WO2024098460A1 - 橡胶防老剂及其制备方法 - Google Patents

橡胶防老剂及其制备方法 Download PDF

Info

Publication number
WO2024098460A1
WO2024098460A1 PCT/CN2022/133176 CN2022133176W WO2024098460A1 WO 2024098460 A1 WO2024098460 A1 WO 2024098460A1 CN 2022133176 W CN2022133176 W CN 2022133176W WO 2024098460 A1 WO2024098460 A1 WO 2024098460A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
group
rubber
cycloalkyl
Prior art date
Application number
PCT/CN2022/133176
Other languages
English (en)
French (fr)
Inventor
周肖寅
郭湘云
邢金国
张家强
Original Assignee
圣奥化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣奥化学科技有限公司 filed Critical 圣奥化学科技有限公司
Publication of WO2024098460A1 publication Critical patent/WO2024098460A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/55Diphenylamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of antioxidants, and specifically relates to a rubber antioxidant and a preparation method thereof.
  • P-phenylenediamine antioxidants include dialkyl p-phenylenediamine, alkylaryl p-phenylenediamine and diaryl p-phenylenediamine, among which the most widely used antioxidant is 6PPD (N-(1,3-dimethylbutyl)-N′-phenyl p-phenylenediamine), and others include IPPD (N-isopropyl-N′-phenyl p-phenylenediamine), 77PD (N, N′-bis(1,4-dimethylpentyl) p-phenylenediamine), DTPD (a mixture of diphenyl p-phenylenediamine, di(tolyl) p-phenylenediamine and phenyltolyl p-phenylenediamine), etc.
  • antioxidants Na-cyclohexyl p-methoxyaniline
  • antioxidant CMA N-cyclohexyl p-methoxyaniline
  • the present invention provides a rubber antioxidant with a novel structure and a green synthesis process thereof.
  • the rubber antioxidant of the present invention can provide good heat-oxidation aging resistance, ozone aging resistance, discoloration resistance and durability, and has little effect on the processing/vulcanization performance and physical properties before aging of the rubber.
  • the present invention also provides a green and environmentally friendly method for synthesizing the rubber antioxidant of the present invention.
  • one aspect of the present invention provides a compound shown in formula A which can be used as a rubber antioxidant:
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group, C6-C20 aryl group and C1-C20 alkoxy group;
  • Ra is selected from the group consisting of H, C1-C20 alkyl, C3-C20 cycloalkyl, phenyl, C7-C20 alkylphenyl, C1-C20 alkyloxy, C3-C20 cycloalkyloxy and C7-C20 alkylphenyloxy;
  • R b is selected from H, C1-C20 alkyl, C3-C20 cycloalkyl, phenyl and C7-C20 alkylphenyl;
  • the compound represented by formula A does not include the compound wherein R a is selected from H, C1-C20 alkyl, C3-C20 cycloalkyl, phenyl and C7-C20 alkylphenyl, and R b is H.
  • the compound of formula A of the present invention has the structure shown in formula B:
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group and C6-C20 aromatic group;
  • R c and R d are each independently selected from the group consisting of C1-C10 alkyl, C3-C10 cycloalkyl, phenyl and C7-C10 alkylphenyl.
  • R is selected from C3-C10 branched hydrocarbon groups, C3-C10 cycloalkyl groups and C6-C10 aryl groups; more preferably, R is selected from C4-C6 branched alkyl groups and C4-C6 cycloalkyl groups, more preferably 1-methylpropyl, 1,3-dimethylbutyl or cyclohexyl.
  • R c and R d are each independently selected from C1-C6 alkyl and C4-C6 cycloalkyl; more preferably, R c and R d are each independently methyl or ethyl.
  • the compound of formula A of the present invention has the structure shown in formula I:
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group, C6-C20 aryl group and C1-C20 alkoxy group;
  • R1 is selected from C1-C20 alkyl, C3-C20 cycloalkyl and C7-C20 alkylphenyl;
  • R2 is selected from H, C1-C20 alkyl, C3-C20 cycloalkyl and C7-C20 alkylphenyl.
  • R is selected from C3-C10 branched hydrocarbon groups, C3-C10 cycloalkyl groups and C6-C10 aryl groups; more preferably, R is selected from C4-C6 branched alkyl groups, C4-C6 cycloalkyl groups and phenyl groups, more preferably 1-methylpropyl groups, 1,3-dimethylbutyl groups, cyclohexyl groups or phenyl groups.
  • R 1 is selected from C1-C10 alkyl, C3-C10 cycloalkyl and C7-C10 alkylphenyl; more preferably, R 1 is selected from C1-C6 alkyl and C4-C6 cycloalkyl, more preferably methyl or ethyl.
  • R 2 is selected from H, C1-C10 alkyl, C3-C10 cycloalkyl and C7-C10 alkylphenyl; more preferably, R 2 is selected from H, C1-C6 alkyl and C4-C6 cycloalkyl, more preferably H, methyl or ethyl.
  • the compound of formula I of the present invention has a structure shown in formula II or formula III:
  • R, R1 and R2 are as described in any embodiment herein.
  • the compound of formula A of the present invention is selected from:
  • Another aspect of the present invention provides a method for preparing the compound of formula A of the present invention, the method comprising the following steps:
  • R, Ra , and Rb in Formula C, Formula D, Formula E, Formula F, Formula X, and Formula A are as defined in any embodiment herein.
  • the first catalyst is selected from one or more of an alkali metal hydroxide, an alkali metal alkoxide, a quaternary ammonium base, and a combination of an alkali metal hydroxide and a tetraalkylammonium halide.
  • the molar ratio of the first catalyst to the compound of formula C is 0.1:1 to 2:1, preferably 0.9:1 to 1.1:1.
  • the molar ratio of the compound of formula C to the compound of formula D is 2:1 to 15:1, preferably 4:1 to 10:1, and more preferably 5:1 to 8:1.
  • the temperature of the condensation reaction is 40 to 90°C, preferably 65 to 85°C.
  • step (1) the condensation reaction is carried out under vacuum conditions with a pressure range of -0.09 to -0.1 MPa.
  • the second catalyst is a porous metal catalyst or a supported metal catalyst;
  • the porous metal catalyst is preferably selected from one or more of Raney nickel, Raney cobalt and Raney copper
  • the metal in the supported metal catalyst is preferably selected from one or more of nickel, cobalt, copper, platinum, palladium, ruthenium and rhodium
  • the carrier in the supported metal catalyst is preferably selected from one or more of carbon, alumina, silica gel and molecular sieve.
  • step (1) the mass ratio of the metal in the second catalyst to the condensate is 0.0001:1 to 0.2:1.
  • the temperature of the reduction reaction is 40 to 120° C., preferably 60 to 90° C.
  • the hydrogen pressure is 0.5 to 5 MPa, preferably 1 to 2 MPa.
  • the third catalyst is a supported metal catalyst; the metal in the supported metal catalyst is preferably selected from one or more of nickel, cobalt, copper, platinum, palladium, ruthenium and rhodium, and the carrier in the supported metal catalyst is preferably selected from one or more of carbon, alumina, silica gel and molecular sieves.
  • step (2) the molar ratio of the aldehyde or ketone to the compound of formula X is 1:1 to 15:1.
  • step (2) the temperature of the reduction reaction is 40-150° C., and the hydrogen pressure is 0.5-5 MPa.
  • Another aspect of the present invention provides a compound represented by formula X which can be used as an intermediate for preparing the compound of formula A of the present invention:
  • Ra and Rb are as defined in any embodiment herein.
  • the present invention also provides a method for preparing the compound of formula X of the present invention, the method comprising: subjecting the compound of formula C and the compound of formula D to a condensation reaction under the action of a first catalyst to obtain a condensate containing the compound of formula E and/or the compound of formula F, and then subjecting the condensate to a reduction reaction under the action of H2 and a second catalyst to obtain the compound of formula X;
  • Ra and Rb in Formula C, Formula D, Formula E, Formula F and Formula X are as defined in any embodiment herein.
  • the first catalyst is selected from one or more of an alkali metal hydroxide, an alkali metal alkoxide, a quaternary ammonium base, and a combination of an alkali metal hydroxide and a tetraalkylammonium halide.
  • the molar ratio of the first catalyst to the compound of formula C is 0.1:1 to 2:1, preferably 0.1:1 to 1.1:1.
  • the molar ratio of the compound of formula C to the compound of formula D is 2:1 to 15:1, preferably 4:1 to 10:1, and more preferably 5:1 to 8:1.
  • the condensation reaction temperature is 40 to 90°C, preferably 65 to 85°C.
  • the condensation reaction is carried out under vacuum conditions with a pressure range of -0.09 to -0.1 MPa.
  • the second catalyst is a porous metal catalyst or a supported metal catalyst;
  • the porous metal catalyst is preferably selected from one or more of Raney nickel, Raney cobalt and Raney copper
  • the metal in the supported metal catalyst is preferably selected from one or more of nickel, cobalt, copper, platinum, palladium, ruthenium and rhodium
  • the carrier in the supported metal catalyst is preferably selected from one or more of carbon, alumina, silica gel and molecular sieves.
  • the mass ratio of the metal in the second catalyst to the condensate is 0.0001:1 to 0.2:1.
  • the temperature of the reduction reaction is 40 to 120°C, preferably 60 to 90°C.
  • the hydrogen pressure of the reduction reaction is 0.5 to 5 MPa, preferably 1 to 2 MPa.
  • Another aspect of the present invention provides a rubber composition, which contains the compound of formula A, the compound of formula B, the compound of formula I and/or the compound of formula II of the present invention.
  • Another aspect of the present invention provides a rubber product, wherein the rubber product comprises the rubber composition described in any embodiment of the present invention; preferably, the rubber product is a tire.
  • the present invention also provides a method for improving the heat-oxidative aging resistance, ozone aging resistance and/or discoloration resistance of rubber or rubber products, characterized in that the method comprises adding the compound of formula A, the compound of formula B, the compound of formula I and/or the compound of formula II of the present invention to the rubber or rubber products.
  • FIG1 shows the simulated colors of various rubber materials in the test example after aging for 15 days, wherein from left to right are the simulated colors of rubber material 1, rubber material 2, rubber material 3, rubber material 4, rubber material 5, rubber material 6, and rubber material 7.
  • chain hydrocarbon group refers to a straight or branched saturated hydrocarbon group or an unsaturated hydrocarbon group, usually containing 1-20 carbon atoms (C1-C20 chain hydrocarbon group), for example, containing 1-10 carbon atoms (C1-C10 chain hydrocarbon group).
  • chain hydrocarbon groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, 1-methylpropyl, sec-butyl, tert-butyl, n-hexyl, isohexyl, 1,3-dimethylbutyl, 1,4-dimethylpentyl, tert-octyl, vinyl, propenyl, and ethynyl.
  • alicyclic hydrocarbon groups refer to groups in which carbon atoms are combined in a ring shape, usually containing 3-20 carbon atoms (C3-C20 alicyclic hydrocarbon groups), for example, containing 3-10 carbon atoms (C3-C10 alicyclic hydrocarbon groups).
  • Examples of alicyclic hydrocarbon groups include, but are not limited to, isobornyl, cyclohexyl, norbornyl, norbornenyl, dicyclopentadienyl, ethynylcyclohexyl, ethynylcyclohexenyl.
  • aryl refers to a monovalent group remaining after removing a hydrogen atom from the aromatic carbon nucleus of an aromatic hydrocarbon molecule.
  • the number of ring carbon atoms of an aryl is usually 6-20.
  • Exemplary aryl groups include phenyl and naphthyl.
  • An aryl group may be optionally substituted with an alkyl, cycloalkyl and/or aryl group.
  • the number of substituents is usually 1 or 2.
  • alkyl refers to a linear or branched monovalent saturated hydrocarbon group, typically containing 1 to 20 carbon atoms (C1-C20 alkyl), for example, 1 to 10 carbon atoms (C1-C10 alkyl).
  • alkyl include, but are not limited to, methyl, ethyl, propyl, 1-methylpropyl, and 1,3-dimethylbutyl.
  • alkoxy refers to a combination of an alkyl group and an oxygen atom, and may contain 1 to 20 carbon atoms (C1-C20 alkoxy).
  • Alkoxy groups may be linear, branched, or cyclic structures. Examples of alkoxy groups include, but are not limited to, methoxy, ethoxy, n-propoxy, and isopropoxy.
  • cycloalkyl refers to a monovalent saturated hydrocarbon ring containing 3 to 10 carbon atoms, preferably 3 to 8 carbon atoms.
  • Examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and adamantyl.
  • alkylphenyl refers to a phenyl group substituted with one or more alkyl groups, wherein the total number of carbon atoms including the phenyl group is usually no more than 20, preferably containing 7-10 carbon atoms (C7-C10 alkylphenyl groups).
  • alkylphenyl groups include, but are not limited to, tolyl, ethylphenyl, propylphenyl, and butylphenyl groups.
  • the present invention finds that the compound having the structure shown in formula A (compound of formula A) can be used as a rubber antioxidant, has anti-aging performance, anti-discoloration performance and/or durability performance close to or better than that of the antioxidant 6PPD, and has little effect on the processing/vulcanization performance and physical properties before aging of the rubber:
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group, C6-C20 aryl group and C1-C20 alkoxy group;
  • Ra is selected from the group consisting of H, C1-C20 alkyl, C3-C20 cycloalkyl, phenyl, C7-C20 alkylphenyl, C1-C20 alkyloxy, C3-C20 cycloalkyloxy and C7-C20 alkylphenyloxy;
  • R b is selected from H, C1-C20 alkyl, C3-C20 cycloalkyl, phenyl and C7-C20 alkylphenyl;
  • the compound of formula A does not include compounds wherein R a is selected from H, C1-C20 alkyl, C3-C20 cycloalkyl, phenyl and C7-C20 alkylphenyl, and R b is H.
  • Ra is selected from C1-C20 alkyl, C3-C20 cycloalkyl, phenyl, C7-C20 alkylphenyl, C1-C20 alkyloxy, C3-C20 cycloalkyloxy, and C7-C20 alkylphenyloxy.
  • Ra is selected from C1-C10 alkyl, C3-C10 cycloalkyl, phenyl, C7-C10 alkylphenyl, C3-C10 branched alkyloxy, C3-C10 cycloalkyloxy, and C7-C10 alkylphenyloxy.
  • R b is selected from H, C1-C10 alkyl, C3-C10 cycloalkyl, phenyl, and C7-C10 alkylphenyl.
  • the compound of formula A of the present invention has the structure shown in formula B:
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group and C6-C20 aromatic group;
  • R c and R d are each independently selected from the group consisting of C1-C10 alkyl, C3-C10 cycloalkyl, phenyl and C7-C10 alkylphenyl.
  • R is selected from C1-C18 chain hydrocarbon group, C3-C18 alicyclic hydrocarbon group and C6-C18 aromatic group.
  • R is selected from C3-C10 branched hydrocarbon groups (e.g., C3-C10 branched alkyl groups), C3-C10 cycloalkyl groups, and C6-C10 aryl groups.
  • C3-C10 branched alkyl groups include isopropyl, 1-methylpropyl, 1-methylbutyl, 1,2-dimethylpropyl, 1-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1-ethylbutyl, 2-heptyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethylpentyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 1,2-dimethylhexyl, 1,3-dimethylhexyl, and 1,4-dimethylhexyl.
  • C3-C10 cycloalkyl groups include cyclohexyl.
  • R is selected from C4-C6 branched alkyl and C4-C6 cycloalkyl, more preferably 1-methylpropyl, 1,3-dimethylbutyl or cyclohexyl.
  • R c and R d may be the same or different.
  • R c and R d are each independently selected from C1-C6 alkyl and C4-C6 cycloalkyl.
  • R c and R d are each independently methyl or ethyl.
  • R c is selected from methyl and ethyl, and R d is methyl.
  • R c and R d are both methyl.
  • R c and R d on the benzene ring are not particularly limited.
  • R c is in the meta position of the -NH- group and R d is in the meta position of the -NH-R group. In some embodiments, in Formula B, R c is in the ortho position of the -NH- group and R d is in the ortho position of the -NH-R group. In some embodiments, in Formula B, R c is in the ortho position of the -NH- group and R d is in the meta position of the -NH-R group. In some embodiments, in Formula B, R c is in the meta position of the -NH- group and R d is in the ortho position of the -NH-R group.
  • the compound of formula B is selected from:
  • the compound of formula A of the present invention has the structure shown in formula B':
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group and C6-C20 aromatic group;
  • R c is H
  • R d is selected from the group consisting of C1-C10 alkyl, C3-C10 cycloalkyl, phenyl and C7-C10 alkylphenyl.
  • R is selected from C1-C18 chain hydrocarbon group, C3-C18 alicyclic hydrocarbon group and C6-C18 aromatic group.
  • R is selected from C3-C10 branched hydrocarbon groups (e.g., C3-C10 branched alkyl groups), C3-C10 cycloalkyl groups, and C6-C10 aryl groups.
  • C3-C10 branched alkyl groups include isopropyl, 1-methylpropyl, 1-methylbutyl, 1,2-dimethylpropyl, 1-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1-ethylbutyl, 2-heptyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethylpentyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 1,2-dimethylhexyl, 1,3-dimethylhexyl, and 1,4-dimethylhexyl.
  • C3-C10 cycloalkyl groups include cyclohexyl.
  • R is selected from C4-C6 branched alkyl, C4-C6 cycloalkyl and C6-C10 aryl, more preferably 1-methylpropyl, 1,3-dimethylbutyl, cyclohexyl or phenyl.
  • the position of Rd on the benzene ring is not particularly limited.
  • Rd is in the meta position relative to the -NH-R group. In some embodiments, in Formula B', Rd is in the ortho position relative to the -NH-R group.
  • the compound of formula B' is selected from:
  • the compound of formula A of the present invention has a structure shown in formula I.
  • the present invention has found that the compound having the structure shown in formula I (compound of formula I) can be used as a rubber antioxidant, and has ozone aging resistance, heat oxygen aging resistance, discoloration resistance and durability that are close to or better than those of the antioxidant 6PPD, and has little effect on the processing/vulcanization performance and physical properties before aging of the rubber:
  • R is selected from C1-C20 chain hydrocarbon group, C3-C20 alicyclic hydrocarbon group, C6-C20 aryl group and C1-C20 alkoxy group;
  • R1 is selected from C1-C20 alkyl, C3-C20 cycloalkyl and C7-C20 alkylphenyl;
  • R2 is selected from H, C1-C20 alkyl, C3-C20 cycloalkyl and C7-C10 alkylphenyl.
  • R is selected from C3-C10 branched chain hydrocarbon groups, C3-C10 cycloalkyl groups and C6-C10 aryl groups.
  • C3-C10 branched chain alkyl groups include isopropyl, 1-methylpropyl, 1-methylbutyl, 1,2-dimethylpropyl, 1-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 1-ethylbutyl, 2-heptyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethylpentyl, 3-heptyl, 4-heptyl, 2-octyl, 3-octyl, 4-octyl, 1,2-dimethylhexyl, 1,3-dimethylhexyl and 1,4-dimethylhexyl.
  • C3-C10 cycloalkyl groups include cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
  • C6-C10 aryl groups include phenyl, tolyl, ethylphenyl, xylyl and naphthyl.
  • R is selected from C4-C6 branched alkyl, C4-C6 cycloalkyl and phenyl.
  • R is 1-methylpropyl, 1,3-dimethylbutyl, cyclohexyl or phenyl.
  • R 1 is selected from C1-C10 alkyl, C3-C10 cycloalkyl and C7-C10 alkylphenyl. In some embodiments, R 1 is selected from C1-C10 alkyl and C3-C10 cycloalkyl. In some embodiments, R 1 is selected from C1-C6 alkyl and C4-C6 cycloalkyl. In some embodiments, R 1 is selected from C1-C6 alkyl. In some embodiments, R 1 is methyl or ethyl.
  • the R 1 O- group is located in the ortho or para position to the -NH- group on the phenyl ring where it is located.
  • R 2 is selected from H, C1-C10 alkyl, C3-C10 cycloalkyl and C7-C10 alkylphenyl. In some embodiments, R 2 is selected from H, C1-C10 alkyl and C3-C10 cycloalkyl. In some embodiments, R 2 is selected from H, C1-C6 alkyl and C4-C6 cycloalkyl. In some embodiments, R 2 is selected from H and C1-C6 alkyl C4-C6 cycloalkyl. In some embodiments, R 2 is H, methyl or ethyl.
  • the R 1 O— group is located in the meta position relative to the —NHR group on the phenyl ring where it is located.
  • R2 is H; R is selected from C3-C10 branched hydrocarbon group and C3-C10 cycloalkyl group, preferably selected from C4-C6 branched alkyl group and C4-C6 cycloalkyl group; R1 is selected from C1-C10 alkyl group, C3-C10 cycloalkyl group and C7-C10 alkylphenyl group, preferably selected from C1-C10 alkyl group and C3-C10 cycloalkyl group, more preferably selected from C1-C6 alkyl group and C4-C6 cycloalkyl group, for example C1-C6 alkyl group.
  • R2 is H, R is 1-methylpropyl, 1,3-dimethylbutyl or cyclohexyl, and R1 is methyl or ethyl.
  • R2 is selected from C1-C10 alkyl, C3-C10 cycloalkyl and C7-C10 alkylphenyl, preferably selected from C1-C10 alkyl and C3-C10 cycloalkyl, more preferably selected from C1-C6 alkyl and C4-C6 cycloalkyl, such as C1-C6 alkyl;
  • R is selected from C3-C10 branched hydrocarbon, C3-C10 cycloalkyl and C6-C10 aryl, preferably selected from C4-C6 branched alkyl, C4-C6 cycloalkyl and phenyl;
  • R1 is selected from C1-C10 alkyl, C3-C10 cycloalkyl and C7-C10 alkylphenyl, preferably selected from C1-C10 alkyl and C3-C10 cycloalkyl, more preferably selected from C1-C6 alkyl and C4-C
  • the compound of formula I of the present invention has a structure shown in formula II or formula III:
  • R, R1 and R2 are as described in any of the above embodiments.
  • the present invention finds that compared with the antioxidant 6PPD, the compound of formula II can impart better heat-oxidative aging resistance to rubber.
  • the compound of formula I of the present invention is selected from:
  • the present invention also provides a compound of formula X which can be used as an intermediate in preparing a compound of formula A, a compound of formula B, a compound of formula B', a compound of formula I, a compound of formula II and a compound of formula III:
  • Ra and Rb are as defined as Ra and Rb in any embodiment of the compound of formula A hereinabove, or as defined as Rc and Rd in any embodiment of the compound of formula B or B ' hereinabove, or as defined as -OR1 and R2 in any embodiment of the compound of formula I, formula II or formula III hereinabove.
  • the compound of formula X of the present invention has a structure shown in formula XI or formula XII:
  • R 1 and R 2 are as defined above for any embodiment of the compound of Formula I.
  • the compound of formula X of the present invention is selected from:
  • the method for preparing the compound of formula X and the compound of formula A provided by the present invention comprises the following steps:
  • R, Ra , and Rb in Formula C, Formula D, Formula E, Formula F, Formula X, and Formula A are as defined in any embodiment herein.
  • the corresponding Ra and Rb groups in formula C and D can be determined according to the Ra and Rb groups contained in the compound of formula A of the present invention, or the Rc and Rd groups contained in the compound of formula B or B' of the present invention, or the -OR1 and R2 groups contained in the compound of formula I, formula II or formula III of the present invention.
  • the appropriate aldehyde or ketone in step (2) can be determined according to the R group contained in the compound of formula A, formula B, formula B', formula I, formula II or formula III of the present invention, thereby preparing the compound of formula A, formula B, formula B', formula I, formula II or formula III of the present invention accordingly.
  • the first catalyst used in step (1) can be one or more selected from alkali metal hydroxides, alkali metal alkoxides, quaternary ammonium bases, and combinations of alkali metal hydroxides and tetraalkylammonium halides.
  • Alkali metal hydroxides suitable for the present invention include sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.
  • Alkali metal alkoxides suitable for the present invention include sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium tert-butoxide, potassium tert-butoxide, sodium tert-amyl alcoholate, potassium tert-amyl alcoholate, etc.
  • Quaternary ammonium bases are compounds of the general formula R4NOH, wherein R is four identical or different aliphatic or aromatic groups.
  • the R group in the quaternary ammonium base suitable for the present invention can be selected from one or more of methyl, ethyl, propyl, butyl, etc.
  • Examples of quaternary ammonium bases suitable for the present invention include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, etc.
  • the first catalyst can also be a combination of alkali metal hydroxides and tetraalkylammonium halides.
  • the general formula of tetraalkylammonium chloride is R4NX, wherein R is four identical or different aliphatic or aromatic groups, such as methyl, ethyl, propyl, butyl, etc., and X is a halogen atom, such as fluorine, chlorine, bromine, iodine.
  • alkali metal hydroxide and tetraalkylammonium halide include sodium hydroxide and tetrabutylammonium bromide, etc.
  • the ratio of the amount of the first catalyst to the compound of formula C can be 0.1:1 to 2:1, preferably 0.9:1 to 1.1:1, such as 1.05:1, 1.1:1, 1.5:1.
  • step (1) the compound of formula C is firstly salified with the first catalyst, and then the compound of formula D is added dropwise to carry out a condensation reaction.
  • the condensate obtained by the condensation reaction of the compound of formula C and the compound of formula D under the action of the first catalyst may be one or both of the nitro compound represented by formula E and the nitroso compound represented by formula F, and may also contain an azobenzene compound.
  • the molar ratio of the compound of formula C to the compound of formula D may be 2:1 to 15:1, preferably 4:1 to 10:1, more preferably 5:1 to 8:1, for example 6:1, 7:1.
  • the condensation reaction can be carried out at 40 to 90° C., preferably 65 to 85° C., for example, the reaction temperature can be 60° C., 70° C., 75° C., 80° C.
  • the condensation reaction needs to be carried out under vacuum conditions, with a pressure range of -0.09 to -0.1 MPa.
  • the second catalyst used in step (1) can be a porous metal catalyst or a supported metal catalyst.
  • Porous metal catalysts are also called sponge metal catalysts.
  • Porous metal catalysts suitable for the present invention include Raney nickel (also known as skeleton nickel), Raney cobalt, Raney copper, etc.
  • Supported metal catalysts include a metal as a catalytic active center and a carrier for supporting the metal.
  • the metal in the supported metal catalyst suitable for the present invention can be nickel, cobalt, copper, platinum, palladium, ruthenium, rhodium, etc., and the carrier can be carbon, alumina, silica gel, molecular sieve, etc., and the carbon as a carrier can be activated carbon.
  • the ratio of the amount of metal in the second catalyst to the amount of the condensate can be 0.0001:1 to 0.2:1.
  • step (1) the condensate generated by the condensation reaction is subjected to a hydrogenation reduction reaction under the action of a second catalyst to generate a compound of formula X.
  • the reduction reaction can be carried out at 40 to 120° C., preferably 60 to 90° C., for example, the reaction temperature can be 70° C., 75° C., or 80° C.
  • the hydrogen pressure in the reduction reaction can be 0.5 to 5 MPa, for example, 1 MPa, 1.5 MPa, 2 MPa, or 2.5 MPa.
  • step (1) compound C itself can be used as a solvent, or solvents such as toluene and xylene can be used.
  • the reaction solution is filtered, washed with water, and separated into phases, and the organic phase is distilled under reduced pressure to remove light components to obtain the compound of formula X.
  • the third catalyst used in step (2) can be the aforementioned supported metal catalyst, such as Pt/C.
  • the molar ratio of the metal in the third catalyst to the compound of formula X can be 0.0001:1 to 0.2:1.
  • step (2) the compound of formula X and the aldehyde or ketone are subjected to a hydrogenation reduction alkylation reaction under the action of a third catalyst to generate a compound of formula A.
  • a hydrogenation reduction alkylation reaction under the action of a third catalyst to generate a compound of formula A.
  • the carbonyl carbon atom in the aldehyde or ketone is connected to the amino nitrogen atom in the compound of formula A. Therefore, a suitable aldehyde or ketone can be selected for reaction according to the R group contained in the compound of formula A to be prepared.
  • 4-methyl-2-pentanone can be used to prepare a compound of formula A with an R group of 1,3-dimethylbutyl
  • cyclohexanone can be used to prepare a compound of formula A with an R group of cyclohexyl.
  • R group in the compound of formula A is an aromatic group
  • a ketone as an aromatic group precursor a hydrogen acceptor and a water-carrying agent are added to the reaction system for reaction.
  • cyclohexanone, a hydrogen acceptor and a water-carrying agent can be used to prepare a compound of formula A with an R group of phenyl.
  • the hydrogen acceptor can be nitrobenzene.
  • the water-carrying agent can be toluene.
  • the molar ratio of the aldehyde or ketone to the compound of formula X can be 1:1 to 15:1, for example, 2:1, 3:1, 5:1, 8:1, 10:1.
  • the reaction temperature of step (2) can be 40-150° C., for example, 50° C., 80° C., 100° C., 120° C.
  • the hydrogen pressure in step (2) can be 0.5-5 MPa, for example, 1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa.
  • step (2) the aldehyde or ketone used as the reaction raw material can be used as the solvent.
  • the reaction solution is filtered and the light components are removed by reduced pressure distillation to obtain the compound of formula A.
  • liquid chromatography LC
  • gas chromatography GC
  • the preparation method of the compound of formula X and the compound of formula A of the present invention is green and environmentally friendly, has substantially no wastewater, does not require the use of expensive bromide raw materials, and the catalyst can be recycled and reused, and has the advantages of less solid waste and low reaction temperature.
  • the present invention also provides a rubber composition, which contains the compound of formula A, the compound of formula B, the compound of formula B', the compound of formula I, the compound of formula II or the compound of formula III of the present invention as an antioxidant.
  • the compound of formula A, the compound of formula B, the compound of formula B', the compound of formula I, the compound of formula II and the compound of formula III are hereinafter referred to as antioxidants of the present invention.
  • the raw materials of the rubber composition generally include a diene elastomer, a reinforcing filler, an antioxidant and a crosslinking agent.
  • the rubber composition includes unvulcanized rubber and vulcanized rubber.
  • the unvulcanized rubber can be vulcanized (cured) to obtain vulcanized rubber.
  • the content of the reinforcing filler is 30-70 parts by weight
  • the content of the antioxidant is 0.1-8 parts by weight
  • the content of the crosslinking agent is 0.5-3 parts by weight.
  • parts by weight are based on 100 parts by weight of the diene elastomer contained in the raw materials of the rubber composition.
  • diene elastomer refers to an elastomer whose monomers include dienes (such as butadiene, isoprene).
  • Diene elastomers suitable for the present invention can be various diene elastomers known in the art, including but not limited to one or more selected from natural rubber (NR), butadiene rubber (BR), isoprene rubber, styrene-butadiene rubber (SBR), chloroprene rubber (CR), nitrile rubber (NBR), isoprene/butadiene copolymer, isoprene/styrene copolymer and isoprene/butadiene/styrene copolymer.
  • NR natural rubber
  • BR butadiene rubber
  • SBR isoprene rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • NBR nitrile rubber
  • the diene elastomer in the raw materials of the rubber composition of the present invention, includes natural rubber and butadiene rubber, or is composed of natural rubber and butadiene rubber; the mass ratio of natural rubber and butadiene rubber can be 1: 9 to 9: 1, 2: 8 to 8: 2, 3: 7 to 7: 3, 4: 6 to 6: 4, 4.5: 5.5 to 5.5: 4.5 or 1: 1.
  • the raw materials of the rubber composition of the present invention usually include 0.1-8 parts by weight, preferably 1-5 parts by weight, and more preferably 2 ⁇ 0.5 parts by weight of an antioxidant.
  • the rubber composition of the present invention is characterized in that the antioxidant includes the antioxidant of the present invention.
  • the antioxidant of the present invention can account for more than 50%, more than 60%, more than 80%, more than 90% or 100% of the total weight of the antioxidant contained in the rubber composition.
  • Reinforcing filler applicable to the present invention can be the reinforcing filler conventionally used for rubber composition, including but not limited to one or more selected from carbon black, titanium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, clay and talcum.
  • reinforcing filler is carbon black.
  • the raw material of rubber composition generally comprises 30-70 weight parts, preferably 40-60 weight parts, more preferably 45-55 weight parts of reinforcing filler.
  • the raw material of rubber composition of the present invention comprises 30-70 weight parts, preferably 40-60 weight parts, more preferably 45-55 weight parts, for example 50 ⁇ 2 weight parts of carbon black.
  • the crosslinking agent may be sulfur.
  • the raw materials of the rubber composition generally contain 0.5-3 parts by weight, preferably 1-3 parts by weight, and more preferably 1-2 parts by weight of a crosslinking agent.
  • the raw materials of the rubber composition of the present invention contain 0.5-3 parts by weight, preferably 1-3 parts by weight, more preferably 1-2 parts by weight, such as 1.5 ⁇ 0.2 parts by weight, 1.5 ⁇ 0.1 parts by weight of a crosslinking agent, such as sulfur.
  • the raw materials of the rubber composition of the present invention may also include other ingredients commonly used in rubber compositions, including but not limited to one or more of auxiliary agents and accelerators.
  • auxiliary agents and accelerators may be conventional amounts in the art.
  • Softeners may include petroleum-based softeners (process oils), such as naphthenic oils, aromatic oils, process oils, lubricating oils, paraffin, liquid paraffin, petroleum asphalt and vaseline, etc., and may also include fatty oil softeners, such as stearic acid, castor oil, linseed oil, rapeseed oil, coconut oil, waxes (such as beeswax, carnauba wax and lanolin), tall oil, linoleic acid, palmitic acid and lauric acid, etc.
  • process oils such as naphthenic oils, aromatic oils, process oils, lubricating oils, paraffin, liquid paraffin, petroleum asphalt and vaseline, etc.
  • fatty oil softeners such as stearic acid, castor oil, linseed oil, rapeseed oil, coconut oil, waxes (such as beeswax, carnauba wax and lanolin), tall oil, linoleic acid, palmitic acid and lauri
  • Auxiliary agents may also include activators, such as zinc oxide, which may play a role in accelerating vulcanization speed, improving rubber thermal conductivity, wear resistance, tear resistance, etc.
  • a total of 2-20 parts by mass of diene elastomer is used for every 100 parts by weight of diene elastomer.
  • the raw material of the rubber composition of the present invention includes process oils, such as aromatic oils.
  • the raw material of the rubber composition of the present invention may include 0-20 parts by weight, preferably 1-10 parts by weight, more preferably 2-8 parts by weight, such as 5 ⁇ 2 parts by weight, 5 ⁇ 1 parts by weight of process oils, such as aromatic oils.
  • the raw materials of the rubber composition of the present invention include a fatty oil softener, such as stearic acid.
  • the raw materials of the rubber composition of the present invention may include 0-5 parts by weight, preferably 0.5-4 parts by weight, more preferably 1-3 parts by weight, for example 2 ⁇ 0.5 parts by weight, 2 ⁇ 0.2 parts by weight of a fatty oil softener, such as stearic acid.
  • the raw materials of the rubber composition of the present invention include an activator, such as zinc oxide.
  • the raw materials of the rubber composition of the present invention may include 0-10 parts by weight, preferably 2-8 parts by weight, more preferably 3-7 parts by weight, for example 5 ⁇ 1 parts by weight of an activator, such as zinc oxide.
  • the raw materials of the rubber composition of the present invention include process oil, a fatty oil softener and an activator. The respective amounts of process oil, a fatty oil softener and an activator may be as described above.
  • the accelerator is generally a vulcanization accelerator, and may be selected from sulfonamide vulcanization accelerators, thiazole vulcanization accelerators, thiuram vulcanization accelerators, thiourea vulcanization accelerators, guanidine vulcanization accelerators, dithiocarbamate vulcanization accelerators, aldehyde amine vulcanization accelerators, aldehyde ammonia vulcanization accelerators, imidazoline vulcanization accelerators and xanthate vulcanization accelerators One or more.
  • the accelerator may be accelerator NS (N- tert-butyl -2-benzothiazole sulfonamide).
  • the raw material of the rubber composition of the present invention includes an accelerator, such as accelerator NS.
  • the raw material of the rubber composition of the present invention may include 0-1.5 weight parts, preferably 0.5-1.5 weight parts, more preferably 0.5-1.2 weight parts, such as 0.8 ⁇ 0.2 weight parts, 0.8 ⁇ 0.1 weight parts of accelerators, such as accelerator NS.
  • the rubber composition may also contain plasticizers such as DMP (dimethyl phthalate), DEP (diethyl phthalate), DBP (dibutyl phthalate), DHP (diheptyl phthalate), DOP (dioctyl phthalate), DINP (diisononyl phthalate), DIDP (diisodecyl phthalate), BBP (butyl benzyl phthalate), DWP (dilauryl phthalate), and DCHP (dicyclohexyl phthalate), etc.
  • the amount of the plasticizer may be the conventional amount in the art.
  • the unvulcanized rubber of the present invention can be prepared by conventional rubber mixing methods, for example, by a two-stage mixing method: one stage of mixing in an internal mixer to mix the diene elastomer, reinforcing filler, additives and antioxidant to obtain a masterbatch; and a second stage of mixing in an open mixer to mix the masterbatch obtained in the first stage with a crosslinking agent and an accelerator to obtain the unvulcanized rubber.
  • the unvulcanized rubber of the present invention can be vulcanized by conventional vulcanization methods to obtain vulcanized rubber;
  • the vulcanization temperature is usually 130°C-200°C, such as 140-150°C, 145 ⁇ 2°C;
  • the vulcanization time depends on the vulcanization temperature, the vulcanization system and the vulcanization kinetics, and is usually 15-60 minutes, such as 20-30 minutes, 25 ⁇ 2 minutes.
  • the kneaded unvulcanized rubber can be conventionally sheeted.
  • the present invention also provides a rubber product, the rubber product containing the rubber composition described in any embodiment of the present invention.
  • the rubber product can be a tire, a rubber shoe, a sealing strip, a sound insulation board, a shock pad, etc.
  • the rubber product is a tire, such as a tread, a belt layer and a sidewall of a tire.
  • the belt layer of the tire in addition to the rubber composition of the present invention, may also contain a reinforcing material conventionally used in the art.
  • the present invention also provides the use of the compound of formula A, the compound of formula B, the compound of formula B', the compound of formula I, the compound of formula II or the compound of formula III of the present invention in improving the heat oxygen aging resistance, ozone aging resistance and/or discoloration resistance of rubber or rubber products.
  • the rubber product is a tire.
  • the use comprises adding the compound of formula A, the compound of formula B, the compound of formula B', the compound of formula I, the compound of formula II or the compound of formula III as an antioxidant to the rubber or rubber product.
  • TMAOH tetramethylammonium hydroxide
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 30 g of deionized water and 45 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature and pressure were raised to 68°C and 2.0 MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the reaction liquid was filtered, washed with water, and phase-separated to obtain an organic phase, and the organic phase was distilled under reduced pressure (-0.1 MPa, 190°C) to obtain 57 g of intermediate compound X-1 (yield of about 80%), and the content detected by GC was >99.4%.
  • the condensation liquid was transferred to a 1000mL stainless steel reactor, 100g of deionized water and 60g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 65°C, the pressure was raised to 1.5MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the reaction liquid was filtered, washed with water, and phase-separated; the aqueous phase was concentrated and then used again, and the organic phase was distilled under reduced pressure to obtain 84.6g of intermediate compound X-2 (yield of about 79.5%), and the content detected by GC was >99.2%.
  • the condensation liquid was transferred to a 500mL stainless steel reactor, 30g of deionized water and 20g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 69°C, the pressure was raised to 1.6MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the reaction liquid was filtered, washed with water, and phase-separated; the aqueous phase was concentrated and then used again, and the organic phase was distilled under reduced pressure to obtain 34.1g of intermediate compound X-3 (yield of about 75%), and the content detected by GC was >98.5%.
  • TMAOH tetramethylammonium hydroxide
  • reaction liquid gradually changed from yellow to purple-red; the temperature was gradually raised to 72°C, and when the fraction was about 50% of the 25% tetramethylammonium hydroxide feed amount, 30g (0.22mol) of m-nitrotoluene was added dropwise for about 3h. After the addition was completed, the mixture was kept warm for 1h. The condensation liquid was obtained by LC chromatography monitoring until the reaction of m-nitrotoluene was complete.
  • the condensation liquid was transferred to a 500mL stainless steel reactor, 30g of deionized water and 30g of catalyst skeleton nickel were added, hydrogen was replaced three times, and the temperature and pressure were raised to 78°C and 2.0MPa for reaction.
  • LC monitoring was performed until the nitro and nitroso compounds were completely reduced. Filtering, washing, and phase separation were performed; the aqueous phase was concentrated and then used again, and the organic phase was subjected to reduced pressure distillation (-0.1MPa, 190°C) to remove the light components to obtain 40g of intermediate compound X-4 (yield of about 80%), and the content detected by GC was >99.2%.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 20 g of deionized water and 30 g of Raney nickel catalyst were added, hydrogen was replaced three times, the temperature was raised to 70°C, the pressure was raised to 2.0 MPa for reaction, and hydrogen was continuously added during the reaction.
  • LC monitored that the nitro and nitroso compounds were completely reduced, the reaction liquid was filtered, washed with water, and phase-separated to obtain an organic phase, and the organic phase was subjected to reduced pressure distillation (-0.1 MPa, 220°C) to remove light components to obtain 45.3 g of intermediate compound X-5 (yield of about 79.5%), and the content was detected by GC>99.8%.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 50 g of deionized water and 40 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature was raised to 75 ° C, the pressure was raised to 1.5 MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the reaction liquid was filtered, washed with water, and phase-separated.
  • the organic phase was distilled under reduced pressure (-0.1 MPa, 160 ° C) to remove light components to obtain 37.1 g of compound X-6 (yield of about 80%), and the content detected by GC was >99.5%.
  • the condensation liquid was transferred to a 500mL stainless steel reactor, 65g of deionized water and 38g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature and pressure were raised to 78°C and 2.0MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the reaction liquid was filtered, washed with water, and phase-separated; the organic phase was distilled under reduced pressure (-0.1MPa, 180°C) to remove light components to obtain 31.8g of intermediate compound X-7 (yield of about 30%), and the content detected by GC was >92.5%.
  • the condensation liquid was transferred to a 500 mL stainless steel reactor, 35 g of deionized water and 30 g of catalyst skeleton nickel were added, hydrogen was replaced three times, the temperature and pressure were raised to 75°C and 1.5 MPa for reaction, and LC was monitored until the nitro and nitroso compounds were completely reduced.
  • the reaction liquid was filtered, washed with water, and phase separated; the organic phase was distilled under reduced pressure (-0.1 MPa, 170°C) to remove light components to obtain 42.4 g of intermediate compound X-8 (yield of about 80%), and the content detected by GC was >99.5%.
  • the condensation liquid was transferred to a 500ml stainless steel reactor, and 51g of deionized water and 30g of catalyst CAT2 were added.
  • the reaction was carried out by hydrogen replacement for three times at 75°C and 1.5MPa.
  • the nitro and nitroso compounds were completely reduced by LC monitoring.
  • the mixture was filtered and washed with water for phase separation.
  • the aqueous phase was concentrated and then used again.
  • the organic phase was subjected to reduced pressure distillation to remove the light components to obtain the compound 2-methyl-N-phenyl-1,4-phenylenediamine, which is the intermediate X-9: 45.9g (single-pass yield is about 79.4%), which is a pink solid.
  • the content detected by GC is >99.8%.
  • the anti-aging agent 6PPD and the compounds B-1, B-2, I-3, I-4, I-7 and I-8 in the above examples were used to prepare rubber compounds, and the performance of the rubber compounds was tested.
  • Butadiene rubber (BR), Shandong Yuhuang Chemical Co., Ltd.;
  • Antioxidant 6PPD Shengao Chemical Technology Co., Ltd.;
  • Carbon black N550, aromatic oil, ZnO, stearic acid, sublimated sulfur (S) and accelerator NS are all common raw materials in the rubber industry.
  • SCR5 and BR are first plasticized on an internal mixer. After sufficient mixing, ZnO, stearic acid, antioxidant (compound B-1, compound B-2, antioxidant 6PPD, compound I-3, compound I-4, compound I-7 or compound I-8), N550 and aromatic oil are added in sequence and mixed evenly to obtain a masterbatch; the masterbatch, S and NS are added to an open mixer. After the rubber material is evenly mixed, it is thinned 5 times, and the roller distance is adjusted to a suitable range for sheeting to obtain an unvulcanized rubber material.
  • the unvulcanized rubber compound is vulcanized on a flat vulcanizer (145° C., the vulcanization time is determined according to the vulcanization curve of each antioxidant, between 15 and 30 minutes) to obtain a vulcanized rubber compound.
  • the vulcanization characteristics were determined according to GB/T 9869-2014 rubber rotorless vulcanizer.
  • the vulcanization rate and vulcanization degree of the rubber were measured using a vulcanometer (145°C). The results are shown in Table 2.
  • the vulcanized rubber was tightly attached to A4 paper, sealed with a transparent sealing bag, and placed in the open air for 15 days.
  • the surface color of the A4 paper was measured with a colorimeter. The results are shown in Table 6 and Figure 1.
  • Table 6 Weathering and discoloration resistance of rubber (aging for 15 days)
  • Table 3 shows that the physical properties of rubbers 2-7 containing the compound of formula A of the present invention before aging are close to those of rubber 1 containing 6PPD. After 100°C and 48h thermal oxidative aging, the decrease rate of tensile strength and elongation at break of rubber 4 containing compound I-3 and rubber 5 containing compound I-4 are significantly lower than those of rubber 1 containing 6PPD, indicating that the compounds of formula II of the present invention represented by compounds I-3 and I-4 can give rubber more excellent thermal oxidative aging resistance than 6PPD.
  • the weathering discoloration results in Table 6 show that the discoloration resistance of rubber compounds 4 and 7 is equivalent to that of rubber compound 1, and the discoloration resistance of rubber compounds 2, 3 and 6 is significantly improved compared with that of rubber compound 1, that is, the discoloration resistance of compounds I-3 and I-5 is similar to that of 6PPD, and the discoloration resistance of B-1, B-2 and I-7 is better than that of 6PPD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种具有式A所示结构的橡胶防老剂及其制备方法,式A中,R、R a和R b如文中所定义。该橡胶防老剂可以赋予橡胶良好的耐热氧老化性能、耐臭氧老化性能、耐变色性能和持久性能。

Description

橡胶防老剂及其制备方法 技术领域
本发明属于防老剂领域,具体涉及一种橡胶防老剂及其制备方法。
背景技术
目前,橡胶制品尤其是轮胎中通常使用对苯二胺类化合物作为防老剂。对苯二胺类防老剂包括二烷基对苯二胺、烷基芳基对苯二胺和二芳基对苯二胺,其中使用最广泛的防老剂是防老剂6PPD(N-(1,3-二甲基丁基)-N′-苯基对苯二胺),其他还有防老剂IPPD(N-异丙基-N′-苯基对苯二胺)、防老剂77PD(N,N′-双(1,4-二甲基戊基)对苯二胺)、防老剂DTPD(二苯基对苯二胺、二(甲苯基)对苯二胺和苯基甲苯基对苯二胺的混合物)等。
近年来,用户对橡胶制品或轮胎的抗老化持久性和表面变色关注度越来越高。现有防老剂产品在橡胶制品或轮胎使用过程中很快迁移至表面,进而导致橡胶制品或轮胎表面污染变色、受损,而且由于迁移快,防老剂的消耗也快,持久防护性比较差。防老剂CMA(N-环己基对甲氧基苯胺)等非污染型防老剂虽然具有较好的耐臭氧老化、耐辐射老化等效用,但耐迁移性较差,因此持久防护性比较差。
发明内容
针对上述问题,本发明提供了一种新型结构的橡胶防老剂及其绿色合成工艺。本发明的橡胶防老剂可以提供良好的耐热氧老化性能、耐臭氧老化性能、耐变色性能和持久性能,对橡胶的加工/硫化性能和老化前物性影响较小。本发明还提供绿色环保的合成本发明的橡胶防老剂的方法。
具体而言,本发明的一个方面提供可用作橡胶防老剂的式A所示的化合物:
Figure PCTCN2022133176-appb-000001
式A中,R选自C1-C20链烃基、C3-C20脂环烃基、C6-C20芳基和C1-C20烷 氧基;
R a选自H、C1-C20烷基、C3-C20环烷基、苯基、C7-C20烷基苯基、C1-C20烷基氧基、C3-C20环烷基氧基和C7-C20烷基苯基氧基;
R b选自H、C1-C20烷基、C3-C20环烷基、苯基和C7-C20烷基苯基;
所述式A所示的化合物不包括R a选自H、C1-C20烷基、C3-C20环烷基、苯基和C7-C20烷基苯基、且R b为H的化合物。
在一个或多个实施方案中,本发明的式A化合物具有式B所示的结构:
Figure PCTCN2022133176-appb-000002
式B中,R选自C1-C20链烃基、C3-C20脂环烃基和C6-C20芳基;
R c和R d各自独立选自C1-C10烷基、C3-C10环烷基、苯基和C7-C10烷基苯基。
在一个或多个实施方案中,式B中,R选自C3-C10支链烃基、C3-C10环烷基和C6-C10芳基;更优选地,R选自C4-C6支链烷基和C4-C6环烷基,更优选为1-甲基丙基、1,3-二甲基丁基或环己基。
在一个或多个实施方案中,式B中,R c和R d各自独立选自C1-C6烷基和C4-C6环烷基;更优选地,R c和R d各自独立为甲基或乙基。
在一个或多个实施方案中,本发明的式A化合物具有式I所示的结构:
Figure PCTCN2022133176-appb-000003
式I中,R选自C1-C20链烃基、C3-C20脂环烃基、C6-C20芳基和C1-C20烷氧基;
R 1选自C1-C20烷基、C3-C20环烷基和C7-C20烷基苯基;
R 2选自H、C1-C20烷基、C3-C20环烷基和C7-C20烷基苯基。
在一个或多个实施方案中,式I中,R选自C3-C10支链烃基、C3-C10环烷基和C6-C10芳基;更优选地,R选自C4-C6支链烷基、C4-C6环烷基和苯基,更优选为1-甲基丙基、1,3-二甲基丁基、环己基或苯基。
在一个或多个实施方案中,式I中,R 1选自C1-C10烷基、C3-C10环 烷基和C7-C10烷基苯基;更优选地,R 1选自C1-C6烷基和C4-C6环烷基,更优选为甲基或乙基。
在一个或多个实施方案中,式I中,R 2选自H、C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基;更优选地,R 2选自H、C1-C6烷基和C4-C6环烷基,更优选为H、甲基或乙基。
在一个或多个实施方案中,本发明的式I化合物具有式II或式III所示的结构:
Figure PCTCN2022133176-appb-000004
式II和式III中,R、R 1和R 2如本文任一实施方案所述。
在一个或多个实施方案中,本发明的式A化合物选自:
Figure PCTCN2022133176-appb-000005
Figure PCTCN2022133176-appb-000006
Figure PCTCN2022133176-appb-000007
本发明的另一个方面提供制备本发明的式A化合物的方法,所述方法包括以下步骤:
(1)使式C所示的化合物与式D所示的化合物在第一催化剂的作用下进行缩合反应得到包含式E所示的化合物和/或式F所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式X所示的化合物;
Figure PCTCN2022133176-appb-000008
(2)使式X所示的化合物与醛或酮在H 2和第三催化剂的作用下进行还原烷基化反应得到式A所示的化合物;
Figure PCTCN2022133176-appb-000009
式C、式D、式E、式F、式X和式A中的R、R a、R b如本文任一实施方案所定义。
在一个或多个实施方案中,步骤(1)中,所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种。
在一个或多个实施方案中,步骤(1)中,所述第一催化剂与式C化合物的物质的量之比为0.1∶1~2∶1,优选为0.9∶1~1.1∶1。
在一个或多个实施方案中,步骤(1)中,式C化合物与式D化合物的物质的量之比为2∶1~15∶1,优选为4∶1~10∶1,更优选为5∶1~8∶1。
在一个或多个实施方案中,步骤(1)中,所述缩合反应的温度为40~90℃,优选为65~85℃。
在一个或多个实施方案中,步骤(1)中,所述缩合反应在抽真空条件下进行,压力范围为-0.09~-0.1MPa。
在一个或多个实施方案中,步骤(1)中,所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种。
在一个或多个实施方案中,步骤(1)中,所述第二催化剂中的金属与所述缩合物的质量比为0.0001∶1~0.2∶1。
在一个或多个实施方案中,步骤(1)中,所述还原反应的温度为40~120℃、优选60~90℃,氢气压力为0.5~5MPa、优选为1~2MPa。
在一个或多个实施方案中,步骤(2)中,所述第三催化剂为负载型金属催化剂;所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种。
在一个或多个实施方案中,步骤(2)中,所述醛或酮与式X化合物的物质的量之比为1∶1~15∶1。
在一个或多个实施方案中,步骤(2)中,所述还原反应的温度为40-150℃,氢气压力为0.5~5MPa。
本发明的另一个方面提供可用作制备本发明的式A化合物的中间体的式X所示的化合物:
Figure PCTCN2022133176-appb-000010
式X中,R a、R b如本文任一实施方案所定义。
本发明还提供制备本发明的式X化合物的方法,所述方法包括:使式C所示的化合物与式D所示的化合物在第一催化剂的作用下进行缩合反应得到包含式E所示的化合物和/或式F所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式X所示的化合物;
Figure PCTCN2022133176-appb-000011
式C、式D、式E、式F和式X中的R a、R b如本文任一实施方案所定义。
在一个或多个实施方案中,所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种。
在一个或多个实施方案中,所述第一催化剂与式C化合物的摩尔比为0.1∶1~2∶1,优选为0.1∶1~1.1∶1。
在一个或多个实施方案中,式C化合物与式D化合物的摩尔比为2∶1~15∶1,优选为4∶1~10∶1,更优选为5∶1~8∶1。
在一个或多个实施方案中,所述缩合反应的温度为40~90℃,优选为65~85℃。
在一个或多个实施方案中,所述缩合反应在抽真空条件下进行,压力范围为-0.09~-0.1MPa。
在一个或多个实施方案中,所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种。
在一个或多个实施方案中,所述第二催化剂中的金属与所述缩合物的质量比为0.0001∶1~0.2∶1。
在一个或多个实施方案中,所述还原反应的温度为40~120℃,优选60~90℃。
在一个或多个实施方案中,所述还原反应的氢气压力为0.5~5MPa,优选为1~2MPa。
本发明的另一个方面提供一种橡胶组合物,所述橡胶组合物含有本发明的式A化合物、式B化合物、式I化合物和/或式II化合物。
本发明的另一个方面提供一种橡胶制品,所述橡胶制品含有本文任一实施方案所述的橡胶组合物;优选地,所述橡胶制品为轮胎。
本发明还提供一种提高橡胶或橡胶制品的耐热氧老化性能、耐臭氧老化性能和/或耐变色性能的方法,其特征在于,所述方法包括向橡胶或橡胶制品中添加本发明的式A化合物、式B化合物、式I化合物和/或式II化合物。
附图说明
图1为测试例中各胶料天候老化15天候的模拟色,其中,从左至右依次为胶料1、胶料2、胶料3、胶料4、胶料5、胶料6、胶料7的模拟色。
具体实施方式
为使本领域技术人员可了解本发明的特点及效果,以下仅就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。
在本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。
本文中,链烃基是指直链或支链饱和烃基或不饱和烃基,通常含有1-20个碳原子(C1-C20链烃基),例如含有1-10个碳原子(C1-C10链烃基)。链烃基的例子包括但不限于甲基、乙基、正丙基、异丙基、正丁基、1-甲基丙基、仲丁基、叔丁基、正己基、异己基、1,3-二甲基丁基、1,4-二甲基戊基、叔辛基、乙烯基、丙烯基、乙炔基。
本文中,脂环烃基是指碳原子以环状结合的基团,通常含有3-20个碳原子(C3-C20脂环烃基),例如含有3-10个碳原子(C3-C10脂环烃基)。脂环烃基的例子包括但不限于异冰片基、环己基、降冰片烷基、降冰片烯基、二环戊二烯基、乙炔基环己烷基、乙炔基环己烯基。
本文中,芳基指芳烃分子的芳核碳上去掉一个氢原子后剩下的一价基团。芳基的环碳原子数通常为6-20个。示例性的芳基包括苯基和萘基。芳基可任选地被烷基、环烷基和/或芳基取代。取代基的数量通常为1或2个。
本文中,烷基是指直链或支链的单价饱和烃基,通常含有1-20个碳原子(C1-C20烷基),例如含有1-10个碳原子(C1-C10烷基)。烷基的例子包括但不限于甲基、乙基、丙基、1-甲基丙基、1,3-二甲基丁基。
本文中,烷氧基是指烷基和氧原子的结合,可含有1-20个碳原子(C1-C20烷氧基)。烷氧基可分为直链、支链或环状结构。烷氧基的例子包括但不限于 甲氧基、乙氧基、正丙氧基、异丙氧基。
本文中,环烷基是指含有3-10个碳原子、优选含有3-8个碳原子的单价饱和烃环。环烷基的例子包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、环辛基和金刚烷基。
本文中,烷基苯基是指经一个或多个烷基取代的苯基,其中包含苯基在内的碳原子总数通常不超过20个,优选含有7-10个碳原子(C7-C10的烷基苯基)。烷基苯基的例子包括但不限于甲苯基、乙苯基、丙苯基、丁苯基。
式A化合物
本发明发现具有式A所示结构的化合物(式A化合物)能够作为橡胶防老剂,具有与防老剂6PPD相比接近或者更好的防老化性能、耐变色性能和/或持久性能,对橡胶的加工/硫化性能和老化前物性影响较小:
Figure PCTCN2022133176-appb-000012
其中,R选自C1-C20链烃基、C3-C20脂环烃基、C6-C20芳基和C1-C20烷氧基;
R a选自H、C1-C20烷基、C3-C20环烷基、苯基、C7-C20烷基苯基、C1-C20烷基氧基、C3-C20环烷基氧基和C7-C20烷基苯基氧基;
R b选自H、C1-C20烷基、C3-C20环烷基、苯基和C7-C20烷基苯基;
式A化合物不包括R a选自H、C1-C20烷基、C3-C20环烷基、苯基和C7-C20烷基苯基、且R b为H的化合物。
在一些实施方案中,式A中,R a选自C1-C20烷基、C3-C20环烷基、苯基、C7-C20烷基苯基、C1-C20烷基氧基、C3-C20环烷基氧基和C7-C20烷基苯基氧基。
在一些实施方案中,式A中,R a选自C1-C10烷基、C3-C10环烷基、苯基、C7-C10烷基苯基、C3-C10支链烷基氧基、C3-C10环烷基氧基和C7-C10烷基苯基氧基。
在一些实施方案中,式A中,R b选自H、C1-C10烷基、C3-C10环烷基、苯基和C7-C10烷基苯基。
式B化合物
在一些实施方案中,本发明的式A化合物具有式B所示的结构:
Figure PCTCN2022133176-appb-000013
其中,R选自C1-C20链烃基、C3-C20脂环烃基和C6-C20芳基;
R c和R d各自独立选自C1-C10烷基、C3-C10环烷基、苯基和C7-C10烷基苯基。
在一些实施方案中,式B中,R选自C1-C18链烃基、C3-C18脂环烃基和C6-C18芳基。
在一些实施方案中,式B中,R选自C3-C10支链烃基(例如C3-C10支链烷基)、C3-C10环烷基和C6-C10芳基。C3-C10支链烷基的实例包括异丙基、1-甲基丙基、1-甲基丁基、1,2-二甲基丙基、1-甲基戊基、1,2-二甲基丁基、1,3-二甲基丁基、1-乙基丁基、2-庚基、1,2-二甲基戊基、1,3-二甲基戊基、1,4-二甲基戊基、3-庚基、4-庚基、2-辛基、3-辛基、4-辛基、1,2-二甲基己基、1,3-二甲基己基和1,4-二甲基己基。C3-C10环烷基的实例包括环己基。在一些优选的实施方案中,式B中,R选自C4-C6支链烷基和C4-C6环烷基,更优选为1-甲基丙基、1,3-二甲基丁基或环己基。
式B中,R c和R d可以相同或不同。在一些实施方案中,式B中,R c和R d各自独立选自C1-C6烷基和C4-C6环烷基。在一些优选的实施方案中,式B中,R c和R d各自独立为甲基或乙基。在一些实施方案中,R c选自甲基和乙基,R d为甲基。在一些实施方案中,R c和R d均为甲基。
式B中,R c和R d在苯环上的位置不受特别限制。
在一些实施方案中,式B中,R c在-NH-基团的间位、R d在-NH-R基团的间位。在一些实施方案中,式B中,R c在-NH-基团的邻位、R d在-NH-R基团的邻位。在一些实施方案中,式B中,R c在-NH-基团的邻位、R d在-NH-R基团的间位。在一些实施方案中,式B中,R c在-NH-基团的间位、R d在-NH-R基团的邻位。
在一些实施方案中,式B化合物选自:
Figure PCTCN2022133176-appb-000014
式B′化合物
在一些实施方案中,本发明的式A化合物具有式B′所示的结构:
Figure PCTCN2022133176-appb-000015
其中,R选自C1-C20链烃基、C3-C20脂环烃基和C6-C20芳基;
R c为H;
R d选自C1-C10烷基、C3-C10环烷基、苯基和C7-C10烷基苯基。
在一些实施方案中,式B′中,R选自C1-C18链烃基、C3-C18脂环烃基和C6-C18芳基。
在一些实施方案中,式B′中,R选自C3-C10支链烃基(例如C3-C10支链烷基)、C3-C10环烷基和C6-C10芳基。C3-C10支链烷基的实例包括异丙基、1-甲基丙基、1-甲基丁基、1,2-二甲基丙基、1-甲基戊基、1,2-二甲基丁基、1,3-二甲基丁基、1-乙基丁基、2-庚基、1,2-二甲基戊基、1,3-二甲基戊基、1,4-二甲基戊基、3-庚基、4-庚基、2-辛基、3-辛基、4-辛基、1,2-二甲基己基、1,3-二甲基己基和1,4-二甲基己基。C3-C10环烷基的实例包括环己基。在一些优选的实施方案中,式B′中,R选自C4-C6支链烷基、C4-C6环烷基和C6-C10芳基,更优选为1-甲基丙基、1,3-二甲基丁基、环己基或苯基。
式B′中,R d在苯环上的位置不受特别限制。
在一些实施方案中,式B′中,R d在-NH-R基团的间位。在一些实施方案中,式B′中,R d在-NH-R基团的邻位。
在一些实施方案中,式B′化合物选自:
Figure PCTCN2022133176-appb-000016
Figure PCTCN2022133176-appb-000017
式I化合物
在一些实施方案中,本发明的式A化合物具有式I所示的结构。本发明发现具有式I所示结构的化合物(式I化合物)能够用作橡胶防老剂,具有与防老剂6PPD相比接近或者更好的耐臭氧老化性能、耐热氧老化性能、耐变色性能和持久性能,且对橡胶的加工/硫化性能和老化前物性影响较小:
Figure PCTCN2022133176-appb-000018
其中,R选自C1-C20链烃基、C3-C20脂环烃基、C6-C20芳基和C1-C20烷氧基;
R 1选自C1-C20烷基、C3-C20环烷基和C7-C20烷基苯基;
R 2选自H、C1-C20烷基、C3-C20环烷基和C7-C10烷基苯基。
在优选的实施方案中,R选自C3-C10支链烃基、C3-C10环烷基和C6-C10芳基。C3-C10支链烷基的实例包括异丙基、1-甲基丙基、1-甲基丁基、1,2-二甲基丙基、1-甲基戊基、1,2-二甲基丁基、1,3-二甲基丁基、1-乙基丁基、2-庚基、1,2-二甲基戊基、1,3-二甲基戊基、1,4-二甲基戊基、3-庚基、4-庚基、2-辛基、3-辛基、4-辛基、1,2-二甲基己基、1,3-二甲基己基和1,4-二甲基己基。C3-C10环烷基的实例包括环戊基、环己基、环庚基和环辛基。C6-C10芳基的实例包括苯基、甲苯基、乙苯基、二甲苯基和萘基。在一些实施方案中,R选自C4-C6支链烷基、C4-C6环烷基和苯基。在一些实施方案中,R为1-甲基丙基、1,3-二甲基丁基、环己基或苯基。
在优选的实施方案中,R 1选自C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基。在一些实施方案中,R 1选自C1-C10烷基和C3-C10环烷基。在一些实施方案中,R 1选自C1-C6烷基和C4-C6环烷基。在一些实施方案中,R 1选自C1-C6烷基。在一些实施方案中,R 1为甲基或乙基。
在一些实施方案中,式I化合物中,R 1O-基团位于其所在的苯环上的-NH-基团的邻位或对位。
在优选的实施方案中,R 2选自H、C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基。在一些实施方案中,R 2选自H、C1-C10的烷基和C3-C10环烷基。在一些实施方案中,R 2选自H、C1-C6烷基和C4-C6环烷基。在一些实施方案中,R 2选自H和C1-C6烷基C4-C6环烷基。在一些实施方案中,R 2为H、甲基或乙基。
在一些实施方案中,式I化合物中,R 1O-基团位于其所在的苯环上的-NHR基团的间位。
在一些实施方案中,R 2为H;R选自C3-C10支链烃基和C3-C10环烷基,优选选自C4-C6支链烷基和C4-C6环烷基;R 1选自C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基,优选选自C1-C10烷基和C3-C10环烷基,更优选选自C1-C6烷基和C4-C6环烷基,例如C1-C6烷基。在一些实施方案中,R 2为H,R为1-甲基丙基、1,3-二甲基丁基或环己基,R 1为甲基或乙基。
在一些实施方案中,R 2选自C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基,优选选自C1-C10的烷基和C3-C10环烷基,更优选选自C1-C6烷基和C4-C6环烷基,例如C1-C6烷基;R选自C3-C10支链烃基、C3-C10环烷基和C6-C10芳基,优选选自C4-C6支链烷基、C4-C6环烷基和苯基;R 1选自C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基,优选选自C1-C10烷基和C3-C10环烷基,更优选选自C1-C6烷基和C4-C6环烷基,例如C1-C6烷基。在一些实施方案中,R 2为甲基或乙基,R为1-甲基丙基、1,3-二甲基丁基、环己基或苯基,R 1为甲基或乙基。
在一些实施方案中,本发明的式I化合物具有式II或式III所示的结构:
Figure PCTCN2022133176-appb-000019
Figure PCTCN2022133176-appb-000020
式II和式III中,R、R 1和R 2如前文任一实施方案所述。
本发明发现相比防老剂6PPD,式II化合物能够赋予橡胶更优异的耐热氧老化性能。
在一些实施方案中,本发明的式I化合物选自:
Figure PCTCN2022133176-appb-000021
Figure PCTCN2022133176-appb-000022
式X化合物
本发明还提供可用作制备式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物和式III化合物的中间体的式X化合物:
Figure PCTCN2022133176-appb-000023
式X中,R a和R b如前文式A化合物的任一实施方案中的R a和R b所定义,或如前文式B化合物或B′化合物的任一实施方案中的R c和R d所定义,或如前文式I化合物、式II化合物或式III化合物的任一实施方案中的-OR 1和R 2所定义。
在一些实施方案中,作为前述式II化合物和式III化合物的中间体,本发 明的式X化合物具有式XI或式XII所示的结构:
Figure PCTCN2022133176-appb-000024
式XI和式XII中,R 1和R 2如前文式I化合物的任一实施方案所定义。
在一些实施方案中,本发明的式X化合物选自:
Figure PCTCN2022133176-appb-000025
Figure PCTCN2022133176-appb-000026
式A化合物和式X化合物的制备方法
本发明提供的制备式X化合物和式A化合物的方法包括以下步骤:
(1)使式C所示的化合物与式D所示的化合物在第一催化剂的作用下进行缩合反应得到包含式E所示的化合物和/或式F所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式X所示的化合物;
Figure PCTCN2022133176-appb-000027
(2)使式X所示的化合物与醛或酮在H 2和第三催化剂的作用下进行还 原烷基化反应得到式A所示的化合物;
Figure PCTCN2022133176-appb-000028
式C、式D、式E、式F、式X和式A中的R、R a、R b如本文任一实施方案所定义。
可以根据本发明的式A化合物所含的R a和R b基团、或本发明的式B化合物或B′化合物所含的R c和R d基团、或本发明的式I化合物、式II化合物或式III化合物所含的-OR 1和R 2基团确定式C和式D中相应的R a和R b基团,根据本发明的式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物或式III化合物所含的R基团确定步骤(2)中合适的醛或酮,从而相应地制备得到本发明的式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物或式III化合物。
步骤(1)中使用的第一催化剂可以为选自碱金属氢氧化物、碱金属烷氧化物、季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种。适用于本发明的碱金属氢氧化物包括氢氧化钠、氢氧化钾、氢氧化锂等。适用于本发明的碱金属烷氧化物包括甲醇钠、甲醇钾、乙醇钠、乙醇钾、叔丁醇钠、叔丁醇钾、叔戊醇钠、叔戊醇钾等。季铵碱是一类通式为R4NOH的化合物,式中R为四个相同或不相同的脂烃基或芳烃基。适用于本发明的季铵碱中的R基可以选自甲基、乙基、丙基、丁基等中的一种或多种。适用于本发明的季铵碱的实例包括四甲基氢氧化铵、四乙基氢氧化铵、四丁基氢氧化铵等。第一催化剂也可以是碱金属氢氧化物和四烷基铵的卤化物的组合。四烷基铵的氯化物的通式为R4NX,式中R为四个相同或不相同的脂烃基或芳烃基,例如甲基、乙基、丙基、丁基等,X为卤素原子,例如氟、氯、溴、碘。碱金属氢氧化物和四烷基铵的卤化物的组合的实例包括氢氧化钠和四丁基溴化铵等。第一催化剂与式C化合物的物质的量之比可以为0.1∶1~2∶1,优选为0.9∶1~1.1∶1,例如1.05∶1、1.1∶1、1.5∶1。
在一些实施方案中,步骤(1)中,先使式C化合物与第一催化剂成盐,再滴加式D化合物进行缩合反应。
步骤(1)中,式C化合物与式D化合物在第一催化剂的作用下进行缩合反应所得到缩合物可能是式E所示的硝基类化合物和式F所示的亚硝基类化合物中的一者或两者,还可能包含偶氮苯类化合物。式C化合物与式D化合物的物质的量之比可以是2∶1~15∶1,优选为4∶1~10∶1,更优选为5∶1~8∶1,例如6∶1、7∶1。
步骤(1)中,缩合反应可以在40~90℃、优选65~85℃下进行,例如反应温度可以为60℃、70℃、75℃、80℃。缩合反应需在抽真空条件下进行,压力范围为-0.09~-0.1MPa。
步骤(1)中使用的第二催化剂可以是多孔金属催化剂或负载型金属催化剂。多孔金属催化剂又称为海绵状金属催化剂。适用于本发明的多孔金属催化剂包括雷尼镍(又称骨架镍)、雷尼钴、雷尼铜等。负载型金属催化剂包括作为催化活性中心的金属和用于负载金属的载体。适用于本发明的负载型金属催化剂中的金属可以是镍、钴、铜、铂、钯、钌、铑等,载体可以是碳、氧化铝、硅胶、分子筛等,作为载体的碳可以是活性炭。第二催化剂中的金属与缩合物的物质的量之比可以为0.0001∶1~0.2∶1。
步骤(1)中,缩合反应生成的缩合物在第二催化剂的作用下进行加氢还原反应生成式X化合物。步骤(1)中,还原反应可以在40~120℃、优选60~90℃下进行,例如反应温度可以为70℃、75℃、80℃。还原反应中氢气压力可以为0.5~5MPa,例如1MPa、1.5MPa、2MPa、2.5MPa。
步骤(1)中,可以使用化合物C本身作为溶剂,也可以使用甲苯、二甲苯等溶剂。步骤(1)反应结束后,反应液经过过滤、水洗、分相后,有机相经减压蒸馏去除轻组分即可得到式X化合物。
步骤(2)中使用的第三催化剂可以是前述负载型金属催化剂,例如Pt/C。第三催化剂中的金属与式X化合物的物质的量之比可以为0.0001∶1~0.2∶1。
步骤(2)中,式X化合物与醛或酮在第三催化剂的作用下进行加氢还原烷基化反应生成式A化合物。反应后,醛或酮中的羰基碳原子与式A化合物中的氨基氮原子相连。因此,可以根据所要制备的式A化合物所含的R基团选择合适的醛或酮进行反应,例如使用4-甲基-2-戊酮可以制备R基团为1,3-二甲基丁基的式A化合物,使用环己酮可以制备R基团为环己基的式A化合物。当式A化合物中的R基团为芳基时,在反应体系中加入作为芳基前体的酮、氢受体和带水剂进行反应,例如使用环己酮、氢受体和带水剂可以制备R基团为苯基的式A化合物。氢受体可以是硝基苯。带水剂可以是甲苯。醛或酮与式X化合物的物质的量之比可以为1∶1~15∶1,例如2∶1、3∶1、5∶1、8∶1、10∶1。步骤(2)的反应温度可以为40~150℃,例如50℃、80℃、100℃、120℃。步骤(2)中氢气压力可以为0.5~5MPa、例如1MPa、1.5MPa、2MPa、2.5MPa。
步骤(2)中,可以使用作为反应原料的醛或酮作为溶剂。步骤(2)反应结束后,反应液经过滤、减压蒸馏去除轻组分即可得到式A化合物。
本发明中,可以使用液相色谱(LC)或气相色谱(GC)判断各步反应是否达到终点,从而确定合适的反应时间。
本发明的式X化合物和式A化合物的制备方法绿色环保,基本无废水,不需要使用昂贵的溴化物原料,催化剂都可以回收套用,具有固废少、反应温度低等优点。
橡胶组合物和橡胶制品
本发明还提供一种橡胶组合物,所述橡胶组合物含有本发明的式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物或式III化合物作为防老剂。以下将式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物和式III化合物称为本发明的防老剂。
橡胶组合物的原料通常包括二烯弹性体、增强填料、防老剂和交联剂。本文中,橡胶组合物包括未硫化胶和硫化橡胶。未硫化胶经过硫化(固化)可制得硫化橡胶。
本发明的橡胶组合物的原料中,以二烯弹性体的含量为100重量份计,增强填料的含量为30-70重量份,防老剂的含量为0.1-8重量份,交联剂的含量为0.5-3重量份。本文中,若无特别说明,重量份以橡胶组合物的原料所含的二烯弹性体为100重量份计。
本文中,二烯弹性体是指单体包含二烯烃(如丁二烯、异戊二烯)的弹性体。适用于本发明的二烯弹性体可以是本领域已知的各种二烯弹性体,包括但不限于选自天然橡胶(NR)、顺丁橡胶(BR)、异戊橡胶、丁苯橡胶(SBR)、氯丁橡胶(CR)、丁腈橡胶(NBR)、异戊二烯/丁二烯共聚物、异戊二烯/苯乙烯共聚物和异戊二烯/丁二烯/苯乙烯共聚物中的一种或多种。在某些实施方案中,本发明的橡胶组合物的原料中,二烯弹性体包含天然橡胶和顺丁橡胶,或由天然橡胶和顺丁橡胶组成;天然橡胶和顺丁橡胶的质量比可以为1∶9到9∶1、2∶8到8∶2、3∶7到7∶3、4∶6到6∶4、4.5∶5.5到5.5∶4.5、或1∶1。
本发明的橡胶组合物的原料通常包括0.1-8重量份、优选1-5重量份、更优选2±0.5重量份的防老剂。本发明的橡胶组合物的特点在于防老剂包括本发明的防老剂。本发明中,本发明的防老剂可以占到橡胶组合物所含的防老剂总质量的50%以上、60%以上、80%以上、90%以上或100%。
适用于本发明的增强填料可以是常规用于橡胶组合物的增强填料,包括但不限于选自炭黑、氧化钛、氧化镁、碳酸钙、碳酸镁、氢氧化铝、氢氧化镁、粘土和滑石中的一种或多种。在一些实施方案中,本发明的橡胶组合物中,增强填料为炭黑。橡胶组合物的原料通常包含30-70重量份、优选40-60质量份、更优选45-55重量份的增强填料。在一些实施方案中,本发明的橡胶组合物的原料包含30-70重量份、优选40-60重量份、更优选45-55重量份、例如50± 2重量份的炭黑。
交联剂可以是硫磺。橡胶组合物的原料通常包含0.5-3重量份、优选1-3重量份、更优选1-2重量份的交联剂。在一些实施方案中,本发明的橡胶组合物的原料包含0.5-3重量份、优选1-3重量份、更优选1-2重量份、例如1.5±0.2重量份、1.5±0.1重量份的交联剂,例如硫磺。
本发明的橡胶组合物的原料还可包括其它常用于橡胶组合物的成分,包括但不限于助剂和促进剂中的一种或多种。助剂和促进剂各自的用量可以是本领域的常规用量。
助剂可以包括为了改善加工性等性能而使用的软化剂。软化剂可以包括石油类软化剂(操作油),如环烷油、芳烃油、加工油、润滑油、石蜡、液体石蜡、石油沥青和凡士林等,也可以包括脂肪油类软化剂,如硬脂酸、蓖麻油、亚麻籽油、菜籽油、椰子油、蜡(如蜂蜡、巴西棕榈蜡和羊毛脂)、妥尔油、亚油酸、棕榈酸和月桂酸等。助剂还可以包括活性剂,例如氧化锌,可以起到加快硫化速度、提高橡胶导热性、耐磨性、耐撕裂性等作用。通常,每100重量份的二烯弹性体使用总计2-20质量份的助剂。在一些实施方案中,本发明的橡胶组合物的原料包括操作油,例如芳烃油。本发明的橡胶组合物的原料可以包含0-20重量份、优选1-10重量份、更优选2-8重量份、例如5±2重量份、5±1重量份的操作油,例如芳烃油。在一些实施方案中,本发明的橡胶组合物的原料包括脂肪油类软化剂,例如硬脂酸。本发明的橡胶组合物的原料可以包含0-5重量份、优选0.5-4重量份、更优选1-3重量份、例如2±0.5重量份、2±0.2重量份的脂肪油类软化剂,例如硬脂酸。在一些实施方案中,本发明的橡胶组合物的原料包括活性剂,例如氧化锌。本发明的橡胶组合物的原料可以包含0-10重量份、优选2-8重量份、更优选3-7重量份、例如5±1重量份的活性剂,例如氧化锌。在一些实施方案中,本发明的橡胶组合物的原料包括操作油、脂肪油类软化剂和活性剂。操作油、脂肪油类软化剂和活性剂各自的用量可以如前所述。
促进剂通常为硫化促进剂,可以为选自磺胺类硫化促进剂、噻唑类硫化促进剂、秋兰姆类硫化促进剂、硫脲类硫化促进剂、胍类硫化促进剂、二硫代氨基甲酸盐类硫化促进剂、醛胺类硫化促进剂、醛氨类硫化促进剂、咪唑啉类硫化促进剂和黄原酸类硫化促进剂中的一种或多种。例如,促进剂可以是促进剂NS(N-叔丁基-2-苯并噻唑次磺酰胺)。在一些实施方案中,本发明的橡胶组合物的原料包括促进剂,例如促进剂NS。本发明的橡胶组合物的原料可以包含0-1.5重量份、优选0.5-1.5重量份、更优选0.5-1.2重量份、例如0.8±0.2重量份、0.8±0.1重量份的促进剂,例如促进剂NS。
另外,在需要时,橡胶组合物中还可使用增塑剂,例如DMP(邻苯二甲酸二甲酯)、DEP(邻苯二甲酸二乙酯)、DBP(邻苯二甲酸二丁酯)、DHP(邻苯二甲酸二庚酯)、DOP(邻苯二甲酸二辛酯)、DINP(邻苯二甲酸二异壬酯)、DIDP(邻苯二甲酸二异癸酯)、BBP(邻苯二甲酸丁基苄基酯)、DWP(邻苯二甲酸二月桂酯)和DCHP(邻苯二甲酸二环己酯)等。增塑剂的用量可以为本领域的常规用量。
可采用常规的橡胶混炼方法制备本发明的未硫化胶,例如采用两段混炼方式进行制备:一段密炼机混炼,混合二烯弹性体、增强填料、助剂和防老剂,得到母炼胶;二段开炼机混炼,混炼一段得到的母炼胶与交联剂和促进剂,得到未硫化胶。
可采用常规的硫化方法对本发明的未硫化胶进行硫化,得到硫化橡胶;硫化温度通常为130℃-200℃,例如140-150℃、145±2℃;硫化时间取决于硫化温度、硫化体系和硫化动力学,通常为15-60分钟,例如20-30分钟、25±2分钟。在硫化前可先对捏合得到的未硫化胶进行常规的压片。
本发明还提供一种橡胶制品,所述橡胶制品含有本发明任一实施方案所述的橡胶组合物。橡胶制品可以是轮胎、胶鞋、密封条、隔音板、止震垫等。在某些实施方案中,橡胶制品为轮胎,例如轮胎的胎面、带束层和胎侧。轮胎的带束层,除本发明的橡胶组合物外,还可含有本领域常规使用的增强材料。
本发明还提供本发明的式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物或式III化合物在提高橡胶或橡胶制品的耐热氧老化性能、耐臭氧老化性能和/或耐变色性能中的用途。优选地,所述橡胶制品为轮胎。所述用途包括向橡胶或橡胶制品中添加本文任一实施方案所述的式A化合物、式B化合物、式B′化合物、式I化合物、式II化合物或式III化合物作为防老剂。
下文将以具体实施例的方式阐述本发明。应理解,这些实施例仅仅是阐述性的,并非意图限制本发明的范围。实施例中所用到的方法、试剂和材料,除非另有说明,否则为本领域常规的方法、试剂和材料。实施例中所用的原料均可通过市售途径购得。
实施例1:化合物I-1(N-(4-甲醚基苯基)-N′-1,3-二甲基丁基-1,4-苯二胺)的合成
(1)化合物X-1的合成
于500mL四口烧瓶中投入200g(1.62mol)对甲醚苯胺、80ml二甲苯和133.3g(0.37mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液, 搅拌升温至40-50℃,减压蒸馏脱水,使TMAOH与对甲醚苯胺成盐,此过程中反应液由黄色逐步变成紫红色;逐渐升温至70℃,当馏分约为催化剂25%四甲基氢氧化铵投料量的一半时,70℃减压(-0.095MPa)蒸馏同时滴加硝基苯41g(0.33mol),滴加时间约2h,滴加完毕后保温1h,LC色谱监测至硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加30g去离子水和45g催化剂骨架镍,氢气置换三次,升温升压至68℃和2.0MPa反应,LC监测至硝基及亚硝基类化合物还原完全。反应液经过滤、水洗、分相得到有机相,有机相减压蒸馏(-0.1MPa,190℃)得到57g中间体化合物X-1(收率约80%),GC检测含量>99.4%。
Figure PCTCN2022133176-appb-000029
LC-MS(m/z):214.22(M-H +).
(2)化合物I-1的合成
将57g化合物X-1、150g(1.50mol)4-甲基-2-戊酮和0.6g Pt/C投入500mL高压反应釜,氢气置换3次,升温至75℃,升压至1.6MPa反应,期间实时补充氢气。用GC检测化合物X-1含量<0.1%,降温,停止反应。过滤去除催化剂,-0.1MPa、170℃减压蒸馏去除轻组分得到77.7g化合物I-1(收率约98%),GC检测含量>98.5%。性状:紫色固体。
Figure PCTCN2022133176-appb-000030
LC-MS(m/z):298.40(M-H +).
实施例2:化合物I-2(N-(4-甲醚基苯基)-N′-环己基-1,4-苯二胺)的合成
(1)化合物X-1的合成
化合物X-1的合成同实施例1。
(2)化合物I-2的合成
将40g(0.18mol)化合物X-1、80g(0.81mol)环己酮和0.8g Pt/C投入500mL高压反应釜,氢气置换3次,升温至100℃,升压至1.8MPa反应,期间实时补充氢气。用GC检测B1含量<0.1%,降温,停止反应。过 滤去除催化剂,-0.1MPa、200℃减压蒸馏去除轻组分得到53.2g化合物I-2(收率约96%),GC检测含量>97.8%。性状:紫褐色固体。
Figure PCTCN2022133176-appb-000031
LC-MS(m/z):296.41(M-H +).
实施例3:化合物I-3(N-(2-甲醚基苯基)-N′-1-甲基丙基-1,4-苯二胺)的合成
(1)化合物X-2的合成
于1000mL四口烧瓶中投入400.2g(3.25mol)邻甲醚苯胺和200.2g(0.55mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40~50℃,减压蒸馏脱水,使TMAOH与邻甲醚苯胺成盐,此过程中反应液由黄色逐步变成红褐色;逐渐升温至75℃,当馏分约为100g时,75℃减压(-0.097MPa)蒸馏同时滴加硝基苯61.55g(0.50mol),滴加时间约3h,滴加完毕后保温1h,LC监测至硝基苯反应完全,得到缩合液。
将上述缩合液转移至1000mL不锈钢反应釜,加100g去离子水和60g催化剂骨架镍,氢气置换三次,升温至65℃,升压至1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。反应液进行过滤、水洗、分相;水相经浓缩后继续套用,有机相经减压蒸馏得到84.6g中间体化合物X-2(收率约79.5%),GC检测含量>99.2%。
Figure PCTCN2022133176-appb-000032
LC-MS(m/z):214.26(M-H +).
(2)化合物I-3的合成
将81.5g(0.38mol)化合物X-2、117g(1.62mol)2-丁酮和1.0g Pt/C投入500mL高压反应釜,升温至70℃反应,氢气置换后升压至1.2MPa反应。用GC检测化合物X-2含量<0.1%,降温,停止反应。过滤、减压蒸馏去除水和2-丁酮等轻组分,得到99.5g化合物I-3(收率约97%),GC检测含量>97.2%。性状:紫色液体。
Figure PCTCN2022133176-appb-000033
LC-MS(m/z):270.37(M-H +).
实施例4:化合物I-4(N-(2-甲醚基苯基)-N′-1,3-二甲基丁基-1,4-苯二胺)的合成
(1)化合物X-2的合成
化合物X-2的合成方法同实施例3。
(2)化合物I-4的合成
将50g(0.23mol)化合物X-2、100g(1.0mol)4-甲基-2-戊酮和1.0g Pt/C投入500mL高压反应釜,升温至90℃反应,氢气置换后升压至1.2MPa反应。用GC检测化合物X-2含量<0.1%,降温,停止反应。过滤、减压蒸馏去除水和4-甲基-2-戊酮等轻组分,得到65.1g化合物I-4(收率约95%),GC检测含量>98.2%。性状:紫褐色液体。
Figure PCTCN2022133176-appb-000034
LC-MS(m/z):298.42(M-H +).
实施例5:化合物I-5(N-(2-乙醚基苯基)-N′-1-甲基丙基-1,4-苯二胺)的合成
(1)化合物X-3的合成
于500mL四口烧瓶中投入220g(1.6mol)邻乙醚苯胺和80g(0.22mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至50℃,减压蒸馏脱水,使TMAOH与邻乙醚苯胺成盐,此过程中反应液由黄色逐步变成红褐色;逐渐升温至75℃,当馏分约为100g时,78℃减压(-0.097MPa)蒸馏同时滴加硝基苯24.6g(0.2mol),滴加时间约3h,滴加完毕后保温1h,LC监测至硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加30g去离子水和20g催化剂骨架镍,氢气置换三次,升温至69℃,升压至1.6MPa反应,LC监测至硝基及亚硝基类化合物还原完全。反应液进行过滤、水洗、分相;水相经浓缩后继续套用,有机相经减压蒸馏得到34.1g中间体化合物X-3(收率约 75%),GC检测含量>98.5%。
Figure PCTCN2022133176-appb-000035
LC-MS(m/z):228.26(M-H +).
(2)化合物I-5的合成
将30g(0.13mol)化合物X-3、43.2g(0.6mol)2-丁酮和0.6g Pt/C投入500mL高压反应釜,升温至70℃反应,氢气置换后升压至1.2MPa反应。用GC检测化合物X-3含量<0.1%,降温,停止反应。过滤、减压蒸馏去除水和2-丁酮等轻组分,得到35.4g化合物I-5(收率约96%),GC检测含量>97.5%。性状:红棕色液体。
Figure PCTCN2022133176-appb-000036
LC-MS(m/z):284.40(M-H +).
实施例6:化合物I-6(N-(2-乙醚基苯基)-N′-环己基-1,4-苯二胺)的合成
(1)化合物X-3的合成
化合物X-3的合成方法同实施例5。
(2)化合物I-6的合成
将30g(0.13mol)化合物X-3、98g(1.0mol)环己酮和0.8g Pt/C投入500mL高压反应釜,升温至100℃反应,氢气置换后升压至1.9MPa反应。用GC检测化合物X-3含量<0.1%,降温,停止反应。过滤、减压蒸馏去除水和环己酮等轻组分,得到39.5g化合物I-6(收率约98%),GC检测含量>99.1%。性状:深褐色固体。
Figure PCTCN2022133176-appb-000037
LC-MS(m/z):310.42(M-H +).
实施例7:化合物I-7(N-(2-甲醚基苯基)-N′-1-甲基丙基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-4的合成
于500mL四口烧瓶中投入175.1g(1.42mol)邻甲醚苯胺和87.59g(0.24mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40~50℃,减压(-0.097MPa)蒸馏脱水,使TMAOH与邻甲醚苯胺成盐,此过程中反应液由黄色逐步变成紫红色;逐渐升温至72℃,当馏分约为25%四甲基氢氧化铵投料量的50%时,开始滴加间硝基甲苯30g(0.22mol),滴加时间约3h,滴加完毕后保温1h,LC色谱监测至间硝基甲苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加30g去离子水和30g催化剂骨架镍,氢气置换三次,升温升压至78℃、2.0MPa反应。LC监测至硝基及亚硝基类化合物还原完全。进行过滤、水洗、分相;水相经浓缩后继续套用,有机相经减压蒸馏(-0.1MPa,190℃)去除轻组分得到40g中间体化合物X-4(收率约80%),GC检测含量>99.2%。
Figure PCTCN2022133176-appb-000038
LC-MS(m/z):228.24(M-H +).
(2)化合物I-7的合成
将40g(0.14mol)化合物X-4、100g(1.38mol)2-丁酮和0.5g Pt/C投入500mL反应釜中,H2置换2~3次后升压至1.2MPa,升温至90℃反应。用GC检测化合物X-4含量<0.1%,降温,停止反应。经过滤、减压蒸馏(-0.1MPa,180℃)去除反应生成的水和过量2-丁酮等轻组分后得到77.5g化合物I-7(收率约97.8%),GC检测含量>95.9%。性状:紫褐色固体。
Figure PCTCN2022133176-appb-000039
LC-MS(m/z):284.17(M-H +).
实施例8:化合物I-8(N-(2-甲醚基苯基)-N′-1,3-二甲基丁基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-4的合成
化合物X-4的合成同实施例7。
(2)化合物I-8的合成
将30g(0.1mol)化合物X-4、100g(1mol)4-甲基-2-戊酮和0.6g Pt/C投入500mL反应釜中,H2置换2~3次后升压至1.5MPa,升温至90℃反应。用GC检测化合物X-4含量<0.1%,降温,停止反应。经过滤、减压蒸馏(-0.1MPa,180℃)去除反应生成的水和4-甲基-2-戊酮等轻组分后得到30.7g化合物I-8(收率约98.5%),GC检测含量>98.2%。性状:深紫色固体。
Figure PCTCN2022133176-appb-000040
LC-MS(m/z):312.45(M-H +).
实施例9:化合物I-9(N-(2-甲醚基苯基)-N′-环己基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-4的合成
化合物X-4的合成同实施例7。
(2)化合物I-9的合成
将30g(0.1mol)化合物X-4、60g(0.61mol)环己酮和1.0g Pt/C投入500mL反应釜中,H2置换2~3次后升压至2.0MPa,升温至100℃反应。用GC检测化合物X-4含量<0.1%,降温,停止反应。经过滤、减压蒸馏(-0.1MPa,200℃)去除反应生成的水和过量环己酮等轻组分后得到30.7g化合物I-9(收率约99.1%),GC检测含量>97.6%。性状:深褐色固体
Figure PCTCN2022133176-appb-000041
LC-MS(m/z):310.41(M-H +).
实施例10:化合物I-10(N-(4-甲醚基苯基)-N′-环己基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-5的合成
于500mL四口烧瓶中投入200g(1.62mol)对甲醚苯胺和100g(0.27mol) 浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40~50℃,减压蒸馏(-0.095MPa)脱水,使TMAOH与对甲醚苯胺成盐,此过程中反应液颜色逐步变成红褐色;逐渐升温至75℃,当馏分约为25%四甲基氢氧化铵投料量的50%时,开始滴加间硝基甲苯34.2g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC监测间硝基甲苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加20g去离子水和30g催化剂雷尼镍,氢气置换三次,升温至70℃,升压至2.0MPa反应,期间不断补氢。LC监测硝基及亚硝基类化合物还原完全,反应液经过滤、水洗、分相得到有机相,有机相进行减压蒸馏(-0.1MPa,220℃)去除轻组分得到45.3g中间体化合物X-5(收率约79.5%),GC检测含量>99.8%。
Figure PCTCN2022133176-appb-000042
LC-MS(m/z):228.28(M-H +).
(2)化合物I-10的合成
将45.3g(0.15mol)化合物X-5、98.1g(1.0mol)环己酮和1.0g Pt/C投入500mL不锈钢反应釜中,H2升压至2.0MPa,升温至75℃反应,用GC检测化合物X-5含量<0.1%,降温,停止反应,过滤、减压蒸馏(-0.1MPa,200℃)去除轻组分得到59.7g化合物I-10(收率约97%),GC检测含量>96.8%。性状:红褐色固体。
Figure PCTCN2022133176-appb-000043
LC-MS(m/z):310.41(M-H +).
实施例11:化合物I-11(N-(4-甲醚基苯基)-N′-苯基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-5的合成
化合物X-5的合成同实施例10。
(2)化合物I-11的合成
将30g(0.1mol)化合物10、9.8g(0.1mol)环己酮、12.3g(0.11mol)硝基苯、30mL甲苯和1.0g Pt/C投入500mL装有冷凝器、分水器和温度计的四口烧瓶中,升温至110℃反应。边反应边脱水,待生成水约至理论量时, 用GC检测化合物X-5含量<0.1%,停止反应。反应液经过滤、减压蒸馏(-0.1MPa,200℃)去除轻组分得到115.5g化合物I-11(收率约95%)。性状:褐色固体。
Figure PCTCN2022133176-appb-000044
LC-MS(m/z):304.39(M-H +).
实施例12:化合物B-1(N-(3-甲基苯基)-N′-1,3-二甲基丁基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-6的合成
于500mL四口烧瓶中投入132.4g(1.23mol)间甲苯胺和87.6g(0.24mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至40-50℃,减压蒸馏脱水,使TMAOH与间甲苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至72℃,当馏分约为催化剂25%四甲基氢氧化铵投料量的50%时,72℃减压(-0.098MPa)蒸馏同时滴加间硝基甲苯30g(0.22mol),滴加时间约3h,滴加完毕后保温1h,LC监测至间硝基甲苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加50g去离子水和40g催化剂骨架镍,氢气置换三次,升温至75℃,升压至1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。反应液进行过滤、水洗、分相,有机相经减压蒸馏(-0.1MPa,160℃)去除轻组分得到37.1g化合物X-6(收率约80%),GC检测含量>99.5%。
Figure PCTCN2022133176-appb-000045
LC-MS(m/z):212.22(M-H +).
1H NMR(400MHz,DMSO-d 6)δ6.95-6.88(m,2H),6.79(d,J=8.3Hz,1H),6.48(d,J=2.6Hz,1H),6.43-6.30(m,4H),4.80(s,2H),2.14(s,3H),2.02(s,3H).
(2)化合物B-1的合成
将37.1g化合物X-6、60g(0.60mol)4-甲基-2-戊酮和0.5g Pt/C催化剂投入反应釜中,氢气置换3次,升温至100℃,升压至1.5MPa反应,用GC检测,当化合物X-6含量<0.1%时,停止反应。降温,过滤去除催化剂,-0.1MPa、 180℃蒸馏去除轻组分得到49.2g化合物B-1(收率约95%),GC检测含量>98.5%。性状:红褐色固体。
Figure PCTCN2022133176-appb-000046
LC-MS(m/z):296.44(M-H +).
实施例13:化合物B-2(N-(3-甲基苯基)-N′-1-甲基丙基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-6的合成
化合物X-6的合成同实施例12。
(2)化合物B-2的合成
将30g(0.14mol)化合物X-6、100g(1.38mol)2-丁酮和0.6gPt/C催化剂投入反应釜中,氢气置换3次,升温至80℃,升压至1.5MPa反应,用GC检测,当化合物X-6含量<0.1%时,停止反应。降温,过滤去除催化剂,-0.1MPa、150℃蒸馏去除轻组分得到36.7g化合物B-2(收率约98%),GC检测含量>98.5%。性状:红褐色固体。
Figure PCTCN2022133176-appb-000047
LC-MS(m/z):268.40(M-H +).
1H NMR(400MHz,DMSO-d 6)δ6.96-6.87(m,2H),6.83(d,J=8.4Hz,1H),6.45(d,J=2.6Hz,1H),6.42-6.29(m,4H),4.98(d,J=8.6Hz,1H),2.14(s,3H),2.04(s,3H),1.81-1.66(m,J=6.7Hz,1H),1.45(dt,J=13.9,7.1Hz,1H),1.21(dt,J=13.5,6.8Hz,1H),0.89(dd,J=16.2,6.6Hz,6H).
实施例14:化合物B-3(N-(2-甲基苯基)-N′-1-甲基丙基-3-甲基-1,4-苯二胺)的合成
(1)化合物X-7的合成
于1000mL四口烧瓶中投入347.9g(3.25mol)邻甲苯胺和200g(0.55mol) 浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至60℃,减压蒸馏脱水,使TMAOH与邻甲苯胺成盐,此过程中反应液由黄色逐步变成红褐色;逐渐升温至80℃,当馏分约为催化剂25%四甲基氢氧化铵投料量的一半时,80℃减压(-0.097MPa)蒸馏同时滴加邻甲硝基苯68.5g(0.50mol),滴加时间约3h,滴加完毕后保温1h,用LC监测至邻甲硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加65g去离子水和38g催化剂骨架镍,氢气置换三次,升温升压至78℃、2.0MPa反应,LC监测至硝基及亚硝基类化合物还原完全。反应液经过滤、水洗、分相;有机相经减压蒸馏(-0.1MPa,180℃)去除轻组分得到31.8g中间体化合物X-7(收率约30%),GC检测含量>92.5%。
Figure PCTCN2022133176-appb-000048
LC-MS(m/z):212.20(M-H +).
(2)化合物B-3的合成
将30g(0.14mol)化合物X-7、117g(1.62mol)2-丁酮和0.8g Pt/C投入反应釜,升温至80℃,氢气置换后升压至1.5MPa反应,用GC检测化合物X-7含量<0.1%时,降温,停止反应。过滤、减压蒸馏(-0.1MPa,160℃)去除轻组分得到36.8g化合物B-3(收率约97%),GC检测含量>95.5%。性状:黑色固体。
Figure PCTCN2022133176-appb-000049
LC-MS(m/z):268.38(M-H +).
实施例15:化合物B-4(N-(2-甲基苯基)-N′-环己基-3-甲基-1,4-苯二胺)的合成
(1)化合物X-7的合成
化合物X-7的合成同实施例14。
(2)化合物B-4的合成
将30g(0.14mol)化合物X-7、100g(1.02mol)环己酮和0.9g Pt/C投 入500mL反应釜,升温至70℃,氢气置换后升压至1.8MPa反应,用GC检测化合物X-7含量<0.1%,降温,停止反应。过滤、减压蒸馏(-0.1MPa,190℃)去除轻组分,得到39.0g化合物B-4(收率约94.8%),GC检测含量>93.7%。性状:黑色固体。
Figure PCTCN2022133176-appb-000050
LC-MS(m/z):294.41(M-H +).
实施例16:化合物B-5(N-(2-甲基苯基)-N′-1-甲基丙基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-8的合成
于1000mL四口烧瓶中投入175g(1.6mol)邻甲苯胺和100g(0.27mol)浓度为25%的四甲基氢氧化铵(TMAOH)水溶液,搅拌升温至60℃,减压蒸馏脱水,使TMAOH与邻甲苯胺成盐,此过程中反应液由黄色逐步变成红褐色;逐渐升温至75℃,当馏分约为催化剂25%四甲基氢氧化铵投料量的一半时,80℃减压(-0.097MPa)蒸馏同时滴加间甲基硝基苯34.2g(0.25mol),滴加时间约3h,滴加完毕后保温1h,LC色谱监测至间甲基硝基苯反应完全,得到缩合液。
将上述缩合液转移至500mL不锈钢反应釜,加35g去离子水和30g催化剂骨架镍,氢气置换三次,升温升压至75℃、1.5MPa反应,LC监测至硝基及亚硝基类化合物还原完全。反应液进行过滤、水洗、分相;有机相经减压蒸馏(-0.1MPa,170℃)去除轻组分得到42.4g中间体化合物X-8(收率约80%),GC检测含量>99.5%。
Figure PCTCN2022133176-appb-000051
LC-MS(m/z):212.26(M-H +).
(2)化合物B-5的合成
将40g(0.18mol)化合物X-8、100g(1.39mol)2-丁酮和0.8g Pt/C投入500mL反应釜,升温至78℃,氢气置换后升压至1.8MPa反应,用GC 检测化合物X-8含量<0.1%时,降温,停止反应。过滤、减压蒸馏(-0.1MPa,160℃)去除轻组分后得到47.5g化合物B-5(收率约98%),GC检测含量>98.5%。性状:棕色固体。
Figure PCTCN2022133176-appb-000052
LC-MS(m/z):268.39(M-H +).
实施例17:化合物B-6(N-(2-甲基苯基)-N′-环己基-2-甲基-1,4-苯二胺)的合成
(1)化合物X-8的合成
化合物X-8的合成同实施例16。
(2)化合物B-6的合成
将30g(0.14mol)化合物X-8、100g(1.02mol)环己酮和0.9g Pt/C投入500mL反应釜,升温至100℃,氢气置换后升压至2.0MPa反应,用GC检测化合物X-8含量<0.1%时,降温,停止反应。过滤、减压蒸馏(-0.1MPa,180℃)去除轻组分得到41.1g化合物B-6(收率约98.8%),GC检测含量>98.7%。性状:深褐色固体。
Figure PCTCN2022133176-appb-000053
LC-MS(m/z):294.43(M-H +).
实施例18:2-甲基-N-苯基-1,4-苯二胺类防老剂
(1)中间体X-9的合成
于500ml四口烧瓶中投入苯胺:176.5g(1.89mol),25%四甲基氢氧化铵(TMAOH):116.8g(0.32mol),搅拌升温至40~50℃,减压蒸馏脱水,使TMAOH与苯胺成盐,此过程中反应液由黄色逐步变成深红色;逐渐升温至70℃,当馏分约为CAT1投料量50%时,70℃减压(-0.095MPa)蒸馏,缓慢滴加间硝基甲苯40g(0.29mol),滴加时间约3h,滴加完毕后保温1h,LC监测至间硝基甲苯反应完全。
将上述缩合液转移至500ml不锈钢反应釜,加去离子水51g,催化剂 CAT2:30g,氢气置换三次,75℃,1.5MPa反应。LC监测至硝基及亚硝基类化合物还原完全。后进行过滤、水洗分相;水相经浓缩后继续套用,有机相经减压蒸馏去除轻组分后得到化合物2-甲基-N-苯基-1,4-苯二胺即中间体X-9:45.9g(单程收率约79.4%),呈粉红色固体,GC检测含量>99.8%。
Figure PCTCN2022133176-appb-000054
LC-MS(m/z):198.22(M-H +).
1H NMR(400MHz,DMSO-d 6)δ7.08-6.97(m,3H),6.80(d,J=8.3Hz,1H),6.57-6.46(m,4H),6.40(dd,J=8.3,2.7Hz,1H),4.81(s,2H),2.02(s,3H).
(2)化合物B′-1的合成
500ml反应釜中投入中间体X-9:46g(0.23mol),4-甲基-2-戊酮:70g(0.70mol),Pt/C:0.8g,氢气置换3次,80℃,1.8MPa反应。当GC检测X-9含量<0.1%,降温,停止反应,过滤、减压蒸馏(-0.1MPa,180℃)去除轻组分得到化合物B′-1:64.0g(收率约98%),GC检测含量>95.8%。
Figure PCTCN2022133176-appb-000055
性状:深红色液体
LC-MS(m/z):282.40(M-H +).
1H NMR(400MHz,DMSO-d 6)δ6.83(t,J=7.8Hz,1H),6.80-6.74(m,2H),6.68-6.61(m,1H),6.60-6.54(m,2H),6.53-6.47(m,2H),4.87(s,1H),3.39(t,J=6.7Hz,2H),2.55(s,1H),2.21(s,3H),2.07(s,3H),1.80-1.58(m,J=6.8Hz,1H),1.44(d,J=13.9Hz,1H),1.31-1.09(m,1H),1.06(d,J=6.1Hz,3H),0.89(dd,J=14.8,6.6Hz,6H).
(3)化合物B′-2的合成
500ml反应釜中加入中间体X-9:40g(0.2mol),2-丁酮100g(1.39mol),Pt/C:0.5g,氢气置换3次,80℃,1.2MPa反应。当GC检测X-9含量<0.1%,降温,停止反应,过滤、减压蒸馏(-0.1MPa,190℃)去除轻组分得到化合物B′-2:49.4g(收率约98%),GC检测含量>97.6%。
Figure PCTCN2022133176-appb-000056
性状:红棕色液体
LC-MS(m/z):254.35(M-H +).
(4)化合物B′-3的合成
500ml反应釜中加入中间体X-9:40g(0.2mol),环己酮100g(1.02mol),Pt/C:0.8g,氢气置换3次,100℃,2.0MPa反应。当GC检测X-9含量<0.1%,降温,停止反应,过滤、减压蒸馏(-0.1MPa,190℃)去除轻组分得到化合物B′-3:54.4g(收率约97%),GC检测含量>97.8%。
Figure PCTCN2022133176-appb-000057
性状:红棕色固体
LC-MS(m/z):280.41(M-H +).
1H NMR(400MHz,DMSO-d 6)δ7.08-6.99(m,3H),6.83(d,J=8.4Hz,1H),6.56-6.48(m,3H),6.46(d,J=2.6Hz,1H),6.39(dd,J=8.4,2.7Hz,1H),5.12(d,J=8.1Hz,1H),3.14d,J=10.2,4.5Hz,1H),2.03(s,3H),1.92(d,J=12.1Hz,2H),1.71(d,J=11.7Hz,3H),1.64-1.50(m,1H),1.40-1.01(m,6H).
(3)化合物B′-4的合成
将19.8g(0.1mol)中间体X-9、9.8g(0.1mol)环己酮、12.3g(0.11mol)硝基苯、30mL甲苯和1.0g Pd/C投入500mL四口烧瓶中投入中间体,装有冷凝器、分水器等装置,升温至110℃反应。边反应边脱水,待生成水约至理论量时,用GC检测X-9含量<0.1%,停止反应。反应液经过滤、减压蒸馏(-0.1MPa,180℃)去除轻组分得到化合物B′-4:18.2g(收率约92%)。
Figure PCTCN2022133176-appb-000058
性状:褐色固体
LC-MS(m/z):274.34(M-H +).
1H NMR(400MHz,DMSO-d 6)δ7.96(s,1H),7.26-7.11(m,4H),7.11-7.05(m,2H),7.05-6.98(m,3H),6.97(d,J=2.6Hz,1H),6.90(dd,J=8.5,2.7Hz,1H),6.78-6.72(m,1H),6.71-6.66(m,2H),6.63(td,J=7.2,1.2Hz,1H),2.13(s,3H).
应用例
使用防老剂6PPD以及上述实施例中的化合物B-1、化合物B-2、化合物I-3、化合物I-4、化合物I-7和化合物I-8制备胶料,并对胶料进行性能测试。
1、原料
天然橡胶(SCR5),西双版纳中化橡胶有限公司;
顺丁橡胶(BR),山东玉皇化工有限公司;
防老剂6PPD,圣奥化学科技有限公司;
炭黑N550、芳烃油、ZnO、硬脂酸、升华硫(S)和促进剂NS均为橡胶工业通用原材料。
2、设备和仪器
FARREL BR1600型密炼机,美国法雷尔公司;
X(S)K-160型开炼机,上海双翼橡塑机械设备有限公司;
63TDF-DSM型硫化机,湖州宏侨橡胶机械有限公司;
UR2010SD硫化仪、UM2050门尼粘度仪,优肯科技有限公司;
Instron 3360拉力机,美国英斯特朗公司;
CLM-QLH-150热空气老化箱,无锡科来姆环境科技有限公司;
GT-7011-D屈挠试验机和OZ-0200AC臭氧老化试验仪,高铁检测仪器有限公司;
CS-200色差仪,杭州彩谱科技有限公司。
3、胶料配方
表1:加入不同防老剂的胶料的混炼配方(单位:质量份)
配方 胶料1 胶料2 胶料3 胶料4 胶料5 胶料6 胶料7
SCR5 50.0 50.0 50.0 50.0 50.0 50.0 50.0
BR 50.0 50.0 50.0 50.0 50.0 50.0 50.0
N550 50.0 50.0 50.0 50.0 50.0 50.0 50.0
ZnO 5.0 5.0 5.0 5.0 5.0 5.0 5.0
硬脂酸 2.0 2.0 2.0 2.0 2.0 2.0 2.0
芳烃油 5.0 5.0 5.0 5.0 5.0 5.0 5.0
6PPD 2.0            
化合物B-1   2.0          
化合物B-2     2.0        
化合物I-3       2.0      
化合物I-4         2.0    
化合物I-7           2.0  
化合物I-5             2.0
NS 0.8 0.8 0.8 0.8 0.8 0.8 0.8
S 1.5 1.5 1.5 1.5 1.5 1.5 1.5
合计 166.3 166.3 166.3 166.3 166.3 166.3 166.3
4、胶料制备
按照表1所示的配方,先将SCR5和BR在密炼机上进行塑炼,待混合充分后,依次加入ZnO、硬脂酸、防老剂(化合物B-1、化合物B-2、防老剂6PPD、化合物I-3、化合物I-4、化合物I-7或化合物I-8)、N550和芳烃油混合均匀,得到母炼胶;在开炼机中加入母炼胶、S和NS,胶料混炼均匀后,薄通5次,调整辊距至合适范围下片,得到未硫化胶料。
停放约15h,测试未硫化胶料的硫化特性、门尼粘度和焦烧性能。
将未硫化胶料在平板硫化机上硫化(145℃,硫化时间根据每个防老剂硫化曲线确定,在15~30min之间),得到硫化胶料。
5、性能测试
按照以下标准进行材料检验和胶料性能测试:
按照GB/T1232.1-2016测试未硫化胶料的门尼粘度,结果如表2所示;
按照GB/T 1233-2008未硫化橡胶初期硫化特性的测定,采用门尼仪 (120℃)测定未硫化胶料的烧焦时间,结果如表2所示;
按照GB/T 9869-2014橡胶用无转子硫化仪测定硫化特性,采用硫变仪(145℃)测量胶料的硫化速度和硫化程度,结果如表2所示;
按照GB/T 528-2009硫化胶或热塑性橡胶拉伸应力应变性能的测定,测定硫化胶料的原始物性(拉伸强度、断裂伸长率),结果如表3所示;
按照GB/T 13939-2014硫化橡胶或热塑性橡胶热空气加速老化和耐热试验,测定硫化胶料的耐热氧老化性能,结果如表3所示;
按照GB/T 11206-2019橡胶老化实验表面龟裂法,在臭氧老化试验箱中对硫化胶料进行静态耐臭氧老化性能测试,实验条件:静态臭氧浓度50pphm、温度40℃、拉伸20%,各胶料进行两组实验,结果如表4所示。表4中1c、2c、3c、4c所代表的含义见标准GB/T 11206-2019。
按照GB/T 13642-2015硫化橡胶或热塑性橡胶耐臭氧龟裂动态拉伸试验,在臭氧老化试验箱中对硫化胶料进行动态耐臭氧性能测试,实验条件:动态臭氧浓度50pphm、温度40℃、动态拉伸20%、频率0.5Hz,各胶料进行两组实验,结果如表5所示。表5中1c、2c、3c、4c所代表的含义见标准GB/T 11206-2019。
将硫化胶料与A4纸张紧密贴合,用透明密封袋密封,露天放置15天候,用色差仪测定A4纸张表面颜色,结果如表6和图1所示。
6、测试结果
(1)加工/硫化性能
表2:胶料的加工和硫化特性
Figure PCTCN2022133176-appb-000059
Figure PCTCN2022133176-appb-000060
(2)热氧老化前后性能
表3:胶料的原始物性和耐热氧老化性能
Figure PCTCN2022133176-appb-000061
(3)臭氧老化性能
表4:胶料的静态耐臭氧老化性能
Figure PCTCN2022133176-appb-000062
表5:胶料的动态耐臭氧老化性能
Figure PCTCN2022133176-appb-000063
(4)15天候老化变色性能
表6:胶料的耐天候老化变色性能(老化15天)
Figure PCTCN2022133176-appb-000064
由表2可知,含本发明的式A化合物的胶料2-7的门尼粘度、焦烧性能及硫化特性与含6PPD的胶料1相差不大,表明本发明的式A化合物对胶料加工性能和硫化特性影响较小。
表3表明含本发明的式A化合物的胶料2-7的老化前物性与含6PPD的胶料1接近。经100℃、48h热氧老化后,含化合物I-3的胶料4和含化合物I-4的胶料5的拉伸强度下降率和断裂伸长率下降率明显低于含6PPD的胶料1,表明以化合物I-3和化合物I-4为代表的本发明的式II化合物相比6PPD能够赋予橡胶更加优异的耐热氧老化性能。经100℃、48h热氧老化后,含化合物 B-1的胶料2的断裂伸长率下降率明显低于含6PPD的胶料1,表明化合物B-1能够赋予橡胶较好的耐热氧老化性能。经100℃、48h热氧老化后,含化合物B-2的胶料3、含化合物I-7的胶料6和含化合物I-8的胶料7的拉伸强度下降率和断裂伸长率下降率与胶料1接近。
表4和表5的静、动态臭氧老化结果表明含本发明的式A化合物的胶料2-7的耐臭氧老化性能与含6PPD的胶料1相当。
表6的天候老化变色性结果表明,胶料4和7耐变色性能同1相当,胶料2、3和6较1耐变色性得到明显改善,即化合物I-3和I-5变色性同6PPD相近,B-1、B-2和I-7耐变色性能优于6PPD。

Claims (12)

  1. 式A所示的化合物:
    Figure PCTCN2022133176-appb-100001
    式A中,R选自C1-C20链烃基、C3-C20脂环烃基、C6-C20芳基和C1-C20烷氧基;
    R a选自H、C1-C20烷基、C3-C20环烷基、苯基、C7-C20烷基苯基、C1-C20烷基氧基、C3-C20环烷基氧基和C7-C20烷基苯基氧基;
    R b选自H、C1-C20烷基、C3-C20环烷基、苯基和C7-C20烷基苯基;
    所述式A所示的化合物不包括R a选自H、C1-C20烷基、C3-C20环烷基、苯基和C7-C20烷基苯基、且R b为H的化合物。
  2. 如权利要求1所述的化合物,其特征在于,所述化合物具有式B所示的结构:
    Figure PCTCN2022133176-appb-100002
    式B中,R选自C1-C20链烃基、C3-C20脂环烃基和C6-C20芳基;
    R c和R d各自独立选自C1-C10烷基、C3-C10环烷基、苯基和C7-C10烷基苯基;
    优选地,R选自C3-C10支链烃基、C3-C10环烷基和C6-C10芳基;更优选地,R选自C4-C6支链烷基和C4-C6环烷基,更优选为1-甲基丙基、1,3-二甲基丁基或环己基;
    优选地,R c和R d各自独立选自C1-C6烷基和C4-C6环烷基;更优选地,R c和R d各自独立为甲基或乙基。
  3. 如权利要求1所述的化合物,其特征在于,所述化合物具有式I所示的结构:
    Figure PCTCN2022133176-appb-100003
    式I中,R选自C1-C20链烃基、C3-C20脂环烃基、C6-C20芳基和C1-C20烷氧基;
    R 1选自C1-C20烷基、C3-C20环烷基和C7-C20烷基苯基;
    R 2选自H、C1-C20烷基、C3-C20环烷基和C7-C20烷基苯基;
    优选地,R选自C3-C10支链烃基、C3-C10环烷基和C6-C10芳基;更优选地,R选自C4-C6支链烷基、C4-C6环烷基和苯基,更优选为1-甲基丙基、1,3-二甲基丁基、环己基或苯基;
    优选地,R 1选自C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基;更优选地,R 1选自C1-C6烷基和C4-C6环烷基,更优选为甲基或乙基;
    优选地,R 2选自H、C1-C10烷基、C3-C10环烷基和C7-C10烷基苯基;更优选地,R 2选自H、C1-C6烷基和C4-C6环烷基,更优选为H、甲基或乙基。
  4. 如权利要求3所述的化合物,其特征在于,所述化合物具有式II或式III所示的结构:
    Figure PCTCN2022133176-appb-100004
    式II和式III中,R、R 1和R 2如权利要求3所述。
  5. 如权利要求1所述的化合物,其特征在于,所述化合物选自:
    Figure PCTCN2022133176-appb-100005
    Figure PCTCN2022133176-appb-100006
    Figure PCTCN2022133176-appb-100007
  6. 制备权利要求1-5中任一项所述的化合物的方法,其特征在于,所述方法包括以下步骤:
    (1)使式C所示的化合物与式D所示的化合物在第一催化剂的作用下进行缩合反应得到包含式E所示的化合物和/或式F所示的化合物的缩合物,再使所述缩合物在H 2和第二催化剂的作用下进行还原反应得到式X所示的化合物;
    Figure PCTCN2022133176-appb-100008
    (2)使式X所示的化合物与醛或酮在H 2和第三催化剂的作用下进行还原烷基化反应得到式A所示的化合物;
    Figure PCTCN2022133176-appb-100009
    式C、式D、式E、式F、式X和式A中的R、R a、R b如权利要求1-5中任一项所定义。
  7. 如权利要求6所述的方法,其特征在于,所述方法具有以下一项或多项特征:
    步骤(1)中,所述第一催化剂选自碱金属氢氧化物、碱金属烷氧化物、 季铵碱、以及碱金属氢氧化物和四烷基铵的卤化物的组合中的一种或多种;
    步骤(1)中,所述第一催化剂与式C化合物的物质的量之比为0.1∶1~2∶1,优选为0.9∶1~1.1∶1;
    步骤(1)中,式C化合物与式D化合物的物质的量之比为2∶1~15∶1,优选为4∶1~10∶1,更优选为5∶1~8∶1;
    步骤(1)中,所述缩合反应的温度为40~90℃,优选为65~85℃;
    步骤(1)中,所述缩合反应在抽真空条件下进行,压力范围为-0.09~-0.1MPa;
    步骤(1)中,所述第二催化剂为多孔金属催化剂或负载型金属催化剂;所述多孔金属催化剂优选选自雷尼镍、雷尼钴和雷尼铜中的一种或多种,所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种;
    步骤(1)中,所述还原反应的温度为40~120℃、优选60~90℃,氢气压力为0.5~5MPa、优选为1~2MPa;
    步骤(2)中,所述第三催化剂为负载型金属催化剂;所述负载型金属催化剂中的金属优选选自镍、钴、铜、铂、钯、钌和铑中的一种或多种,所述负载型金属催化剂中的载体优选选自碳、氧化铝、硅胶和分子筛中的一种或多种;
    步骤(2)中,所述醛或酮与式X化合物的物质的量之比为1∶1~15∶1;
    步骤(2)中,所述还原反应的温度为40-150℃,氢气压力为0.5~5MPa。
  8. 式X所示的化合物:
    Figure PCTCN2022133176-appb-100010
    式X中,R a、R b如权利要求1-5中任一项所定义。
  9. 制备权利要求8所述的化合物的方法,其特征在于,所述方法包括权利要求6或7所述的方法中的步骤(1)。
  10. 一种橡胶组合物,其特征在于,所述橡胶组合物含有权利要求1-5中任一项所述的化合物。
  11. 一种橡胶制品,其特征在于,所述橡胶制品含有权利要求10所述的橡胶组合物;优选地,所述橡胶制品为轮胎。
  12. 一种提高橡胶或橡胶制品的耐热氧老化性能、耐臭氧老化性能和/或耐变色性能的方法,其特征在于,所述方法包括向橡胶或橡胶制品中添加权利要求1-5中任一项所述的化合物。
PCT/CN2022/133176 2022-11-10 2022-11-21 橡胶防老剂及其制备方法 WO2024098460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211408401.1A CN116589369A (zh) 2022-11-10 2022-11-10 一种橡胶防老剂及其制备方法
CN202211408401.1 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024098460A1 true WO2024098460A1 (zh) 2024-05-16

Family

ID=87594273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133176 WO2024098460A1 (zh) 2022-11-10 2022-11-21 橡胶防老剂及其制备方法

Country Status (3)

Country Link
US (1) US20240182681A1 (zh)
CN (1) CN116589369A (zh)
WO (1) WO2024098460A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR844402A (fr) * 1937-10-12 1939-07-25 Ig Farbenindustrie Ag Antioxygènes pour caoutchouc et substances analogues au caoutchouc
DE1220124B (de) * 1961-09-05 1966-06-30 Bayer Ag Ozonschutzmittel fuer natuerlichen oder synthetischen Kautschuk
CN1506349A (zh) * 2002-12-11 2004-06-23 中国石油化工股份有限公司 制备4-氨基二苯胺的方法
CN101370766A (zh) * 2006-01-24 2009-02-18 科聚亚公司 N-烷基-n’-苯基-对苯二胺的直接烷基化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR844402A (fr) * 1937-10-12 1939-07-25 Ig Farbenindustrie Ag Antioxygènes pour caoutchouc et substances analogues au caoutchouc
DE1220124B (de) * 1961-09-05 1966-06-30 Bayer Ag Ozonschutzmittel fuer natuerlichen oder synthetischen Kautschuk
CN1506349A (zh) * 2002-12-11 2004-06-23 中国石油化工股份有限公司 制备4-氨基二苯胺的方法
CN101370766A (zh) * 2006-01-24 2009-02-18 科聚亚公司 N-烷基-n’-苯基-对苯二胺的直接烷基化

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fine Chemical Unit Reactions and Processes", 30 November 1996, HENAN UNIVERSITY PRESS, CN, ISBN: 7-81041-328-7, article WANG, YANLIN: "Part 9. 2. 7 N-alkylation with Aldehydes or Ketones", pages: 195 - 196, XP009557053 *

Also Published As

Publication number Publication date
US20240182681A1 (en) 2024-06-06
CN116589369A (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
JP7292561B2 (ja) 抗分解及び抗疲労効力を有する化合物及び前記化合物を含む組成物
WO2024098460A1 (zh) 橡胶防老剂及其制备方法
WO2022041528A1 (zh) 新型对苯二胺类化合物、其制备方法及应用
US10611719B2 (en) Methods of making compounds and mixtures having antidegradant and antifatigue efficacy
WO2024098461A1 (zh) 多烷基对苯二胺类防老剂、其中间体及制备方法
CN110691770B (zh) 具有抗降解剂和抗疲劳功效的化合物和混合物及包含此类化合物的组合物
CN110691766B (zh) 制备具有抗降解剂和抗疲劳功效的化合物的方法
CN110691769B (zh) 具有抗降解剂和抗疲劳功效的化合物和混合物及包含所述化合物的组合物
US10167252B2 (en) Compounds and mixtures with antidegradant and antifatigue efficacy and compositions including such compounds
WO2021088721A1 (zh) 具有抗老化和耐变色功效的化合物及其制备方法
US10160718B2 (en) Methods of making compounds having antidegradant and antifatigue efficacy
US10260017B2 (en) Compounds and mixtures with antidegradant and antifatigue efficacy and compositions including said compounds
CN110691767A (zh) 制备具有抗降解剂和抗疲劳功效的化合物和混合物的方法
CN118515605A (zh) 一种多功能橡胶助剂、其制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964927

Country of ref document: EP

Kind code of ref document: A1