WO2024095887A1 - 半導体装置の製造方法、半導体装置の製造装置及び半導体装置 - Google Patents

半導体装置の製造方法、半導体装置の製造装置及び半導体装置 Download PDF

Info

Publication number
WO2024095887A1
WO2024095887A1 PCT/JP2023/038672 JP2023038672W WO2024095887A1 WO 2024095887 A1 WO2024095887 A1 WO 2024095887A1 JP 2023038672 W JP2023038672 W JP 2023038672W WO 2024095887 A1 WO2024095887 A1 WO 2024095887A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
layer
heat treatment
titanium nitride
nitrogen
Prior art date
Application number
PCT/JP2023/038672
Other languages
English (en)
French (fr)
Inventor
晴心 山田
裕樹 菊地
尚士 藁科
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024095887A1 publication Critical patent/WO2024095887A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Definitions

  • This disclosure relates to a method for manufacturing a semiconductor device, an apparatus for manufacturing a semiconductor device, and a semiconductor device.
  • tungsten W
  • Mo molybdenum
  • TiN titanium nitride
  • ruthenium which is often used in semiconductor wiring processes, is an ideal wiring material because it suppresses the increase in resistivity due to the fine line effect.
  • wiring made of ruthenium is formed on an interlayer insulating film made of, for example, silicon dioxide (SiO 2 ).
  • an adhesion layer made of titanium nitride is provided between the wiring and the interlayer insulating film (see, for example, Patent Document 1).
  • the technology disclosed herein prevents the deterioration of workability and resistivity of the metal layer caused by etching the metal layer.
  • One aspect of the technology disclosed herein is a method for manufacturing a semiconductor device having an insulating film, an adhesion layer made of titanium nitride, and a metal layer, the method comprising the steps of forming the adhesion layer on the insulating film, forming the metal layer on the adhesion layer, and subjecting the insulating film, the adhesion layer, and the metal layer to a heat treatment, and in the step of forming the adhesion layer, the titanium nitride constituting the adhesion layer has a nitrogen to titanium composition ratio of 0.6 or more.
  • the technology disclosed herein can prevent the deterioration of workability and resistivity of the metal layer caused by etching the metal layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an example of a test piece for examining the cause of deterioration of etching workability of a metal layer due to high-temperature heat treatment.
  • 1 is an example of an electrophotograph showing the results of composition analysis of a cross section of a test piece that has been subjected to a low-temperature heat treatment or a high-temperature heat treatment.
  • 1 is an example of an electrophotograph showing the results of composition analysis of a cross section of a test piece that has been subjected to a low-temperature heat treatment or a high-temperature heat treatment.
  • 1 is a cross-sectional view showing a schematic configuration of an example of a test piece for examining the cause of titanium diffusion from a titanium nitride layer.
  • 1 is a cross-sectional view showing a schematic configuration of an example of a test piece for examining the cause of titanium diffusion from a titanium nitride layer.
  • 4 is an example of an electrophotograph showing the results of composition analysis of a cross section of each test piece before and after high-temperature heat treatment.
  • 4 is an example of an electrophotograph showing the results of composition analysis of a cross section of each test piece before and after high-temperature heat treatment.
  • 1 is a graph showing the distribution state of atoms in the depth direction of a cross section of each test piece before and after high-temperature heat treatment.
  • 1 is a graph showing the distribution state of atoms in the depth direction of a cross section of each test piece before and after high-temperature heat treatment.
  • 1A to 1C are schematic diagrams for explaining the diffusion of titanium and nitrogen before and after high-temperature heat treatment.
  • 1A to 1C are schematic diagrams for explaining the diffusion of titanium and nitrogen before and after high-temperature heat treatment.
  • 1 is a graph showing the resistivity of the ruthenium layer in each test piece after high-temperature heat treatment.
  • 1 is a partial cross-sectional view illustrating an example of a configuration of a DRAM as a semiconductor device to which the technology according to the present disclosure is applied.
  • 1A to 1C are process diagrams showing an example of a method for manufacturing a portion of a DRAM to which the technology according to the present disclosure is applied.
  • 1A to 1C are process diagrams showing an example of a method for manufacturing a portion of a DRAM to which the technology according to the present disclosure is applied.
  • 1A to 1C are process diagrams showing an example of a method for manufacturing a portion of a DRAM to which the technology according to the present disclosure is applied.
  • 1A to 1C are process diagrams showing an example of a method for manufacturing a portion of a DRAM to which the technology according to the present disclosure is applied.
  • 1A to 1C are process diagrams showing an example of a method for manufacturing a portion of a DRAM to which the technology disclosed herein is applied.
  • FIG. 1 is a diagram illustrating a schematic configuration of an example of a PVD apparatus for forming a titanium nitride layer.
  • FIG. 2 is a diagram illustrating an example of a configuration of a heat treatment apparatus for performing a first heat treatment and a second heat treatment.
  • the adhesion layer or metal layer may be subjected to a high-temperature heat treatment, for example, at 950°C.
  • a high-temperature heat treatment for example, at 950°C.
  • the inventors have confirmed that the reactive ion etching processability of the metal layer that has undergone high-temperature heat treatment is reduced, and the resistivity of the metal layer is deteriorated (resistivity becomes high).
  • the technology disclosed herein adjusts the composition of the titanium nitride that constitutes the adhesion layer to prevent a decrease in workability and a deterioration in resistivity of the metal layer due to etching of the metal layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of one example of the two test pieces.
  • a silicon dioxide (SiO 2 ) film 12 is formed as an insulating film on a silicon substrate 11, and a titanium nitride (TiN) layer 13 is formed as an adhesive layer on the silicon dioxide film 12.
  • a ruthenium (Ru) layer 14 is formed as a metal layer on the silicon dioxide film 12.
  • the inventor then prepared a test piece 10 that had been subjected to low-temperature heat treatment, for example, at 400°C, and a test piece 10 that had been subjected to high-temperature heat treatment, and subjected each to reactive ion etching to process the ruthenium layer 14.
  • the ruthenium layer 14 of the test piece 10 that had been subjected to low-temperature heat treatment had good workability, while the ruthenium layer 14 of the test piece 10 that had been subjected to high-temperature heat treatment had deteriorated in workability.
  • composition analysis was performed using TEM (Transmission Electron Microscope)/EDX (Energy Dispersive X-ray) analysis.
  • Figures 2A and 2B are examples of electrophotographs showing the results of composition analysis of a cross section of test piece 10 that has been subjected to low-temperature heat treatment or high-temperature heat treatment.
  • Figure 2A shows the distribution of titanium in titanium nitride layer 13 and the distribution of ruthenium in ruthenium layer 14 of test piece 10 that has been subjected to low-temperature heat treatment.
  • Figure 2B shows the distribution of titanium and nitrogen in titanium nitride layer 13 and the distribution of ruthenium in ruthenium layer 14 of test piece 10 that has been subjected to high-temperature heat treatment.
  • "Ti" represents titanium
  • "Ru” represents ruthenium.
  • titanium is not mixed into the ruthenium layer 14 of the test piece 10 that has been subjected to low-temperature heat treatment, which provides good etching workability.
  • diffused titanium is mixed into the ruthenium layer 14 of the test piece 10 that has been subjected to high-temperature heat treatment, which provides poor etching workability. From the above, it was thought that the cause of the deterioration of the etching workability of the ruthenium layer 14 due to high-temperature heat treatment is the mixing of diffused titanium into the ruthenium layer 14.
  • Figures 3A and 3B are cross-sectional views that show schematic configurations of examples of the two test pieces.
  • a silicon dioxide film 17 is formed as an insulating film on a silicon substrate 16, and a titanium nitride layer 18 is formed as an adhesive layer on the silicon dioxide film 17 by PVD (Physical Vapor Deposition). Furthermore, a ruthenium layer 19 is formed as a metal layer on the silicon dioxide film 17 by PVD.
  • the thickness of the titanium nitride layer 18 is 5 nm
  • the composition ratio (atomic ratio) of nitrogen to titanium is 0.4
  • the thickness of the ruthenium layer 19 is 20 nm.
  • a silicon dioxide film 17 is formed on a silicon substrate 16, and a titanium nitride layer 21 is formed on the silicon dioxide film 17 by PVD. Furthermore, a ruthenium layer 19 is formed on the titanium nitride layer 21.
  • the thickness of the titanium nitride layer 21 is also 5 nm, but the composition ratio of nitrogen to titanium in the titanium nitride layer 21 is 1.2. That is, test piece 15 and test piece 20 have different nitrogen to titanium composition ratios in the titanium nitride layer, with titanium nitride layer 18 of test piece 15 being titanium-rich and titanium nitride layer 21 of test piece 20 being nitrogen-rich.
  • test pieces 15 and 20 were subjected to high-temperature heat treatment and observed their cross sections before and after the high-temperature heat treatment.
  • the temperature of test pieces 15 and 20 was maintained at 950° C. for one minute in an atmosphere with a nitrogen (N 2 ) gas flow rate of 96% and a hydrogen (H 2 ) gas flow rate of 4%.
  • N 2 nitrogen
  • H 2 hydrogen
  • Figures 4A and 4B are examples of electrophotographs showing the results of composition analysis of the cross sections of each test piece before and after high-temperature heat treatment.
  • Figure 4A shows the distribution of titanium and nitrogen in titanium nitride layer 18 of test piece 15, and the distribution of ruthenium in ruthenium layer 19.
  • Figure 4B shows the distribution of titanium and nitrogen in titanium nitride layer 21 of test piece 20, and the distribution of ruthenium in ruthenium layer 19.
  • "Ru” represents ruthenium
  • Ti represents titanium
  • N represents nitrogen.
  • 5A and 5B are graphs showing the distribution of each atom in the depth direction of the cross section of each test piece before and after high-temperature heat treatment, and each graph was obtained by EDX scanning.
  • the vertical axis shows the composition ratio of each atom (atomic number ratio: at%)
  • the horizontal axis shows the depth in each test piece.
  • "Ru” indicates ruthenium
  • the distribution state of ruthenium is shown by a solid line
  • Ti indicates titanium
  • the distribution state of titanium is shown by a dashed line.
  • FIG. 5A shows the distribution state of each atom in test piece 15
  • FIG. 5B shows the distribution state of each atom in test piece 20.
  • titanium and nitrogen in the titanium nitride layer may diffuse due to high-temperature heat treatment, depending on the composition ratio of nitrogen to titanium in the titanium nitride layer. Specifically, they have found that if the composition ratio of nitrogen to titanium is 0.4, then the titanium and nitrogen in the titanium nitride layer will diffuse due to high-temperature heat treatment, and if the composition ratio of nitrogen to titanium is 1.2, then the titanium and nitrogen in the titanium nitride layer will not diffuse due to high-temperature heat treatment.
  • Figures 6A and 6B are schematic diagrams for explaining the diffusion of titanium and nitrogen before and after high-temperature heat treatment, with Figure 6A showing the case of test piece 15 and Figure 6B showing the case of test piece 20.
  • the hatched circles in the figures represent ruthenium atoms
  • the black circles represent titanium atoms
  • the white circles represent nitrogen atoms.
  • the inventors measured the nitrogen to titanium composition ratio of the titanium nitride layer composed of titanium and nitrogen separated into two layers in the test piece 15 after the high-temperature heat treatment. As a result, it was confirmed that the nitrogen to titanium composition ratio of the lower titanium nitride layer 18a remaining below the ruthenium layer 19 changed from 0.4 to 0.6. It was also confirmed that the nitrogen to titanium composition ratio of the upper titanium nitride layer 18b that moved above the ruthenium layer 19 was 1.0 (FIG. 6A). In other words, it was confirmed that in the test piece 15, when the titanium nitride layer 18 below the ruthenium layer 19 changed into the lower titanium nitride layer 18a by the high-temperature heat treatment, the titanium was relatively decreased. It was also confirmed that when the upper titanium nitride layer 18b was formed above the ruthenium layer 19 by the high-temperature heat treatment, the nitrogen increased compared to the titanium nitride layer 18.
  • the inventors From the confirmed relative decrease in titanium in the lower titanium nitride layer 18a and the increase in nitrogen in the upper titanium nitride layer 18b, the inventors have come to the following findings. That is, in the test piece 15, titanium that is somewhat in excess of nitrogen is released from the titanium nitride layer 18, whose energy has been increased by the high-temperature heat treatment, and the released titanium passes through the ruthenium grain boundaries of the ruthenium layer 19 and precipitates on the ruthenium layer 19. The precipitated titanium then combines with nitrogen from the nitrogen gas in the high-temperature heat treatment atmosphere, forming an upper titanium nitride layer 18b above the ruthenium layer 19.
  • the titanium nitride layer 18 that has released titanium changes to a lower titanium nitride layer 18a with reduced titanium, and titanium that combines with sufficient nitrogen from the atmosphere forms a nitrogen-rich upper titanium nitride layer 18b.
  • the high-temperature heat treatment changes the titanium nitride layer in a more stable direction.
  • the nitrogen to titanium composition ratio of the lower titanium nitride layer 18a after the high-temperature heat treatment was 0.6
  • the nitrogen to titanium composition ratio of the upper titanium nitride layer 18b after the high-temperature heat treatment was 1.0. Therefore, it was believed that if the nitrogen to titanium composition ratio is 0.6 or more and 1.0 or less, the titanium nitride layer is stable, does not release titanium even when subjected to high-temperature heat treatment, and the nitrogen to titanium composition ratio of the titanium nitride layer does not change.
  • the inventors also measured the nitrogen to titanium composition ratio in the titanium nitride layer 21 of the test piece 20 after the high-temperature heat treatment. As a result, it was confirmed that the nitrogen to titanium composition ratio in the titanium nitride layer 21 had changed from 1.2 before the high-temperature heat treatment to 1.0 ( Figure 6B). In other words, it was confirmed that in the test piece 20, the titanium nitride layer 18 of the ruthenium layer 19 had relatively reduced nitrogen due to the high-temperature heat treatment.
  • the inventors have come to the following conclusion from the confirmed decrease in nitrogen in the titanium nitride layer 21. That is, in the test piece 20, nitrogen that is somewhat in excess of titanium is released from the titanium nitride layer 18, whose energy has been increased by the high-temperature heat treatment, resulting in a relative decrease in nitrogen. It is believed that the released nitrogen passes through the crystal grain boundaries of ruthenium in the ruthenium layer 19 and is released from the ruthenium layer 19 into the atmosphere during the high-temperature heat treatment.
  • the composition ratio of nitrogen to titanium in the titanium nitride layer 21 changes from 1.2 before the high-temperature heat treatment to 1.0 after the high-temperature heat treatment. From this, it was thought that even if the composition ratio of nitrogen to titanium is 1.0 or more, the titanium is stable, and only a slight excess of nitrogen is released by the high-temperature heat treatment, and titanium is not released.
  • the nitrogen to titanium composition ratio of titanium nitride layer 21 after high-temperature heat treatment was 1.0, it was believed that if the nitrogen to titanium composition ratio is 1.0 or less, the titanium nitride layer will be stable and the nitrogen to titanium composition ratio will not change even when high-temperature heat treatment is performed. This finding is the same as the finding obtained from the high-temperature heat treatment of test piece 15.
  • the composition ratio of nitrogen to titanium in the titanium nitride layer before high-temperature heat treatment is 0.6 or more, the titanium nitride layer is stable and will not release titanium even when subjected to high-temperature heat treatment, or will only release a slight amount of nitrogen, resulting in no release of titanium.
  • the composition ratio of nitrogen to titanium in the titanium nitride layer before high-temperature heat treatment is 0.6 or more and 1.0 or less, the titanium nitride layer is stable and will not release titanium even when subjected to high-temperature heat treatment.
  • the nitrogen to titanium composition ratio in the titanium nitride layer before high-temperature heat treatment should be set to 0.6 or more, preferably 0.6 or more and 1.0 or less, and the release of titanium from the titanium nitride layer should be prevented.
  • Fig. 7 is a graph showing the resistivity of the ruthenium layer 19 in each of the test pieces 15, 20 after high-temperature heat treatment.
  • TiN 0.4 represents the test piece 15, and "TiN 1.2 " represents the test piece 20.
  • the horizontal axis of the graph of Fig. 7 represents the thickness of the ruthenium layer 19, and the vertical axis of the graph represents the resistivity of each ruthenium layer 19.
  • the resistivity of the ruthenium layer 19 in test piece 20 is lower than that of the ruthenium layer 19 in test piece 15.
  • titanium is mixed into the ruthenium layer 19 of test piece 15 after the high-temperature heat treatment, whereas titanium is not mixed into the ruthenium layer 19 of test piece 20 after the high-temperature heat treatment. Therefore, it was thought that the cause of the deterioration in the resistivity of the ruthenium layer 19 due to the high-temperature heat treatment was the mixing of diffused titanium into the ruthenium layer 19.
  • the composition ratio of nitrogen to titanium in the titanium nitride layer before the high-temperature heat treatment should be set to 0.6 or more, preferably 0.6 or more and 1.0 or less, and the release of titanium from the titanium nitride layer should be prevented.
  • Figure 8 is a partial cross-sectional view that shows an example of the configuration of a DRAM as a semiconductor device to which the technology disclosed herein can be applied.
  • a silicon dioxide film 24 is formed as an interlayer insulating film on a substrate 23 mainly made of p-type silicon.
  • a titanium nitride layer 26 is formed as an adhesion layer so as to cover the surfaces of the silicon dioxide film 24 and the via holes 25 formed in the silicon dioxide film 24.
  • a wiring layer 27 is formed as a word line on the silicon dioxide film 24.
  • a ruthenium layer 28 (metal layer) is formed as a bit line so as to cover the titanium nitride layer 26, and the ruthenium layer 28 is covered with a silicon nitride (SiN) film 29.
  • a capacitor 30 is formed that penetrates the silicon dioxide film 24, the titanium nitride layer 26, the ruthenium layer 28, and the silicon nitride film 29 to reach the substrate 23.
  • the capacitor 30 contacts an electrode portion 31 made of n-type silicon on the substrate 23.
  • Figures 9A to 9E are process diagrams showing a part of the manufacturing process of a DRAM to which the technology disclosed herein is applied.
  • a via hole 25 is formed in a silicon dioxide film 24 by etching ( Figure 9A).
  • a titanium nitride layer 26 is formed by PVD so as to cover the surfaces of the silicon dioxide film 24 and the via hole 25 ( Figure 9B).
  • FIG. 10 is a diagram showing the schematic configuration of an example of a PVD apparatus for forming a titanium nitride layer 26.
  • a PVD apparatus 32 includes a vacuum vessel 33, a target 34, a mounting portion 35, and a plasma generator (not shown).
  • the target 34 and the mounting portion 35 are disposed inside the vacuum vessel 33.
  • a wafer W is placed on the mounting portion 35.
  • the target 34 has an annular shape, and is disposed at the top inside the vacuum vessel 33 so as to face the wafer W.
  • the target 34 is made of titanium.
  • the inside of the vacuum vessel 33 is depressurized by an exhaust device (not shown), and argon (Ar) gas and nitrogen gas are supplied into the vacuum vessel 33 at a predetermined flow rate ratio.
  • the argon gas and nitrogen gas are excited by a plasma generator to become plasma, and argon ions in the plasma are attracted to the target 34 by a bias voltage applied to the target 34, sputtering the target 34.
  • the target 34 releases titanium particles as sputtered particles.
  • the released titanium particles are ionized as they pass through the plasma generated inside the vacuum vessel 33.
  • the titanium ions and nitrogen ions then react to produce titanium nitride, which adheres to the surface of the wafer W to form the titanium nitride layer 26.
  • the flow rates of argon gas and nitrogen gas are adjusted so that the nitrogen to titanium composition of the titanium nitride layer 26 is 0.6 or more, preferably 0.6 or more and 1.0 or less.
  • the method of forming the titanium nitride layer 26 is not limited to PVD, and the titanium nitride layer 26 may be formed using CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition).
  • a ruthenium layer 28 is formed by PVD so as to cover the titanium nitride layer 26.
  • the above-mentioned PVD device 32 can also be used to form the ruthenium layer 28.
  • the target 34 is made of ruthenium, and no nitrogen gas is supplied to the inside of the vacuum chamber 33, only argon gas is supplied.
  • the target 34 is sputtered by argon ions and releases ruthenium particles, which are ionized as they pass through the plasma and adhere to the surface of the wafer W. This forms the ruthenium layer 28 (FIG. 9C).
  • the method of forming the ruthenium layer 28 is not limited to PVD, and the ruthenium layer 28 may be formed using CVD or ALD.
  • a first heat treatment is performed in which the wafer W is heated to, for example, 600° C. or higher (FIG. 9D). This heat treatment causes the grains of ruthenium in the ruthenium layer 28 to grow, stabilizing the ruthenium layer 28.
  • the surface of the wafer W is polished by CMP (Chemical Mechanical Polishing) to remove the titanium nitride layer 26 and the ruthenium layer 28 present on the surface of the wafer W.
  • CMP Chemical Mechanical Polishing
  • a silicon nitride film 29 is formed on the surface of the wafer W, and further, a capacitor 30 and other films are formed (FIG. 9E).
  • the wafer W is subjected to a second heat treatment in which the temperature of the wafer W is heated to, for example, 800° C. or higher, preferably 950° C. or higher, for one minute or more.
  • FIG. 11 is a schematic diagram showing the configuration of an example of a heat treatment apparatus for performing the first heat treatment and the second heat treatment.
  • the heat treatment apparatus 36 is a vertical furnace, and can perform heat treatment on a large number of wafers W simultaneously.
  • the heat treatment apparatus 36 includes a reaction tube 37, which is a substantially cylindrical vacuum vessel with its longitudinal direction oriented vertically.
  • the reaction tube 37 has an opening at the bottom, which is closed by a lid 38. This keeps the inside of the reaction tube 37 airtight.
  • the lid 38 is configured to be freely raised and lowered between an elevated position and a lowered position by a boat elevator 39.
  • a wafer boat 40 made of, for example, quartz is placed on the lid 38.
  • the wafer boat 40 holds a large number of wafers W horizontally at a predetermined interval in the vertical direction.
  • An insulator 41 is provided around the reaction tube 37 so as to surround the reaction tube 37, and a heater 42 made of, for example, a resistance heating element is provided on the inner wall side of the insulator 41. This heater 42 heats the inside of the reaction tube 37, thereby subjecting each wafer W to heat treatment.
  • nitrogen gas is supplied into the inside of the reaction tube 37.
  • the heat treatment apparatus for performing the first heat treatment and the second heat treatment on the wafer W is not limited to a vertical furnace.
  • a rapid thermal processing (RTP) apparatus that uses a continuously lit lamp to heat the wafer W, or a flash lamp annealing apparatus that irradiates the wafer W with a flash light to heat it, may be used for the first heat treatment and the second heat treatment.
  • RTP rapid thermal processing
  • the titanium nitride layer 26 is also heated.
  • the nitrogen to titanium composition of the titanium nitride layer 26 is 0.6 or more, preferably 0.6 or more and 1.0 or less, the titanium nitride layer is stable, or the titanium nitride layer releases only nitrogen, and titanium does not diffuse into the ruthenium layer 28.
  • the etching processability of the ruthenium layer 28 does not decrease, and the resistivity of the ruthenium layer 28 does not deteriorate.
  • the nitrogen to titanium composition of the titanium nitride layer is 0.6 or more, and preferably 0.6 or more and 1.0 or less. This makes it possible to prevent the titanium of the titanium nitride layer from diffusing into the ruthenium layer due to the heat treatment, and suppress a decrease in the tunnel magnetoresistance effect of the magnetic tunnel junction element.
  • the technology disclosed herein is applied to a laminated structure of a titanium nitride layer and a ruthenium layer.
  • the technology disclosed herein can be applied to a laminated structure of a titanium nitride layer and a metal layer having grain boundaries.
  • metal layers having grain boundaries include a molybdenum (Mo) layer, a cobalt (Co) layer, and a tungsten (W) layer, and it is preferable to apply the technology disclosed herein to a laminated structure of these metal layers and titanium nitride layers. This can prevent the diffusion of titanium from the titanium nitride layer to the metal layer, thereby suppressing the decrease in workability due to etching of the metal layer and the decrease in resistivity of the metal layer.
  • Mo molybdenum
  • Co cobalt
  • W tungsten

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】金属層のエッチングによる加工性低下や金属層の抵抗率悪化を防止する。 【解決手段】絶縁膜、窒化チタンによって構成される密着層及び金属層を有する半導体装置の製造方法であって、前記絶縁膜の上に前記密着層を形成する工程と、前記密着層の上に前記金属層を形成する工程と、前記絶縁膜、前記密着層及び前記金属層に熱処理を施す工程と、を有し、前記密着層を形成する工程では、前記密着層を構成する窒化チタンのチタンに対する窒素の組成比が0.6以上である。

Description

半導体装置の製造方法、半導体装置の製造装置及び半導体装置
 本開示は、半導体装置の製造方法、半導体装置の製造装置及び半導体装置に関する。
 近年、半導体装置、例えば、DRAM(Dynamic Random Access Memory)における配線の微細化が進んでいる。そして、配線の材料として、従来多用されたタングステン(W)に代わり、高融点金属であるルテニウム(Ru)やモリブデン(Mo)が用いられ、さらに、これらの密着層の材料として窒化チタン(TiN)が用いられる。特に、細線効果による抵抗率の上昇が抑えられ、半導体配線プロセスによく用いられるルテニウムが配線の材料として好適に用いられる。
 DRAMでは、ルテニウムからなる配線が、例えば、二酸化珪素(SiO)からなる層間絶縁膜上に形成される。このとき、配線が層間絶縁膜から剥がれるのを抑制するために、配線と層間絶縁膜の間に、窒化チタンからなる密着層が設けられる(例えば、特許文献1参照)。
特開2012-253148号公報
 本開示に係る技術は、金属層のエッチングによる加工性低下や金属層の抵抗率悪化を防止する。
 本開示に係る技術の一態様は、絶縁膜、窒化チタンによって構成される密着層及び金属層を有する半導体装置の製造方法であって、前記絶縁膜の上に前記密着層を形成する工程と、前記密着層の上に前記金属層を形成する工程と、前記絶縁膜、前記密着層及び前記金属層に熱処理を施す工程と、を有し、前記密着層を形成する工程では、前記密着層を構成する窒化チタンのチタンに対する窒素の組成比が0.6以上である。
 本開示に係る技術によれば、金属層のエッチングによる加工性低下や金属層の抵抗率悪化を防止することができる。
高温熱処理による金属層のエッチングの加工性低下の要因を検討するためのテストピースの一例の構成を概略的に示す断面図である。 低温熱処理又は高温熱処理が施されたテストピースの断面の組成分析の結果を示す電子写真の一例である。 低温熱処理又は高温熱処理が施されたテストピースの断面の組成分析の結果を示す電子写真の一例である。 窒化チタン層からのチタンの拡散の要因を検討するためのテストピースの一例の構成を概略的に示す断面図である。 窒化チタン層からのチタンの拡散の要因を検討するためのテストピースの一例の構成を概略的に示す断面図である。 高温熱処理前後における各テストピースの断面の組成分析の結果を示す電子写真の一例である。 高温熱処理前後における各テストピースの断面の組成分析の結果を示す電子写真の一例である。 高温熱処理前後における各テストピースの断面の原子の深さ方向の分布状態を示すグラフである。 高温熱処理前後における各テストピースの断面の原子の深さ方向の分布状態を示すグラフである。 高温熱処理前後におけるチタンや窒素の拡散を説明するための模式図である。 高温熱処理前後におけるチタンや窒素の拡散を説明するための模式図である。 高温熱処理後の各テストピースにおけるルテニウム層の抵抗率を示すグラフである。 本開示に係る技術が適用される半導体装置としてのDRAMの構成の一例を概略的に示す部分断面図である。 本開示に係る技術が適用されるDRAMの一部の製造方法の一例を示す工程図である。 本開示に係る技術が適用されるDRAMの一部の製造方法の一例を示す工程図である。 本開示に係る技術が適用されるDRAMの一部の製造方法の一例を示す工程図である。 本開示に係る技術が適用されるDRAMの一部の製造方法の一例を示す工程図である。 本開示に係る技術が適用されるDRAMの一部の製造方法の一例を示す工程図である。 窒化チタン層を形成するためのPVD装置の一例の構成を概略的に示す図である。 第1の熱処理や第2の熱処理を行う熱処理装置の一例の構成を概略的に示す図である。
 メモリとしてのDRAMの製造工程では、層間絶縁膜上に密着層や配線を構成する金属層が形成された後、当該密着層や金属層に、例えば、950℃に加熱される高温熱処理が施されることがある。この場合、高温熱処理を経た金属層の反応性イオンエッチングの加工性が低下するとともに、当該金属層の抵抗率が悪化する(抵抗率が高くなる)ことが、本発明者によって確認された。
 金属層の加工性低下を補うには、例えば、アルゴン(Ar)を用いた物理的エッチングを用いることも考えられる。しかしながら、物理的エッチングは金属層の上に形成されたマスクや絶縁膜にダメージを与えるおそれがあるため、DRAMの製造工程では用いないのが好ましい。
 これに対応して、本開示に係る技術は、密着層を構成する窒化チタンの組成を調整して金属層のエッチングによる加工性低下や金属層の抵抗率悪化を防止する。
 以下、図面を参照して本開示に係る技術の一実施の形態を説明する。まず、本発明者は高温熱処理による金属層のエッチングの加工性低下の要因を検討すべく、サンプルとして2つのテストピースを作成した。図1は、2つのテストピースの一例の構成を概略的に示す断面図である。図1に示すテストピース10では、シリコン基板11の上に絶縁膜としての二酸化珪素(SiO)膜12が形成され、二酸化珪素膜12の上に密着層としての窒化チタン(TiN)層13が形成される。さらに、二酸化珪素膜12の上に金属層としてのルテニウム(Ru)層14が形成される。
 そして、本発明者は、例えば、400℃に加熱される低温熱処理が施されたテストピース10と、高温熱処理が施されたテストピース10を準備し、それぞれにルテニウム層14を加工するための反応性イオンエッチングを施した。このとき、低温熱処理が施されたテストピース10のルテニウム層14の加工性は良好であった一方、高温熱処理が施されたテストピース10のルテニウム層14の加工性が低下したことを確認した。
 次いで、本発明者は、低温熱処理が施されたテストピース10と高温熱処理が施されたテストピース10の断面を観察した。この断面の観察では、TEM(Transmission Electron Microscope)/EDX(Energy Dispersive X-ray)分析により、組成分析が行われた。
 図2A及び図2Bは、低温熱処理又は高温熱処理が施されたテストピース10の断面の組成分析の結果を示す電子写真の一例である。図2Aは低温熱処理が施されたテストピース10の窒化チタン層13におけるチタンの分布やルテニウム層14におけるルテニウムの分布を示す。図2Bは高温熱処理が施されたテストピース10の窒化チタン層13におけるチタンや窒素の分布やルテニウム層14におけるルテニウムの分布を示す。なお、図2A及び図2Bの各電子写真において、「Ti」はチタンを示し、「Ru」はルテニウムを示す。
 図2Aに示すように、低温熱処理が施されたテストピース10では、窒化チタン層13のチタン(矢印参照)はルテニウム層14の下方に留まり、安定している。一方、図2Bに示すように、高温熱処理が施されたテストピース10では、窒化チタン層13のチタン(矢印参照)が、ルテニウム層14を挟み込むように拡散して2層に分離している様子が確認された。また、窒化チタン層13のチタンがルテニウム層14を挟み込むように拡散して2層に分離していることから、窒化チタン層13から拡散したチタンがルテニウム層14に混在していることが当然、考えられた。
 すなわち、エッチングの加工性が良好である、低温熱処理が施されたテストピース10のルテニウム層14にはチタンが混在しない。一方、エッチングの加工性が低下した、高温熱処理が施されたテストピース10のルテニウム層14には拡散したチタンが混在する。以上より、高温熱処理によるルテニウム層14のエッチングの加工性低下の要因は、拡散したチタンのルテニウム層14への混在であると考えられた。
 そこで、本発明者は窒化チタン層からのチタンの拡散の要因を検討すべく、サンプルとして新たな2つのテストピースを作成した。図3A及び図3Bは、2つのテストピースの一例の構成を概略的に示す断面図である。
 図3Aに示すテストピース15では、シリコン基板16の上に絶縁膜としての二酸化珪素膜17が形成され、二酸化珪素膜17の上にPVD(Physical Vapor Deposition)によって密着層としての窒化チタン層18が形成される。さらに、二酸化珪素膜17の上にPVDによって金属層としてのルテニウム層19が形成される。窒化チタン層18の膜厚は5nmであり、チタンに対する窒素の組成比(原子数比)は0.4であり、ルテニウム層19の膜厚は20nmである。図3Bに示すテストピース20では、テストピース15と同様に、シリコン基板16の上に二酸化珪素膜17が形成され、二酸化珪素膜17の上にPVDによって窒化チタン層21が形成される。また、窒化チタン層21の上にルテニウム層19が形成される。窒化チタン層21の膜厚も5nmであるが、窒化チタン層21のチタンに対する窒素の組成比は1.2である。すなわち、テストピース15とテストピース20は、窒化チタン層のチタンに対する窒素の組成比が互いに異なり、テストピース15の窒化チタン層18はチタンリッチであり、テストピース20の窒化チタン層21は窒素リッチである。なお、図中における「TiN」の添え字は、窒化チタン層のチタンに対する窒素の組成比を示し、以降においても、「TiN」の添え字は、窒化チタン層のチタンに対する窒素の組成比を示すものとする。
 そして、本発明者はテストピース15とテストピース20に高温熱処理を施し、高温熱処理前後の断面を観察した。高温熱処理では、窒素(N)ガスの流量比が96%であって、水素(H)ガスの流量比が4%の雰囲気において、テストピース15及びテストピース20の温度が1分間に亘って950℃に維持された。また、断面の観察では、TEM/EDX分析により、組成分析が行われた。
 図4A及び図4Bは、高温熱処理前後における各テストピースの断面の組成分析の結果を示す電子写真の一例である。図4Aはテストピース15の窒化チタン層18のチタンや窒素の分布、並びにルテニウム層19のルテニウムの分布を示す。図4Bはテストピース20の窒化チタン層21のチタンや窒素の分布、並びにルテニウム層19のルテニウムの分布を示す。なお、図4A及び図4Bの各電子写真において、「Ru」はルテニウムを示し、「Ti」はチタンを示し、「N」は窒素を示す。
 図4Aに示すように、テストピース15では、高温熱処理後、窒化チタン層18のチタンや窒素が、ルテニウム層19を挟み込むように拡散して2層に分離している様子が確認された。一方、図4Bに示すように、テストピース20では、高温熱処理後、窒化チタン層21のチタンや窒素は拡散せずに安定している様子が確認された。
 図5A及び図5Bは、高温熱処理前後における各テストピースの断面の各原子の深さ方向の分布状態を示すグラフであり、各グラフはEDXのスキャンによって得られた。図5A及び図5Bにおいて、縦軸は各原子の組成比(原子数比:at%)を示し、横軸は各テストピースにおける深さを示す。また、図5A及び図5Bの各グラフにおいて、「Ru」はルテニウムを示し、ルテニウムの分布状態は実線で示され、「Ti」はチタンを示し、チタンの分布状態は破線で示される。さらに、図5A及び図5Bの各グラフにおいて、「N」は窒素を示し、窒素の分布状態は一点鎖線で示され、「Si」は珪素を示し、珪素の分布状態は二点鎖線で示される。図5Aはテストピース15における各原子の分布状態を示し、図5Bはテストピース20における各原子の分布状態を示す。
 図5Aに示すように、テストピース15では、高温熱処理後、窒化チタン層18のチタンや窒素は、ルテニウム層19のルテニウムを挟み込むように拡散して2層に分離している様子が確認された。また、図5Aの高温熱処理後のグラフでは、ルテニウム層19が位置する深さ22nm~23nm辺りにおいても、チタンの組成比が10%前後を示すことから、ルテニウム層19においてチタンが混在していることが分かった。一方、図5Bに示すように、テストピース20では、高温熱処理後、窒化チタン層21のチタンや窒素が拡散せず、ルテニウム層19の下方に位置したまま、安定している様子が確認された。
 以上説明した図4A及び図4Bに示す組成分析の結果や図5A及び図5Bに示す各原子の分布状態から、本発明者は、窒化チタン層のチタンや窒素は、窒化チタン層のチタンに対する窒素の組成比に応じて、高温熱処理によって拡散する場合があるという知見を得た。具体的に、チタンに対する窒素の組成比が0.4であれば、高温熱処理によって窒化チタン層のチタンや窒素が拡散し、チタンに対する窒素の組成比が1.2であれば、高温熱処理によって窒化チタン層のチタンや窒素が拡散しないという知見を得た。
 図6A及び図6Bは、高温熱処理前後におけるチタンや窒素の拡散を説明するための模式図であり、図6Aはテストピース15の場合を示し、図6Bはテストピース20の場合を示す。また、図中のハッチング付きの丸印はルテニウムの原子をイメージしており、黒の丸印はチタンの原子をイメージしており、白の丸印は窒素の原子をイメージしている。
 ここで、本発明者は、高温熱処理後のテストピース15において2層に分離したチタンや窒素で構成される窒化チタン層のチタンに対する窒素の組成比を計測した。その結果、ルテニウム層19の下方に残存した下側窒化チタン層18aのチタンに対する窒素の組成比は0.4から0.6へと変化したことを確認した。また、ルテニウム層19の上方に移動した上側窒化チタン層18bのチタンに対する窒素の組成比は1.0であることを確認した(図6A)。換言すれば、テストピース15では、ルテニウム層19の下側において、窒化チタン層18が高温熱処理によって下側窒化チタン層18aへ変化する際、チタンが相対的に減少していることを確認した。また、ルテニウム層19の上側において上側窒化チタン層18bが高温熱処理によって形成される際、窒化チタン層18に比べて窒素が増加したことを確認した。
 確認された下側窒化チタン層18aのチタンの相対的減少や上側窒化チタン層18bにおける窒素の増加から、本発明者は以下の知見を得た。すなわち、テストピース15では、高温熱処理によってエネルギーの高まった窒化チタン層18から窒素に対して余剰気味のチタンが放出され、放出されたチタンがルテニウム層19のルテニウムの結晶粒界を通過してルテニウム層19の上に析出する。そして、析出したチタンが高温熱処理の雰囲気中の窒素ガスの窒素と結びつき、ルテニウム層19の上方に上側窒化チタン層18bが形成される。その結果、チタンを放出した窒化チタン層18はチタンが減少した下側窒化チタン層18aへ変化し、雰囲気から十分な窒素と結びついたチタンは、窒素がリッチな上側窒化チタン層18bを形成する。
 また、高温熱処理によって窒化チタン層は安定する方向へ変化すると考えられる。そして、高温熱処理後の下側窒化チタン層18aのチタンに対する窒素の組成比が0.6であり、高温熱処理後の上側窒化チタン層18bのチタンに対する窒素の組成比が1.0であった。したがって、チタンに対する窒素の組成比が0.6以上且つ1.0以下であれば、窒化チタン層は安定し、高温熱処理を施してもチタンを放出せず、窒化チタン層のチタンに対する窒素の組成比が変化しないと考えられた。
 また、本発明者は、高温熱処理後のテストピース20の窒化チタン層21のチタンに対する窒素の組成比を計測した。その結果、窒化チタン層21のチタンに対する窒素の組成比が、高温熱処理前の1.2から1.0へ変化していることを確認した(図6B)。換言すれば、テストピース20では、ルテニウム層19の窒化チタン層18では、高温熱処理によって窒素が相対的に減少していることを確認した。
 確認された窒化チタン層21における窒素の減少から、本発明者は以下の知見を得た。すなわち、テストピース20では、高温熱処理によってエネルギーの高まった窒化チタン層18からチタンに対して余剰気味の窒素が放出されて窒素が相対的に減少する。なお、放出された窒素はルテニウム層19のルテニウムの結晶粒界を通過してルテニウム層19から高温熱処理中の雰囲気に放出されたと考えられた。
 また、上述したように、窒化チタン層21のチタンに対する窒素の組成比が、高温熱処理前の1.2から高温熱処理後の1.0へ変化している。このことから、チタンに対する窒素の組成比が1.0以上であっても、チタンは安定し、高温熱処理によって余剰気味の窒素が放出されるのみであり、チタンは放出されないとも考えられた。
 さらに、高温熱処理後の窒化チタン層21のチタンに対する窒素の組成比が1.0であったことから、チタンに対する窒素の組成比が1.0以下であれば、窒化チタン層は安定し、高温熱処理を施してもチタンに対する窒素の組成比が変化しないと考えられた。この知見は、テストピース15の高温熱処理から得られた知見と同じである。
 以上をまとめると、高温熱処理前の窒化チタン層のチタンに対する窒素の組成比が0.6以上であれば、窒化チタン層は安定し、高温熱処理を施してもチタンを放出せず、若しくは、余剰気味の窒素を放出するのみであり、結果としてチタンを放出しない。そして、高温熱処理前の窒化チタン層のチタンに対する窒素の組成比が0.6以上且つ1.0以下であれば、窒化チタン層は安定し、高温熱処理を施してもチタンを放出しない。
 したがって、高温熱処理によるルテニウム層のエッチングによる加工性低下を防ぐには、ルテニウム層へのチタンの混在を防ぐために、高温熱処理前の窒化チタン層のチタンに対する窒素の組成比を0.6以上、好ましくは、0.6以上且つ1.0以下とし、窒化チタン層からのチタンの放出を防止すればよいことが分かった。
 また、本発明者は、ルテニウム層19の厚さを変更した複数のテストピース15,20を作成し、高温熱処理後の各テストピース15,20におけるルテニウム層19の抵抗率を測定した。図7は、高温熱処理後の各テストピース15,20におけるルテニウム層19の抵抗率を示すグラフである。図7のグラフにおいて、「TiN0.4」はテストピース15を示し、「TiN1.2」はテストピース20を示す。また、図7のグラフの横軸はルテニウム層19の厚さを示し、同グラフの縦軸は各ルテニウム層19の抵抗率を示す。
 図7のグラフに示すように、同じ膜厚では、テストピース20におけるルテニウム層19の抵抗率の方が、テストピース15におけるルテニウム層19の抵抗率よりも低い。そして、上述したように、高温熱処理後のテストピース15のルテニウム層19にはチタンが混在する一方、高温熱処理後のテストピース20のルテニウム層19にはチタンが混在しない。そこで、高温熱処理によるルテニウム層19の抵抗率の悪化の要因は、拡散したチタンのルテニウム層19への混在であると考えられた。
 したがって、高温熱処理によるルテニウム層19の抵抗率の悪化を防ぐには、ルテニウム層へのチタンの混在を防ぐために、高温熱処理前の窒化チタン層のチタンに対する窒素の組成比を0.6以上、好ましくは、0.6以上且つ1.0以下とし、窒化チタン層からのチタンの放出を防止すればよいことが分かった。
 なお、図7のグラフにおいて、テストピース15とテストピース20のいずれにおいても、ルテニウム層19の厚さが大きくなると抵抗率が低下(改善)する理由は、ルテニウム層19の厚さが大きくなると電子の散乱の影響が減るためである。
 次に、本開示に係る技術の適用について説明する。図8は、本開示に係る技術が適用される半導体装置としてのDRAMの構成の一例を概略的に示す部分断面図である。
 図8において、DRAM22では、主にp型シリコンによって構成される基板23上に層間絶縁膜としての二酸化珪素膜24が形成される。また、二酸化珪素膜24及び二酸化珪素膜24に形成されたビアホール25の表面を覆うように密着層としての窒化チタン層26が形成される。二酸化珪素膜24にはワードライン(Word line)としての配線層27が形成される。さらに、窒化チタン層26を覆うようにビットライン(Bit line)としてのルテニウム層28(金属層)が形成され、ルテニウム層28は窒化珪素(SiN)膜29によって覆われる。また、二酸化珪素膜24、窒化チタン層26、ルテニウム層28及び窒化珪素膜29を貫通して基板23に到達するキャパシタ30が形成される。なお、キャパシタ30は基板23においてn型シリコンによって構成される電極部31と接する。
 図9A乃至図9Eは、本開示に係る技術が適用されるDRAMの製造工程の一部を示す工程図である。まず、エッチングによって二酸化珪素膜24にビアホール25が形成される(図9A)。次いで、PVDによって二酸化珪素膜24やビアホール25の表面を覆うように窒化チタン層26を形成する(図9B)。
 図10は、窒化チタン層26を形成するためのPVD装置の一例の構成を概略的に示す図である。図10において、PVD装置32は真空容器33、ターゲット34、載置部35及びプラズマ発生装置(不図示)を備える。ターゲット34や載置部35は真空容器33の内部に配置される。載置部35にウエハWが載置される。ターゲット34は環状を呈し、ウエハWに対向するように真空容器33の内部の上方に配置される。本実施の形態ではターゲット34がチタンからなる。
 PVD装置32では、真空容器33の内部が排気装置(図示せず)によって減圧されるとともに、所定の流量比でアルゴン(Ar)ガスと窒素ガスが真空容器33の内部へ供給される。アルゴンガスや窒素ガスはプラズマ発生装置によって励起されてプラズマとなるが、プラズマ中のアルゴンイオンは、ターゲット34に印加されたバイアス電圧により、ターゲット34へ引き込まれ、ターゲット34をスパッタする。このとき、ターゲット34はスパッタ粒子としてチタン粒子を放出する。放出されたチタン粒子は真空容器33の内部に生じたプラズマを通過する際にイオン化する。そして、チタンイオンと窒素イオンが反応して窒化チタンが生成され、生成された窒化チタンはウエハWの表面に付着し、窒化チタン層26を形成する。
 本実施の形態では、窒化チタン層26のチタンに対する窒素の組成が0.6以上、好ましくは、0.6以上且つ1.0以下となるように、アルゴンガスや窒素ガスの流量が調整される。なお、窒化チタン層26の形成方法はPVDに限られず、CVD(Chemical Vapor Deposition)やALD(Atomic Layer Deposition)を用いて窒化チタン層26を形成してもよい。
 次いで、PVDによって窒化チタン層26を覆うようにルテニウム層28を形成する。ルテニウム層28の形成にも、上述したPVD装置32を用いることができる。但し、ルテニウム層28を形成する場合、ターゲット34はルテニウムからなり、真空容器33の内部には窒素ガスが供給されず、アルゴンガスのみが供給される。そして、アルゴンイオンによってスパッタされたターゲット34はルテニウム粒子を放出し、ルテニウム粒子はプラズマを通過する際にイオン化されてウエハWの表面に付着する。これにより、ルテニウム層28が形成される(図9C)。なお、ルテニウム層28の形成方法もPVDに限られず、CVDやALDを用いてルテニウム層28を形成してもよい。
 その後、ウエハWを、例えば、600℃以上に加熱する第1の熱処理を行う(図9D)。この熱処理によってルテニウム層28におけるルテニウムのグレイン(結晶粒)が成長してルテニウム層28が安定する。
 次いで、CMP(Chemical Mechanical Polishing)によってウエハWの表面を研磨してウエハWの表面に存在する窒化チタン層26やルテニウム層28を除去する。その後、ウエハWの表面に窒化珪素膜29を形成し、さらに、キャパシタ30やその他の膜を形成する(図9E)。このとき、ウエハWには、当該ウエハWの温度を、1分間以上に亘って、例えば、800℃以上、好ましくは、950℃以上に加熱する第2の熱処理が施される。
 図11は、第1の熱処理や第2の熱処理を行う熱処理装置の一例の構成を概略的に示す図である。図11において、熱処理装置36は縦型炉であり、多数のウエハWへ同時に熱処理を施すことができる。 熱処理装置36は、長手方向が垂直方向に向けられた略円筒状の真空容器である反応管37を備える。反応管37の下方は開口し、当該開口は蓋体38によって閉鎖される。これにより、反応管37の内部は気密に維持される。蓋体38は、ボートエレベータ39によって上昇位置と下降位置との間で昇降自在に構成される。
 また、蓋体38には、例えば、石英からなるウエハボート40が載置されている。ウエハボート40は、多数のウエハWを、垂直方向に所定の間隔をおいて水平に保持する。反応管37の周囲には、反応管37を取り囲むように断熱体41が設けられ、断熱体41の内壁側には、例えば、抵抗発熱体からなるヒータ42が設けられる。このヒータ42は、反応管37の内部を加熱することにより、各ウエハWへ熱処理を施す。なお、各ウエハWへ熱処理を施す際、反応管37の内部には窒素ガスが供給される。
 なお、ウエハWへ第1の熱処理や第2の熱処理を施す熱処理装置は、縦型炉に限られない。例えば、連続点灯ランプを使用してウエハWを加熱するRTP(Rapid thermal processing)装置や、ウエハWにフラッシュ光を照射して加熱するフラッシュランプアニール装置を第1の熱処理や第2の熱処理に用いてもよい。
 図9A乃至図9EのDRAMの製造工程では、ウエハWに第1の熱処理や第2の熱処理が施される際、窒化チタン層26も加熱される。しかしながら、窒化チタン層26のチタンに対する窒素の組成が0.6以上、好ましくは、0.6以上且つ1.0以下であるため、窒化チタン層は安定し、若しくは、窒化チタン層は窒素のみを放出し、チタンがルテニウム層28へ拡散することがない。その結果、第1の熱処理や第2の熱処理が施されても、ルテニウム層28のエッチングによる加工性は低下せず、ルテニウム層28の抵抗率も悪化しない。
 ところで、文献(H. Honjo, M. Niwa, K. Nishioka, T. V. A. Nguyen, H. Naganuma, Y. Endo, M. Yasuhira, S. Ikeda, and T. Endoh 共著、「Influence of Hard Mask Materials on the Magnetic Properties of Perpendicular MTJs With Double CoFeB/MgO Interface」、IEEE TRANSACTIONS ON MAGNETICS, VOL. 56, NO. 8、2020年8月)によれば、400℃の熱処理を2時間以上に亘って施した場合、窒化チタン層のハードマスクからキャップ層のルテニウムへチタンの拡散が生じ、磁気トンネル接合(Magnetic Tunnel Junction)素子のトンネル磁気抵抗(Tunnel Magneto Resistance)効果が低下することが知られている(例えば、同文献の図2のグラフ参照)。
 したがって、窒化チタン層とルテニウム層の積層構造を有する半導体装置に、窒化チタン層の温度を2時間以上に亘って400℃以上に維持する熱処理が施される場合、窒化チタン層のチタンに対する窒素の組成を0.6以上、好ましくは、0.6以上且つ1.0以下とするのが好ましい。これにより、熱処理によって窒化チタン層のチタンがルテニウム層へ拡散するのを防止して、磁気トンネル接合素子のトンネル磁気抵抗効果が低下するのを抑制することができる。
 以上、本開示の好ましい実施の形態について説明したが、本開示は上述した実施の形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
 例えば、上述した本実施の形態では、本開示に係る技術は、窒化チタン層とルテニウム層の積層構造に適用された。しかしながら、窒化チタン層に接する金属層に結晶粒界が存在すれば、窒化チタン層から金属層へチタンが拡散し得るため、本開示に係る技術は、窒化チタン層と、結晶粒界を有する金属層の積層構造に適用することができる。結晶粒界を有する金属層としては、例えば、モリブデン(Mo)層、コバルト(Co)層及びタングステン(W)層が該当し、これらの金属層と窒化チタン層の積層構造に本開示に係る技術を適用するのが好ましい。これにより、窒化チタン層から金属層へのチタンの拡散を防止して金属層のエッチングによる加工性の低下や金属層の抵抗率の低下を抑制することができる。
 本出願は、2022年11月4日に出願された日本国特許出願第2022-177410号に基づく優先権を主張するものであり、当該日本国特許出願に記載された全内容を本出願に援用する。
10,15,20 テストピース
12,17,24 二酸化珪素膜
13,18,21,26 窒化チタン層
14,19,28 ルテニウム層
22 DRAM

Claims (13)

  1.  絶縁膜、窒化チタンによって構成される密着層及び金属層を有する半導体装置の製造方法であって、
     前記絶縁膜の上に前記密着層を形成する工程と、
     前記密着層の上に前記金属層を形成する工程と、
     前記絶縁膜、前記密着層及び前記金属層に熱処理を施す工程と、を有し、
     前記密着層を形成する工程では、前記密着層を構成する窒化チタンのチタンに対する窒素の組成比が0.6以上である、半導体装置の製造方法。
  2.  前記密着層を形成する工程では、前記密着層を構成する窒化チタンのチタンに対する窒素の組成比が0.6以上且つ1.0以下である、請求項1に記載の半導体装置の製造方法。
  3.  前記熱処理を施す工程では、前記絶縁膜、前記密着層及び前記金属層の温度が2時間以上に亘って400℃以上に維持される、請求項1に記載の半導体装置の製造方法。
  4.  前記熱処理を施す工程では、前記絶縁膜、前記密着層及び前記金属層の温度が1分間以上に亘って800℃以上に維持される、請求項1に記載の半導体装置の製造方法。
  5.  前記熱処理を施す工程では、少なくとも前記金属層が窒素の雰囲気に晒される、請求項1に記載の半導体装置の製造方法。
  6.  前記金属層は、結晶粒界を有する金属によって構成される、請求項1に記載の半導体装置の製造方法。
  7.  前記結晶粒界を有する金属は、タングステン、モリブデン、コバルト及びルテニウムのいずれかである、請求項6に記載の半導体装置の製造方法。
  8.  絶縁膜、窒化チタンによって構成される密着層及び金属層を有する半導体装置の製造装置であって、
     前記窒化チタンにおけるチタンに対する窒素の組成比が0.6以上となるように前記密着層を形成する、半導体装置の製造装置。
  9.  前記窒化チタンにおけるチタンに対する窒素の組成比が0.6以上且つ1.0以下となるように前記密着層を形成する、請求項8に記載の半導体装置の製造装置。
  10.  前記絶縁膜、前記密着層及び前記金属層に熱処理を施す、請求項8に記載の半導体装置の製造装置。
  11.  絶縁膜、窒化チタンによって構成される密着層及び金属層を有する半導体装置であって、
     前記絶縁膜、前記密着層及び前記金属層がこの順で積層され、
     前記密着層を構成する窒化チタンのチタンに対する窒素の組成比が0.6以上である、半導体装置。
  12.  前記密着層を構成する窒化チタンのチタンに対する窒素の組成比が0.6以上且つ1.0以下である、請求項11に記載の半導体装置。
  13.  DRAMである、請求項11に記載の半導体装置。
PCT/JP2023/038672 2022-11-04 2023-10-26 半導体装置の製造方法、半導体装置の製造装置及び半導体装置 WO2024095887A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-177410 2022-11-04
JP2022177410A JP2024067378A (ja) 2022-11-04 2022-11-04 半導体装置の製造方法、半導体装置の製造装置及び半導体装置

Publications (1)

Publication Number Publication Date
WO2024095887A1 true WO2024095887A1 (ja) 2024-05-10

Family

ID=90930425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038672 WO2024095887A1 (ja) 2022-11-04 2023-10-26 半導体装置の製造方法、半導体装置の製造装置及び半導体装置

Country Status (2)

Country Link
JP (1) JP2024067378A (ja)
WO (1) WO2024095887A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126461A (ja) * 1997-07-08 1999-01-29 Hitachi Ltd 半導体装置及びその製造方法
WO2007026429A1 (ja) * 2005-08-31 2007-03-08 Fujitsu Limited 半導体装置及びその製造方法
JP2008047886A (ja) * 2006-07-21 2008-02-28 Toshiba Corp 半導体装置の製造方法及び半導体装置
JP2012253148A (ja) * 2011-06-01 2012-12-20 Toshiba Corp 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126461A (ja) * 1997-07-08 1999-01-29 Hitachi Ltd 半導体装置及びその製造方法
WO2007026429A1 (ja) * 2005-08-31 2007-03-08 Fujitsu Limited 半導体装置及びその製造方法
JP2008047886A (ja) * 2006-07-21 2008-02-28 Toshiba Corp 半導体装置の製造方法及び半導体装置
JP2012253148A (ja) * 2011-06-01 2012-12-20 Toshiba Corp 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP2024067378A (ja) 2024-05-17

Similar Documents

Publication Publication Date Title
KR0172772B1 (ko) 반도체 장치의 확산장벽용 산화루테늄막 형성 방법
JP5959991B2 (ja) タングステン膜の成膜方法
US6554914B1 (en) Passivation of copper in dual damascene metalization
US6614119B1 (en) Semiconductor device and method of fabricating the same
JP3221381B2 (ja) 半導体装置の製造方法
WO2007139141A1 (ja) 絶縁膜の形成方法および半導体装置の製造方法
US6207489B1 (en) Method for manufacturing capacitor of semiconductor memory device having tantalum oxide film
US9779950B2 (en) Ruthenium film forming method, film forming apparatus, and semiconductor device manufacturing method
US6174823B1 (en) Methods of forming a barrier layer
US9153481B2 (en) Manganese-containing film forming method, processing system, electronic device manufacturing method and electronic device
WO2007069438A1 (ja) 金属系膜の脱炭素処理方法、成膜方法および半導体装置の製造方法
KR20140020203A (ko) Cu 배선의 형성 방법 및 기억매체
US7622386B2 (en) Method for improved formation of nickel silicide contacts in semiconductor devices
JP5526189B2 (ja) Cu膜の形成方法
TW201923147A (zh) 用於beol 互連的ald 銅與高溫pvd 銅沉積的集成
KR100922905B1 (ko) 성막 방법, 반도체 장치의 제조 방법, 반도체 장치, 프로그램 및 기록매체
WO2024095887A1 (ja) 半導体装置の製造方法、半導体装置の製造装置及び半導体装置
JP2010232538A (ja) 半導体装置とその製造方法
US5149672A (en) Process for fabricating integrated circuits having shallow junctions
Park et al. Transformer coupled plasma enhanced metal organic chemical vapor deposition of ta (Si) N thin films and their cu diffusion barrier properties
US20220375747A1 (en) Flowable CVD Film Defect Reduction
EP0357221B1 (en) Process for producing contacts in integrated circuits having shallow junctions
TWI683919B (zh) Cu膜之形成方法
JPH1083973A (ja) 半導体装置のコンタクト形成方法
JP2008041977A (ja) 半導体回路装置の製造方法