WO2022041528A1 - 新型对苯二胺类化合物、其制备方法及应用 - Google Patents

新型对苯二胺类化合物、其制备方法及应用 Download PDF

Info

Publication number
WO2022041528A1
WO2022041528A1 PCT/CN2020/132058 CN2020132058W WO2022041528A1 WO 2022041528 A1 WO2022041528 A1 WO 2022041528A1 CN 2020132058 W CN2020132058 W CN 2020132058W WO 2022041528 A1 WO2022041528 A1 WO 2022041528A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
rubber
solution
added
Prior art date
Application number
PCT/CN2020/132058
Other languages
English (en)
French (fr)
Inventor
祁琦
邢金国
郭湘云
刘燕祥
唐志民
Original Assignee
圣奥化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣奥化学科技有限公司 filed Critical 圣奥化学科技有限公司
Publication of WO2022041528A1 publication Critical patent/WO2022041528A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/54Three nitrogen atoms
    • C07D251/70Other substituted melamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention belongs to the field of antioxidants, and in particular relates to a novel p-phenylenediamine compound and a preparation method and application thereof.
  • p-phenylenediamine compounds are commonly used as anti-aging agents in rubber products, especially tires, including dialkyl p-phenylenediamine, alkylaryl p-phenylenediamine and diaryl p-phenylenediamine, which are the most widely used.
  • the antioxidant is 6PPD (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine), and the others are IPPD (N-isopropyl-N'-phenyl-p-phenylene diamine).
  • 77PD N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine
  • DTPD diphenyl-p-phenylenediamine, bis(tolyl)-p-phenylenediamine, and phenyl mixture of tolyl-p-phenylenediamine
  • the widely used rubber antioxidant 6PPD has a relatively small molecular weight. During the use of rubber products or tires, the antioxidant quickly migrates to the surface, resulting in contamination and discoloration of the tire surface; the antioxidant DTPD is diaryl-p-phenylenediamine, which is recognized as a long-acting It is an after-effect antioxidant with long-lasting anti-aging properties, but it has poor compatibility with rubber, and a large amount leads to blooming. In recent years, users have paid more and more attention to the anti-aging durability and surface discoloration of tires. Therefore, there is an urgent need in the art for a compound with longer-lasting anti-aging effect and discoloration resistance than existing products.
  • the present invention designs and synthesizes a compound with the following formula I structure, which not only contains a p-phenylenediamine structure that is good at scavenging free radicals, but also contains two long-chain alkyl groups to enhance the compatibility with rubber, and has a physical shielding effect. Oxidation and bending fatigue deterioration of unsaturated rubber have a retarding effect. It is found in the present invention that the compound can provide better thermal oxygen fatigue aging and long-term protection performance than conventional antioxidants, as well as stronger discoloration resistance.
  • the compound can be used as an additive in plastics, elastomers, lubricating oils, etc., and can delay the degradation trend caused by oxygen, ozone, repeated mechanical action, etc. during use.
  • R 1 is a C4-C16 straight-chain or branched-chain alkyl group
  • R 2 is a C3-C10 straight-chain or branched-chain alkyl group, a C3-C10 cycloalkyl group, a phenyl group, or a C3-C10 alkyl group-substituted benzene base.
  • R 1 is n-butyl, t-butyl, n-hexyl, isohexyl, t-octyl, n-dodecyl, n-tetradecyl, or n-hexadecyl alkyl.
  • R 1 is a C4-C12 straight or branched chain alkyl group.
  • R1 is t -butyl, t-octyl, or n-dodecyl.
  • R 2 is a C3-C10 branched chain alkyl.
  • R 2 is isopropyl, 1,3-dimethylbutyl, 1,4-dimethylpentyl, cyclohexyl, or phenyl.
  • R2 is C3-C7 branched alkyl, C3-C7 cycloalkyl, or phenyl.
  • R 2 is isopropyl, 1,3-dimethylbutyl, 1,4-dimethylpentyl, or phenyl.
  • the compound of formula I is selected from:
  • the present invention also provides a method for preparing the compound of formula I according to any embodiment of the present invention, comprising:
  • R 1 and R 2 are as defined in any of the embodiments of the present invention.
  • the method has one or more of the following features:
  • the amount of compound A added in step (1) is 100% to 120% of the amount of cyanuric chloride added in step (1);
  • Step (1) is carried out in the presence of lye
  • the reaction temperature of step (1) is -5 ⁇ 10°C.
  • the lye is selected from sodium carbonate solution, sodium hydroxide solution, potassium carbonate solution, potassium hydroxide solution, triethylamine, triisopropylamine, N-isopropyldiethylamine and One or more of N,N-diisopropylethylamine, etc., preferably selected from one or more of sodium carbonate solution, sodium hydroxide solution, potassium carbonate solution and potassium hydroxide solution.
  • Compound A is selected from N-phenyl-p-phenylenediamine, N-isopropyl-p-phenylenediamine, N-cyclohexyl-p-phenylenediamine, N-(1,3-dimethylene) base) butyl-p-phenylenediamine and N-(1,4-dimethyl)pentyl-p-phenylenediamine.
  • the method has one or more of the following features:
  • the amount of substance of R 1 NH 2 added in step (2) is 400% to 480% of the amount of substance of intermediate M added in step (2);
  • the reaction temperature of step (2) is 60-150°C.
  • R 1 NH 2 is n-butylamine, t-butylamine, n-hexylamine, isohexylamine, t-octylamine, dodecylamine, tetradecylamine, or hexadecylamine.
  • the present invention also provides a rubber composition comprising the compound of formula I according to any embodiment of the present invention.
  • the present invention also provides a rubber product containing the rubber composition according to any embodiment of the present invention; preferably, the rubber product is a tire.
  • the present invention also provides the use of the compound of formula I according to any embodiment of the present invention for improving the oxidation resistance and/or discoloration resistance of rubber or rubber articles; preferably, the rubber articles are tires.
  • FIG. 1 shows the tensile area retention before and after aging of the vulcanized rubber sheets of Test Examples 1-4.
  • Figure 2 shows the tear strength retention before and after aging of the vulcanized rubber sheets of Test Examples 1-4.
  • FIG. 3 is a schematic diagram of the Lab color model for color difference judgment.
  • alkyl refers to a linear or branched monovalent saturated hydrocarbon group, usually containing 1-16 carbon atoms (C1-C16 alkyl), for example, containing 3-16 carbon atoms (C3-C16 alkyl).
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, isohexyl, 1,3-dimethylbutyl, 1,4-Dimethylpentyl, tert-octyl, n-dodecyl, n-tetradecyl or n-hexadecyl.
  • cycloalkyl refers to a monovalent saturated hydrocarbon ring, usually containing 3-10 carbon atoms (C3-C10 cycloalkyl), for example, containing 3-8 carbon atoms (C3-C8 cycloalkyl).
  • cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and adamantyl.
  • the cycloalkyl group may be optionally substituted with an alkyl group, and the number of alkyl substituents on the cycloalkyl group may be one or two.
  • the compound with the structure shown in the following formula I not only contains a p-phenylenediamine structure that is good at scavenging free radicals, but also contains two long-chain alkyl groups to enhance the compatibility with rubber, and has the advantages mainly caused by long-chain alkyl groups. Its physical shielding effect can delay the oxidation and bending fatigue deterioration of unsaturated rubber, and can provide better thermal oxygen fatigue aging and long-term protection performance than conventional antioxidants, as well as stronger resistance to discoloration:
  • R 1 is a C4-C16 straight-chain or branched-chain alkyl group
  • R 2 is a C3-C10 straight-chain or branched-chain alkyl group, a C3-C10 cycloalkyl group, a phenyl group, or a C3-C10 alkyl group-substituted benzene base.
  • R 1 is n-butyl, t-butyl, n-hexyl, isohexyl, t-octyl, n-dodecyl, n-tetradecyl, or n-hexadecyl .
  • R 1 is a C4-C12 straight or branched chain alkyl group, such as, but not limited to, tert-butyl, tert-octyl, or n-dodecyl. In some embodiments, in the compound of formula I, R 1 is a C4-C8 branched chain alkyl group, such as tert-butyl or tert-octyl.
  • R 2 is a C3-C10 branched chain alkyl.
  • R 2 is isopropyl, 1,3-dimethylbutyl, 1,4-dimethylpentyl, cyclohexyl, or phenyl.
  • R 2 is C3-C7 branched alkyl, C3-C7 cycloalkyl, or phenyl. In certain embodiments, in the compound of formula I, R 2 is C3-C7 branched alkyl or phenyl, such as, but not limited to, isopropyl, 1,3-dimethylbutyl, 1,4- Dimethylpentyl or phenyl. In some embodiments, in the compound of formula I, R 2 is a C3-C7 branched alkyl group, such as isopropyl, 1,3-dimethylbutyl, or 1,4-dimethylpentyl. In some embodiments, in the compound of formula I, R 2 is isopropyl. In some embodiments, in the compound of formula I, R 2 is 1,3-dimethylbutyl or 1,4-dimethylpentyl.
  • R 1 is C8-C12 straight or branched chain alkyl, such as tert-octyl or n-dodecyl; and/or, R 2 is C6- C7 branched alkyl, for example 1,3-dimethylbutyl or 1,4-dimethylpentyl.
  • the compound of formula I is selected from:
  • the compound of formula I is selected from:
  • the method for preparing the compound of formula I of the present invention comprises:
  • cyanuric chloride is reacted with a compound A represented by the following formula to obtain an intermediate M represented by the following formula, wherein R 2 is a C3-C10 linear or branched alkyl group, a C3-C10 ring Alkyl, phenyl or C3-C10 alkyl substituted phenyl:
  • the preferred R 2 in compound A and the preferred R 1 in R 1 NH 2 may be as described in any one of the embodiments herein.
  • step (1) intermediate M is prepared by reacting cyanuric chloride (TCT) and compound A (NR 2 p-phenylenediamine, such as N-alkyl p-phenylenediamine or N-aryl p-phenylenediamine).
  • compound A is preferably used in excess. Relative to the added TCT, the added compound A is preferably not more than 20% in excess, that is, the amount of the added compound A is preferably 100% to 120% of the added TCT. In some embodiments, Compound A is added in excess of 10-20% relative to the TCT added, ie, the amount of Compound A added is 110%-120% of the amount of TCT added.
  • a certain percentage of excess of a certain raw material X relative to another raw material Y refers to the amount of the added raw material X that is theoretically the same as that of the added raw material Y (or the raw material Y generated in the reaction). material) The amount of material of the feedstock X required to just complete the reaction is compared to the percentage value of the excess.
  • the compound A used in step (1) is selected from N-phenyl-p-phenylenediamine, N-isopropyl-p-phenylenediamine, N-cyclohexyl-p-phenylenediamine, N-(1, 3-Dimethyl)butyl-p-phenylenediamine or N-(1,4-dimethyl)pentyl-p-phenylenediamine.
  • the lye solution is used as the acid binding agent to neutralize the HCl generated in the reaction, that is, the reaction of the step (1) is carried out in the presence of the lye solution.
  • the lye suitable for the present invention is not particularly limited, and can be, for example, sodium carbonate solution, sodium hydroxide solution, potassium carbonate solution, potassium hydroxide solution, triethylamine, triisopropylamine, N-isopropyldiethylamine and One or more of N,N-diisopropylethylamine, etc.
  • sodium carbonate solution, sodium hydroxide solution, potassium carbonate solution, and potassium hydroxide solution refer to aqueous solutions of sodium carbonate, sodium hydroxide, potassium carbonate, and potassium hydroxide, respectively.
  • the lye is one or more selected from sodium carbonate solution, sodium hydroxide solution, potassium carbonate solution and potassium hydroxide solution.
  • excess alkali solution can be added, for example, the alkali in the alkali solution can be in excess of 20% or less or 10% or less relative to TCT.
  • an aqueous solution of an inorganic base eg, sodium carbonate solution, sodium hydroxide solution, potassium carbonate solution and potassium hydroxide solution
  • concentration of the alkali solution is usually 20wt%-50wt%.
  • non-polar solvents include non-polar solvents and less polar solvents.
  • Non-polar solvents suitable for use in the present invention may be selected from the group consisting of toluene, xylene, mesitylene, chlorobenzene, methylcyclohexane, dichlorobenzene, trichlorobenzene, dimethylcyclohexane and trimethylcyclohexane one or more of.
  • the present invention uses toluene, xylene, or a mixture thereof as a solvent.
  • step (1) The reaction temperature of step (1) is controlled at -5 ⁇ 10°C.
  • compound A is added first, and then the lye is added.
  • compound A is added at -5 ⁇ 0°C.
  • the alkali solution is added and the reaction is continued at 0-10°C.
  • compound A and lye are added slowly.
  • the rate of addition of compound A and lye is not more than 0.015 mol/min, for example, between 0.01 mol/min and 0.015 mol/min, based on the amount of the base substance in compound A or lye, for example when using When 0.3-0.4 mol of compound A and lye solution, the compound A and lye solution can be respectively added in about 30 minutes.
  • step (1) compound A is slowly added to the mixture of TCT and solvent at -5 to 0 °C. After the addition, the temperature of the reaction system is raised to 0 to 10 °C, and then the base is slowly added. liquid and continue the reaction. Compound A may be dissolved in a solvent and then added to the mixture of TCT and solvent, if desired.
  • step (1) after adding the alkali solution, the reaction is preferably continued for 2 to 3 hours. After the reaction, conventional purification can be carried out, for example, phase separation, water washing and drying can be carried out to obtain a solution of intermediate M.
  • step (2) intermediate M is reacted with primary alkyl amine (R 1 NH 2 ) to prepare compound I.
  • Step (2) uses excess R 1 NH 2 as acid binding agent.
  • the amount of R 1 NH 2 added is preferably no more than 120% in excess relative to the intermediate M added, that is, the amount of R 1 NH 2 added is preferably no more than 480% of the amount of intermediate M added.
  • the added R 1 NH 2 is in excess of 100-120% relative to the added intermediate M, that is, the amount of the added R 1 NH 2 species is the amount of the added intermediate M species 400 to 480%.
  • the R 1 NH 2 used in step (2) is selected from n-butylamine, tert-butylamine, n-hexylamine, isohexylamine, tert-octylamine, dodecylamine (n-dodecyl primary amine), tetradecylamine amine (primary n-tetradecyl amine) or hexadecylamine (primary n-hexadecyl amine).
  • the reaction temperature in step (2) is preferably 60 to 150°C. Whether the reaction is complete can be judged by taking a sample to detect whether there is still intermediate M.
  • the reaction time of step (2) is usually 3 to 6 hours.
  • the reaction of step (2) is preferably carried out in a closed vessel, for example, in an autoclave. After the reaction in step (2), conventional purification can be carried out, such as neutralization with alkaline solution, washing with water, and distillation of the organic phase to recover the solvent and excess R 1 NH 2 to obtain the target compound (compound of formula I).
  • the compounds of formula I of the present invention can provide rubber compositions with better thermal oxygen fatigue aging and long-term protection properties than conventional antioxidants, as well as stronger resistance to discoloration. Accordingly, the present invention also provides a rubber composition comprising one or more of the compounds of formula I described herein.
  • Raw materials for rubber compositions generally include diene elastomers, reinforcing fillers, antioxidants, and cross-linking agents.
  • the amount of diene elastomer, reinforcing filler, anti-aging agent and cross-linking agent may be the conventional amount in the art.
  • the compound of formula I may be used in an amount of 0.1-5 parts by mass, for example, about 0.5-5 parts by mass, 2-3 parts by mass, or about 2.5 parts by mass.
  • the rubber composition includes unvulcanized rubber and vulcanized rubber. Vulcanized rubber can be obtained by vulcanizing (curing) the unvulcanized rubber.
  • Diene elastomers refer to elastomers whose monomers comprise a diene (eg, butadiene, isoprene). Diene elastomers suitable for use in the present invention may be various diene elastomers known in the art, including but not limited to those selected from natural rubber (NR), cis-butadiene rubber (BR), isoprene rubber, styrene-butadiene rubber ( SBR), neoprene (CR), nitrile rubber (NBR), isoprene/butadiene copolymers, isoprene/styrene copolymers and isoprene/butadiene/styrene copolymers one or more of these.
  • NR natural rubber
  • BR cis-butadiene rubber
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • CR neo
  • the diene elastomer is composed of natural rubber (such as SCR5) and cis-butadiene rubber (such as BR9000); the mass ratio of natural rubber and cis-butadiene rubber is not particularly limited, for example, 1:9 to 9:1, 2:8 to 8:2, 3:7 to 7:3, 4:6 to 6:4, or around 1:1.
  • the reinforcing filler may be one conventionally used in rubber, including but not limited to one or more selected from the group consisting of carbon black, titanium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, clay, and talc kind.
  • the reinforcing filler in the rubber compositions of the present invention is carbon black.
  • the amount of the reinforcing filler may be 40-60 parts by mass per 100 parts by mass of the diene elastomer.
  • the crosslinking agent can be sulfur.
  • the cross-linking agent may be used in an amount of 1-3 parts by mass per 100 parts by mass of the diene elastomer.
  • the rubber composition of the present invention may optionally contain other antioxidants known in the art (eg, 6PPD, IPPD, 77PD, DTPD, etc.).
  • the total amount of the compound of formula I and other antioxidants in the rubber composition is usually 0.1- 5 parts by mass, such as 0.5-5 parts by mass, 2-3 parts by mass, etc.; the dosage ratio between the compound of formula I and other antioxidants can be determined according to performance requirements.
  • the raw materials of the rubber composition may also include other components commonly used in rubber, including but not limited to auxiliary agents and accelerators.
  • the amount of adjuvant and accelerator can be the conventional amount in the art.
  • Adjuvants may include softeners used to improve processability.
  • the softener can be a petroleum-based softener such as aromatic oil, processing oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt and petrolatum, etc., or a fatty oil-based softener such as castor oil, linseed oil, rapeseed oil, coconut Oils, waxes (such as beeswax, carnauba wax and lanolin), tall oil, linoleic acid, palmitic acid, stearic acid and lauric acid, etc.
  • Auxiliaries can also include active agents, such as zinc oxide, which can accelerate the vulcanization speed, improve the thermal conductivity, wear resistance, tear resistance and the like of the rubber.
  • a total of 5-20 parts by mass of adjuvants is used per 100 parts by mass of diene elastomer, for example, 2-8 parts by mass of aromatic oil, 2-8 parts by mass of zinc oxide and 1-4 parts by mass of hardener can be used fatty acid.
  • Accelerators are usually vulcanization accelerators, which can be sulfonamides, thiazoles, thiurams, thioureas, guanidines, dithiocarbamates, aldehyde amines, aldehyde ammonia, imidazoline and xanthogen At least one of acid-based vulcanization accelerators.
  • the accelerator may be the accelerator NS (N-tert-butyl-2-benzothiazole sulfenamide). Typically, 0.5-1.5 parts by mass of the accelerator is used per 100 parts by mass of the diene elastomer.
  • plasticizers such as DMP (dimethyl phthalate), DEP (diethyl phthalate), DBP (dibutyl phthalate) can also be used in the rubber composition , DHP (diheptyl phthalate), DOP (dioctyl phthalate), DINP (diisononyl phthalate), DIDP (diisodecyl phthalate), BBP (o- butylbenzyl phthalate), DWP (dilauryl phthalate) and DCHP (dicyclohexyl phthalate) and the like.
  • the amount of the plasticizer is the conventional amount in the art.
  • the unvulcanized rubber of the present invention can be prepared by a conventional rubber mixing method, for example, a two-stage mixing method is used to prepare: one-stage internal mixer mixing, mixing diene elastomer, reinforcing filler, auxiliary agent and anti-aging agent, and degumming
  • a two-stage mixing method is used to prepare: one-stage internal mixer mixing, mixing diene elastomer, reinforcing filler, auxiliary agent and anti-aging agent, and degumming
  • the temperature is above 110 °C; the two-stage open mill is mixed, and the glue obtained in the first stage is mixed with the cross-linking agent and accelerator.
  • the diene elastomer is first added to a thermomechanical mixer (such as an internal mixer), and after kneading for a certain period of time, the reinforcing filler, auxiliary agent, and anti-aging agent are added, and the kneading is continued until the mixing is uniform, and the reinforcing filler, auxiliary agent, and anti-aging agent are added.
  • a thermomechanical mixer such as an internal mixer
  • the temperature during kneading is controlled between 110°C and 190°C, preferably between 150°C and 160°C; then, the mixture is cooled to below 100°C, crosslinking agent and accelerator are added, kneaded again, and kneaded During the period, the temperature is controlled below 110°C, such as about 70°C, to obtain unvulcanized rubber.
  • the unvulcanized rubber of the present invention can be vulcanized by a conventional vulcanization method to obtain a vulcanized rubber;
  • the vulcanization temperature is usually 130 °C-200 °C, such as about 145 °C;
  • the vulcanization time depends on the vulcanization temperature, vulcanization system and vulcanization kinetics, usually 15 -60 minutes, like 30 minutes or so.
  • the unvulcanized rubber obtained by kneading can be subjected to conventional tableting prior to vulcanization.
  • the compound I and the rubber composition of the present invention are used in rubber products, especially rubber tires. Compared with conventional antioxidants, they can endow the rubber products or rubber tires with better thermal-oxidative fatigue aging and long-term protection properties, as well as stronger anti-aging properties. Discoloration resistance. Accordingly, the present invention also provides a rubber article comprising the rubber composition described herein. Rubber products can be tires, rubber shoes, weather strips, sound insulation boards, shock pads, etc. In certain embodiments, the rubber article is a tire, such as a tire tread, belt, and sidewall. The belt layer of the tire, in addition to the rubber composition of the present invention, may also contain reinforcing materials conventionally used in the art. The present invention also provides the use of the compounds of formula I according to the invention for improving the oxidation resistance and/or discoloration resistance of rubber.
  • Toluene solution (0.35mol 4-(1,3-dimethyl)butylamino-aniline was dissolved in 80mL of toluene, and the dropwise addition was completed in about 30min), after the dropwise addition, the reaction system was heated to 10 ° C, and NaOH aqueous solution was slowly added dropwise ( 13g was dissolved in 40ml of water and added dropwise in 30min), the reaction was continued to stir for 2 hours, left to stand for stratification, the aqueous phase was separated, the organic phase was washed three times, and then 4g of anhydrous sodium sulfate was added and dried to obtain an intermediate solution. ;
  • Toluene solution (0.35mol 4-(1,3-dimethyl)butylamino-aniline was dissolved in 80mL of toluene, and the dropwise addition was completed in about 30min), after the dropwise addition, the reaction system was heated to 10 ° C, and NaOH aqueous solution was slowly added dropwise ( 13g was dissolved in 40ml of water and added dropwise in 30min), the reaction was continued to stir for 2 hours, left to stand for stratification, the aqueous phase was separated, the organic phase was washed three times, and then 6g of anhydrous sodium sulfate was added and dried to obtain an intermediate solution. ;
  • the obtained rubber composition is calendered into a sheet shape (with a thickness of 2-3 mm), and then vulcanized.
  • the vulcanization temperature is 145° C. and the time is 30 minutes.
  • N550 Cabot Corporation Carbon Black N550
  • Aromatic oil general reagent of Shanghai Titan Technology Co., Ltd.;
  • Stearic acid general reagent stearic acid (AR) of Shanghai Titan Technology Co., Ltd.;
  • Zinc oxide general reagent zinc oxide (AR) of Shanghai Titan Technology Co., Ltd.;
  • NS Sennics Technology Co., Ltd. vulcanization accelerator NS;
  • Compound I-1 the compound synthesized in Example 1;
  • Compound I-7 The compound synthesized in Example 7.
  • Test Example 1 Test case 2 Test case 3 Test Example 4 SCR5 50.0 50.0 50.0 BR 50.0 50.0 50.0 50.0 N550 50.0 50.0 50.0 50.0 Aromatic oil 5.0 5.0 5.0 5.0 5.0 Zinc oxide 5.0 5.0 5.0 5.0 Stearic acid 2.0 2.0 2.0 2.0 6PPD 2.5 Compound I-1 2.5 Compound I-4 2.5 Compound I-7 2.5 NS 0.8 0.8 0.8 0.8 S 1.5 1.5 1.5 1.5 total 166.8 166.8 166.8 166.8 166.8 166.8
  • the oxidation resistance and discoloration resistance of the vulcanized rubber sheets of Test Examples 1 to 4 were evaluated according to the following methods.
  • the vulcanized film was aged for 24h and 48h in a hot air aging box at a temperature of 100°C.
  • GB/T528-1992 “Determination of Tensile Properties of Vulcanized Rubber and Thermoplastic Rubber”
  • the tensile strength and elongation at break before and after aging were measured, and the calculation
  • Tensile product (the product of tensile strength and elongation at break) retention rate according to GB/T529-1999 "Determination of Tear Strength of Vulcanized Rubber or Thermoplastic Rubber”
  • measure the tear strength before and after aging calculate the tear strength retention rate, The higher the retention rate, the better the stability and the stronger the antioxidant capacity.
  • the test results are shown in Figures 1 and 2.
  • the total color difference ⁇ E* between the test example 1 containing the antioxidant 6PPD and the blank sample is the largest, reaching 11.08, the color difference is very large, and the discoloration resistance is poor; while the compounds I-1 and I-4 contain The absolute value of the total color difference ⁇ E* between the three test cases of I-7 and the blank sample is very small, all within the range of 0 to 0.5, which are small and acceptable, and have strong discoloration resistance.
  • the experimental results show that the discoloration resistance of the novel antioxidant of the present invention is better than that of the traditional antioxidant 6PPD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种新型对苯二胺类化合物、其制备方法及应用。该化合物具有下式I所示的结构,其中,R1为C4~C16的直链或支链烷基,R2为C3~C10的直链或支链烷基、C3~C10环烷基、苯基或C3~C10烷基取代的苯基。该化合物可以提供比常规防老剂更好的耐热氧疲劳老化和长效防护性能,以及更强的耐变色能力。该化合物可作为添加剂用于塑料、弹性体、润滑油等,可以延缓使用过程中由于氧气、臭氧、重复机械作用等引起的降解趋势。

Description

新型对苯二胺类化合物、其制备方法及应用 技术领域
本发明属于防老剂领域,具体涉及新型对苯二胺类化合物及其制备方法和应用。
背景技术
目前,橡胶制品尤其是轮胎中通常使用对苯二胺类化合物作为抗老化剂,包括二烷基对苯二胺、烷基芳基对苯二胺和二芳基对苯二胺,使用最广泛的防老剂是6PPD(N-(1,3-二甲基丁基)-N′-苯基对苯二胺),其他还有IPPD(N-异丙基-N′-苯基对苯二胺)、77PD(N,N′-双(1,4-二甲基戊基)对苯二胺)、DTPD(二苯基对苯二胺、二(甲苯基)对苯二胺和苯基甲苯基对苯二胺的混合物)等。
广泛使用的橡胶防老剂6PPD分子量比较小,橡胶制品或轮胎使用过程中防老剂很快迁移至表面,进而导致轮胎表面污染变色;防老剂DTPD为二芳基对苯二胺,作为公认的长效性后效性防老剂,防老化性能比较持久,但是与橡胶相容性较差,用量大导致喷霜。近年来,用户对轮胎的抗老化持久性和表面变色关注度越来越高,因此,本领域亟需一种比现有产品具有更加长效老化防护功效而且耐变色的化合物。
发明内容
本发明设计合成具有下式I结构的化合物,该化合物既含有擅长清除自由基的对苯二胺结构,又含有两个长链烷基增强与橡胶的相容性,而且具有物理屏蔽作用,对不饱和橡胶的氧化及弯曲疲劳劣化具有延缓作用。本发明发现,该化合物可以提供比常规防老剂更好的耐热氧疲劳老化和长效防护性能,以及更强的耐变色能力。该化合物可作为添加剂用于塑料、弹性体、润滑油等,可以延缓使用过程中由于氧气、臭氧、重复机械作用等引起的降解趋势。
具体而言,本发明提供下式I化合物:
Figure PCTCN2020132058-appb-000001
其中,R 1为C4~C16的直链或支链烷基,R 2为C3~C10的直链或支链烷基、C3~C10环烷基、苯基或C3~C10烷基取代的苯基。
在一个或多个实施方案中,式I化合物中,R 1为正丁基、叔丁基、正己基、异己基、叔辛基、正十二烷基、正十四烷基或正十六烷基。
在一个或多个实施方案中,式I化合物中,R 1为C4~C12的直链或支链烷基。
在一个或多个实施方案中,式I化合物中,R 1为叔丁基、叔辛基或正十二烷基。
在一个或多个实施方案中,式I化合物中,R 2为C3~C10的支链烷基。
在一个或多个实施方案中,式I化合物中,R 2为异丙基、1,3-二甲基丁基、1,4-二甲基戊基、环己基或苯基。
在一个或多个实施方案中,式I化合物中,R 2为C3~C7的支链烷基、C3~C7环烷基或苯基。
在一个或多个实施方案中,式I化合物中,R 2为异丙基、1,3-二甲基丁基、1,4-二甲基戊基或苯基。
在一个或多个实施方案中,所述式I化合物选自:
Figure PCTCN2020132058-appb-000002
Figure PCTCN2020132058-appb-000003
Figure PCTCN2020132058-appb-000004
本发明还提供一种制备本发明任一实施方案所述的式I化合物的方法,包括:
(1)使三聚氯氰与下式所示的化合物A反应,制得下式所示的中间体M:
Figure PCTCN2020132058-appb-000005
(2)使中间体M与R 1NH 2反应,制得式I化合物:
Figure PCTCN2020132058-appb-000006
其中,R 1和R 2如本发明任一实施方案所定义。
在一个或多个实施方案中,所述方法具有以下一项或多项特征:
步骤(1)中添加的化合物A的物质的量为步骤(1)中添加的三聚氯氰的物质的量的100%~120%;
步骤(1)在碱液的存在下进行;和
步骤(1)的反应温度为-5~10℃。
在一个或多个实施方案中,所述碱液选自碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液、氢氧化钾溶液、三乙胺、三异丙胺、N-异丙基二乙胺和N,N-二异丙基乙胺等中的一种或多种,优选选自碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液和氢氧化钾溶液中的一种或多种。
在一个或多个实施方案中,化合物A选自N-苯基对苯二胺、N-异丙基对苯二胺、N-环己基对苯二胺,N-(1,3-二甲基)丁基对苯二胺和N-(1,4-二甲基)戊基对苯二胺。
在一个或多个实施方案中,所述方法具有以下一项或多项特征:
步骤(2)中添加的R 1NH 2的物质的量为步骤(2)中添加的中间体M的物质的量的400%~480%;和
步骤(2)的反应温度为60~150℃。
在一个或多个实施方案中,R 1NH 2为正丁胺、叔丁胺、正己胺、异己胺、叔辛胺、十二胺、十四胺或十六胺。
本发明还提供一种橡胶组合物,所述橡胶组合物含有本发明任一实施方案所述的式I化合物。
本发明还提供一种橡胶制品,所述橡胶制品含有本发明任一实施方案所述的橡胶组合物;优选地,所述橡胶制品为轮胎。
本发明还提供本发明任一实施方案所述的式I化合物在提高橡胶或橡胶制品的抗氧化性能和/或耐变色性能中的用途;优选地,所述橡胶制品为轮胎。
附图说明
图1为测试例1-4的硫化橡胶片的老化前后抗张积保持率。
图2为测试例1-4的硫化橡胶片的老化前后撕裂强度保持率。
图3为用于色差评判的Lab颜色模型示意图。
具体实施方式
为使本领域技术人员可了解本发明的特点及效果,以下仅就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。
在本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为 已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。
本文中,烷基是指直链或支链单价饱和烃基,通常含有1~16个碳原子(C1~C16烷基),例如含有3~16个碳原子(C3~C16烷基)。烷基的例子包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正己基、异己基、1,3-二甲基丁基、1,4-二甲基戊基、叔辛基、正十二烷基、正十四烷基或正十六烷基。
本文中,环烷基是指单价饱和烃环,通常含有3~10个碳原子(C3~C10环烷基),例如含有3~8个碳原子(C3~C8环烷基)。环烷基的例子包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、环辛基和金刚烷基。本文中,环烷基可任选地被烷基取代,环烷基上的烷基取代基的数量可以是1或2个。
本发明发现具有如下式I所示结构的化合物既含有擅长清除自由基的对苯二胺结构,又含有两个长链烷基增强与橡胶的相容性,而且具有主要由长链烷基带来的物理屏蔽作用,对不饱和橡胶的氧化及弯曲疲劳劣化具有延缓作用,可以提供比常规防老剂更好的耐热氧疲劳老化和长效防护性能,以及更强的耐变色能力:
Figure PCTCN2020132058-appb-000007
其中,R 1为C4~C16的直链或支链烷基,R 2为C3~C10的直链或支链烷基、C3~C10环烷基、苯基或C3~C10烷基取代的苯基。
在某些实施方案中,式I化合物中,R 1为正丁基、叔丁基、正己基、异己基、叔辛基、正十二烷基、正十四烷基或正十六烷基。
在某些实施方案中,式I化合物中,R 1为C4~C12的直链或支链烷基,例如包括但不限于叔丁基、叔辛基或正十二烷基。在一些实施方案中,式I化合物中,R 1为C4~C8的支链烷基,例如叔丁基或叔辛基。
在某些实施方案中,式I化合物中,R 2为C3~C10的支链烷基。
在某些实施方案中,式I化合物中,R 2为异丙基、1,3-二甲基丁基、1,4-二甲基戊基、环己基或苯基。
在某些实施方案中,式I化合物中,R 2为C3~C7的支链烷基、C3-C7环烷基或苯基。在某些实施方案中,式I化合物中,R 2为C3~C7的支链烷基或苯基,例如包括但不限于异丙基、1,3-二甲基丁基、1,4-二甲基戊基或苯基。在一些实施方案中,式I化合物中,R 2为C3~C7的支链烷基,例如异丙基、1,3-二甲基丁基或1,4-二甲基戊基。在一些实施方案中,式I化合物中,R 2为异丙基。在一些实施方案中,式I化合物中,R 2为1,3-二甲基丁基或1,4-二甲基戊基。
本发明发现,一般而言,式I化合物中,R 1、R 2链越长柔性越好,撕裂强度保持率越高。因此,在一些优选的实施方案中,式I化合物中,R 1为C8~C12的直链或支链烷基,例如叔辛基或正十二烷基;和/或,R 2为C6~C7的支链烷基,例如1,3-二甲基丁基或1,4-二甲基戊基。
在某些实施方案中,式I化合物选自:
Figure PCTCN2020132058-appb-000008
Figure PCTCN2020132058-appb-000009
在一些实施方案中,式I化合物选自:
Figure PCTCN2020132058-appb-000010
Figure PCTCN2020132058-appb-000011
本发明的制备式I化合物的方法,包括:
(1)使三聚氯氰与下式所示的化合物A反应,制得下式所示的中间体M,其中,R 2为C3~C10的直链或支链烷基、C3~C10环烷基、苯基或C3~C10烷基取代的苯基:
Figure PCTCN2020132058-appb-000012
(2)使中间体M与R 1NH 2反应,制得式I化合物,其中,R 1为C4~C16的直链或支链烷基:
Figure PCTCN2020132058-appb-000013
其中,化合物A中优选的R 2和R 1NH 2中优选的R 1可以如本文任一实施方案所述。
步骤(1)中,以三聚氯氰(TCT)和化合物A(N-R 2对苯二胺,例如N-烷基对苯二胺或N-芳基对苯二胺)反应制备中间体M。步骤(1)中,优选使用过量的化合物A。相对于添加的TCT而言,添加的化合物A优选过量不超过20%,即添加的化合物A的物质的量优选为添加的TCT的物质的量的100%~120%。在一些实施方案中,相对于添加的TCT而言,添加的化合物A过量10~20%,即添加的化合物A的物质的量为添加的TCT的物质的量的110%~120%。可以理解的是,本文中,某一原料X相对于另一原料Y过量一 定的百分比值是指添加的原料X的物质的量与理论上与添加的原料Y(或原料Y在反应中生成的物质)恰好完全反应所需的原料X的物质的量相比超出的百分比值。
在一些实施方案中,步骤(1)中使用的化合物A选自N-苯基对苯二胺、N-异丙基对苯二胺、N-环己基对苯二胺、N-(1,3-二甲基)丁基对苯二胺或N-(1,4-二甲基)戊基对苯二胺。
步骤(1)中,以碱液作为缚酸剂,中和反应中产生的HCl,即步骤(1)的反应在碱液的存在下进行。适用于本发明的碱液不受特别限制,例如可以是碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液、氢氧化钾溶液、三乙胺、三异丙胺、N-异丙基二乙胺和N,N-二异丙基乙胺等中的一种或多种。可以理解的是,本文中,碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液、氢氧化钾溶液分别指的是碳酸钠、氢氧化钠、碳酸钾、氢氧化钾的水溶液。在一些实施方案中,碱液为选自碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液和氢氧化钾溶液中的一种或多种。步骤(1)中可以添加过量的碱液,例如碱液中的碱相对于TCT而言可以过量20%以下或10%以下。本发明中,当使用无机碱的水溶液(例如碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液和氢氧化钾溶液)作为碱液时,碱液的浓度通常为20wt%~50wt%。
本发明中,步骤(1)和步骤(2)的反应在非极性溶剂中进行。应当理解的是,本文中,非极性溶剂包括无极性溶剂和极性较弱的溶剂。适用于本发明的非极性溶剂可以选自甲苯、二甲苯、三甲苯、氯苯、甲基环己烷、二氯苯、三氯苯、二甲基环己烷和三甲基环己烷中的一种或多种。在一些实施方案中,本发明使用甲苯、二甲苯或其混合物作为溶剂。
步骤(1)的反应温度控制在-5~10℃。优选地,步骤(1)中先添加化合物A,再添加碱液。优选地,在-5~0℃下添加化合物A。优选地,在0~10℃下加入碱液和继续反应。优选地,缓慢地添加化合物A和碱液。优选地,以化合物A或碱液中的碱的物质的量计,化合物A和碱液的添加速度不超过0.015mol/分钟,例如在0.01mol/分钟到0.015mol/分钟之间,例如当使用0.3~0.4mol的化合物A和碱液时,可分别通过约30分钟加入化合物A和碱液。优选的实施方 案中,步骤(1)中,先在-5~0℃下将化合物A缓慢添加到TCT和溶剂的混合物中,加完后,反应体系升温至0~10℃,再缓慢加入碱液,继续反应。可以根据需要,将化合物A溶解在溶剂中后再加到TCT和溶剂的混合物中。步骤(1)中,加入碱液后,优选继续反应2~3小时。反应结束后,可进行常规的纯化,例如可进行分相、水洗、干燥,得到中间体M的溶液。
步骤(2)中,中间体M再和烷基伯胺(R 1NH 2)反应制备化合物I。步骤(2)使用过量的R 1NH 2作为缚酸剂。相对于添加的中间体M而言,添加的R 1NH 2优选过量不超过120%,即添加的R 1NH 2的物质的量优选不超过添加的中间体M的物质的量的480%。在一些实施方案中,相对于添加的中间体M而言,添加的R 1NH 2过量100~120%,即添加的R 1NH 2的物质的量为添加的中间体M的物质的量的400~480%。
在一些实施方案中,步骤(2)中使用的R 1NH 2选自正丁胺、叔丁胺、正己胺、异己胺、叔辛胺、十二胺(正十二烷基伯胺)、十四胺(正十四烷基伯胺)或十六胺(正十六烷基伯胺)。
步骤(2)的反应温度优选为60~150℃。可通过取样检测是否还存在中间M来判断反应是否完全。步骤(2)的反应时间通常为3~6小时。步骤(2)的反应优选在密闭容器中进行,例如可在高压釜中进行。步骤(2)反应结束后,可进行常规的纯化,例如用碱液中和、水洗,有机相蒸馏回收溶剂及过量的R 1NH 2,得到目标化合物(式I化合物)。
本发明的式I化合物可为橡胶组合物提供比常规防老剂更好的耐热氧疲劳老化和长效防护性能,以及更强的耐变色能力。因此,本发明还提供一种橡胶组合物,所述橡胶组合物含有本文所述的式I化合物中的一种或多种。
橡胶组合物的原料通常包括二烯弹性体、增强填料、防老剂和交联剂。本发明的橡胶组合物中,二烯弹性体、增强填料、防老剂和交联剂的用量可以是本领域的常规用量。以100质量份二烯弹性体为基准,橡胶组合物中,式I化合物的用量可以为0.1-5质量份,例如0.5-5质量份、2-3质量份、2.5质量份左右。本文中,橡胶组合物包括未硫化胶和硫化橡胶。未硫化胶经过硫化(固化)即可制得硫化橡胶。
二烯弹性体是指单体包含二烯烃(如丁二烯、异戊二烯)的弹性体。适用于本发明的二烯弹性体可以是本领域已知的各种二烯弹性体,包括但不限于选自天然橡胶(NR)、顺丁橡胶(BR)、异戊橡胶、丁苯橡胶(SBR)、氯丁橡胶(CR)、丁腈橡胶(NBR)、异戊二烯/丁二烯共聚物、异戊二烯/苯乙烯共聚物和异戊二烯/丁二烯/苯乙烯共聚物中的一种或多种。在某些实施方案中,本发明的橡胶组合物中,二烯弹性体由天然橡胶(如SCR5)和顺丁橡胶(如BR9000)组成;天然橡胶和顺丁橡胶的质量比不受特别限制,例如为1:9到9:1、2:8到8:2、3:7到7:3、4:6到6:4、或1:1左右。
增强填料可以是常规用于橡胶的增强填料,包括但不限于选自炭黑、氧化钛、氧化镁、碳酸钙、碳酸镁、氢氧化铝、氢氧化镁、粘土和滑石中的一种或多种。在一些实施方案中,本发明的橡胶组合物中的增强填料为炭黑。增强填料的用量可以是每100质量份的二烯弹性体使用40-60质量份的增强填料。
交联剂可以是硫磺。交联剂的用量可以是每100质量份的二烯弹性体使用1-3质量份的交联剂。
本发明的橡胶组合物除了包含本发明的式I化合物以外,还可以任选地包含本领域已知的其他防老剂(例如6PPD、IPPD、77PD、DTPD等)。当本发明的橡胶组合物包含本发明的式I化合物和其他防老剂时,以100质量份二烯弹性体为基准,橡胶组合物中,式I化合物和其他防老剂的总用量通常为0.1-5质量份,例如0.5-5质量份、2-3质量份等;式I化合物和其他防老剂之间的用量比可以根据性能需要确定。
橡胶组合物的原料还可包括其它常用于橡胶的成分,包括但不限于助剂和促进剂等。助剂和促进剂的用量可以是本领域的常规用量。
助剂可以包括为了改善加工性而使用的软化剂。软化剂可以为石油类软化剂如芳烃油、加工油、润滑油、石蜡、液体石蜡、石油沥青和凡士林等,也可以为脂肪油类软化剂如蓖麻油、亚麻籽油、菜籽油、椰子油、蜡(如蜂蜡、巴西棕榈蜡和羊毛脂)、妥尔油、亚油酸、棕榈酸、硬脂酸和月桂酸等。助剂还可以包括活性剂,例如氧化锌,可以起到加快硫化速度、提高橡胶导热性、耐磨性、耐撕裂性等作用。通常,每100质量份的二烯弹性体使用总计5-20质 量份的助剂,例如可使用2-8质量份的芳烃油、2-8质量份的氧化锌和1-4质量份的硬脂酸。
促进剂通常为硫化促进剂,可以为磺胺类、噻唑类、秋兰姆类、硫脲类、胍类、二硫代氨基甲酸盐类、醛胺类、醛氨类、咪唑啉类和黄原酸类硫化促进剂的至少一种。例如,促进剂可以是促进剂NS(N-叔丁基-2-苯并噻唑次磺酰胺)。通常,每100质量份的二烯弹性体使用0.5-1.5质量份的促进剂。
另外,在需要时,橡胶组合物中还可使用增塑剂,例如DMP(邻苯二甲酸二甲酯)、DEP(邻苯二甲酸二乙酯)、DBP(邻苯二甲酸二丁酯)、DHP(邻苯二甲酸二庚酯)、DOP(邻苯二甲酸二辛酯)、DINP(邻苯二甲酸二异壬酯)、DIDP(邻苯二甲酸二异癸酯)、BBP(邻苯二甲酸丁基苄基酯)、DWP(邻苯二甲酸二月桂酯)和DCHP(邻苯二甲酸二环己酯)等。增塑剂的用量为本领域的常规用量。
可采用常规的橡胶混炼方法制备本发明的未硫化胶,例如采用两段混炼方式进行制备:一段密炼机混炼,混合二烯弹性体、增强填料、助剂和防老剂,排胶温度110℃以上;二段开炼机混炼,混炼一段得到的胶与交联剂和促进剂。通常,先向热机械混合器(如密炼机)中加入二烯弹性体,捏合一定时间后,加入增强填料、助剂、防老剂,继续捏合直至混合均匀,增强填料、助剂、防老剂可以分批加入,捏合期间温度控制在110℃至190℃之间,优选在150℃至160℃之间;然后,将混合物冷却至100℃以下,加入交联剂和促进剂,再次捏合,捏合期间温度控制在110℃以下,如70℃左右,得到未硫化胶。
可采用常规的硫化方法对本发明的未硫化胶进行硫化,得到硫化橡胶;硫化温度通常为130℃-200℃,如145℃左右;硫化时间取决于硫化温度、硫化体系和硫化动力学,通常为15-60分钟,如30分钟左右。在硫化前可先对捏合得到的未硫化胶进行常规的压片。
本发明的化合物I和橡胶组合物用于橡胶制品、尤其橡胶轮胎中,相比常规防老剂,可赋予橡胶制品或橡胶轮胎更好的耐热氧疲劳老化和长效防护性能,以及更强的耐变色能力。因此,本发明还提供一种橡胶制品,所述橡胶制品含有本文所述的橡胶组合物。橡胶制品可以是轮胎、胶鞋、密封条、隔音板、止 震垫等。在某些实施方案中,橡胶制品为轮胎,例如轮胎的胎面、带束层和胎侧。轮胎的带束层,除本发明的橡胶组合物外,还可含有本领域常规使用的增强材料。本发明还提供本发明的式I化合物在提高橡胶的抗氧化性能和/或耐变色性能中的用途。
下文将以具体实施例的方式阐述本发明。应理解,这些实施例仅仅是阐述性的,并非意图限制本发明的范围。实施例中所用到的方法、试剂和材料,除非另有说明,否则为本领域常规的方法、试剂和材料。制备例中的原料化合物均可通过市售途径购得。
实施例1:2-(4-异丙胺基)苯胺-4,6-二叔丁胺-1,3,5-三嗪(化合物I-1)
Figure PCTCN2020132058-appb-000014
(1)1L的三口烧瓶中加入60g三聚氯氰(TCT)(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入43g 4-异丙胺基苯胺的甲苯溶液(0.32mol 4-异丙胺基苯胺溶于100mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后反应体系分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L高压釜中,加入92.2g(1.28mol)叔丁胺,密闭升温至70℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-1)。
1H-NMR(300MHz,CDCl 3)δ7.19-7.17(m,2H),6.57(s,1H),6.47(d,J=6Hz,2H),4.93(s,2H),3.58-3.46(m,1H),1.34(s,18H),1.12(d,J=6Hz,6H).
实施例2:2-(4-苯胺基)苯胺-4,6-二叔丁胺-1,3,5-三嗪(化合物I-2)
Figure PCTCN2020132058-appb-000015
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入64.4g 4-苯胺基苯胺的甲苯溶液(0.35mol 4-苯胺基苯胺溶于120mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌3小时,结束后静置分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L高压釜中,加入92.2g(1.28mol)叔丁胺,密闭升温至70℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-2)。
1H-NMR(300MHz,CDCl 3)δ7.45-7.38(m,2H),7.33-7.23(m,2H),7.14-6.99(m,6H),6.97-6.86(m,1H),5.70-5.64(m,2H),1.46(s,18H).
实施例3:2-(4-(1,3-二甲基)丁胺基)苯胺-4,6-二叔丁胺-1,3,5-三嗪(化合物I-3)
Figure PCTCN2020132058-appb-000016
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入67.2g 4-(1,3-二甲基)丁胺基-苯胺的甲苯溶液(0.35mol 4-(1,3-二甲基)丁胺基-苯胺溶于80mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后静置分层,分去水相,有机相水洗三次,然后加入4g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L高压釜中,加入92.2g(1.28mol)叔丁胺,密闭升温至70℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH 溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-3)。
1H-NMR(300MHz,CDCl 3)δ7.19-7.15(m,2H),6.77(s,1H),6.46(d,J=6Hz,2H),4.82(s,2H),3.42-3.36(m,1H),1.71-1.63(m,1H),1.32(s,18H),1.18-1.12(m,2H),1.06(d,J=6Hz,3H),0.87-0.82(m,6H).
实施例4:2-(4-(1,4-二甲基)戊胺基)苯胺-4,6-二叔丁胺-1,3,5-三嗪(化合物I-4)
Figure PCTCN2020132058-appb-000017
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入72.1g 4-(1,4-二甲基)戊胺基-苯胺的甲苯溶液(0.35mol 4-(1,4-二甲基)戊胺基-苯胺溶于80mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后静置分层,分去水相,有机相水洗三次,然后加入8g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L高压釜中,加入92.2g(1.28mol)叔丁胺,密闭升温至70℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-4)。
1H-NMR(300MHz,CDCl 3)δ7.19-7.16(m,2H),6.55(s,1H),6.45(d,J=6Hz,2H),4.88(s,2H),3.33-3.29(m,1H),1.54-1.42(m,3H),1.35(s,18H),1.23-1.14(m,2H),1.08(d,J=6Hz,3H),0.83-0.80(m,6H).
实施例5:2-(4-异丙胺基)苯胺-4,6-二叔辛胺-1,3,5-三嗪(化合物I-5)
Figure PCTCN2020132058-appb-000018
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入43g 4-异丙胺基苯胺的甲苯溶液(0.32mol 4-异丙胺基苯胺溶于100mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后反应体系分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L四口瓶中,加入192g(1.28mol)叔辛胺,升温至90~100℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-5)。
1H-NMR(300MHz,CDCl 3)δ7.30-7.27(m,2H),6.56(d,J=6Hz,2H),4.98(s,2H),3.77-3.71(m,2H),2.20(s,1H),1.90(s,4H),1.49(s,12H),1.28-1.21(m,6H),1.04(s,18H).
实施例6:2-(4-苯胺基)苯胺-4,6-二叔辛胺-1,3,5-三嗪(化合物I-6)
Figure PCTCN2020132058-appb-000019
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入64.4g 4-苯胺基苯胺的甲苯溶液(0.35mol 4-苯胺基苯胺溶于120mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后静置分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L四口烧瓶中,加入192g(1.28mol)叔辛胺,升温至110~120℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-6)。
1H-HMR(300MHz,CDCl 3)δ7.44-7.36(m,2H),7.34-7.21(m,3H),7.12-6.99(m,4H),6.97-6.88(m,1H),5.68-5.66(m,2H)1.51(s,12H),1.07-1.05(m,4H),1.03(s,18H).
实施例7:2-(4-(1,3-二甲基)丁胺基)苯胺-4,6-二叔辛胺-1,3,5-三嗪(化合物I-7)
Figure PCTCN2020132058-appb-000020
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入67.2g 4-(1,3-二甲基)丁胺基-苯胺的甲苯溶液(0.35mol 4-(1,3-二甲基)丁胺基-苯胺溶于80mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后静置分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L四口烧瓶中,加入192g(1.28mol)叔辛胺,升温至100~110℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-7)。
1H-NMR(300MHz,CDCl 3)δ7.20-7.15(m,2H),6.45(d,J=6Hz,2H),4.84(s,2H),3.34-3.26(m,1H),1.80(s,3H),1.51-1.43(m,1H),1.38(s,12H),1.23-1.15(m,2H),1.09(d,J=6Hz,4H),0.92(s,18H)0.82-0.81(m,6H).
实施例8:2-(4-(1,4-二甲基)戊胺基)苯胺-4,6-二叔辛胺-1,3,5-三嗪(化合物I-8)
Figure PCTCN2020132058-appb-000021
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入72.1g 4-(1,4-二甲基)戊胺基-苯胺的甲苯溶液(0.35mol 4-(1,4-二甲基)戊胺基溶于80mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后静置分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L四口烧瓶中,加入192g(1.28mol)叔辛胺,升温至100~110℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-8)。
1H-NMR(300MHz,CDCl 3)δ7.20(s,2H),7.15(s,1H),6.46(d,J=6Hz,2H),4.90(s,2H),3.45-3.40(m,1H),1.80(s,4H),1.73-1.63(m,2H),1.38(s,12H),1.20-1.14(m,2H),1.07(d,J=6Hz,4H),0.92(s,18H)0.88-0.84(m,6H).
实施例9:2-(4-异丙胺基)苯胺-4,6-二(十二胺)-1,3,5-三嗪(化合物I-9)
Figure PCTCN2020132058-appb-000022
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入43g 4-异丙胺基苯胺的甲苯溶液(0.32mol 4-异丙胺基苯胺溶于100mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅 拌2小时,结束后反应体系分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L反应釜中,加入235.5g(1.28mol)十二胺,升温120~130℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-9)。
1H-NMR(300MHz,DMSO-d 6)δ8.43-8.17(m,1H),7.39(d,J=18Hz,2H),6.53(d,J=18Hz,2H),4.90(s,1H),3.46(s,1H),3.19(s,4H),1.51(s,4H),1.25(s,40H),1.11(d,J=6Hz,6H),0.87-0.84(m,6H).
实施例10:2-(4-苯胺基)苯胺-4,6-二(十二胺)-1,3,5-三嗪(化合物I-10)
Figure PCTCN2020132058-appb-000023
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入64.4g 4-苯胺基苯胺的甲苯溶液(0.35mol 4-苯胺基苯胺溶于120mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后反应体系分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L反应釜中,加入235.5g(1.28mol)十二胺,升温130~140℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-10)。
1H-HMR(300MHz,CDCl 3)δ7.52-7.50(m,2H),7.32-7.22(m,2H),7.1-6.97(m,4H),6.92-6.85(m,1H),5.67-5.67(m,2H),5.04-5.08(m,2H),3.39(s,4H),1.28(s,36H),0.95-0.86(m,10H).
实施例11:2-(4-(1,3-二甲基)丁胺基)苯胺-4,6-二(十二胺)-1,3,5-三嗪(化合物I-11)
Figure PCTCN2020132058-appb-000024
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入67.2g 4-(1,3-二甲基)丁胺基-苯胺的甲苯溶液(0.35mol 4-(1,3-二甲基)丁胺基-苯胺溶于80mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min滴加完毕),反应继续搅拌2小时,结束后反应体系分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L反应釜中,加入235.5g(1.28mol)十二胺,升温130~140℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-11)。
1H-NMR(300MHz,DMSO-d 6)δ8.44-8.12(m,1H),7.38(d,J=18Hz,2H),6.50(d,J=18Hz,2H),4.86(s,1H),3.38(s,1H),3.19(s,4H),1.75-1.72(m,1H),1.49(s,6H),1.25(s,40H),1.05(d,J=6Hz,3H),0.90(d,J=6Hz,3H)0.87-0.84(m,10H).
实施例12:2-(4-(1,4-二甲基)戊胺基)苯胺-4,6-二(十二胺)-1,3,5-三嗪(化合物I-12)
Figure PCTCN2020132058-appb-000025
(1)1L的三口烧瓶中加入60g TCT(0.32mol)和400ml二甲苯,在-5℃的冷却环境下缓慢滴入72.1g 4-(1,4-二甲基)戊胺基-苯胺的甲苯溶液(0.35mol 4-(1,4-二甲基)戊胺基-苯胺溶于80mL甲苯,约30min滴入完毕),滴加完后反应体系升温至10℃,缓慢滴加NaOH水溶液(13g溶解于40ml水,分30min 滴加完毕),反应继续搅拌2小时,结束后反应体系分层,分去水相,有机相水洗三次,然后加入6g无水硫酸钠干燥后过滤得到中间体溶液;
(2)将中间体溶液加入1L反应釜中,加入235.5g(1.28mol)十二胺,升温140~150℃反应4h,取样液相检测,当测不出中间体时,降温;加入NaOH溶液(26g溶解于80g水),搅拌至固体溶解,静置分层,分去水相,有机相水洗三次后减压蒸馏蒸出轻组分,残液冷却固化即为目标产物(化合物I-12)。
1H-NMR(300MHz,DMSO-d 6)δ8.43-8.10(m,1H),7.40(d,J=18Hz,2H),6.56(s,2H),6.43(d,J=18Hz,2H),4.88(s,1H),3.46(s,1H),3.19(s,4H),1.48(s,6H),1.27-1.23(m,44H),1.07(d,J=6Hz,3H),0.93(d,J=6Hz,1H),0.87-0.84(m,10H).
测试例:
根据表1所示的配方制备测试例1-4的混合胶料,进行应用性能测试,具体包含如下步骤:
1、向密炼机中加入天然橡胶SCR5和合成胶BR,捏合一段时间后,加入炭黑N550、芳烃油、氧化锌、硬脂酸和防老剂(6PPD、化合物I-1、化合物I-4或化合物I-7),继续捏合直至混合均匀;捏合期间温度控制在150℃和160℃之间;
2、将整个混合物冷却至100℃以下,然后加入交联体系(硫磺S和促进剂NS),捏合整个混合物;捏合期间控制温度不超过110℃;
3、将所得的橡胶组合物压延为片状(厚度为2-3mm),进行硫化,硫化温度为145℃,时间为30分钟。
表1中各成分的来源如下:
SCR5:西双版纳中化橡胶有限公司天然胶SCR5;
BR:南京扬子石化橡胶有限公司合成胶BR9000;
N550:卡博特公司炭黑N550;
芳烃油:上海泰坦科技股份有限公司通用试剂;
硬脂酸:上海泰坦科技股份有限公司通用试剂硬脂酸(AR);
氧化锌:上海泰坦科技股份有限公司通用试剂氧化锌(AR);
NS:圣奥化学科技有限公司硫化促进剂NS;
S:国药集团化学试剂公司升华硫(AR);
6PPD:圣奥化学科技有限公司防老剂SIRANTOX 6PPD;
化合物I-1:实施例1合成的化合物;
化合物I-4:实施例4合成的化合物;
化合物I-7:实施例7合成的化合物。
表1:橡胶组合物的配方(单位:质量份)
配方 测试例1 测试例2 测试例3 测试例4
SCR5 50.0 50.0 50.0 50.0
BR 50.0 50.0 50.0 50.0
N550 50.0 50.0 50.0 50.0
芳烃油 5.0 5.0 5.0 5.0
氧化锌 5.0 5.0 5.0 5.0
硬脂酸 2.0 2.0 2.0 2.0
6PPD 2.5      
化合物I-1   2.5    
化合物I-4     2.5  
化合物I-7       2.5
NS 0.8 0.8 0.8 0.8
S 1.5 1.5 1.5 1.5
合计 166.8 166.8 166.8 166.8
按照以下的方法评估测试例1-4的硫化橡胶片的抗氧化性能和耐变色性能。
(1)抗氧化性能评估:
硫化后的胶片在温度为100℃热空气老化箱中老化24h和48h,按照GB/T528-1992《硫化橡胶和热塑性橡胶拉伸性能的测定》,测定老化前后拉伸强度和断裂伸长率,计算抗张积(拉伸强度和断裂伸长率的乘积)保持率;按 照GB/T529-1999《硫化橡胶或热塑橡胶撕裂强度测定》,测定老化前后撕裂强度,计算撕裂强度保持率,保持率越高表明其稳定性越好,抗氧化能力越强。试验结果如图1和图2所示。
从图1和图2的试验结果可以看出,老化24h后抗张积保持率略有差异,含化合物I-1的测试例2的抗张积保持率最高,其他测试例差不多;老化48h后含化合物I-7的测试例4的抗张积保持率最高;老化48h后含化合物I-4的测试例3的撕裂强度保持率最高,高于其他测试例。整体来看,本发明的新型防老剂的抗氧化性能优于传统防老剂6PPD。
(2)天候老化变色性能评价:
硫化胶片在自然天候环境中老化三周后,按照ASTM D1729(评定不透明物品色差的标准方法),使用色差测试仪CS-10/200/210/220测定胶片与未添加防老剂的空白样的色差,评判依据如表2和图3所示,其中,L*表示黑白,+表示偏白,-表示偏黑;a*表示红绿,+表示偏红,-表示偏绿;b*表示黄蓝,+表示偏黄,-表示偏蓝;ΔE*表示总色差。测试结果如表3所示。
根据实测数据与评判标准可以看出,含防老剂6PPD的测试例1与空白样的总色差ΔE*最大,达到11.08,色差非常大,耐变色能力差;而含化合物I-1和I-4及I-7的三个测试例与空白样的总色差ΔE*绝对值都很小,都在0~0.5范围内,属于微小、可接受的程度,耐变色能力强。实验结果表明,本发明的新型防老剂的耐变色性能优于传统防老剂6PPD。
表2:色差评判标准
ΔE*范围 色差(容差)
0~0.25 非常小或没有;理想匹配
0.25~0.5 微小;可接受的匹配
0.5~1.0 微小到中等;在一些应用中可接受
1.0~2.0 中等;在特定应用中可接受
2.0~4.0 有差距;在特定应用中可接受
4.0以上 非常大;在大部分应用中不可接受
表3:色差测试结果
Figure PCTCN2020132058-appb-000026

Claims (10)

  1. 下式I化合物:
    Figure PCTCN2020132058-appb-100001
    其中,R 1为C4~C16的直链或支链烷基,R 2为C3~C10的直链或支链烷基、C3~C10环烷基、苯基或C3~C10烷基取代的苯基。
  2. 如权利要求1所述的式I化合物,其特征在于,式I中,R 1为正丁基、叔丁基、正己基、异己基、叔辛基、正十二烷基、正十四烷基或正十六烷基。
  3. 如权利要求1所述的式I化合物,其特征在于,式I中,R 2为异丙基、1,3-二甲基丁基、1,4-二甲基戊基、环己基或苯基。
  4. 如权利要求1所述的式I化合物,其特征在于,式I中,R 1为C4~C12的直链或支链烷基,和/或R 2为C3~C7的支链烷基、C3~C7环烷基或苯基。
  5. 如权利要求1所述的式I化合物,其特征在于,所述式I化合物选自:
    Figure PCTCN2020132058-appb-100002
    Figure PCTCN2020132058-appb-100003
  6. 一种制备权利要求1-5中任一项所述的式I化合物的方法,其特征在于,所述方法包括:
    (1)在碱液的存在下,使三聚氯氰与下式所示的化合物A反应,制得下式所示的中间体M:
    Figure PCTCN2020132058-appb-100004
    (2)使中间体M与R 1NH 2反应,制得式I化合物:
    Figure PCTCN2020132058-appb-100005
    其中,R 1和R 2如权利要求1-4中任一项所定义。
  7. 如权利要求6所述的方法,其特征在于,所述方法具有以下一项或多项特征:
    步骤(1)的反应体系中,化合物A的物质的量为三聚氯氰的物质的量的100%~120%;
    步骤(1)的反应温度为-5~10℃;
    步骤(2)的反应体系中,R 1NH 2的物质的量为中间体M的物质的量的400%~480%;和
    步骤(2)的反应温度为60~150℃。
  8. 一种橡胶组合物,其特征在于,所述橡胶组合物含有权利要求1-5中任一项所述的式I化合物。
  9. 一种橡胶制品,其特征在于,所述橡胶制品含有权利要求8所述的橡胶组合物;优选地,所述橡胶制品为轮胎。
  10. 权利要求1-5中任一项所述的式I化合物在提高橡胶或橡胶制品的抗氧化性能和/或耐变色性能中的用途;优选地,所述橡胶制品为轮胎。
PCT/CN2020/132058 2020-08-28 2020-11-27 新型对苯二胺类化合物、其制备方法及应用 WO2022041528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010886349.5 2020-08-28
CN202010886349.5A CN114105895A (zh) 2020-08-28 2020-08-28 新型对苯二胺类化合物、其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2022041528A1 true WO2022041528A1 (zh) 2022-03-03

Family

ID=80352510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132058 WO2022041528A1 (zh) 2020-08-28 2020-11-27 新型对苯二胺类化合物、其制备方法及应用

Country Status (2)

Country Link
CN (1) CN114105895A (zh)
WO (1) WO2022041528A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536913A (zh) * 2022-10-12 2022-12-30 科迈特新材料有限公司 一种橡胶用耐热耐老化改性剂及其制备方法
CN115739047A (zh) * 2022-11-18 2023-03-07 电子科技大学长三角研究院(湖州) 一种用于从水中去除全氟和多氟烷基物质(pfas)的富氮吸附剂制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334046A (en) * 1965-07-20 1967-08-01 Geigy Chem Corp Compositions stabilized with substituted 1, 3, 5-triazines
US3828002A (en) * 1971-12-27 1974-08-06 Degussa Rubber stabilized with phenylene-diamine-s-triazines
DE2360853A1 (de) * 1973-12-06 1975-06-12 Degussa Stabilisierungsmittel fuer thermoplastische kunststoffe
US3928344A (en) * 1971-12-27 1975-12-23 Degussa Phenylenediamine-s-triazines
JPS51142059A (en) * 1975-05-23 1976-12-07 Asahi Chem Ind Co Ltd A stabilized polyurethane elastomer composition
CN1050871A (zh) * 1987-08-28 1991-04-24 尤尼罗亚尔化学公司 亚芳基二氨基取代的三嗪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303061B (zh) * 2020-04-08 2021-05-11 玛可索(苏州)石化有限公司 芳胺类化合物及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334046A (en) * 1965-07-20 1967-08-01 Geigy Chem Corp Compositions stabilized with substituted 1, 3, 5-triazines
US3828002A (en) * 1971-12-27 1974-08-06 Degussa Rubber stabilized with phenylene-diamine-s-triazines
US3928344A (en) * 1971-12-27 1975-12-23 Degussa Phenylenediamine-s-triazines
DE2360853A1 (de) * 1973-12-06 1975-06-12 Degussa Stabilisierungsmittel fuer thermoplastische kunststoffe
JPS51142059A (en) * 1975-05-23 1976-12-07 Asahi Chem Ind Co Ltd A stabilized polyurethane elastomer composition
CN1050871A (zh) * 1987-08-28 1991-04-24 尤尼罗亚尔化学公司 亚芳基二氨基取代的三嗪

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536913A (zh) * 2022-10-12 2022-12-30 科迈特新材料有限公司 一种橡胶用耐热耐老化改性剂及其制备方法
CN115536913B (zh) * 2022-10-12 2024-04-16 科迈特新材料有限公司 一种橡胶用耐热耐老化改性剂及其制备方法
CN115739047A (zh) * 2022-11-18 2023-03-07 电子科技大学长三角研究院(湖州) 一种用于从水中去除全氟和多氟烷基物质(pfas)的富氮吸附剂制备方法及其应用
CN115739047B (zh) * 2022-11-18 2024-05-03 电子科技大学长三角研究院(湖州) 一种用于从水中去除全氟和多氟烷基物质(pfas)的富氮吸附剂制备方法及其应用

Also Published As

Publication number Publication date
CN114105895A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
JP5573883B2 (ja) ゴム組成物
JP7292561B2 (ja) 抗分解及び抗疲労効力を有する化合物及び前記化合物を含む組成物
WO2022041528A1 (zh) 新型对苯二胺类化合物、其制备方法及应用
JP4598148B2 (ja) スルフェンアミド、このスルフェンアミドを含むゴム用加硫促進剤およびその製造方法
WO2014065438A1 (ja) カーボンブラック
KR20170019354A (ko) 알킬리덴아미노구아니딘 및 그 염, 변성용 조성물, 타이어용 변성 고무, 타이어용 고무 조성물 그리고 타이어
TW201544542A (zh) 橡膠組成物、輪胎、胺化合物及老化防止劑
EP3845591A1 (en) Rubber composition, rubber material, use of same and additive
CN111094428B (zh) 橡胶组合物
US8946325B2 (en) Tire member and method for manufacturing the same
JP7162082B2 (ja) 新規な長時間作用型ゴム老化防止剤およびそれを含むタイヤ用ゴム組成物
TWI834817B (zh) 加硫橡膠組成物
CN103261166A (zh) 含有2,2,4-三甲基-1,2-二氢喹啉聚合物的组合物的制造方法
WO2021088721A1 (zh) 具有抗老化和耐变色功效的化合物及其制备方法
BR112018011508B1 (pt) Misturas de borracha, processo para produzir as misturas de borracha e uso das misturas de borracha
CN110691769B (zh) 具有抗降解剂和抗疲劳功效的化合物和混合物及包含所述化合物的组合物
EA046323B1 (ru) Соединение, обеспечивающее эффекты замедления старения и сопротивления обесцвечиванию, и способ его получения
CN109804012A (zh) 充气轮胎
CN110691766B (zh) 制备具有抗降解剂和抗疲劳功效的化合物的方法
JP2012214437A (ja) 2,2,4−トリメチル−1,2−ジヒドロキノリンのオリゴマー含有組成物の製造方法
CN110691767A (zh) 制备具有抗降解剂和抗疲劳功效的化合物和混合物的方法
JP2012197418A (ja) 加硫ゴムが有する耐熱性の改善方法
US20170275237A1 (en) Compounds and mixtures with antidegradant and antifatigue efficacy and compositions including said compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951196

Country of ref document: EP

Kind code of ref document: A1