
步骤(1)中,式A化合物与式B化合物在第一催化剂的作用下进行缩合反应所得到缩合物可能是式C所示的硝基类化合物和式C′所示的亚硝基类化合物中的一者或两者,还可能包含偶氮苯类化合物。式A化合物与式B化合物的物质的量之比可以是2∶1~15∶1,优选为4∶1~10∶1,更优选为5∶1~8∶1,例如6∶1、7∶1。
步骤(1)中,缩合反应可以在40~90℃、优选65~85℃下进行,例如反应温度可以为60℃、70℃、75℃、80℃。缩合反应需在抽真空条件下进行,真空度范围为-0.09~-0.99MPa。
步骤(1)中使用的第二催化剂可以是多孔金属催化剂或负载型金属催化剂。多孔金属催化剂又称为海绵状金属催化剂。适用于本发明的多孔金属催化剂包括雷尼镍(又称骨架镍)、雷尼钴、雷尼铜等。负载型金属催化剂包括作为催化活性中心的金属和用于负载金属的载体。适用于本发明的负载型金属催化剂中的金属可以是镍、钴、铜、铂、钯、钌、铑等,载体可以是碳、氧化铝、硅胶、分子筛等,作为载体的碳可以是活性炭。在一些实施方案中,第二催化剂是多孔金属催化剂、例如雷尼镍。第二催化剂中的金属与缩合物的物质的量之比可以为0.0001∶1~0.2∶1。
步骤(1)中,缩合反应生成的缩合物在第二催化剂的作用下进行加氢还原反应生成式II化合物。步骤(1)中,还原反应可以在40~120℃、优选60~90℃下进行,例如反应温度可以为70℃、75℃、80℃。还原反应中氢气压力可以为0.5~5MPa,优选0.5~2.5MPa,例如1MPa、1.5MPa、2MPa、2.5MPa。
步骤(1)中,可以使用化合物C本身作为溶剂,也可以使用甲苯、二甲苯等溶剂。步骤(1)反应结束后,反应液经过过滤回收第二催化剂、油水分相回收第一催化剂后,有机相经蒸馏去除轻组分即可得到式II化合物。
步骤(2)中使用的第三催化剂可以是前述负载型金属催化剂,例如Pt/C。第三催化剂中的金属与式II化合物的物质的量之比可以为0.0001∶1~0.2∶1。
步骤(2)中,式II化合物与式D化合物在第三催化剂的作用下进行加氢还原烷基化反应生成式I化合物。反应后式D化合物中的羰基碳原子与式II化合物中的氨基氮原子相连。因此,可以根据所要制备的式I化合物所含的R 6、R 7基团选择合适的式D化合物进行反应。式D化合物与式II化合物的物质的量之比可以为1∶1~15∶1,例如2∶1、3∶1、5∶1、8∶1、10∶1、14∶1。步骤(2)的反应温度可以为40~150℃,优选50~120℃,例如50℃、70℃、80℃、100℃、120℃。步骤(2)中氢气压力可以为0.5~5MPa,优选0.5~2.5MPa,例如1MPa、1.5MPa、2MPa、2.5MPa。
步骤(2)中,可以使用作为反应原料的式D化合物作为溶剂。步骤(2)反应结束后,反应液经过滤回收第三催化剂、减压蒸馏去除轻组分即可得到式I化合物。
本发明中,可以使用液相色谱(LC)或气相色谱(GC)判断各步反应是否达到终点,从而确定合适的反应时间。
本发明的式I化合物和式II化合物的制备方法绿色环保,中间体式II化合物制备过程没有废水,不需要使用昂贵的溴化物,催化剂都可以回收套用。
橡胶组合物和橡胶制品
本发明还提供一种橡胶组合物,所述橡胶组合物含有本发明的式I化合物 作为防老剂。以下将本发明的式I化合物称为本发明的防老剂。
橡胶组合物的原料通常包括二烯弹性体、增强填料、防老剂和交联剂。本文中,橡胶组合物包括未硫化胶和硫化橡胶。未硫化胶经过硫化(固化)可制得硫化橡胶。
本发明的橡胶组合物的原料中,以二烯弹性体的含量为100重量份计,增强填料的含量为30-70重量份,防老剂的含量为0.1-8重量份,交联剂的含量为0.5-3重量份。本文中,若无特别说明,重量份以橡胶组合物的原料所含的二烯弹性体为100重量份计。
本文中,二烯弹性体是指单体包含二烯烃(如丁二烯、异戊二烯)的弹性体。适用于本发明的二烯弹性体可以是本领域已知的各种二烯弹性体,包括但不限于选自天然橡胶(NR)、顺丁橡胶(BR)、异戊橡胶、丁苯橡胶(SBR)、氯丁橡胶(CR)、丁腈橡胶(NBR)、异戊二烯/丁二烯共聚物、异戊二烯/苯乙烯共聚物和异戊二烯/丁二烯/苯乙烯共聚物中的一种或多种。在一些实施方案中,本发明的橡胶组合物的原料中,二烯弹性体包含天然橡胶和顺丁橡胶,或由天然橡胶和顺丁橡胶组成;天然橡胶和顺丁橡胶的质量比可以为1∶9到9∶1、2∶8到8∶2、3∶7到7∶3、4∶6到6∶4、4.5∶5.5到5.5∶4.5、或1∶1。在一些实施方案中,二烯弹性体为天然橡胶。
本发明的橡胶组合物的原料通常包括0.1-8重量份、优选1-5重量份、更优选2±0.5重量份的防老剂。本发明的橡胶组合物的特点在于防老剂包括本发明的防老剂。本发明中,本发明的防老剂可以占到橡胶组合物所含的防老剂总质量的50%以上、60%以上、80%以上、90%以上或100%。
适用于本发明的增强填料可以是常规用于橡胶组合物的增强填料,包括但不限于选自炭黑、氧化钛、氧化镁、碳酸钙、碳酸镁、氢氧化铝、氢氧化镁、粘土和滑石中的一种或多种。在一些实施方案中,本发明的橡胶组合物中,增强填料为炭黑。橡胶组合物的原料通常包含30-70重量份、优选40-60质量份、更优选45-55重量份的增强填料。在一些实施方案中,本发明的橡胶组合物的原料包含30-70重量份、优选40-60重量份、更优选45-55重量份、例如50±2重量份的炭黑。
交联剂可以是硫磺。橡胶组合物的原料通常包含0.5-3重量份、优选1-3重量份的交联剂。在一些实施方案中,本发明的橡胶组合物的原料包含0.5-3重量份、优选1-3重量份、例如2.5±0.5重量份、2.5±0.2重量份的交联剂,例如硫磺。
本发明的橡胶组合物的原料还可包括其它常用于橡胶组合物的成分,包括但不限于助剂和促进剂中的一种或多种。助剂和促进剂各自的用量可以是本领域的常规用量。
助剂可以包括为了改善加工性等性能而使用的软化剂。软化剂可以包括石油类软化剂(操作油),如环烷油、芳烃油、加工油、润滑油、石蜡、液体石蜡、石油沥青和凡士林等,也可以包括脂肪油类软化剂,如硬脂酸、蓖麻油、亚麻籽油、菜籽油、椰子油、蜡(如蜂蜡、巴西棕榈蜡和羊毛脂)、妥尔油、亚油酸、棕榈酸和月桂酸等。助剂还可以包括活性剂,例如氧化锌,可以起到加快硫化速度、提高橡胶导热性、耐磨性、耐撕裂性等作用。通常,每100重量份的二烯弹性体使用总计2-20质量份的助剂。在一些实施方案中,本发明的橡胶组合物的原料包括脂肪油类软化剂,例如硬脂酸。本发明的橡胶组合物的原料可以包含0-5重量份、优选0.5-4重量份、更优选1-3重量份、例如2±0.5重量份、2±0.2重量份的脂肪油类软化剂,例如硬脂酸。在一些实施方案中,本发明的橡胶组合物的原料包括活性剂,例如氧化锌。本发明的橡胶组合物的原料可以包含0-10重量份、优选2-8重量份、更优选3-7重量份、例如5±1重量份的活性剂,例如氧化锌。在一些实施方案中,本发明的橡胶组合物的原料包括脂肪油类软化剂和活性剂,脂肪油类软化剂和活性剂各自的用量可以如前所述。
促进剂通常为硫化促进剂,可以为选自磺胺类硫化促进剂、噻唑类硫化促进剂、秋兰姆类硫化促进剂、硫脲类硫化促进剂、胍类硫化促进剂、二硫代氨基甲酸盐类硫化促进剂、醛胺类硫化促进剂、醛氨类硫化促进剂、咪唑啉类硫化促进剂和黄原酸类硫化促进剂中的一种或多种。例如,促进剂可以是促进剂CBS(N-环己基-2-苯并噻唑次磺酰胺)。在一些实施方案中,本发明的橡胶组合物的原料包括促进剂,例如促进剂CBS。本发明的橡胶组合物的原料可以 包含0-1.5重量份、优选0.2-1重量份、例如0.6±0.2重量份、0.6±0.1重量份的促进剂,例如促进剂CBS。
另外,在需要时,橡胶组合物中还可使用增塑剂,例如DMP(邻苯二甲酸二甲酯)、DEP(邻苯二甲酸二乙酯)、DBP(邻苯二甲酸二丁酯)、DHP(邻苯二甲酸二庚酯)、DOP(邻苯二甲酸二辛酯)、DINP(邻苯二甲酸二异壬酯)、DIDP(邻苯二甲酸二异癸酯)、BBP(邻苯二甲酸丁基苄基酯)、DWP(邻苯二甲酸二月桂酯)和DCHP(邻苯二甲酸二环己酯)等。增塑剂的用量可以为本领域的常规用量。
可采用常规的橡胶混炼方法制备本发明的未硫化胶,例如采用两段混炼方式进行制备:一段密炼机混炼,混合二烯弹性体、增强填料、助剂和防老剂,得到母炼胶;二段开炼机混炼,混炼一段得到的母炼胶与交联剂和促进剂,得到未硫化胶。
可采用常规的硫化方法对本发明的未硫化胶进行硫化,得到硫化橡胶;硫化温度通常为130℃-200℃,例如140-160℃、150±5℃;硫化时间取决于硫化温度、硫化体系和硫化动力学,通常为10-60分钟,例如15±5分钟、15±2分钟。在硫化前可先对捏合得到的未硫化胶进行常规的压片。
本发明还提供一种橡胶制品,所述橡胶制品含有本发明任一实施方案所述的橡胶组合物。橡胶制品可以是轮胎、胶鞋、密封条、隔音板、止震垫等。在某些实施方案中,橡胶制品为轮胎,例如轮胎的胎面、带束层和胎侧。轮胎的带束层,除本发明的橡胶组合物外,还可含有本领域常规使用的增强材料。
本发明还提供本发明的式I化合物在提高橡胶或橡胶制品的耐热氧老化性能和/或耐紫外光老化性能中的用途。优选地,所述橡胶制品为轮胎。所述用途包括向橡胶或橡胶制品中添加本发明的式I化合物作为防老剂。
下文将以具体实施例的方式阐述本发明。应理解,这些实施例仅仅是阐述性的,并非意图限制本发明的范围。实施例中所用到的方法、试剂和材料,除非另有说明,否则为本领域常规的方法、试剂和材料。实施例中的原料化合物均可通过市售途径购得。
实施例1:化合物I-1(N-异丙基-N′-苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-1的合成
于500mL四口烧瓶中投入139.7g(1.5mol)苯胺和91g(0.25mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-55℃,减压蒸馏脱水,使TMAOH与苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约46mL时,72℃减压(-0.098MPa)蒸馏同时滴加3-甲基硝基苯34.3g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC监测至3-甲基硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和40g催化剂骨架镍,氢气置换三次,升温至75℃,通入氢气至1.5MPa进行加氢还原反应,LC监测至硝基及亚硝基类化合物还原完全。然后进行过滤、分相,有机相经水洗、减压蒸馏(-0.1MPa,160℃)蒸出苯胺及轻组分副产物,最后精馏出还原产物(化合物II-1)42.6g,冷却凝固为黄色固体,收率约86%,GC检测含量>99%。
Figure PCTCN2022133179-appb-000013
1H NMR(400MHz,CDCl 3)δ7.22-7.15(m,2H),7.03(d,J=8.3Hz,1H),6.79-6.74(m,1H),6.68(dt,J=8.8,1.7Hz,2H),6.61(d,J=2.6Hz,1H),6.54(dd,J=8.3,2.7Hz,1H),5.15(s,1H),3.56(s,2H),2.17(s,3H).
(2)化合物I-1的合成
将40g(0.2mol)化合物II-1、162.4g(2.8mol)丙酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至70℃,通氢至1.5MPa反应,用GC检测,当化合物II-1含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到48.3g化合物I-1(收率约99.4%),GC检测含量>98%。冷却凝固后为浅粉色固体。
Figure PCTCN2022133179-appb-000014
1H NMR(400MHz,CDCl 3)δ7.20-7.11(m,2H),7.03(d,J=8.4Hz,1H),6.77-6.70(m,1H),6.65(dt,J=8.8,1.7Hz,2H),6.50(d,J=2.7Hz,1H),6.44(dd,J=8.4,2.7Hz,1H),5.13(s,1H),3.71-3.43(m,1H),3.34(br s,1H),2.17(s,3H),1.23(d,J=6.3Hz,6H).
实施例2:化合物I-2(N-1,3-二甲基丁基-N′-苯基-2,6-二甲基-1,4-苯二胺)的合成
(1)化合物II-2的合成
于500mL四口烧瓶中投入186.2g(2mol)苯胺和91g(0.25mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-55℃,减压蒸馏脱水,使TMAOH与苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约46mL时,72℃减压(-0.098MPa)蒸馏同时滴加3,5-二甲基硝基苯37.8g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC监测至3,5-二甲基硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和50g催化剂骨架镍,氢气置换三次,升温至75℃,通入氢气至1.5MPa进行加氢还原反应,LC监测至硝基及亚硝基类化合物还原完全。然后进行过滤、分相,有机相经水洗、减压蒸馏(-0.1MPa,160℃)蒸出苯胺及轻组分副产物,最后精馏出还原产物(化合物II-2)44.3g,冷却凝固为浅绿色固体,收率约82%,GC检测含量>98%。
Figure PCTCN2022133179-appb-000015
H NMR(400MHz,CDCl 3)δ7.15(dd,J=17.7,10.1Hz,2H),6.70(t,J=7.3Hz,1H),6.49(s,2H),6.47(d,J=5.7Hz,2H),4.98(s,1H),3.55(s,2H),2.14(s,6H).
13C NMR(101MHz,CDCl 3)δ147.62,144.52,138.11,129.47,129.33,117.47,115.09,112.85,18.44.
(2)化合物I-2的合成
将43.2g(0.2mol)化合物II-2、160.3g(1.6mol)4-甲基2-戊酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至90℃,通氢至1.5MPa反应,用GC检测,当化合物II-2含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到59.5g化合物I-2(收率约99.5%),GC检测含量>98.2%,常温下为深红色液体。
Figure PCTCN2022133179-appb-000016
1H NMR(400MHz,CDCl 3)δ7.13(dd,J=8.4,7.4Hz,2H),6.68(t,J=7.3Hz,1H),6.48(d,J=7.6Hz,2H),6.36(s,2H),4.97(s,1H),3.62-3.39(m,1H),3.28(s,1H),2.14(s,6H),1.87-1.71(m,1H),1.45-1.52(m,1H),1.35-1.23(m,1H),1.18(d,J=6.2Hz,3H),0.97(d,J=6.6Hz,3H),0.95(d,J=6.6Hz,3H).
13C NMR(101MHz,CDCl 3)δ147.86,145.96,138.07,129.25,127.83,117.21,112.81,112.73,47.15,46.71,25.21,23.07,22.71,21.28,18.61.
实施例3:化合物I-3(N-环己基-N′-苯基-2,6-二甲基-1,4-苯二胺)的合成
(1)化合物II-2的合成
化合物II-2的合成同实施例2。
(2)化合物I-3的合成
将43.2g(0.2mol)化合物II-2、156.8g(1.6mol)环己酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,通氢气至1.5MPa反应,用GC检测,当化合物II-2含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到59.6g化合物I-3(收率约99.5%),GC检测含量>98.2%,常温下为深红色液体。
Figure PCTCN2022133179-appb-000017
1H NMR(400MHz,CDCl 3)δ7.16(dd,J=8.4,7.4Hz,2H),6.71(t,J=7.3Hz,1H),6.50(d,J=7.6Hz,2H),6.41(s,2H),4.99(s,1H),3.50(s,1H),3.38-3.18(m,1H),2.17(s,6H),2.16-2.06(m,2H),1.89-1.76(m,2H),1.76-1.64(m,1H),1.51-1.36(m,2H),1.35-1.09(m,3H).
13C NMR(101MHz,CDCl 3)δ147.83,145.62,138.02,129.21,127.87,117.18,112.87,112.69,51.86,33.69,26.01,25.11,18.56.
实施例4:化合物I-4(N-环己基-N′-2-甲基苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-4的合成
于500mL四口烧瓶中投入160.5g(1.5mol)2-甲基苯胺和91g(0.25mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-50℃,减压蒸馏脱水,使TMAOH与2-甲基苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约为催化剂25%四甲基氢氧化铵溶液投料量的50%时,72℃减压(-0.098MPa)蒸馏同时滴加3-甲基硝基苯34.3g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC监测至3-甲基硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和40g催化剂骨架镍,氢气置换三次,升温至75℃,升压至1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。然后进行过滤、水洗、分相,有机相经减压蒸馏(-0.1MPa,170℃)去除轻组分得到42.8g化合物II-4(收率约80%),GC检测含量>98%,常温下为浅黄色固体。
Figure PCTCN2022133179-appb-000018
1H NMR(400MHz,CDCl 3)δ7.09(d,J=7.3Hz,1H),6.99(t,J=7.7Hz,1H),6.91(d,J=8.2Hz,1H),6.69(t,J=7.3Hz,1H),6.55(s,1H),6.49(dd,J=14.3,5.2Hz,2H),4.91(s,1H),3.48(br s,2H),2.23(s,3H),2.11(s,3H).
13C NMR(101MHz,CDCl 3)δ144.96,143.28,134.47,131.88,130.36,126.83,126.36,123.02,118.25,117.60,113.65,113.07,17.90,17.62.
(2)化合物I-4的合成
将42.8g(0.2mol)化合物II-4、156.8g(1.6mol)环己酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,通氢气至1.5MPa反应,用GC检测,当化合物II-4含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到59.6g化合物I-4(收率约99.5%),GC检测含量>98.2%,常温下为深褐色液体。
Figure PCTCN2022133179-appb-000019
1H NMR(400MHz,CDCl 3)δ7.17(d,J=7.3Hz,1H),7.10-7.04(m,1H),7.02(d,J=8.4Hz,1H),6.76(td,J=7.3,0.9Hz,1H),6.60-6.56(m,2H),6.51(dd,J=8.4,2.7Hz,1H),4.99(s,1H),3.51(s,1H),3.37-3.23(m,1H),2.33(s,3H),2.21(s,3H),2.18-2.10(m,2H),1.90-1.80(m,2H),1.78-1.69(m,1H),1.52-1.39(m,2H),1.37-1.16(m,3H).
13C NMR(101MHz,CDCl 3)δ145.36,144.83,134.97,130.30,130.26,127.05,126.85,122.56,117.88,115.60,112.70,111.64,52.10,33.64,26.00,25.10.18.12.17.63.
实施例5:化合物I-5(N-1,3-二甲基丁基-N′-2-甲基苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-4的合成
化合物II-4的合成同实施例4。
(2)化合物I-5的合成
将43.2g(0.2mol)化合物II-4、160.3(1.6mol)4-甲基-2-戊酮和0.5gPt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,通氢至1.5MPa反应,用GC检测,当化合物II-2含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到59.6g化合物I-3(收率约99.5%),GC检测含量>98.2%,常温下为深红色液体。
Figure PCTCN2022133179-appb-000020
1H NMR(400MHz,CDCl 3)δ7.15(d,J=7.3Hz,1H),7.08-7.03(m,1H),7.01(d,J=8.4Hz,1H),6.74(td,J=7.3,1.0Hz,1H),6.59-6.53(m,2H),6.49(dd,J=8.4,2.7Hz,1H),4.97(s,1H),3.65-3.51(m,1H),3.21(br s,1H),2.31(s,3H),2.19(s,3H),1.90-1.75(m,1H),1.59-1.47(m,1H),1.38-1.28(m,1H),1.22(d,J=6.2Hz,3H),1.01(d,J=6.6Hz,3H),0.99(d,J=6.6Hz,3H).
13C NMR(101MHz,CDCl 3)δ145.40,145.20,135.03,130.35,130.23,127.11,126.90,122.60,117.92,115.55,112.76,111.53,47.09,46.93,25.19,23.08,22.68,21.23,18.18,17.67.
实施例6:化合物I-6(N-环己基-N′-4-甲基苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-6的合成
于500mL四口烧瓶中投入160.5g(1.5mol)4-甲基苯胺和100.1g(0.275mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-50℃,减压蒸馏脱水,使TMAOH与4-甲基苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约为催化剂25%四甲基氢氧化铵溶液投料量的50%时,72℃减压(-0.098MPa)蒸馏同时滴加3-甲基硝基苯34.3g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC监测至3-甲基硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和40g催化剂骨架镍,氢气置换三次,升温至75℃,升压至1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。然后进行过滤、水洗、分相,有机相经减压蒸馏(-0.1MPa,170℃)去除轻组分得到46.1g化合物II-6(收率约86%),GC检测含量>98%,常温下为浅黄色固体。
Figure PCTCN2022133179-appb-000021
1H NMR(400MHz,CDCl 3)δ7.01(t,J=6.6Hz,3H),6.67-6.63(m,2H),6.62(d,J=2.5Hz,1H),6.55(dd,J=8.3,2.6Hz,1H),5.02(s,1H),3.38(s,2H),2.29(s,3H),2.19(s,3H).
13C NMR(101MHz,CDCl 3)δ144.36,142.87,133.94,132.41,129.72,127.73,125.32,117.69,114.90,113.67,20.47,17.99.
(2)化合物I-6的合成
将42.8g(0.2mol)化合物II-6、156.8g(1.6mol)环己酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,通氢气至1.5MPa反应,用GC检测,当化合物II-6含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到59.6g化合物I-6(收率约99.5%),GC检测含量>98.2%,常温下为深褐色液体。
Figure PCTCN2022133179-appb-000022
1H NMR(400MHz,CDCl 3)δ6.99(t,J=8.2Hz,3H),6.60(d,J=8.4Hz,2H),6.51(d,J=2.5Hz,1H),6.45(dd,J=8.4,2.7Hz,1H),5.04(s,1H),3.40(s,1H),3.29-3.17(m,1H),2.26(s,3H),2.17(s,3H),2.12-2.04(m,2H),1.83-1.75(m,2H),1.72-1.61(m,1H),1.51-1.31(m,2H),1.28-1.13(m,3H).
13C NMR(101MHz,CDCl 3)δ144.85,144.56,134.52,130.81,129.71,127.39,126.12,115.71,114.54,111.69,52.22,33.70,26.03,25.12,20.48,18.22.
实施例7:化合物I-7(N-1,3-二甲基丁基-N′-4-甲基苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-6的合成
化合物II-6的合成同实施例6
(2)化合物I-7的合成
将43.2g(0.2mol)化合物II-6、160.3g(1.6mol)4-甲基-2-戊酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,通氢至1.5MPa反应,用GC检测,当化合物II-6含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到59.6g化合物I-3(收率约99.5%),GC检测含量>98.2%,常温下为深红色液体。
Figure PCTCN2022133179-appb-000023
1H NMR(400MHz,CDCl 3)δ6.96(dd,J=9.8,8.6Hz,3H),6.57(d,J=8.4Hz,2H),6.46(d,J=2.3Hz,1H),6.40(dd,J=8.4,2.5Hz,1H),4.98(s,1H),3.58-3.40(m,1H),3.25(br s,1H),2.22(s,3H),2.14(s,3H),1.82-1.68(m,1H),1.52-1.36(m,1H),1.31-1.19(m,1H),1.15(d,J=6.2Hz,3H),0.94(d,J=6.6Hz,3H),0.92(d,J=6.6Hz,3H).
13C NMR(101MHz,CDCl 3)δ144.92,134.61,130.72,129.74,127.34,126.24,115.60,114.55,111.51,47.13,46.99,25.21,23.10,22.71,21.26,20.52,18.27.
实施例8:化合物I-8(N-环己基-N′-2,3-二甲基苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-8的合成
于500mL四口烧瓶中投入181.5g(1.5mol)2,3-二甲基苯胺和100.1g(0.275mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-50℃,减压蒸馏脱水,使TMAOH与2,3-二甲基苯胺成盐,此过程中 反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约为催化剂25%四甲基氢氧化铵溶液投料量的50%时,72℃减压(-0.098MPa)蒸馏同时滴加3-甲基硝基苯34.3g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC监测至3-甲基硝苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和40g催化剂骨架镍,氢气置换三次,升温至75℃,升压至1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。然后进行过滤、水洗、分相,有机相经减压蒸馏(-0.1MPa,180℃)去除轻组分得到46.6g化合物II-8(收率约80%),GC检测含量>97%,冷却后浅黄色固体。
Figure PCTCN2022133179-appb-000024
1H NMR(400MHz,CDCl 3)δ6.93(t,J=7.8Hz,1H),6.88(d,J=8.3Hz,1H),6.68(d,J=7.4Hz,1H),6.62(d,J=2.1Hz,1H),6.58-6.50(m,1H),6.46(d,J=8.1Hz,1H),4.95(s,1H),3.53(s,2H),2.33(s,3H),2.19(s,3H),2.16(s,3H).
13C NMR(101MHz,CDCl 3)δ144.73,142.86,137.04,133.81,132.84,125.97,125.55,122.39,120.95,117.73,113.75,112.33,20.72,17.98,12.99.
(2)化合物I-8的合成
将46.6g(0.2mol)化合物II-8、156.8g(1.6mol)环己酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,通氢气至1.5MPa反应,用GC检测,当化合物II-8含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到65.9g化合物I-8(收率约99.5%),GC检测含量>97.6%,常温下为红色液体。
Figure PCTCN2022133179-appb-000025
1H NMR(400MHz,CDCl 3)δ7.02-6.86(m,2H),6.68(d,J=7.4Hz,1H),6.54(d,J=2.6Hz,1H),6.51-6.41(m,2H),4.96(s,1H),3.51(br s,1H),3.39 -3.07(m,1H),2.35(s,3H),2.22(s,3H),2.18(s,3H),2.16-2.05(m,2H),1.88-1.76(m,2H),1.75-1.64(m,1H),1.49-1.34(m,2H),1.34-1.11(m,3H).
13C NMR(101MHz,CDCl 3)δ145.18,144.54,136.88,134.42,131.08,126.40,125.95,121.69,120.48,115.72,111.74,52.21,33.70,26.04,25.13,20.71.18.16.12.90.
实施例9:化合物I-9(N-异丙基-N′-4-甲基苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物II-8的合成
化合物II-8的合成同实施例8
(2)化合物I-9的合成
将46.6g(0.2mol)化合物II-8、162.4g(2.8mol)丙酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至70℃,通氢至1.5MPa反应,用GC检测,当化合物II-8含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到54.9g化合物I-9(收率约99.5%),GC检测含量>97%,常温下为灰白色固体。
Figure PCTCN2022133179-appb-000026
1H NMR(400MHz,CDCl 3)δ7.01-6.93(m,2H),6.71(d,J=7.4Hz,1H),6.57(d,J=2.6Hz,1H),6.50(dd,J=8.3,2.8Hz,2H),4.99(br s,1H),3.78-3.56(m,1H),3.13(br s,1H),2.38(s,3H),2.24(s,3H),2.21(s,3H),1.28(d,J=6.3Hz,6H).
13C NMR(101MHz,CDCl 3)δ145.10,144.59,136.85,134.30,131.20,126.28,125.92,121.71,120.29,115.81,111.81,111.78,44.66,23.15,20.68,18.13.12.88.
实施例10:化合物I-10(N-异丙基-N′-2,3-二甲基苯基-2,3-二甲基-1,4-苯二胺)的合成
(1)化合物II-10的合成
于500mL四口烧瓶中投入181.5g(1.5mol)2,3-二甲基苯胺和100.1g(0.275mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-50℃,减压蒸馏脱水,使TMAOH与2,3-二甲基苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约为催化剂25%四甲基氢氧化铵溶液投料量的50%时,72℃减压(-0.098MPa)蒸馏同时滴加2,3-二甲基硝基苯37.8g(0.25mol),滴加时间约3h,滴加完毕后保温2h,LC监测至2,3-二甲基硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和40g催化剂骨架镍,氢气置换三次,升温至75℃,升压至1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。然后进行过滤、水洗、分相,有机相经减压蒸馏(-0.1MPa,180℃)去除轻组分得到47.5g化合物II-10(收率约76%),GC检测含量>96%,冷却后浅黄色液体。
Figure PCTCN2022133179-appb-000027
1H NMR(400MHz,CDCl 3)δ6.91(t,J=7.9Hz,1H),6.87(d,J=8.3Hz,1H),6.67(d,J=7.5Hz,1H),6.58(d,J=8.2Hz,1H),6.27(d,J=8.2Hz,1H),4.93(s,1H),3.52(s,2H),2.35(s,3H),2.21(s,3H),2.18(s,3H),2.16(s,3H).
(2)化合物I-10的合成
将37.5g(0.15mol)化合物II-10、162.4g(2.8mol)丙酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至70℃,通氢至1.5MPa反应,用GC检测,当化合物II-10含量<0.1%,停止反应。降温,过滤去除催化剂,-0.1MPa、180℃蒸馏去除轻组分得到43.7g化合物I-10(收率约99.4%),GC检测含量>96%,常温下为灰白色固体。
Figure PCTCN2022133179-appb-000028
1H NMR(400MHz,CDCl 3)δ6.90(t,J=7.7Hz,1H),6.84(d,J=8.0Hz,1H),6.57(d,J=7.5Hz,1H),6.55(d,J=8.1Hz,1H),6.23(d,J=8.1Hz,1H), 4.95(s,1H),3.76-3.53(m,1H),3.12(s,1H),2.35(s,3H),2.21(s,3H),2.17(s,6H),1.29(d,J=6.2Hz,6H).
测试例
根据表1所示的配方采用以下步骤制备胶料1-4:
1、向密炼机中加入天然橡胶SCR5,捏合一段时间后,加入炭黑N330、芳烃油、氧化锌、硬脂酸和防老剂(6PPD、化合物I-1、化合物I-2或化合物I-4),继续捏合直至混合均匀;捏合期间温度控制在150℃和160℃之间;
2、将整个混合物冷却至100℃以下,然后加入交联体系(硫磺S和促进剂CBS),捏合整个混合物;捏合期间控制温度不超过110℃;
3、将所得的橡胶组合物压延为片状(厚度为2-3mm),进行硫化,硫化温度为150℃,时间为15分钟。
表1中各材料的来源如下:
SCR5:西双版纳中化橡胶有限公司天然胶SCR5;
N330:卡博特公司炭黑N330;
硬脂酸:上海泰坦科技股份有限公司通用试剂硬脂酸(AR);
氧化锌:上海泰坦科技股份有限公司通用试剂氧化锌(AR);
CBS:圣奥化学科技有限公司硫化促进剂CBS;
S:国药集团化学试剂公司升华硫(AR);
6PPD:圣奥化学科技有限公司防老剂SIRANTOX 6PPD;
化合物I-1:实施例1合成的化合物;
化合物I-2:实施例2合成的化合物;
化合物I-4:实施例4合成的化合物。
表1:胶料配方(单位:质量份)
配方 胶料1 胶料2 胶料3 胶料4
SCR5 100.0 100.0 100.0 100.0
N330 50.0 50.0 50.0 50.0
氧化锌 5.0 5.0 5.0 5.0
硬脂酸 2.0 2.0 2.0 2.0
6PPD 2.5      
化合物I-1   2.5    
化合物I-2     2.5  
化合物I-4       2.5
CBS 0.6 0.6 0.6 0.6
S 2.5 2.5 2.5 2.5
合计 162.6 162.6 162.6 162.6
按照《GB/T 16585硫化橡胶人工气候老化(荧光紫外灯)试验方法》对胶料1-4进行抗紫外光老化试验,试验条件参数和步骤见表2,试验结果见表3。
按照《GB/T 528-2009硫化胶或热塑性橡胶拉伸应力应变性能的测定》,测定胶料1-4的物性(拉伸强度、断裂伸长率),结果如表3所示。
按照《GB/T 3512-2014硫化橡胶或热塑性橡胶热空气加速老化和耐热试验》对胶料1-4进行热氧老化试验,试验条件:100℃*48小时,试验结果见表3。
表2:抗紫外老化试验参数和试验步骤
Figure PCTCN2022133179-appb-000029
表3:硫化胶原始物性和老化后物性结果
Figure PCTCN2022133179-appb-000030
表3的检测结果说明,含本发明的防老剂的胶料2-4的耐热氧老化性能和抗紫外光老化性能均要优于含6PPD的胶料1。耐热氧老化性能方面,100℃*48小时老化后,胶料2-4的物性保持率较胶料1均提高约10%左右。耐紫外光老化性能方面,按照表2的试验参数老化168小时后,胶料2-4的物性保持率较胶料1均提高5%以上。

Claims (11)

  1. 式I所示的化合物:
    Figure PCTCN2022133179-appb-100001
    式I中,各R 1各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,a为1~5的整数;
    R 2、R 3、R 4、R 5各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,且R 2、R 3、R 4、R 5中至少有1个基团不为H;
    R 6、R 7各自独立选自C1-C18链烃基和C3-C18脂环烃基,或R 6与R 7形成C3-C18脂肪环。
  2. 如权利要求1所述的化合物,其特征在于,
    各R 1各自独立选自H和C1-C8烷基,a为1~2的整数;
    R 2、R 3、R 4、R 5各自独立选自H和C1-C8烷基,且R 2、R 3、R 4、R 5中有2~3个基团为H;
    R 6、R 7各自独立选自C1-C8烷基和C3-C8环烷基,或R 6与R 7形成C3-C8脂肪环。
  3. 权利要求1所述的化合物的制备方法,其特征在于,所述制备方法包括以下步骤:
    (1)使式A所示的化合物与式B所示的化合物在第一催化剂的作用下进行缩合反应得到包含式C所示的化合物和/或式C′所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式II所示的化合物;
    Figure PCTCN2022133179-appb-100002
    (2)使式II所示的化合物与式D所示的化合物在H 2和第三催化剂的作用下进行还原烷基化反应得到式I所示的化合物;
    Figure PCTCN2022133179-appb-100003
    式A、式B、式C、式C′、式D、式II和式I中的R 1、R 2、R 3、R 4、R 5、R 6、R 7如权利要求1中所定义。
  4. 如权利要求3所述的制备方法,其特征在于,所述制备方法具有以下一项或多项特征:
    所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种;
    所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种;
    所述第三催化剂为负载型金属催化剂;所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种;
    步骤(1)中,式A所示的化合物与式B所示的化合物的物质的量之比为2∶1~15∶1,优选为4∶1~10∶1;
    步骤(1)中,缩合反应的温度为40~90℃、优选65~85℃,真空度为-0.09~-0.99MPa;
    步骤(1)中,所述缩合物和H 2反应的温度为40~120℃、优选60~90℃,氢气压力为0.5~5MPa、优选0.5~2.5MPa;
    步骤(2)中,式D所示的化合物与式II所示的化合物的物质的量之比为1∶1~15∶1;
    步骤(2)中,反应温度为40~150℃,反应压力为0.5~5MPa。
  5. 式II所示的化合物:
    Figure PCTCN2022133179-appb-100004
    式II中,各R1各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,a为1~5的整数;
    R 2、R 3、R 4、R 5各自独立选自H、C1-C18链烃基和C3-C18脂环烃基,且R 2、R 3、R 4、R 5中至少有1个基团不为H。
  6. 如权利要求5所述的化合物,其特征在于,
    各R 1各自独立选自H和C1-C8烷基,a为1~2的整数;
    R 2、R 3、R 4、R 5各自独立选自H和C1-C8烷基,且R 2、R 3、R 4、R 5中有2~3个基团为H。
  7. 权利要求5所述的化合物的制备方法,其特征在于,所述制备方法包括:使式A所示的化合物与式B所示的化合物在第一催化剂的作用下进行缩合反应得到包含式C所示的化合物和/或式C′所示的化合物的缩合物, 再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式II所示的化合物;
    Figure PCTCN2022133179-appb-100005
    式A、式B、式C、式C′和式II中的R 1、R 2、R 3、R 4、R 5如权利要求5中所定义。
  8. 如权利要求7所述的制备方法,其特征在于,所述制备方法具有以下一项或多项特征:
    所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种;
    所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种;
    步骤(1)中,式A所示的化合物与式B所示的化合物的物质的量之比为2∶1~15∶1,优选为4∶1~10∶1;
    步骤(1)中,缩合反应的温度为40~90℃、优选65~85℃,真空度为-0.09~-0.99MPa;
    步骤(1)中,所述缩合物和H 2反应的温度为40~120℃、优选60~90℃,氢气压力为0.5~5MPa、优选0.5~2.5MPa。
  9. 一种橡胶组合物,其特征在于,所述橡胶组合物含有权利要求1或2所述的化合物。
  10. 一种橡胶制品,其特征在于,所述橡胶制品含有权利要求9所述的橡胶组合物;优选地,所述橡胶制品为轮胎。
  11. 一种提高橡胶或橡胶制品的耐热氧老化性能和/或耐紫外光老化性能的方法,其特征在于,所述方法包括向橡胶或橡胶制品中添加权利要求1或2所述的化合物。
PCT/CN2022/133179 2022-11-10 2022-11-21 多烷基对苯二胺类防老剂、其中间体及制备方法 WO2024098461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211406983.XA CN116554038B (zh) 2022-11-10 2022-11-10 多烷基对苯二胺类防老剂、其中间体及制备方法
CN202211406983.X 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024098461A1 true WO2024098461A1 (zh) 2024-05-16

Family

ID=87493494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133179 WO2024098461A1 (zh) 2022-11-10 2022-11-21 多烷基对苯二胺类防老剂、其中间体及制备方法

Country Status (3)

Country Link
US (2) US20240174592A1 (zh)
CN (1) CN116554038B (zh)
WO (1) WO2024098461A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065376A1 (en) * 2003-07-04 2005-03-24 Guangqiang Shi And Nongyue Wang Process for preparing 4-aminodiphenylamine
CN101370766A (zh) * 2006-01-24 2009-02-18 科聚亚公司 N-烷基-n’-苯基-对苯二胺的直接烷基化
US20120157714A1 (en) * 2010-12-21 2012-06-21 Korea Kumho Petrochemical Co., Ltd. Method for preparation of 4,4'-dinitrodiphenylamine and 4,4'-bis(alkylamino)diphenylamine by using 4-nitroaniline
CN113072741A (zh) * 2021-03-12 2021-07-06 怡维怡橡胶研究院有限公司 一种环保型对苯二胺类防老剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906048A (zh) * 2009-06-02 2010-12-08 中国科学院过程工程研究所 4-氨基二苯胺的合成方法
WO2013132290A2 (en) * 2012-03-07 2013-09-12 Nocil Limited Improved process for preparing 4-aminodiphenylamine
CN103819346B (zh) * 2014-03-17 2015-11-04 山东尚舜化工有限公司 一种4-氨基二苯胺的前体的生产设备及生产工艺
CN108299676A (zh) * 2018-01-30 2018-07-20 昕中和成都胶业有限公司 用于丁腈橡胶的防老剂制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065376A1 (en) * 2003-07-04 2005-03-24 Guangqiang Shi And Nongyue Wang Process for preparing 4-aminodiphenylamine
CN101370766A (zh) * 2006-01-24 2009-02-18 科聚亚公司 N-烷基-n’-苯基-对苯二胺的直接烷基化
US20120157714A1 (en) * 2010-12-21 2012-06-21 Korea Kumho Petrochemical Co., Ltd. Method for preparation of 4,4'-dinitrodiphenylamine and 4,4'-bis(alkylamino)diphenylamine by using 4-nitroaniline
CN113072741A (zh) * 2021-03-12 2021-07-06 怡维怡橡胶研究院有限公司 一种环保型对苯二胺类防老剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY 28 July 2021 (2021-07-28), ANONYMOUS: "- 1,4-Benzenediamine, 2,3,5-triethyl-N1-(1-methylethyl)-N4-phenyl- (CA INDEX NAME)", XP093170095, Database accession no. 2663665-72-1 *
DATABASE REGISTRY 28 July 2021 (2021-07-28), ANONYMOUS: "- 1,4-Benzenediamine, 2,3,5-trimethyl-N4-phenyl- (CA INDEX NAME)", XP093170098, Database accession no. 2663665-65-2 *

Also Published As

Publication number Publication date
US20240174592A1 (en) 2024-05-30
US20240174593A1 (en) 2024-05-30
CN116554038A (zh) 2023-08-08
CN116554038B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
EP3805306B1 (en) Rubber composition and tire
TWI655242B (zh) 橡膠組成物、輪胎、胺化合物及老化防止劑
CN110691768A (zh) 制备具有抗降解剂和抗疲劳功效的化合物和混合物的方法
JP4598148B2 (ja) スルフェンアミド、このスルフェンアミドを含むゴム用加硫促進剤およびその製造方法
CN106459502A (zh) 橡胶组合物、轮胎、双苯胺基化合物和抗老化剂
WO2022048565A1 (zh) 不对称二芳基取代型对苯二胺类化合物的制备方法
WO2022041528A1 (zh) 新型对苯二胺类化合物、其制备方法及应用
WO2024098461A1 (zh) 多烷基对苯二胺类防老剂、其中间体及制备方法
CN116783253A (zh) 具有更持久抗臭氧化的橡胶组合物
CN116964157A (zh) 具有更持久抗臭氧化的橡胶组合物
US10611719B2 (en) Methods of making compounds and mixtures having antidegradant and antifatigue efficacy
WO2024098460A1 (zh) 橡胶防老剂及其制备方法
US7319124B2 (en) Vulcanizing agents based on organic sulphur-nitrogen compounds for unsaturated rubbers and mixtures of these
CN110691770B (zh) 具有抗降解剂和抗疲劳功效的化合物和混合物及包含此类化合物的组合物
US10167252B2 (en) Compounds and mixtures with antidegradant and antifatigue efficacy and compositions including such compounds
CN110691769B (zh) 具有抗降解剂和抗疲劳功效的化合物和混合物及包含所述化合物的组合物
WO2002046149A2 (en) 2-thio-5-amino substituted benzoquinones, their manufacture and their use in rubber
JP2023501170A (ja) 老化防止と変色防止効果を有する化合物及びその製造方法
CN110691766A (zh) 制备具有抗降解剂和抗疲劳功效的化合物的方法
CN110691767A (zh) 制备具有抗降解剂和抗疲劳功效的化合物和混合物的方法
CN117677657A (zh) 化合物、包含该化合物的橡胶共混物、在至少一个部件中包含该橡胶共混物的车辆轮胎、用于生产该化合物的方法以及该化合物作为老化保护剂和/或抗臭氧剂和/或染料的用途
CN118515605A (zh) 一种多功能橡胶助剂、其制备方法及用途
JP2004149800A (ja) 共役アザジエン基を含有する有機化合物に基づく、加硫ゴムのための老化防止剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964928

Country of ref document: EP

Kind code of ref document: A1