WO2024096676A1 - 리튬 이차전지 - Google Patents

리튬 이차전지 Download PDF

Info

Publication number
WO2024096676A1
WO2024096676A1 PCT/KR2023/017528 KR2023017528W WO2024096676A1 WO 2024096676 A1 WO2024096676 A1 WO 2024096676A1 KR 2023017528 W KR2023017528 W KR 2023017528W WO 2024096676 A1 WO2024096676 A1 WO 2024096676A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
secondary battery
lithium secondary
positive electrode
lithium
Prior art date
Application number
PCT/KR2023/017528
Other languages
English (en)
French (fr)
Inventor
고윤석
이철행
안경호
한준혁
오영호
정유경
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024096676A1 publication Critical patent/WO2024096676A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery, and more specifically, to suppress initial resistance increase and improve output characteristics and lifespan performance by including a non-aqueous electrolyte containing an additive capable of forming a robust SEI film on the anode/cathode. This is about a lithium secondary battery that can
  • secondary batteries are the most suitable for various purposes.
  • interest is growing in lithium secondary batteries, which are not only capable of being miniaturized to the point where they can be applied to personal IT devices, but also have the highest energy density.
  • lithium secondary batteries are manufactured by injecting or impregnating a non-aqueous electrolyte into an electrode assembly consisting of a positive electrode, a negative electrode, and a porous separator.
  • Carbon-based active materials, silicon-based active materials, etc. are considered as negative electrode active materials for these lithium secondary batteries. Meanwhile, the use of lithium-containing cobalt oxide, layered crystal structure LiMnO 2 , spinel crystal structure LiMn 2 O 4 , and lithium-containing nickel oxide (LiNiO 2 ) is being considered as the positive electrode active material.
  • lithium iron phosphate eg, LiFePO 4
  • LiFePO 4 lithium iron phosphate
  • PF 6 - anions are thermally decomposed from lithium salts such as LiPF 6 contained in the non-aqueous electrolyte, Lewis acids such as PF 5 are formed, and PF 5 may react with moisture to generate HF. Substances such as PF 5 or HF not only destroy the film formed on the electrode surface, but can also cause a decomposition reaction of the organic solvent. In particular, when lithium iron phosphate is used as a positive electrode active material, there is a problem that Fe is eluted from the surface of the positive electrode active material exposed by the above-mentioned HF and PF 5 .
  • This Fe elution destabilizes the lattice structure of lithium iron phosphate, which can generate active oxygen and accelerate the decomposition of organic solvents in the non-aqueous electrolyte, thereby accelerating gas generation.
  • the eluted Fe moves to the cathode through the non-aqueous electrolyte and then is electrodeposited on the cathode surface, destroying the solid electrolyte interface layer (SEI film), and additional lithium is added in the process of regenerating the destroyed SEI film. It causes ion consumption, etc., which increases resistance and reduces capacity.
  • One object of the present invention is to solve the above problems, in a lithium secondary battery containing lithium iron phosphate particles as a positive electrode active material, side reactions caused by Fe eluted from lithium iron phosphate are suppressed and resistance is low.
  • an SEI film on the negative electrode By forming an SEI film on the negative electrode, a lithium secondary battery with improved output characteristics and lifespan characteristics is provided.
  • the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes a positive electrode active material, the positive electrode active material includes lithium iron phosphate particles, and the non-aqueous electrolyte includes a lithium salt, an organic solvent, and an additive. And, the additive provides a lithium secondary battery containing a compound represented by the following formula (1).
  • R 1 and R 2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • R 3 is an alkyl group having 1 to 20 carbon atoms in which at least one fluorine is substituted.
  • the present invention relates to a lithium secondary battery including a positive electrode active material containing lithium iron phosphate particles in the positive electrode and a compound represented by Formula 1 as an additive to a non-aqueous electrolyte. Since the compound represented by Formula 1 contains a propargyl group (-C ⁇ C-) and a fluorocarbon functional group substituted with one or more fluorine elements in its structure, it is reduced before the organic solvent, and fluorocarbon is formed on the cathode surface. It is possible to form a low-resistance SEI film containing the component.
  • the SEI film formed on the negative electrode by the compound represented by Formula 1 not only prevents side reactions caused by Fe eluted from lithium iron phosphate particles, but also has low resistance, thereby improving the lifespan characteristics and output characteristics (specifically, of the lithium secondary battery). , room temperature output characteristics and low temperature output characteristics) can be improved simultaneously.
  • substitution means that at least one hydrogen bonded to carbon is replaced with an element other than hydrogen, for example, an alkyl group having 1 to 5 carbon atoms or a fluorine element. It means replaced with .
  • the average particle size (D 50 ) can be defined as the particle size corresponding to 50% of the volume accumulation in the particle size distribution curve.
  • the average particle diameter (D 50 ) can be measured using, for example, a laser diffraction method.
  • the laser diffraction method is generally capable of measuring particle sizes ranging from the submicron region to several millimeters, and can obtain results with high reproducibility and high resolution.
  • the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the positive electrode includes a positive electrode active material, the positive electrode active material includes lithium iron phosphate particles, and the non-aqueous electrolyte includes a lithium salt, an organic solvent, and an additive. And, the additive provides a lithium secondary battery containing a compound represented by the following formula (1).
  • R 1 and R 2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • R 3 is an alkyl group having 1 to 20 carbon atoms in which at least one fluorine is substituted.
  • the present invention relates to a lithium secondary battery including a positive electrode active material containing lithium iron phosphate particles in the positive electrode and a compound represented by Formula 1 as an additive to a non-aqueous electrolyte. Since the compound represented by Formula 1 contains a propargyl group (-C ⁇ C-) and a fluorocarbon functional group substituted with one or more fluorine elements in its structure, it is reduced before the organic solvent, and fluorocarbon is formed on the cathode surface. It is possible to form a low-resistance SEI film containing the component.
  • the SEI film formed on the negative electrode by the compound represented by Formula 1 not only prevents side reactions caused by Fe eluted from lithium iron phosphate particles, but also has low resistance, thereby improving the lifespan characteristics and output characteristics (specifically, of the lithium secondary battery). , room temperature output characteristics and low temperature output characteristics) can be improved simultaneously.
  • the lithium secondary battery includes a positive electrode; cathode; separation membrane; and non-aqueous electrolytes.
  • the lithium secondary battery includes a positive electrode; a cathode opposite the anode; a separator interposed between the anode and the cathode; and non-aqueous electrolytes.
  • the lithium secondary battery includes the positive electrode; a cathode opposite the anode; and a separator disposed between the anode and the cathode.
  • the electrode assembly may be stored in a battery case and then injected with a non-aqueous electrolyte.
  • the positive electrode includes a positive electrode active material.
  • the positive electrode active material includes lithium iron phosphate particles.
  • the lithium iron phosphate particles may include a compound represented by the following formula (A).
  • M is one or more elements selected from Co, Ni, Al, Mg, Ti, and V
  • X is F, S, or N, 0 ⁇ s ⁇ 0.5; -0.5 ⁇ a ⁇ +0.5; 0 ⁇ b ⁇ 0.1.
  • the lithium iron phosphate particles may be made of primary particles, may be made of secondary particles in which two or more primary particles are aggregated, or may be a mixture of primary particles and secondary particles in which two or more primary particles are aggregated.
  • the primary particles may have an average particle diameter (D 50 ) of 0.2 to 3.0 ⁇ m, specifically 0.2 to 1.0 ⁇ m, and more specifically 0.3 to 0.8 ⁇ m, and the secondary particles may have an average particle diameter (D 50 ) may be 7 to 25 ⁇ m, specifically 10 to 20 ⁇ m.
  • D 50 average particle diameter
  • the positive electrode active material may further include a carbon coating layer located on the lithium iron phosphate particles, but is not particularly limited thereto.
  • the carbon coating layer may be introduced for the purpose of protecting lithium iron phosphate particles and improving electrical conductivity.
  • the positive electrode includes a positive electrode current collector; and a positive electrode active material layer disposed on at least one surface of the positive electrode current collector.
  • the positive electrode active material layer may include the above-described positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
  • the thickness of the positive electrode current collector may typically range from 3 to 500 ⁇ m.
  • the positive electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the positive electrode active material.
  • the positive electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the positive electrode active material layer is disposed on at least one side of the positive electrode current collector. Specifically, the positive electrode active material layer may be disposed on one or both sides of the positive electrode current collector.
  • the positive electrode active material may be included in the positive electrode active material layer in an amount of 80% to 99% by weight in consideration of sufficient capacity of the positive active material.
  • the positive electrode active material layer may further include a binder and/or a conductive material along with the positive electrode active material described above.
  • the binder is a component that helps bind active materials and conductive materials and bind to the current collector, and is specifically made of polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxypropyl cellulose. From the group consisting of wood, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber and fluoroelastomer. It may include at least one selected type, preferably polyvinylidene fluoride.
  • the binder may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight, in terms of ensuring sufficient binding force between components such as the positive electrode active material.
  • the conductive material can be used to assist and improve conductivity in secondary batteries, and is not particularly limited as long as it has conductivity without causing chemical changes.
  • the anode conductive material includes graphite such as natural graphite or artificial graphite; Carbon black, such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Conductive tubes such as carbon nanotubes; fluorocarbon; Metal powders such as aluminum and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; and polyphenylene derivatives, and may preferably include carbon nanotubes in terms of improving conductivity.
  • the conductive material may be included in the positive electrode active material layer in an amount of 1% to 20% by weight, preferably 1.2% to 10% by weight.
  • the thickness of the positive electrode active material layer may be 10 ⁇ m to 500 ⁇ m, preferably 200 ⁇ m to 400 ⁇ m.
  • the loading amount of the positive active material layer may be 2.5 mAh/cm 2 to 5.0 mAh/cm 2 , preferably 3 mAh/cm 2 to 4 mAh/cm 2 .
  • the positive electrode may be manufactured by coating a positive electrode slurry containing a positive electrode active material and optionally a binder, a conductive material, and a solvent for forming a positive electrode slurry on the positive electrode current collector, followed by drying and rolling.
  • the solvent for forming the positive electrode slurry may include an organic solvent such as NMP (N-methyl-2-pyrrolidone).
  • the solid content of the positive electrode slurry may be 40% by weight to 90% by weight, specifically 50% by weight to 80% by weight.
  • the cathode may face the anode.
  • the negative electrode includes a negative electrode active material.
  • the negative electrode includes a negative electrode current collector; and a negative electrode active material layer disposed on at least one side of the negative electrode current collector. At this time, the negative electrode active material may be included in the negative electrode active material layer.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. there is.
  • the negative electrode current collector may typically have a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector may form fine irregularities on the surface to strengthen the bonding force of the negative electrode active material.
  • the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the negative electrode active material layer is disposed on at least one side of the negative electrode current collector. Specifically, the negative electrode active material layer may be disposed on one or both sides of the negative electrode current collector.
  • the negative electrode active material layer may include a negative electrode active material.
  • the negative electrode active material is a material capable of reversibly inserting/extracting lithium ions, and may include at least one selected from the group consisting of carbon-based active materials, (semi-)metal-based active materials, and lithium metal, and specifically, carbon-based active materials. and (semi-)metal-based active materials.
  • the carbon-based active material may include at least one selected from the group consisting of artificial graphite, natural graphite, hard carbon, soft carbon, carbon black, graphene, and fibrous carbon, and preferably consists of artificial graphite and natural graphite. It may include at least one species selected from the group.
  • the average particle diameter (D 50 ) of the carbon-based active material may be 10 ⁇ m to 30 ⁇ m, preferably 15 ⁇ m to 25 ⁇ m, in terms of ensuring structural stability during charging and discharging and reducing side reactions with the electrolyte solution.
  • the (semi-)metal-based active materials include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, At least one (semi-)metal selected from the group consisting of V, Ti, and Sn; From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An alloy of lithium and at least one selected (semi-)metal From the group consisting of Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, and Sn.
  • An oxide of at least one selected (semi-)metal lithium titanium oxide (LTO); lithium vanadium oxide; It may include etc.
  • the (semi-)metal-based active material may include a silicon-based active material.
  • the silicon-based active material may include a compound represented by SiO x (0 ⁇ x ⁇ 2).
  • SiO x is preferably within the above range, and more preferably, the silicon-based oxide may be SiO.
  • the average particle diameter (D 50 ) of the silicon-based active material may be 1 ⁇ m to 30 ⁇ m, preferably 2 ⁇ m to 15 ⁇ m in terms of reducing side reactions with the electrolyte solution while ensuring structural stability during charging and discharging.
  • the negative electrode active material may be included in the negative electrode active material layer in an amount of 60% to 99% by weight, preferably 75% to 95% by weight.
  • the negative electrode active material layer may further include a binder and/or a conductive material along with the negative electrode active material.
  • the binder is used to improve battery performance by improving adhesion between the negative electrode active material layer and the negative electrode current collector, for example, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co- HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, recycled Cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoroelastomer, and hydrogen thereof. It may include at least one selected from the group consisting of substances substituted with Li, Na, or Ca, and may also include various copolymers thereof.
  • PVDF-co- HFP polyvinylidene flu
  • the binder may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite such as natural graphite or artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, channel black, Paneth black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Conductive tubes such as carbon nanotubes; fluorocarbon;
  • Metal powders such as aluminum and nickel powder;
  • Conductive whiskers such as zinc oxide and potassium titanate;
  • Conductive metal oxides such as titanium oxide;
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in the negative electrode active material layer in an amount of 0.5% to 10% by weight, preferably 1% to 5% by weight.
  • the thickness of the negative electrode active material layer may be 5 ⁇ m to 500 ⁇ m, preferably 100 ⁇ m to 300 ⁇ m.
  • the loading amount of the negative electrode active material layer may be 3.0 mAh/cm 2 to 5.5 mAh/cm 2 , preferably 3.5 mAh/cm 2 to 4.5 mAh/cm 2 .
  • the negative electrode may be manufactured by coating at least one surface of a negative electrode current collector with a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and/or a solvent for forming a negative electrode slurry, followed by drying and rolling.
  • the solvent for forming the negative electrode slurry is, for example, distilled water, NMP (N-methyl-2-pyrrolidone), ethanol, methanol, and isopropyl alcohol in terms of facilitating dispersion of the negative electrode active material, binder, and/or conductive material. It may contain at least one selected from the group, preferably distilled water.
  • the solid content of the negative electrode slurry may be 30% by weight to 80% by weight, specifically 40% by weight to 70% by weight.
  • the separator may be interposed between the anode and the cathode.
  • the separator includes typical porous polymer films conventionally used as separators, such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • Porous polymer films made of polyolefin-based polymers can be used alone or by laminating them, or conventional porous non-woven fabrics, such as high-melting point glass fibers, polyethylene terephthalate fibers, etc., can be used, but are limited to these. It doesn't work.
  • a coated separator containing ceramic components or polymer materials may be used to ensure heat resistance or mechanical strength, and may optionally be used in a single-layer or multi-layer structure.
  • the lithium salt may be those commonly used in electrolytes for lithium secondary batteries without limitation, and for example, includes Li + as a cation and Li + as an anion.
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiAlO 4 , LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiB 10 Cl 10 , LiBOB (LiB(C 2 O 4 ) 2 ) , LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 F) 2 ), LiCH 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2 and LiBETI (LiN(SO 2 At least one or more selected from the group consisting of CF 2 CF 3 ) 2 ) may be mentioned.
  • the lithium salt is specifically LiBF 4 , LiClO 4 , LiPF 6 , LiBOB (LiB(C 2 O 4 ) 2 ), LiCF 3 SO 3 , LiTFSI (LiN(SO 2 CF 3 ) 2 ), LiFSI (LiN(SO 2 ) F) 2 ) and LiBETI (LiN(SO 2 CF 2 CF 3 ) 2 ) may contain a single substance or a mixture of two or more types selected from the group consisting of LiPF 6 .
  • the lithium salt can be appropriately changed within the range commonly used, but in order to obtain the optimal effect of forming an anti-corrosion film on the electrode surface, it should be included in the electrolyte solution at a concentration of 0.8 M to 3.0 M, specifically at a concentration of 1.0 M to 3.0 M. You can.
  • the viscosity of the non-aqueous electrolyte can be controlled to achieve optimal impregnation, and the mobility of lithium ions can be improved to improve the capacity characteristics and cycle characteristics of the lithium secondary battery.
  • the organic solvent is a non-aqueous solvent commonly used in lithium secondary batteries, and is not particularly limited as long as it can minimize decomposition due to oxidation reactions, etc. during the charging and discharging process of the secondary battery.
  • the organic solvent may include a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent that has a high dielectric constant and can easily dissociate lithium salts in the electrolyte.
  • 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate and may include at least one organic solvent selected from the group consisting of ethylene, more specifically ethylene. May contain carbonate.
  • the linear carbonate-based organic solvent is an organic solvent having low viscosity and low dielectric constant, specifically dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate (EMC). ), methylpropyl carbonate, and ethylpropyl carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • the linear carbonate-based organic solvent is specifically dimethyl carbonate and It may include ethylmethyl carbonate, and more specifically, it may include dimethyl carbonate and ethylmethyl carbonate in a volume ratio of 60:40 to 90:10.
  • the organic solvent may be a mixture of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent and the linear carbonate-based organic solvent may be mixed at a volume ratio of 10:90 to 40:60, specifically 15:85 to 35:65.
  • the organic solvent can be used by adding organic solvents commonly used in non-aqueous electrolytes without limitation, if necessary.
  • it may further include at least one organic solvent selected from the group consisting of an ester-based organic solvent, an ether-based organic solvent, a glyme-based organic solvent, and a nitrile-based organic solvent.
  • the ester-based organic solvents include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - It may include at least one member selected from the group consisting of caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • the ether-based solvents include dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether, ethyl propyl ether, 1,3-dioxolane (DOL), and 2,2-bis (trifluoromethyl )-1,3-dioxolane (TFDOL) or a mixture of two or more of these may be used, but are not limited thereto.
  • the glyme-based solvent has a high dielectric constant and low surface tension compared to linear carbonate-based organic solvents, and is a solvent with low reactivity with metals, such as dimethoxyethane (glyme, DME), diethoxyethane, digylme, It may include, but is not limited to, at least one selected from the group consisting of triglyme and tetra-glyme (TEGDME).
  • DME dimethoxyethane
  • TEGDME tetra-glyme
  • the nitrile-based solvents include acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, 2-fluorobenzonitrile, and 4-fluorobenzonitrile. , difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile, but is not limited thereto.
  • non-aqueous electrolyte excluding lithium salts and additives, may be organic solvents unless otherwise specified.
  • the non-aqueous electrolyte of the present invention contains additives.
  • the additive includes a compound represented by the following formula (1).
  • R 1 and R 2 are each independently an alkylene group having 1 to 10 carbon atoms.
  • R 3 is an alkyl group having 1 to 20 carbon atoms in which at least one fluorine is substituted.
  • the compound represented by Formula 1 contains a propargyl functional group in its structure, it can be easily reduced and decomposed on the surface of the cathode to form an SEI film with low resistance and high passivation ability, thereby improving the durability of the cathode itself. can do.
  • the component derived from the compound represented by Formula 1 is included in the SEI film, the problem of Fe eluted from the lithium iron phosphate particles of the anode being electrodeposited on the cathode surface and destroying the cathode SEI film can be significantly prevented. there is.
  • the compound represented by Formula 1 includes a fluorocarbon functional group substituted with one or more fluorine elements at the structural terminal, thereby forming a film with guaranteed oxidation resistance on the surface of the anode, thereby allowing Fe to be absorbed from lithium iron phosphate from the anode. It is possible to suppress elution, suppress electrodeposition and precipitation of eluted Fe on the cathode, and prevent internal short circuits.
  • the compound represented by Formula 1 contains a fluorocarbon functional group and a propargyl group substituted with one or more fluorine elements, which are excellent in flame retardancy and incombustibility, and forms a low-resistance, robust SEI film, allowing further reduction of the electrolyte solution.
  • it is possible to prevent the self-discharge reaction of the negative electrode, thereby suppressing the increase in initial resistance and providing a lithium secondary battery with improved room temperature and low temperature output characteristics.
  • R 1 and R 2 are each independently an alkylene group having 1 to 5 carbon atoms, and R 3 may be an alkyl group having 3 to 20 carbon atoms in which one or more fluorines are substituted.
  • R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms, and R 3 may be an alkyl group having 3 to 15 carbon atoms in which one or more fluorines are substituted.
  • R 3 may be an alkyl group having 4 to 8 carbon atoms in which one or more fluorines are substituted.
  • the compound represented by Formula 1 may be a compound represented by Formula 1a below.
  • the compound represented by Formula 1 may be included in the non-aqueous electrolyte in an amount of 0.01% by weight to 10.0% by weight.
  • a low-resistance SEI film is formed on the surface of the cathode while suppressing disadvantages such as side reactions caused by additives, capacity reduction, and resistance increase as much as possible, thereby facilitating lithium movement in the film.
  • the effect can be improved and the further reduction decomposition reaction of the electrolyte can be suppressed, thereby preventing the self-discharge reaction of the cathode.
  • the content of the compound represented by Formula 1 is 0.01% by weight or more, a stable film can be formed during the battery operation time, and a low-resistance SEI film can be formed on the cathode surface to improve battery output performance.
  • the viscosity of the non-aqueous electrolyte can be controlled to achieve optimal impregnation, the increase in battery resistance due to additive decomposition can be effectively suppressed, and the battery Deterioration of output characteristics can be prevented by further increasing the ion conductivity.
  • the compound represented by Formula 1 may be included in the non-aqueous electrolyte in an amount of 0.05% to 6.0% by weight, specifically 0.08% to 0.5% by weight.
  • the additive is necessary to prevent the non-aqueous electrolyte from decomposing in a high-output environment and causing cathode collapse, or to further improve low-temperature high-rate discharge characteristics, high-temperature stability, overcharge prevention, and battery expansion suppression at high temperatures. Accordingly, in addition to the compound represented by Formula 1, other additional additives may be included.
  • additional additives include cyclic carbonate-based compounds, halogen-substituted carbonate-based compounds, sultone-based compounds, sulfate-based compounds, phosphate-based or phosphite-based compounds, borate-based compounds, nitrile-based compounds, benzene-based compounds, amine-based compounds, At least one selected from the group consisting of silane-based compounds and lithium salt-based compounds may be mentioned.
  • the cyclic carbonate-based compound may be, for example, vinylene carbonate (VC) or vinylethylene carbonate.
  • the halogen-substituted carbonate-based compound may be, for example, fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • the sultone-based compounds include, for example, 1,3-propane sultone (PS), 1,4-butane sultone, ethenesultone, 1,3-propene sultone (PRS), 1,4-butene sultone, and 1- It may be at least one compound selected from the group consisting of methyl-1,3-propene sultone.
  • the sulfate-based compound may be, for example, ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS).
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the phosphate-based or phosphite-based compounds include, for example, lithium difluoro(bisoxalato)phosphate, lithium difluorophosphate, tris(trimethylsilyl) phosphate, tris(trimethylsilyl) phosphite, and tris(2). , 2,2-trifluoroethyl) phosphate and tris (trifluoroethyl) phosphite.
  • the borate-based compound may include tetraphenyl borate, lithium difluoro(oxalato)borate (LiODFB), or lithium bisoxalatoborate (LiB(C 2 O 4 ) 2 , LiBOB).
  • LiODFB lithium difluoro(oxalato)borate
  • LiB(C 2 O 4 ) 2 lithium bisoxalatoborate
  • the nitrile-based compounds include, for example, succinonitrile, adiponitrile, acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane carbonitrile, From the group consisting of 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile. It may be at least one compound selected.
  • the benzene-based compound may be, for example, fluorobenzene
  • the amine-based compound may be triethanolamine or ethylenediamine
  • the silane-based compound may be tetravinylsilane.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte solution, and may include lithium difluorophosphate (LiPO 2 F 2 ) or LiBF 4 .
  • the secondary battery includes at least one selected from the group consisting of vinylethylene carbonate, 1,3-propanesultone, fluoroethylene carbonate, succinonitrile, and lithium difluoro(oxalato)borate.
  • the secondary battery includes at least one selected from the group consisting of vinylethylene carbonate, 1,3-propanesultone, fluoroethylene carbonate, succinonitrile, and lithium difluoro(oxalato)borate.
  • the additional additive may be used in combination with two or more types of compounds, and the total content of the compound represented by Formula 1 and the additional additive is 50% by weight or less, specifically 0.05 to 20% by weight, based on the total weight of the non-aqueous electrolyte. It may be included in an amount of 0.05 to 10% by weight.
  • the total content of the additives satisfies the above range, the low-temperature output characteristics of the battery can be improved, the high-temperature storage characteristics and high-temperature life characteristics can be more effectively improved, and the battery's damage due to the additives remaining after the reaction can be improved. Side reactions can be prevented.
  • the lithium secondary battery according to the present invention as described above can be usefully used in portable devices such as mobile phones, laptop computers, and digital cameras, and in the field of electric vehicles such as hybrid electric vehicles (HEV).
  • portable devices such as mobile phones, laptop computers, and digital cameras
  • electric vehicles such as hybrid electric vehicles (HEV).
  • HEV hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool; Electric vehicles, including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV); Alternatively, it can be used as a power source for any one or more mid- to large-sized devices among power storage systems.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEV);
  • PHEV plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, prismatic, pouch-shaped, or coin-shaped using a can.
  • the lithium secondary battery according to the present invention can not only be used in battery cells used as a power source for small devices, but can also be preferably used as a unit cell in medium to large-sized battery modules containing a plurality of battery cells.
  • An organic solvent was prepared by mixing ethylene carbonate (EC), ethylmethyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 30:10:60.
  • LiPF 6 as a lithium salt was dissolved in the organic solvent to a molar concentration of 1.0M.
  • a non-aqueous electrolyte was prepared by adding the compound represented by Formula 1a and additional additives to the organic solvent in which the lithium salt was dissolved.
  • the compound represented by Formula 1a was included at 0.1% by weight in the non-aqueous electrolyte solution.
  • Vinyl ethylene carbonate (VEC), 1,3-propanesultone (PS), fluoroethylene carbonate (FEC), succinonitrile (SN), and LiODFB were used as the additional additives, and vinyl ethylene carbonate ( 0.5% by weight of VEC), 1.0% by weight of 1,3-propanesultone (PS), 5.0% by weight of fluoroethylene carbonate (FEC), 1.0% by weight of succinonitrile (SN), and 0.5% by weight of LiODFB were added.
  • Lithium iron phosphate particles LiFePO 4
  • carbon nanotubes as the conductive material
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was applied and dried on a positive electrode current collector (Al thin film) with a thickness of 20 ⁇ m at a loading amount of 3.7 mAh/cm 2 and then roll pressed to prepare a positive electrode (thickness of positive electrode active material: 220 ⁇ m).
  • Graphite as a negative electrode active material, SBR-CMC as a binder, and carbon black as a conductive material were added to water as a solvent at a weight ratio of 96:3:1 to prepare a negative electrode slurry (solid content: 60% by weight).
  • the negative electrode slurry was applied and dried at a loading amount of 4.2 mAh/cm 2 on a 10 ⁇ m thick copper (Cu) thin film, which is a negative electrode current collector, and then roll pressed to prepare a negative electrode (thickness of the negative electrode active material: 170 ⁇ m). .
  • An electrode assembly was manufactured by sequentially stacking the positive electrode, the polyolefin-based porous separator coated with inorganic particles (Al 2 O 3 ), and the negative electrode.
  • the assembled electrode assembly was stored in a battery case, and then the prepared non-aqueous electrolyte solution was injected to manufacture a lithium secondary battery.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding the compound represented by Formula 1a in an amount of 1.0% by weight based on the weight of the non-aqueous electrolyte.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding the compound represented by Formula 1a in an amount of 5.0% by weight based on the weight of the non-aqueous electrolyte.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as Example 1, except that the non-aqueous electrolyte was prepared without adding the compound represented by Formula 1a.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding a compound represented by the following Formula 2 instead of the compound represented by Formula 1a in an amount of 0.1% by weight based on the weight of the non-aqueous electrolyte. Manufactured.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding the compound represented by Formula 2 instead of the compound represented by Formula 1a in an amount of 1.0% by weight based on the weight of the non-aqueous electrolyte. Manufactured.
  • a non-aqueous electrolyte and a lithium secondary battery were prepared in the same manner as in Example 1, except that the non-aqueous electrolyte was prepared by adding a compound represented by the following Formula 3 instead of the compound represented by Formula 1a in an amount of 0.1% by weight based on the weight of the non-aqueous electrolyte. Manufactured.
  • the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4 prepared above were charged to 3.65V, 0.05C under CC/CV, 0.33C conditions at 25°C using an electrochemical charger and discharger, then CC, 300 cycles of charge and discharge were performed, with one cycle discharging to 2.5V under 0.33C conditions, and the capacity retention rate was measured.
  • the capacity maintenance rate was calculated using the formula below, and the results are shown in Table 1 below.
  • Capacity retention rate (%) ⁇ (discharge capacity after 300 cycles/discharge capacity after 1 cycle) ⁇ ⁇ 100
  • the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4 prepared above were charged to 3.65V, 0.05C under CC/CV, 0.1C conditions at 25°C using an electrochemical charger and discharger, then CC, Charging and discharging was performed by discharging to 2.5V under 0.1C conditions as one cycle.
  • the lithium secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4 prepared above were charged to 3.65V, 0.05C under CC/CV, 0.33C conditions at 25°C using an electrochemical charger and discharger, then CC, 300 cycles of charge and discharge were performed, with one cycle discharging to 2.5V under 0.33C conditions, and the capacity retention rate was measured.
  • the concentration of Fe eluted in the electrolyte solution was measured using an inductively coupled plasma optical emission spectrophotometer (ICP-OES).
  • ICP-OES inductively coupled plasma optical emission spectrophotometer
  • the lithium secondary batteries of Examples 1 to 3 according to the present invention have excellent initial capacity, capacity maintenance rate, and resistance characteristics compared to Comparative Examples 1 to 4, and show a low Fe elution amount. there is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

본 발명은 양극, 음극, 분리막 및 비수 전해질을 포함하고, 상기 양극은 양극 활물질을 포함하고, 상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 특정 화학식으로 표시되는 화합물을 포함하는 리튬 이차전지를 제공한다.

Description

리튬 이차전지
관련출원과의 상호인용
본 출원은 2022년 11월 4일 자 한국 특허 출원 제10-2022-0146435호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지에 관한 것으로, 보다 구체적으로는 양/음극에 견고한 SEI 막을 형성할 수 있는 첨가제를 포함하는 비수 전해질을 포함함으로써, 초기 저항 증가를 억제하고, 출력 특성 및 수명 성능을 개선할 수 있는 리튬 이차전지에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기 에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이차전지는 개발된 기술 중 여러 용도에 가장 적합한 기술로서, 이러한 이차전지 중에서도 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능할 뿐만 아니라, 에너지 밀도가 가장 높은 리튬 이차전지에 대한 관심이 대두되고 있다.
일반적으로 리튬 이차전지는 양극, 음극 및 다공성 분리막으로 이루어진 전극 조립체에 비수 전해질이 주입 또는 함침되어 제조된다.
이러한 리튬 이차전지의 음극 활물질로는 탄소계 활물질, 실리콘계 활물질 등이 고려된다. 한편, 양극 활물질로는 리튬 함유 코발트 산화물, 층상 결정 구조의 LiMnO2, 스피넬 결정 구조의 LiMn2O4, 리튬 함유 니켈 산화물(LiNiO2) 등의 사용이 고려되고 있다.
최근에는 양극 활물질로서 열적 안정성이 우수하고, 상대적으로 저렴한 리튬 철 인산화물(예를 들면, LiFePO4)계 화합물의 사용이 고려되고 있다.
한편, 비수 전해질에 포함되는 포함되는 LiPF6 등의 리튬 염으로부터 PF6 - 음이온이 열분해되면서 PF5 등의 루이스 산이 형성되며, PF5가 수분과 반응하여 HF가 생성될 수 있다. 이러한 PF5 또는 HF 등의 물질은 전극 표면에 형성된 피막을 파괴할 뿐만 아니라, 유기 용매의 분해 반응을 야기할 수 있다. 특히, 리튬 철 인산화물을 양극 활물질로 사용할 경우, 상술한 HF, PF5에 의해 노출된 양극 활물질 표면으로부터 Fe가 용출되는 문제가 있다. 이러한 Fe 용출은 리튬 철 인산화물의 격자 구조를 불안정하게 하며, 이로 인해 활성 산소가 발생하면서 비수 전해질 내 유기 용매 분해를 촉진시켜 가스 발생이 가속화될 수 있다. 또한, 용출된 Fe는 비수 전해질을 통해 음극으로 이동한 후, 음극 표면에 전착되면서 고체 전해질 계면막(Solid Electrolyte Interface layer, 이하 SEI 막)을 파괴하고, 파괴된 SEI 피막을 재생시키는 과정에서 추가적인 리튬 이온 소모 등을 야기하여 저항 증가, 용량 저하를 발생시킨다.
[선행기술문헌]
[특허문헌]
한국 공개특허공보 제2017-0012308호
본 발명의 일 과제는 상기와 같은 문제점을 해결하기 위한 것으로, 리튬 철 인산화물 입자를 양극 활물질로서 포함하는 리튬 이차전지에 있어서, 리튬 철 인산화물에서 용출된 Fe에 의한 부반응이 억제되고 저항이 낮은 SEI 막을 음극에 형성하여, 출력 특성 및 수명 특성이 동시에 향상된 리튬 이차전지를 제공하는 것이다.
본 발명은 양극, 음극, 분리막 및 비수 전해질을 포함하고, 상기 양극은 양극 활물질을 포함하고, 상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지를 제공한다.
[화학식 1]
Figure PCTKR2023017528-appb-img-000001
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고. R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
본 발명은 양극에 리튬 철 인산화물 입자를 포함하는 양극 활물질이 포함되고, 비수 전해질에 첨가제로서 상기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지에 관한 것이다. 상기 화학식 1로 표시되는 화합물은 구조 내에 프로파질기(-C≡C-)와 하나 이상의 불소 원소가 치환된 플루오로카본 작용기를 포함하기 때문에, 유기 용매 보다 먼저 환원되고, 음극 표면에 플루오로카본 성분을 포함하는 낮은 저항의 SEI 막을 형성할 수 있다. 상기 화학식 1로 표시되는 화합물에 의해 음극에 형성된 SEI 막은 리튬 철 인산화물 입자로부터 용출된 Fe에 의한 부반응을 방지할 수 있을 뿐 아니라 낮은 저항을 가짐으로써 리튬 이차전지의 수명 특성 및 출력 특성(구체적으로, 상온 출력 특성 및 저온 출력 특성)이 동시에 향상될 수 있다.
먼저, 본 발명을 기술하기 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 불소 원소로 치환된 것을 의미한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
리튬 이차전지
본 발명은 양극, 음극, 분리막 및 비수 전해질을 포함하고, 상기 양극은 양극 활물질을 포함하고, 상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고, 상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고, 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지를 제공한다.
[화학식 1]
Figure PCTKR2023017528-appb-img-000002
상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고. R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
본 발명은 양극에 리튬 철 인산화물 입자를 포함하는 양극 활물질이 포함되고, 비수 전해질에 첨가제로서 상기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지에 관한 것이다. 상기 화학식 1로 표시되는 화합물은 구조 내에 프로파질기(-C≡C-)와 하나 이상의 불소 원소가 치환된 플루오로카본 작용기를 포함하기 때문에, 유기 용매 보다 먼저 환원되고, 음극 표면에 플루오로카본 성분을 포함하는 낮은 저항의 SEI 막을 형성할 수 있다. 상기 화학식 1로 표시되는 화합물에 의해 음극에 형성된 SEI 막은 리튬 철 인산화물 입자로부터 용출된 Fe에 의한 부반응을 방지할 수 있을 뿐 아니라 낮은 저항을 가짐으로써 리튬 이차전지의 수명 특성 및 출력 특성(구체적으로, 상온 출력 특성 및 저온 출력 특성)이 동시에 향상될 수 있다.
상기 리튬 이차전지는 양극; 음극; 분리막; 및 비수 전해질;을 포함한다. 구체적으로, 상기 리튬 이차전지는 양극; 상기 양극에 대향하는 음극; 상기 양극 및 상기 음극 사이에 개재되는 분리막; 및 비수 전해질;을 포함한다. 상기 리튬 이차전지는 상기 양극; 상기 양극에 대향하는 음극; 및 상기 양극 및 상기 음극 사이에 개재되는 분리막;을 포함하는 전극 조립체를 전지 케이스에 수납한 후, 비수 전해질을 주입하여 제조될 수 있다.
(1) 양극
상기 양극은 양극 활물질을 포함한다. 상기 양극 활물질은 리튬 철 인산화물 입자를 포함한다.
상기 리튬 철 인산화물 입자는 하기 화학식 A로 표시되는 화합물을 포함할 수 있다.
[화학식 A]
Li1+aFe1-sMs(PO4-b)Xb
상기 화학식 A에서, M는 Co, Ni, Al, Mg, Ti 및 V 중에서 선택되는 하나 이상의 원소이고, X는 F, S, 또는 N이며, 0≤s≤0.5; -0.5≤a≤+0.5; 0≤b≤0.1이다.
상기 화학식 A는 구체적으로 LiFePO4로 표시될 수 있다(a=0, s=0, 및 b=0).
상기 리튬 철 인산화물 입자는 1차 입자로 이루어지거나, 2 이상의 1차 입자가 응집된 2차 입자로 이루어지거나, 1차 입자와 1차 입자가 2 이상 응집된 2차 입자의 혼합물일 수 있다.
이때, 상기 1차 입자는 평균 입경(D50)이 0.2 내지 3.0㎛, 상세하게는 0.2 내지 1.0㎛이고, 더욱 상세하게는 0.3 내지 0.8㎛일 수 있으며, 상기 2차 입자는 평균 입경(D50)이 7 내지 25㎛, 상세하게는 10 내지 20㎛일 수 있다.
상기 양극 활물질은 상기 리튬 철 인산화물 입자 상에 위치하는 탄소 코팅층을 더 포함할 수 있으나, 특별히 이에 제한되는 것은 아니다. 상기 탄소 코팅층은 리튬 철 인산화물 입자의 보호, 전기 전도도의 향상 등의 목적으로 도입될 수 있다.
상기 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함할 수 있다. 이때, 상기 양극 활물질층은 전술한 양극 활물질을 포함할 수 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 양극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체의 두께는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.
상기 양극 집전체는 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 양극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 상기 양극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 양극 활물질층은 상기 양극 집전체의 일면 또는 양면에 배치될 수 있다.
상기 양극 활물질은 양극 활물질의 충분한 용량 발휘 등을 고려하여 양극 활물질층에 80중량% 내지 99중량%로 포함될 수 있다.
상기 양극 활물질층은 전술한 양극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 바인더는 활물질과 도전재 등의 결착과 집전체에 대한 결착에 조력하는 성분이며, 구체적으로 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무 및 불소 고무로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 폴리비닐리덴플루오라이드를 포함할 수 있다.
상기 바인더는 양극 활물질 등 성분 간 결착력을 충분히 확보하는 측면에서 상기 양극 활물질층에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.
상기 도전재는 이차전지에 도전성을 보조 및 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 구체적으로 상기 양극 도전재는 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있으며, 바람직하게는 도전성 향상 측면에서 탄소 나노 튜브를 포함할 수 있다.
상기 도전재는 전기 전도성을 충분히 확보하는 측면에서 상기 양극 활물질층 내에 1중량% 내지 20중량%, 바람직하게는 1.2중량% 내지 10중량%로 포함될 수 있다.
상기 양극 활물질층의 두께는 10㎛ 내지 500㎛, 바람직하게는 200㎛ 내지 400㎛일 수 있다.
상기 양극 활물질층의 로딩량은 2.5mAh/cm2 내지 5.0mAh/cm2, 바람직하게는 3mAh/cm2 내지 4mAh/cm2일 수 있다.
상기 양극은 상기 양극 집전체 상에 양극 활물질 및 선택적으로 바인더, 도전재 및 양극 슬러리 형성용 용매를 포함하는 양극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.
상기 양극 슬러리 형성용 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함할 수 있다. 상기 양극 슬러리의 고형분 함량은 40중량% 내지 90중량%, 구체적으로 50중량% 내지 80중량%일 수 있다.
(2) 음극
상기 음극은 상기 양극에 대향할 수 있다.
상기 음극은 음극 활물질을 포함한다.
상기 음극은 음극 집전체; 및 상기 음극 집전체의 적어도 일면에 배치된 음극 활물질층;을 포함할 수 있다. 이때, 상기 음극 활물질은 상기 음극 활물질층에 포함될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 구체적으로 상기 음극 집전체는 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있다.
상기 음극 집전체는 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 상기 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 상기 음극 집전체의 적어도 일면에 배치된다. 구체적으로, 상기 음극 활물질층은 상기 음극 집전체의 일면 또는 양면에 배치될 수 있다.
상기 음극 활물질층은 음극 활물질을 포함할 수 있다.
상기 음극 활물질은 리튬 이온을 가역적으로 삽입/탈리시킬 수 있는 물질로서, 탄소계 활물질, (준)금속계 활물질, 및 리튬 금속으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있고, 구체적으로 탄소계 활물질 및 (준)금속계 활물질 중에서 선택된 적어도 1종을 포함할 수 있다.
상기 탄소계 활물질은 인조 흑연, 천연 흑연, 하드카본, 소프트카본, 카본 블랙, 그래핀 및 섬유상 탄소로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있으며, 바람직하게는 인조 흑연 및 천연 흑연으로 이루어진 군에서 선택된 적어도 1종을 포함할 수 있다.
상기 탄소계 활물질의 평균 입경(D50)은 충방전 시에 구조적 안정성을 기하고 전해액과의 부반응을 줄이는 측면에서 10㎛ 내지 30㎛, 바람직하게는 15㎛ 내지 25㎛일 수 있다.
구체적으로, 상기 (준)금속계 활물질은 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속과 리튬의 합금; Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, V, Ti, 및 Sn으로 이루어진 군에서 선택된 적어도 1종의 (준)금속의 산화물; 리튬 티타늄 옥사이드(LTO); 리튬 바나듐 옥사이드; 등을 포함할 수 있다.
보다 구체적으로, 상기 (준)금속계 활물질은 실리콘계 활물질을 포함할 수 있다.
상기 실리콘계 활물질은 SiOx(0≤x<2)로 표시되는 화합물을 포함할 수 있다. SiO2의 경우 리튬 이온과 반응하지 않아 리튬을 저장할 수 없으므로, x는 상기 범위 내인 것이 바람직하며, 보다 바람직하게는 실리콘계 산화물은 SiO일 수 있다.
상기 실리콘계 활물질의 평균 입경(D50)은 충방전 시 구조적 안정성을 기하면서 전해액과의 부반응을 감소시키는 측면에서 1㎛ 내지 30㎛, 바람직하게는 2㎛ 내지 15㎛일 수 있다.
상기 음극 활물질은 음극 활물질층에 60중량% 내지 99중량%, 바람직하게는 75중량% 내지 95중량%로 포함될 수 있다.
상기 음극 활물질층은 상기 음극 활물질과 함께 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 바인더는 상기 음극 활물질층 및 상기 음극 집전체와의 접착력을 향상시켜 전지의 성능을 향상시키기 위하여 사용되는 것으로서, 예를 들어, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 바인더는 상기 음극 활물질층에 0.5중량% 내지 10중량%, 바람직하게는 1중량% 내지 5중량%로 포함될 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 상기 음극 활물질층에 0.5중량% 내지 10중량%, 바람직하게는 1중량% 내지 5중량%로 포함될 수 있다.
상기 음극 활물질층의 두께는 5㎛ 내지 500㎛, 바람직하게는 100㎛ 내지 300㎛일 수 있다.
상기 음극 활물질층의 로딩량은 3.0mAh/cm2 내지 5.5mAh/cm2, 바람직하게는 3.5mAh/cm2 내지 4.5mAh/cm2일 수 있다.
상기 음극은 음극 집전체의 적어도 일면에 음극 활물질, 바인더, 도전재 및/또는 음극 슬러리 형성용 용매를 포함하는 음극 슬러리를 코팅한 다음, 건조 및 압연하여 제조될 수 있다.
상기 음극 슬러리 형성용 용매는 예를 들어 음극 활물질, 바인더 및/또는 도전재의 분산을 용이하게 하는 측면에서, 증류수, NMP(N-methyl-2-pyrrolidone), 에탄올, 메탄올, 및 이소프로필 알코올로 이루어진 군에서 선택된 적어도 1종, 바람직하게는 증류수를 포함할 수 있다. 상기 음극 슬러리의 고형분 함량은 30중량% 내지 80중량%, 구체적으로 40중량% 내지 70중량%일 수 있다.
(3) 분리막
상기 분리막은 상기 양극 및 상기 음극 사이에 개재될 수 있다.
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독공중합체, 프로필렌 단독공중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
(4) 비수 전해질
1) 리튬염
먼저, 리튬염에 대하여 설명하면 다음과 같다.
본 발명의 일 실시예에 따른 리튬 이차전지용 비수 전해액에 있어서, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiB10Cl10, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2), LiCH3SO3, LiCF3CO2, LiCH3CO2 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 적어도 어느 하나 이상을 들 수 있다. 상기 리튬염은 구체적으로 LiBF4, LiClO4, LiPF6, LiBOB (LiB(C2O4)2), LiCF3SO3, LiTFSI (LiN(SO2CF3)2), LiFSI (LiN(SO2F)2) 및 LiBETI (LiN(SO2CF2CF3)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 보다 구체적으로 LiPF6를 포함할 수 있다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 최적의 전극 표면의 부식 방지용 피막 형성 효과를 얻기 위하여, 전해액 내에 0.8 M 내지 3.0 M의 농도, 구체적으로 1.0M 내지 3.0M 농도로 포함될 수 있다.
상기 리튬염의 농도가 상기 범위를 만족할 경우, 최적의 함침성을 구현할 수 있도록 비수 전해액의 점도를 제어할 수 있고, 리튬 이온의 이동성을 향상시켜 리튬 이차전지의 용량 특성 및 사이클 특성 개선 효과를 얻을 수 있다.
2) 유기 용매
상기 유기 용매로는 리튬 이차전지에 통상적으로 사용되는 비수계 용매로서, 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있는 것이라면 특별히 제한되지 않는다.
구체적으로, 상기 유기 용매는 환형 카보네이트계 유기 용매 및 선형 카보네이트계 유기 용매를 포함할 수 있다.
상기 환형 카보네이트계 유기 용매는 고점도의 유기 용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기 용매로서, 구체적으로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 1종의 유기 용매를 포함할 수 있으며, 보다 구체적으로 에틸렌 카보네이트를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기 용매는 저점도 및 저유전율을 가지는 유기 용매로서, 구체적으로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다. 리튬 철 인산화물 입자를 양극 활물질로 포함하는 양극의 경우 요구되는 에너지 밀도 달성을 위해 두께가 증가되어야 하며, 이에 따라 전해액 함침성을 더욱 향상시키는 측면에서 상기 선형 카보네이트계 유기 용매는 구체적으로 디메틸 카보네이트 및 에틸메틸 카보네이트를 포함할 수 있고, 보다 구체적으로 디메틸 카보네이트 및 에틸메틸 카보네이트를 60:40 내지 90:10의 부피비로 포함할 수 있다.
상기 유기 용매는 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매의 혼합물일 수 있다. 이때, 상기 환형 카보네이트계 유기 용매와 선형 카보네이트계 유기 용매는 10:90 내지 40:60의 부피비, 구체적으로 15:85 내지 35:65의 부피비로 혼합될 수 있다.
한편, 상기 유기 용매는 필요에 따라 비수 전해질에 통상적으로 사용되는 유기 용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에스터계 유기 용매, 에테르계 유기 용매, 글라임계 용매 및 니트릴계 유기 용매 중 적어도 하나 이상의 유기 용매를 추가로 포함할 수도 있다.
상기 에스터계 유기 용매로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 적어도 1종을 포함할 수 있다.
상기 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르, 에틸프로필 에테르, 1,3-디옥소란(DOL) 및 2,2-비스(트리플루오로메틸)-1,3-디옥소란(TFDOL)으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 글라임계 용매는 선형 카보네이트계 유기 용매에 비해 높은 유전율 및 낮은 표면 장력을 가지며, 메탈과의 반응성이 적은 용매로서, 디메톡시에탄 (글라임, DME), 디에톡시에탄, 디글라임 (digylme), 트리-글라임(Triglyme), 및 테트라-글라임 (TEGDME)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 니트릴계 용매는 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 1종 이상인 것일 수 있으나 이에 한정되는 것은 아니다.
한편, 상기 비수 전해질 중 리튬 염과 첨가제를 제외한 잔부는 별도의 언급이 없는 한 모두 유기 용매일 수 있다.
(3) 첨가제
본 발명의 비수 전해질은 첨가제를 포함한다.
상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2023017528-appb-img-000003
상기 화학식 1에서,
R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고.
R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 구조 내에 프로파질 작용기를 포함함에 따라, 음극 표면에서 용이하게 환원 분해되어 저항이 낮고, 부동태 능력이 높은 SEI 막을 형성할 수 있으므로, 음극 자체의 내구성을 개선할 수 있다. 또한, 상기 화학식 1로 표시되는 화합물 유래 성분을 SEI 막에 포함할 경우, 양극의 리튬 철 인산화물 입자로부터 용출된 Fe가 음극 표면에 전착되어, 음극 SEI 막을 파괴하는 문제를 현저한 수준으로 방지할 수 있다. 따라서, 상기 화학식 1로 표시되는 화합물을 전해액 첨가제로 포함하는 비수 전해질을 상기 리튬 철 인산화물 입자를 양극 활물질로 사용하는 양극과 함께 사용할 경우, SEI 막의 불안정성(instability)에 의하여 발생하는 전해액의 추가적인 환원 분해 반응에 의한 음극의 자가 방전 반응을 방지할 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 구조 말단에 하나 이상의 불소 원소가 치환된 플루오로카본 작용기를 포함함으로써, 양극 표면에 내산화성이 확보된 피막을 형성하여, 양극으로부터 리튬 철 인산화물로부터 Fe가 용출되는 것을 억제하고, 용출된 Fe가 음극에 전착 및 석출되는 것을 억제하여, 내부 단락을 방지할 수 있다.
이와 같이, 상기 화학식 1로 표시되는 화합물은 난연성 및 불연성이 우수한 불소 원소가 하나 이상 치환된 플루오로카본 작용기와 프로파질기를 포함하고 있어, 저저항의 견고한 SEI 피막을 형성하여, 전해액의 추가 환원 분해 반응을 억제할 뿐만 아니라, 음극의 자가 방전 반응을 방지할 수 있으므로, 초기 저항 증가를 억제하고, 상온 및 저온 출력 특성은 향상된 리튬 이차전지를 제공할 수 있다.
한편, 상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 20의 알킬기일 수 있다.
또한, 상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 15의 알킬기일 수 있다.
구체적으로, 상기 화학식 1에서, R3는 하나 이상의 불소가 치환된 탄소수 4 내지 8의 알킬기일 수 있다.
바람직하게, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1a로 표시되는 화합물일 수 있다.
[화학식 1a]
Figure PCTKR2023017528-appb-img-000004
한편, 상기 화학식 1로 표시되는 화합물은 상기 비수 전해질에 0.01 중량% 내지 10.0 중량%로 포함될 수 있다.
상기 화학식 1로 표시되는 화합물의 함량이 상기 범위로 포함되면, 첨가제에 의한 부반응, 용량 저하 및 저항 증가 등의 단점을 최대한 억제하면서, 음극 표면에 저저항 SEI 피막을 형성하여, 피막에서의 리튬 이동 효과를 향상시킬 수 있고, 전해액의 추가 환원 분해 반응을 억제하여, 음극의 자가 방전 반응을 방지할 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물의 함량이 0.01 중량% 이상이면 전지 구동 시간 동안 안정한 피막을 형성하여, 음극 표면에 저저항 SEI 피막을 형성하여 전지 출력 성능을 향상시킬 수 있다. 또한, 상기 화학식 1로 표시되는 화합물의 함량이 10.0 중량% 이하인 경우 최적의 함침성을 구현할 수 있도록 비수 전해액의 점도를 제어할 수 있고, 첨가제 분해로 의한 전지 저항 증가를 효과적으로 억제할 수 있으며, 전지 내 이온 전도도를 더욱 높여 출력 특성 저하를 방지할 수 있다
구체적으로, 상기 화학식 1로 표시되는 화합물은 비수전해액 중에 0.05 중량% 내지 6.0 중량%, 구체적으로 0.08 중량% 내지 0.5 중량%로 포함될 수 있다.
한편, 상기 첨가제는 고출력의 환경에서 비수 전해액이 분해되어 음극 붕괴가 유발되는 것을 방지하거나, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온에서의 전지 팽창 억제 효과 등을 더욱 향상시키기 위하여, 필요에 따라 상기 화학식 1로 표시되는 화합물 이외에 다른 부가적인 추가 첨가제를 포함할 수 있다.
이러한 추가 첨가제의 예로는 환형 카보네이트계 화합물, 할로겐 치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 벤젠계 화합물, 아민계 화합물, 실란계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
상기 환형 카보네이트계 화합물은, 예를 들면, 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트 등일 수 있다.
상기 할로겐 치환된 카보네이트계 화합물은, 예를 들면, 플루오로에틸렌 카보네이트(FEC) 등일 수 있다.
상기 설톤계 화합물은, 예를 들면, 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물일 수 있다.
상기 설페이트계 화합물은, 예를 들면, 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS) 등일 수 있다.
상기 포스페이트계 또는 포스파이트계 화합물은, 예를 들면, 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 트리스(트리메틸실릴) 포스페이트, 트리스(트리메틸실릴) 포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물일 수 있다.
상기 보레이트계 화합물은 테트라페닐보레이트, 리튬 디플루오로(옥살라토)보레이트 (LiODFB) 또는 리튬 비스옥살레이토보레이트 (LiB(C2O4)2, LiBOB)등을 들 수 있다.
상기 니트릴계 화합물은, 예를 들면, 숙시노니트릴, 아디포니트릴, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물일 수 있다.
상기 벤젠계 화합물은, 예를 들면, 플루오로벤젠 등일 수 있고, 상기 아민계 화합물은 트리에탄올아민 또는 에틸렌디아민 등일 수 있으며, 상기 실란계 화합물은 테트라비닐실란 등일 수 있다.
상기 리튬염계 화합물은 상기 비수 전해액에 포함되는 리튬 염과 상이한 화합물로서, 리튬 디플루오로포스페이트 (LiPO2F2) 또는 LiBF4 등을 들 수 있다.
이러한 추가 첨가제 중, 비닐에틸렌 카보네이트, 1,3-프로판설톤, 플루오로에틸렌 카보네이트, 숙시노 니트릴 및 리튬 디플루오로(옥살라토)보레이트로 이루어진 군에서 선택된 적어도 1종을 포함하는 경우에 이차전지의 초기 활성화 공정시 음극 표면에 보다 견고한 SEI 피막을 형성할 수 있다.
상기 추가 첨가제는 2 종 이상의 화합물을 혼용하여 사용할 수 있으며, 상기 화학식 1로 표시되는 화합물과 추가 첨가제의 전체 함량은 비수 전해질 전체 중량을 기준으로 50 중량% 이하, 구체적으로 0.05 내지 20 중량%, 구체적으로 0.05 내지 10 중량%로 포함될 수 있다. 상기 첨가제들의 전체 함량이 상기 범위를 만족하는 경우, 경우 전지의 저온 출력 특성을 개선할 수 있고, 고온 저장 특성 및 고온 수명 특성을 더욱 효과적으로 개선할 수 있으며, 반응 후 잔류하는 첨가제들에 의한 전지의 부반응 발생을 방지할 수 있다.
상기와 같은 본 발명에 따른 리튬 이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하게 사용될 수 있다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다.
이때, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
이하, 구체적인 실시예를 통해 본 발명을 구체적으로 설명한다.
실시예
실시예 1
(비수 전해질 제조)
에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC) 및 디메틸 카보네이트(DMC)를 30:10:60의 부피비로 혼합한 유기 용매를 준비하였다.
상기 유기 용매에 리튬 염으로서 LiPF6을 1.0M의 몰 농도가 되도록 용해하였다.
또한, 상기 리튬 염이 용해된 유기 용매에 상기 화학식 1a로 표시되는 화합물과 추가 첨가제를 첨가하여 비수 전해질을 제조하였다.
상기 화학식 1a로 표시되는 화합물은 상기 비수 전해액에 0.1중량%로 포함되었다.
상기 추가 첨가제로는 비닐 에틸렌 카보네이트(VEC), 1,3-프로판설톤(PS), 플루오로에틸렌 카보네이트(FEC), 숙시노니트릴(SN) 및 LiODFB를 사용하였으며, 상기 비수 전해질에 비닐 에틸렌 카보네이트(VEC) 0.5중량%, 1,3-프로판설톤(PS) 1.0중량%, 플루오로에틸렌 카보네이트(FEC) 5.0중량%, 숙시노니트릴(SN) 1.0중량% 및 LiODFB 0.5중량% 첨가되었다.
(이차전지 제조)
양극 활물질로서 리튬 철 인산화물 입자(LiFePO4), 도전재로서 탄소 나노 튜브 및 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 94:3:3의 중량비로 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극 슬러리 (고형분 함량 50중량%)를 제조하였다. 상기 양극 슬러리를 두께가 20㎛인 양극 집전체 (Al 박막)에 3.7mAh/cm2의 로딩량으로 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다(양극 활물질의 두께: 220㎛).
음극 활물질로서 흑연, 바인더로서 SBR-CMC 및 도전재로서 카본 블랙을 96:3:1의 중량비로 용매인 물에 첨가하여 음극 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 슬러리를 10㎛ 두께의 음극 집전체인 구리(Cu) 박막에 4.2mAh/cm2의 로딩량으로 도포 및 건조한 후, 롤 프레스를 실시하여 음극을 제조하였다(음극 활물질의 두께: 170㎛).
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 세퍼레이터 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
전지 케이스 내에 상기 조립된 전극조립체를 수납한 다음, 제조된 비수 전해액을 주액하여 리튬 이차전지를 제조하였다.
실시예 2
상기 화학식 1a로 표시되는 화합물을 비수 전해질 중량 기준 1.0중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
실시예 3
상기 화학식 1a로 표시되는 화합물을 비수 전해질 중량 기준 5.0중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
비교예 1
화학식 1a로 표시되는 화합물을 첨가하지 않고 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
비교예 2
화학식 1a로 표시되는 화합물 대신 하기 화학식 2로 표시되는 화합물을 비수 전해질 중량 기준 0.1중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
[화학식 2]
Figure PCTKR2023017528-appb-img-000005
비교예 3
화학식 1a로 표시되는 화합물 대신 상기 화학식 2로 표시되는 화합물을 비수 전해질 중량 기준 1.0중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
비교예 4
화학식 1a로 표시되는 화합물 대신 하기 화학식 3으로 표시되는 화합물을 비수 전해질 중량 기준 0.1중량%의 함량으로 첨가하여 비수 전해질을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 비수 전해질 및 리튬 이차전지를 제조하였다.
[화학식 3]
Figure PCTKR2023017528-appb-img-000006
실험예
실험예 1: 초기 용량 및 사이클 용량 유지율 평가
상기에서 제조된 실시예 1~3, 비교예 1~4의 리튬 이차전지를 전기화학 충방전기를 사용하여 25℃에서 CC/CV, 0.33C 조건으로 3.65V, 0.05C까지 충전한 다음, CC, 0.33C 조건으로 2.5V까지 방전하는 것을 1 사이클로 하여 300 사이클 충방전을 실시하고, 용량 유지율을 측정하였다.
용량 유지율은 아래 식으로 계산되었으며, 그 결과를 하기 표 1에 나타내었다.
용량 유지율(%) = {(300 사이클 후의 방전 용량/1 사이클 후의 방전 용량)} × 100
1 사이클 후의 방전 용량(초기 용량) 및 300 사이클 후의 용량 유지율을 하기 표 1에 나타내었다.
실험예 2: 초기 저항 평가
상기에서 제조된 실시예 1~3, 비교예 1~4의 리튬 이차전지를 전기화학 충방전기를 사용하여 25℃에서 CC/CV, 0.1C 조건으로 3.65V, 0.05C까지 충전한 다음, CC, 0.1C 조건으로 2.5V까지 방전하는 것을 1 사이클로 하여 충방전을 실시하였다.
1 사이클의 충방전 후, 전기화학 충방전기를 사용하여 1 사이클 후의 방전 용량을 측정하고, SOC 50%로 SOC를 조정한 다음, 2.5C의 펄스(pulse)를 10 초간 인가하여, 펄스 인가 전 전압과, 인가 후 전압의 차를 통하여 초기 저항을 산출하였다. 그 결과를 하기 표 1에 나타내었다.
실험예 3: 금속 용출량 평가
상기에서 제조된 실시예 1~3, 비교예 1~4의 리튬 이차전지를 전기화학 충방전기를 사용하여 25℃에서 CC/CV, 0.33C 조건으로 3.65V, 0.05C까지 충전한 다음, CC, 0.33C 조건으로 2.5V까지 방전하는 것을 1 사이클로 하여 300 사이클 충방전을 실시하고, 용량 유지율을 측정하였다.
이후, 유도결합 플라즈마 방출분광기(ICP-OES, inductively coupled plasma optical emission spectrophotometer)를 이용하여 전해액에 용출된 Fe의 농도를 측정하였다. ICP 분석을 이용하여 측정된 Fe의 양을 하기 표 1에 나타내었다.
실험예 1 실험예 2 실험예 3
초기 용량(mAh) 용량 유지율(%, @300cycle) 초기 저항(mΩ) Fe 용출량(mg/kg, @300cycle)
실시예 1 761 98.9 73.9 173
실시예 2 760 98.7 73.6 215
실시예 3 758 97.9 74.7 286
비교예 1 756 97.3 75.1 353
비교예 2 748 94.8 80.3 336
비교예 3 738 93.8 81.7 342
비교예 4 751 96.1 78.3 324
상기 표 1을 참조하면, 본 발명에 따른 실시예 1 내지 3의 리튬 이차전지의 경우, 비교예 1 내지 4에 비해 우수한 초기 용량, 용량 유지율, 저항 특성을 가지며, 낮은 Fe 용출량을 보이는 것을 확인할 수 있다.

Claims (11)

  1. 양극, 음극, 분리막 및 비수 전해질을 포함하고,
    상기 양극은 양극 활물질을 포함하고,
    상기 양극 활물질은 리튬 철 인산화물 입자를 포함하고,
    상기 비수 전해질은 리튬 염, 유기 용매 및 첨가제를 포함하고,
    상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지:
    [화학식 1]
    Figure PCTKR2023017528-appb-img-000007
    상기 화학식 1에서,
    R1 및 R2는 각각 독립적으로 탄소수 1 내지 10의 알킬렌기이고,
    R3는 하나 이상의 불소가 치환된 탄소수 1 내지 20의 알킬기이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 5의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 20의 알킬기인 리튬 이차전지.
  3. 청구항 1에 있어서,
    상기 화학식 1에서, R1 및 R2는 각각 독립적으로 탄소수 1 내지 3의 알킬렌기이고, R3는 하나 이상의 불소가 치환된 탄소수 3 내지 15의 알킬기인 리튬 이차전지.
  4. 청구항 1에 있어서,
    상기 화학식 1에서, R3는 하나 이상의 불소가 치환된 탄소수 4 내지 8의 알킬기인 리튬 이차전지.
  5. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1a로 표시되는 화합물인 리튬 이차전지:
    [화학식 1a]
    Figure PCTKR2023017528-appb-img-000008
    .
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 상기 비수 전해질에 0.01 중량% 내지 10.0 중량%로 포함되는 리튬 이차전지.
  7. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 리튬 이차전지용 비수 전해액 전체 중량을 기준으로 0.05 중량% 내지 6.0 중량%로 포함되는 리튬 이차전지.
  8. 청구항 1에 있어서,
    상기 첨가제는 할로겐으로 치환 또는 비치환된 카보네이트계 화합물, 설톤계 화합물, 설페이트계 화합물, 포스페이트계 또는 포스파이트계 화합물, 보레이트계 화합물, 니트릴계 화합물, 아민계 화합물, 실란계 화합물 및 리튬 염계 화합물로 이루어진 군으로부터 선택된 적어도 1종의 추가 첨가제를 포함하는 리튬 이차전지.
  9. 청구항 1에 있어서,
    상기 유기 용매는 환형 카보네이트계 유기 용매 및 선형 카보네이트계 유기 용매를 포함하는 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 환형 카보네이트계 유기 용매는 에틸렌 카보네이트를 포함하고,
    상기 선형 카보네이트계 유기 용매는 에틸메틸 카보네이트 및 디메틸 카보네이트를 포함하는 리튬 이차전지.
  11. 청구항 1에 있어서,
    상기 리튬 철 인산화물 입자는 하기 화학식 A로 표시되는 화합물을 포함하는 리튬 이차전지:
    [화학식 A]
    Li1+aFe1-sMs(PO4-b)Xb
    상기 화학식 A에서, M는 Co, Ni, Al, Mg, Ti 및 V 중에서 선택되는 하나 이상의 원소이고, X는 F, S, 또는 N이며, 0≤s≤0.5; -0.5≤a≤+0.5; 0≤b≤0.1이다.
PCT/KR2023/017528 2022-11-04 2023-11-03 리튬 이차전지 WO2024096676A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220146435A KR20240064421A (ko) 2022-11-04 2022-11-04 리튬 이차전지
KR10-2022-0146435 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024096676A1 true WO2024096676A1 (ko) 2024-05-10

Family

ID=90931024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017528 WO2024096676A1 (ko) 2022-11-04 2023-11-03 리튬 이차전지

Country Status (2)

Country Link
KR (1) KR20240064421A (ko)
WO (1) WO2024096676A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035638A (ko) * 2010-10-06 2012-04-16 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20180086601A (ko) * 2017-01-23 2018-08-01 주식회사 엘지화학 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20190033448A (ko) * 2017-09-21 2019-03-29 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
CN112510259A (zh) * 2020-11-25 2021-03-16 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂电池
KR20220065686A (ko) * 2020-11-13 2022-05-20 주식회사 엘지에너지솔루션 리튬 이차 전지
KR102522492B1 (ko) * 2021-10-12 2023-04-18 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471662A (zh) 2014-05-30 2017-03-01 宇部兴产株式会社 非水电解液以及使用该非水电解液的蓄电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035638A (ko) * 2010-10-06 2012-04-16 삼성에스디아이 주식회사 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
KR20180086601A (ko) * 2017-01-23 2018-08-01 주식회사 엘지화학 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20190033448A (ko) * 2017-09-21 2019-03-29 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20220065686A (ko) * 2020-11-13 2022-05-20 주식회사 엘지에너지솔루션 리튬 이차 전지
CN112510259A (zh) * 2020-11-25 2021-03-16 张家港市国泰华荣化工新材料有限公司 一种非水电解液及锂电池
KR102522492B1 (ko) * 2021-10-12 2023-04-18 주식회사 엘지에너지솔루션 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
KR20240064421A (ko) 2024-05-13

Similar Documents

Publication Publication Date Title
WO2019004699A1 (ko) 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023085843A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2016052881A1 (ko) 리튬 이차전지의 제조방법
WO2022103101A1 (ko) 리튬 이차 전지
WO2022092688A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2018062934A1 (ko) 이중 보호층이 형성된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022114930A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2024096676A1 (ko) 리튬 이차전지
WO2022050712A1 (ko) 리튬 이차 전지
WO2023191572A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2024096678A1 (ko) 리튬 이차전지
WO2024096701A1 (ko) 리튬 이차전지
WO2024117826A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2023075379A1 (ko) 비수 전해질용 첨가제, 이를 포함하는 비수 전해질 및 리튬 이차전지
WO2023043138A1 (ko) 리튬 이차전지