WO2024095113A1 - 半導体装置、及びその作製方法 - Google Patents

半導体装置、及びその作製方法 Download PDF

Info

Publication number
WO2024095113A1
WO2024095113A1 PCT/IB2023/060839 IB2023060839W WO2024095113A1 WO 2024095113 A1 WO2024095113 A1 WO 2024095113A1 IB 2023060839 W IB2023060839 W IB 2023060839W WO 2024095113 A1 WO2024095113 A1 WO 2024095113A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
semiconductor
transistor
opening
Prior art date
Application number
PCT/IB2023/060839
Other languages
English (en)
French (fr)
Inventor
肥塚純一
神長正美
島行徳
吉住健輔
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024095113A1 publication Critical patent/WO2024095113A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • One aspect of the present invention relates to a transistor, a semiconductor device, a memory device, a display device, and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Examples of technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input/output devices, driving methods thereof, and manufacturing methods thereof.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a CPU is a collection of semiconductor elements that have semiconductor integrated circuits (at least transistors and memories) that are chipped by processing a semiconductor wafer and have electrodes that serve as connection terminals.
  • CPUs, memories, and other LSI semiconductor circuits are mounted on circuit boards, such as printed wiring boards, and used as components in a variety of electronic devices.
  • transistors are widely used in electronic devices such as integrated circuits and image display devices (also simply referred to as display devices).
  • Silicon-based semiconductor materials are widely known as semiconductor thin films that can be used in transistors, but oxide semiconductors are also attracting attention as other materials.
  • Patent Document 1 discloses a low-power consumption CPU that utilizes the property of small leakage current.
  • Patent Document 2 discloses a memory device that can retain stored contents for a long period of time.
  • Patent Document 3 and Non-Patent Document 1 disclose a technique for increasing the density of integrated circuits by stacking a first transistor using an oxide semiconductor film and a second transistor using an oxide semiconductor film to provide multiple overlapping memory cells.
  • Patent Document 4 discloses a vertical transistor in which the side surface of an oxide semiconductor is covered with a gate electrode via a gate insulator.
  • An object of one embodiment of the present invention is to provide a semiconductor device that is easy to miniaturize. Another object is to provide a semiconductor device that enables high integration. Another object is to provide a semiconductor device with reduced parasitic capacitance. Another object is to provide a semiconductor device with reduced wiring load. Another object is to provide a semiconductor device that exhibits favorable electrical characteristics. Another object is to provide a semiconductor device with high operating speed.
  • An object of one embodiment of the present invention is to provide a semiconductor device, a memory device, a display device, or an electronic device having a novel structure.
  • An object of one embodiment of the present invention is to alleviate at least one of the problems of the prior art.
  • One aspect of the present invention is a semiconductor device having a transistor, a first insulating layer, a second insulating layer, and wiring.
  • the transistor has a first conductive layer, a second conductive layer, a third conductive layer, a semiconductor layer, and a third insulating layer.
  • the first insulating layer is located above the first conductive layer, and has a first opening that reaches the first conductive layer.
  • the second conductive layer is located above the first insulating layer.
  • the semiconductor layer is in contact with the second conductive layer, as well as a side surface of the first insulating layer in the first opening and an upper surface of the first conductive layer.
  • the second insulating layer is located above the semiconductor layer, and has a second opening that reaches the semiconductor layer at a position overlapping with the first opening.
  • the third insulating layer is in contact with the side surface of the second insulating layer in the second opening, and the semiconductor layer in the first opening.
  • the third conductive layer is provided to fill the second opening and the first opening.
  • the wiring contacts the upper surface of the third conductive layer and has a portion that overlaps with the semiconductor layer or the second conductive layer via the second insulating layer.
  • the second insulating layer has a portion that is thicker than the third insulating layer.
  • the fourth insulating layer it is preferable to have a fourth insulating layer between the second conductive layer and the second insulating layer.
  • the fourth insulating layer has a different composition from the second insulating layer.
  • the fourth insulating layer covers the end of the semiconductor layer.
  • the opening diameter of the first opening is larger at the upper end than at the lower end.
  • Another aspect of the present invention is a method for manufacturing a semiconductor device, which includes forming a first insulating layer having a first opening, forming a semiconductor layer in contact with the side surface of the first opening of the first insulating layer, forming a second insulating layer covering the first insulating layer and the semiconductor layer, forming a second opening in the second insulating layer that overlaps with the first opening and reaches the semiconductor layer, forming a third insulating layer and a conductive layer in that order in the second opening and the first opening, and forming wiring in contact with the conductive layer on the second insulating layer.
  • Another aspect of the present invention is a method for manufacturing a semiconductor device, which includes forming a first insulating layer having a first opening, forming a semiconductor layer in contact with the side surface of the first opening of the first insulating layer, forming a protective layer covering the semiconductor layer, forming a second insulating layer covering the first insulating layer and the protective layer, forming a second opening in the second insulating layer that overlaps with the first opening and reaches the protective layer, etching the protective layer that overlaps with the second opening to expose the semiconductor layer, forming a third insulating layer and a conductive layer in that order in the second opening and the first opening, and forming wiring in contact with the conductive layer on the second insulating layer.
  • a semiconductor device that can be easily miniaturized can be provided.
  • a semiconductor device that can be highly integrated can be provided.
  • a semiconductor device with reduced parasitic capacitance can be provided.
  • a semiconductor device with reduced wiring load can be provided.
  • a semiconductor device that exhibits good electrical characteristics can be provided.
  • a semiconductor device with high operating speed can be provided.
  • the present invention it is possible to provide a semiconductor device, a memory device, a display device, or an electronic device having a novel configuration. According to one aspect of the present invention, it is possible to at least alleviate at least one of the problems of the prior art.
  • 1A and 1B show an example of the configuration of a semiconductor device.
  • 2A to 2C show examples of the configuration of a semiconductor device.
  • 3A and 3B show examples of the configuration of a semiconductor device.
  • 4A to 4D show examples of the configuration of a semiconductor device.
  • 5A to 5D show examples of the configuration of a semiconductor device.
  • 6A to 6D show examples of the configuration of a semiconductor device.
  • 7A to 7D show examples of the configuration of a semiconductor device.
  • 8A to 8D are diagrams illustrating an example of a method for manufacturing a semiconductor device.
  • 9A to 9C are diagrams illustrating an example of a method for manufacturing a semiconductor device.
  • 10A and 10B are diagrams illustrating an example of a method for manufacturing a semiconductor device.
  • 11A and 11B are diagrams illustrating an example of a method for manufacturing a semiconductor device.
  • 12A to 12C are diagrams illustrating an example of a method for manufacturing a semiconductor device.
  • 13A and 13B are diagrams illustrating an example of a method for manufacturing a semiconductor device.
  • 14A to 14C show examples of the configuration of a storage device.
  • 15A and 15B show examples of the configuration of a storage device.
  • 16A and 16B show examples of the configuration of a storage device.
  • 17A and 17B show examples of the configuration of a storage device.
  • FIG. 18 shows an example of the configuration of a storage device.
  • FIG. 19 shows an example of the configuration of a storage device.
  • 20A and 20B show examples of the configuration of a storage device.
  • FIG. 21A to 21D show examples of the configuration of a storage device.
  • FIG. 22 shows an example of the configuration of a storage device.
  • 23A and 23B show examples of the configuration of a display device.
  • FIG. 24 shows an example of the configuration of a display device.
  • FIG. 25 shows an example of the configuration of a display device.
  • FIG. 26 shows an example of the configuration of a display device.
  • 27A to 27C show examples of the configuration of a display device.
  • 28A and 28B show configuration examples of a display device.
  • 29A to 29D show configuration examples of electronic devices.
  • 30A to 30F show configuration examples of electronic devices.
  • 31A to 31G show configuration examples of electronic devices.
  • 32A and 32B show configuration examples of electronic components.
  • 33A to 33C show examples of the configuration of a large scale computer.
  • Fig. 34A is a configuration example of a space equipment
  • Fig. 34B is a configuration example of a storage system.
  • a transistor is a type of semiconductor element that can perform functions such as amplifying current or voltage, and switching operations that control conduction or non-conduction.
  • transistor includes IGFETs (Insulated Gate Field Effect Transistors) and thin film transistors (TFTs).
  • source and drain may be interchangeable when transistors of different polarity are used, or when the direction of current changes during circuit operation. For this reason, in this specification, the terms “source” and “drain” can be used interchangeably.
  • electrically connected includes a connection via "something that has some kind of electrical action.”
  • something that has some kind of electrical action is not particularly limited as long as it allows for the transmission and reception of electrical signals between the connected objects.
  • something that has some kind of electrical action includes electrodes or wiring, as well as switching elements such as transistors, resistive elements, coils, capacitive elements, and other elements with various functions.
  • the top surface shape of a certain component refers to the contour shape of the component when viewed from a planar view.
  • a planar view refers to a view from the normal direction of the surface on which the component is formed, or the surface of the support (e.g., substrate) on which the component is formed.
  • the top surface shapes roughly match means that at least a portion of the contours of the stacked layers overlap. For example, this includes cases where the upper and lower layers are processed using the same mask pattern, or where a portion of the mask pattern is the same. However, strictly speaking, there are also cases where the contours do not overlap, and the upper layer is located inside the lower layer, or outside the lower layer, and in these cases, it may also be said that "the top surface shapes roughly match.”
  • film and “layer” are interchangeable.
  • insulating layer may be interchangeable with the term “insulating film.”
  • the source electrode and the drain electrode are located at different heights (for example, heights in a direction perpendicular to the substrate surface or insulating plane on which the transistor is provided), and the current flowing through the semiconductor layer flows in the height direction.
  • the channel length direction can be said to have a component in the height direction (vertical direction), and therefore one embodiment of the present invention can also be called a vertical transistor or vertical channel transistor.
  • an insulating layer that functions as a first spacer is provided between a lower electrode, which is one of the source and drain electrodes of the transistor, and an upper electrode, which is the other, and a semiconductor layer in which a channel is formed is provided inside a first opening provided in the insulating layer so as to connect the lower electrode and the upper electrode.
  • a gate insulating layer and a gate electrode are provided overlapping the semiconductor layer. Because the source electrode, semiconductor layer, and drain electrode can be provided overlapping, the occupied area can be significantly reduced compared to so-called planar type transistors in which the semiconductor layer is arranged on a flat surface.
  • a gate wiring is provided that is electrically connected to the gate electrode.
  • an insulating layer that functions as a second spacer is provided between the gate wiring and the upper electrode.
  • the second spacer is preferably thicker than the gate insulating layer.
  • the second spacer is preferably made of a low dielectric constant material such as silicon oxide or silicon oxynitride. This makes it possible to effectively reduce the parasitic capacitance between the gate wiring and the upper electrode.
  • the gate electrode and the gate insulating layer are provided inside the second opening provided in the second spacer and the first opening provided in the first spacer, respectively.
  • the gate electrode can be configured so that its upper surface contacts the gate wiring provided on the second spacer.
  • the channel length of the transistor can be precisely controlled by the thickness of the insulating layer that functions as the first spacer, and therefore the variation in the channel length can be made extremely small compared to planar type transistors. Furthermore, by making the insulating layer thin, a transistor with an extremely short channel length can also be manufactured. For example, a transistor with a channel length of 2 ⁇ m or less, 1 ⁇ m or less, 500 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, 50 nm or less, 30 nm or less, or 20 nm or less, and 5 nm or more, 7 nm or more, or 10 nm or more can be manufactured.
  • a transistor with an extremely short channel length that could not be realized by a mass production exposure apparatus can be realized.
  • a transistor with a channel length of less than 10 nm can also be realized without using an extremely expensive exposure apparatus used in cutting-edge LSI technology.
  • the transistor according to one embodiment of the present invention can have an extremely short channel length, a small occupied area, a large current, a small parasitic capacitance, and can operate at high speed.
  • the transistor according to one embodiment of the present invention can be applied to various semiconductor devices. For example, there are memory devices, computing devices, display devices, and imaging devices.
  • FIG. 1A and 1B are schematic perspective views of a transistor 10.
  • Fig. 1B is a perspective view with a portion cut away from Fig. 1A.
  • Figs. 1A and 1B only the outlines of some components (such as an interlayer insulating layer) are shown by dashed lines.
  • FIG. 2A shows a plan view of transistor 10
  • FIGS. 2B and 2C show schematic cross-sectional views taken along lines A1-A2 and B1-B2 in FIG. 2A, respectively. Note that some components (such as insulating layers) are omitted in FIG. 2A.
  • the transistor 10 is provided on an insulating layer 11 that is provided on a substrate (not shown).
  • the transistor 10 has a conductive layer 31 that functions as one of the source electrode and drain electrode, a semiconductor layer 21, an insulating layer 22 that functions as a gate insulating layer, a conductive layer 23 that functions as a gate electrode, and a conductive layer 32 that functions as the other of the source electrode and drain electrode.
  • the conductive layer 31 and the conductive layer 32 also function as wiring.
  • a conductive layer 31 is provided on the insulating layer 11, and an insulating layer 41 is provided on the conductive layer 31.
  • a conductive layer 32 is provided on the insulating layer 41.
  • the insulating layer 41 has an opening 20a that reaches the conductive layer 31.
  • the semiconductor layer 21 is provided in contact with the inner wall (also called the side or side wall) of the opening 20a of the insulating layer 41, and is in contact with the top surface of the conductive layer 31 and the top surface and side surface of the conductive layer 32.
  • An insulating layer 42 is provided on the semiconductor layer 21 and the conductive layer 32.
  • the insulating layer 42 has an opening 20b that reaches the semiconductor layer 21.
  • the insulating layer 22 is located inside the opening 20a and the opening 20b.
  • the part of the insulating layer 22 located inside the opening 20a is provided along the upper surface of the semiconductor layer 21.
  • the part of the insulating layer 22 located inside the opening 20b is provided along the inner wall of the opening 20b of the insulating layer 42.
  • the conductive layer 23 is provided so as to be embedded in the opening 20a and the opening 20b.
  • the insulating layer 42, the insulating layer 22, and the conductive layer 23 each have a flattened upper surface, and the heights of the upper surfaces are roughly the same.
  • a conductive layer 33 that functions as wiring is provided on the insulating layer 42.
  • the conductive layer 33 is provided in contact with the upper surface of the conductive layer 23.
  • the conductive layer 33 functions as, for example, a gate wiring.
  • conductive layer 31 is embedded in insulating layer 44
  • conductive layer 32 is embedded in insulating layer 45
  • conductive layer 33 is embedded in insulating layer 46.
  • the upper surfaces of these are flattened, and the heights of the upper surfaces of the conductive layer and insulating layer are roughly the same. This configuration is preferable because it can eliminate the effect of steps.
  • Insulating layer 44, insulating layer 45, and insulating layer 46 function as interlayer insulating layers.
  • an inorganic insulating material with a low dielectric constant such as silicon oxide or silicon oxynitride.
  • the source electrode and the drain electrode are located at different heights, so the current flowing through the semiconductor flows in the height direction.
  • the channel length direction has a height (vertical) component
  • the transistor of one embodiment of the present invention can also be called a VFET (Vertical Field Effect Transistor), a vertical transistor, a vertical channel transistor, etc.
  • VFET Vertical Field Effect Transistor
  • the source electrode, semiconductor, and drain electrode of the transistor 10 can be provided overlapping each other, the occupied area can be significantly reduced compared to a so-called planar type transistor (which can also be called a lateral transistor, LFET (Lateral FET), etc.) in which the semiconductor is arranged on a plane.
  • planar type transistor which can also be called a lateral transistor, LFET (Lateral FET), etc.
  • the channel length of the transistor 10 can be precisely controlled by the thickness of the insulating layer 41 that functions as a spacer, the variation in channel length can be made extremely small compared to planar transistors. Furthermore, by making the insulating layer 41 thin, a transistor with an extremely short channel length can be manufactured. For example, a transistor with a channel length of 50 nm or less, 30 nm or less, or 20 nm or less, and 5 nm or more, 7 nm or more, or 10 nm or more can be manufactured. Therefore, even with conventional mass-production exposure equipment, it is possible to realize a transistor with a channel length of less than 10 nm, without using the extremely expensive exposure equipment used in cutting-edge LSI technology.
  • Various semiconductor materials can be used for the semiconductor layer 21, but it is particularly preferable to use an oxide semiconductor containing a metal oxide.
  • an oxide semiconductor formed under appropriate conditions a transistor that combines a high on-current and an extremely low off-current can be realized at low cost.
  • the conductive layers 31 and 32 are each configured so that the semiconductor layer 21 is in contact with the upper surface. Therefore, if an oxide semiconductor is used for the semiconductor layer 21, the exposed surfaces of the conductive layers 31 and 32 may be oxidized due to the heat applied during or after the film formation process of the semiconductor film that becomes the semiconductor layer 21, forming an insulating oxide film between the conductive layers 31 and 32 and increasing the contact resistance. Therefore, it is preferable to use an oxide conductor containing a conductive oxide for at least the uppermost part of the conductive layers 31 and 32. This makes it possible to prevent an increase in contact resistance due to oxidation of the surfaces of the conductive layers 31 and 32.
  • the conductive layers 31 and 32 may also be called oxide layers, metal oxide layers, or oxide conductor layers.
  • the conductive layer 31 can be used as one of the source wiring and the drain wiring.
  • the conductive layer 32 can be used as the other of the source wiring and the drain wiring.
  • the electrical resistance is low. Therefore, it is preferable to use a material that has a higher conductivity than an oxide conductor, such as a metal, an alloy, or a nitride thereof.
  • one or both of the conductive layers 31 and 32 have a stacked structure including a layer of the highly conductive material, and that the above-mentioned oxide conductor is used at least in the uppermost portion.
  • the transistor 10 is provided at the intersection of the conductive layer 33 that functions as a gate wiring and the conductive layer 32 that functions as a source wiring or drain wiring. Therefore, at the intersection of the conductive layer 33 and the conductive layer 32, a parasitic capacitance is generated in the overlapping portion between them.
  • an insulating layer 42 is provided between the conductive layer 33 and the conductive layer 32, and therefore the parasitic capacitance is significantly reduced compared to a case where the insulating layer 42 is not provided (for example, the conductive layer 33 and the conductive layer 32 overlap with the insulating layer 22 interposed therebetween).
  • the insulating layer 42 can be made thicker than the insulating layer 22. It is also more preferable to make the insulating layer 42 thicker than at least one of the insulating layers 44, 45, and 46. The thicker the insulating layer 42, the more the parasitic capacitance between the conductive layer 33 and the conductive layer 32 can be reduced, which is preferable, but the thickness may be determined with productivity in mind. For example, the thickness may be set to be no more than two or three times the thickness of the insulating layer 41.
  • FIGS. 2B and 2C show a case where a laminated film of insulating layers 41a, 41b, and 41c is used as the insulating layer 41 in FIGS. 1A and 1B.
  • FIG. 3A shows an enlarged view of FIG. 2B.
  • the semiconductor layer 21 is provided in contact with the side surface (also called the inner wall) of the insulating layer 41b in the opening 20a. It is preferable to use an oxide insulating film for the insulating layer 41b. In particular, it is preferable to use an oxide insulating film that releases oxygen when heated. It is also preferable to have a structure in which the insulating layer 41b is sandwiched between insulating layers 41a and 41c that have a barrier property against oxygen.
  • the portion of the semiconductor layer 21 that contacts the insulating layer 41b is a region in which oxygen vacancies are reduced, and can be considered an i-type region.
  • the portion that does not contact the insulating layer 41b is an n-type region that contains a large number of carriers.
  • the portion of the semiconductor layer 21 that contacts the insulating layer 41b can be called the channel formation region, and the region outside of that can be called the low resistance region (also called the source region or drain region).
  • the channel formation region 21i and the low resistance region 21n of the semiconductor layer 21 are shown with different hatching patterns.
  • the channel length L of the transistor 10 can be said to be the length of the portion of the semiconductor layer 21 that is in contact with the insulating layer 41b on the path that connects the portion of the semiconductor layer 21 that is in contact with the conductive layer 31 and the portion of the semiconductor layer 21 that is in contact with the conductive layer 32, as shown in FIG. 3A.
  • the angle ( ⁇ ) of the sidewall of the opening 20a in the insulating layer 41b is 90 degrees
  • the channel length L is equal to the thickness of the insulating layer 41b.
  • the channel length L can be increased by making ⁇ smaller (or larger) than 90 degrees.
  • FIG. 3B is a plan view of a cut surface taken along the cutting line C1-C2 in FIG. 3A, which is located at the height where the insulating layer 41b is provided, as viewed from the Z direction.
  • the opening 20a is shown to have a cylindrical shape.
  • the angle ⁇ of the sidewall of the opening 20a in the insulating layer 41b deviates from 90 degrees, the circumference of the opening 20a differs depending on the height. In that case, the circumference at the height where the diameter of the opening 20a is smallest may be regarded as the channel width W, or the circumference at the height of the upper end of the opening 20a may be regarded as the channel width W.
  • the semiconductor layer 21 and the insulating layer 22 are formed along the inner wall of the opening 20a of the insulating layer 41b, so depending on the film formation method, the thickness of this portion may be thin.
  • films formed on surfaces inclined or perpendicular to the substrate surface tend to be thinner than films formed on surfaces parallel to the substrate surface.
  • film formation methods such as atomic layer deposition (ALD) or thermal CVD can form a film of uniform thickness regardless of the angle of the surface on which it is formed.
  • the angle ⁇ of the sidewall of the opening 20a of the insulating layer 41b is 75 degrees or more, 80 degrees or more, or 85 degrees or more, it is preferable to form the semiconductor layer 21 and the insulating layer 22 using the ALD method.
  • the diameter of the opening 20b provided in the insulating layer 42 is preferably the same as or larger than the opening 20a provided in the insulating layer 41b.
  • the thickness of the insulating layer 42 may be greater than or equal to the channel length L.
  • the thickness of the insulating layer 42 may be greater than or equal to the thickness of the insulating layer 41b.
  • an insulating substrate for example, a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (such as an yttria stabilized zirconia substrate), a resin substrate, etc.
  • a semiconductor substrate for example, a semiconductor substrate made of silicon or germanium, or a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide, etc. are available.
  • a semiconductor substrate having an insulating region inside the aforementioned semiconductor substrate for example, an SOI (Silicon On Insulator) substrate, etc. are available.
  • the conductive substrate there is a graphite substrate, a metal substrate, an alloy substrate, a conductive resin substrate, etc. are available.
  • a substrate having a metal nitride, a substrate having a metal oxide, etc. can be used.
  • a substrate in which a conductive layer or a semiconductor layer is provided on an insulating substrate a substrate in which a conductive layer or an insulating layer is provided on a semiconductor substrate, and a substrate in which a semiconductor layer or an insulating layer is provided on a conductive substrate.
  • a substrate provided with elements may be used.
  • the elements provided on the substrate include a capacitor element, a resistor element, a switch element, a light-emitting element, a memory element, and the like.
  • the semiconductor layer 21 preferably includes a metal oxide (oxide semiconductor).
  • metal oxides that can be used in the semiconductor layer 21 include In oxide, Ga oxide, and Zn oxide.
  • the metal oxide preferably contains at least In or Zn.
  • the metal oxide preferably contains two or three elements selected from In, element M, and Zn.
  • the element M is a metal element or semimetal element with a high bond energy with oxygen, for example, a metal element or semimetal element with a higher bond energy with oxygen than indium.
  • Specific examples of element M include Al, Ga, Sn, Y, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Mo, Hf, Ta, W, La, Ce, Nd, Mg, Ca, Sr, Ba, B, Si, Ge, and Sb.
  • the element M contained in the metal oxide is preferably one or more of the above elements, and is preferably one or more of Al, Ga, Y, and Sn, and more preferably gallium.
  • a metal oxide having In, M, and Zn may be referred to as an In-M-Zn oxide.
  • metal elements and metalloid elements may be collectively referred to as "metal elements", and "metalloid elements" described in this specification may include metalloid elements.
  • the metal oxide is an In-M-Zn oxide
  • the atomic ratio of In in the In-M-Zn oxide is equal to or greater than the atomic ratio of M.
  • the term "close composition" includes a range of ⁇ 30% of the desired atomic ratio.
  • the atomic ratio of In in the In-M-Zn oxide may be less than the atomic ratio of M.
  • the semiconductor layer 21 may be, for example, In-Zn oxide, In-Ga oxide, In-Sn oxide, In-Ti oxide, In-Ga-Al oxide, In-Ga-Sn oxide, In-Ga-Zn oxide, In-Sn-Zn oxide, In-Al-Zn oxide, In-Ti-Zn oxide, In-Ga-Sn-Zn oxide, In-Ga-Al-Zn oxide, etc.
  • Ga-Zn oxide may also be used.
  • the metal oxide may contain one or more metal elements with a large periodic number.
  • the field effect mobility of the transistor may be increased.
  • metal elements with a large periodic number include metal elements belonging to the fifth period and metal elements belonging to the sixth period. Specific examples of such metal elements include Y, Zr, Ag, Cd, Sn, Sb, Ba, Pb, Bi, La, Ce, Pr, Nd, Pm, Sm, and Eu. La, Ce, Pr, Nd, Pm, Sm, and Eu are called light rare earth elements.
  • the metal oxide may also contain one or more nonmetallic elements.
  • the field effect mobility of the transistor may be increased.
  • nonmetallic elements include carbon, nitrogen, phosphorus, sulfur, selenium, fluorine, chlorine, bromine, and hydrogen.
  • the metal oxide can be preferably formed by sputtering or atomic layer deposition.
  • the composition of the metal oxide after film formation may differ from the composition of the target.
  • the zinc content in the metal oxide after film formation may decrease to about 50% compared to the target.
  • the content of a certain metal element in a metal oxide refers to the ratio of the number of atoms of that element to the total number of atoms of the metal element contained in the metal oxide.
  • the content of metal element X can be expressed as Ax /( Ax + Ay + Az ).
  • metal element X when the ratio of the numbers of atoms of metal element X, metal element Y, and metal element Z in the metal oxide (atomic ratio) is expressed as Bx :By: Bz , the content of metal element X can be expressed as Bx /( Bx + By + Bz ).
  • a transistor with high reliability when a positive bias is applied can be obtained.
  • a transistor with a small amount of variation in threshold voltage in a PBTS (Positive Bias Temperature Stress) test can be obtained.
  • the Ga content it is possible to produce a transistor with high reliability against light.
  • NBTIS Near Bias Temperature Illumination Stress
  • a metal oxide in which the atomic ratio of Ga is equal to or greater than the atomic ratio of In has a larger band gap, and it is possible to reduce the amount of variation in threshold voltage in NBTIS testing of a transistor.
  • the metal oxide becomes highly crystalline, and the diffusion of impurities in the metal oxide can be suppressed. This suppresses fluctuations in the electrical characteristics of the transistor, and increases reliability.
  • the semiconductor layer 21 may have a laminated structure having two or more metal oxide layers.
  • the two or more metal oxide layers of the semiconductor layer 21 may have the same or approximately the same composition.
  • the same sputtering target can be used to form the semiconductor layer, thereby reducing manufacturing costs.
  • a laminated structure in which two or more oxide semiconductor layers with different compositions are laminated may also be used.
  • the ALD method it is also possible to form a metal oxide layer whose composition continuously varies in the thickness direction. This not only widens the range of design options compared to the case where a film with a fixed composition is used, but also prevents the generation of interface states between two layers with different compositions, thereby improving electrical characteristics and reliability.
  • the semiconductor layer 21 has a two-layer structure
  • a material with higher mobility (high conductivity) for the second layer i.e., the side closer to the gate electrode, than for the first layer.
  • This makes it possible to create a normally-off transistor with a large on-current.
  • a material with higher mobility than for the second layer may be used for the first layer, i.e., the side in contact with the source electrode and drain electrode. This makes it possible to reduce the contact resistance between the semiconductor layer 21 and the source electrode or drain electrode, thereby reducing parasitic resistance and making it possible to create a transistor with a large on-current.
  • the semiconductor layer 21 has a three-layer structure, it is preferable to use a material with higher mobility for the second layer than for the first and third layers. This makes it possible to realize a transistor with high on-current and high reliability.
  • the difference in the mobility and conductivity described above can be expressed, for example, by the content of indium.
  • an element other than indium that contributes to improving conductivity also affects the mobility and conductivity.
  • the semiconductor layer 21 is preferably a crystalline metal oxide layer.
  • a metal oxide layer having a CAAC (c-axis aligned crystal) structure, a polycrystalline structure, a nano-crystalline (nc: nano-crystal) structure, or the like can be used.
  • CAAC c-axis aligned crystal
  • nc nano-crystalline
  • the defect level density in the semiconductor layer 21 can be reduced, and a highly reliable semiconductor device can be realized.
  • OS transistors have extremely high field-effect mobility compared to transistors using amorphous silicon.
  • OS transistors have an extremely small source-drain leakage current in an off state (hereinafter also referred to as off-current), and can hold charge accumulated in a capacitor connected in series with the transistor for a long period of time.
  • off-current extremely small source-drain leakage current in an off state
  • the use of OS transistors can reduce the power consumption of a semiconductor device.
  • the semiconductor device can be applied to, for example, a display device.
  • a display device In order to increase the light emission luminance of a light-emitting device included in a pixel circuit of a display device, it is necessary to increase the amount of current flowing through the light-emitting device. To achieve this, it is necessary to increase the source-drain voltage of a driving transistor included in the pixel circuit. Since an OS transistor has a higher withstand voltage between the source and drain than a transistor using silicon (hereinafter, referred to as a Si transistor), a high voltage can be applied between the source and drain of the OS transistor. Therefore, by using an OS transistor as the driving transistor included in the pixel circuit, it is possible to increase the amount of current flowing through the light-emitting device and increase the light emission luminance of the light-emitting device.
  • an OS transistor When the transistor operates in the saturation region, an OS transistor can reduce the change in source-drain current in response to a change in gate-source voltage compared to a Si transistor. Therefore, by using an OS transistor as a driving transistor included in a pixel circuit, the amount of current flowing through the light-emitting device can be precisely controlled. This makes it possible to increase the gradation in the pixel circuit. Furthermore, even if the electrical characteristics (e.g., resistance) of the light-emitting device fluctuate or there is variation in the electrical characteristics, a stable current can flow.
  • the electrical characteristics e.g., resistance
  • OS transistors have small variations in electrical characteristics due to radiation exposure, i.e., they have high resistance to radiation, and therefore can be suitably used in environments where radiation may be present. It can also be said that OS transistors have high reliability against radiation.
  • OS transistors can be suitably used in pixel circuits of X-ray flat panel detectors.
  • OS transistors can also be suitably used in semiconductor devices used in outer space.
  • radiation include electromagnetic radiation (e.g., X-rays and gamma rays) and particle radiation (e.g., alpha rays, beta rays, proton rays, and neutron rays).
  • the semiconductor material that can be used for the semiconductor layer 21 is not limited to oxide semiconductors.
  • a semiconductor made of a single element or a compound semiconductor can be used.
  • semiconductors made of a single element include silicon (including single crystal silicon, polycrystalline silicon, microcrystalline silicon, and amorphous silicon) and germanium.
  • compound semiconductors include gallium arsenide and silicon germanium.
  • compound semiconductors include organic semiconductors, nitride semiconductors, and oxide semiconductors. These semiconductor materials may contain impurities as dopants.
  • the semiconductor layer 21 may have a layered material that functions as a semiconductor.
  • a layered material is a general term for a group of materials that have a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds weaker than covalent or ionic bonds, such as van der Waals bonds.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity.
  • Examples of the layered material include graphene, silicene, and chalcogenides.
  • Chalcogenides are compounds containing chalcogen (an element belonging to Group 16).
  • Examples of the chalcogenides include transition metal chalcogenides and Group 13 chalcogenides.
  • transition metal chalcogenides that can be used as the semiconductor layer of a transistor include molybdenum sulfide (representatively MoS 2 ), molybdenum selenide (representatively MoSe 2 ), molybdenum tellurium (representatively MoTe 2 ), tungsten sulfide (representatively WS 2 ), tungsten selenide (representatively WSe 2 ), tungsten tellurium (representatively WTe 2 ), hafnium sulfide (representatively HfS 2 ), hafnium selenide (representatively HfSe 2 ), zirconium sulfide (representatively ZrS 2 ), zirconium selenide (representatively ZrSe 2 ), and the like.
  • the crystallinity of the semiconductor material used for the semiconductor layer 21 is not particularly limited, and any of an amorphous semiconductor, a single crystalline semiconductor, and a semiconductor having crystallinity other than single crystal (a polycrystalline semiconductor, a microcrystalline semiconductor, or a semiconductor having a crystalline region in part) may be used.
  • the use of a crystalline semiconductor is preferable because it can suppress deterioration of the transistor characteristics.
  • the insulating layer 22 functions as a gate insulating layer of the transistor and also functions as a dielectric layer of the capacitance element.
  • an oxide semiconductor is used for the semiconductor layer 21, it is preferable to use an oxide insulating film for at least the film of the insulating layer 22 that is in contact with the semiconductor layer 21.
  • silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, hafnium oxynitride, gallium oxide, gallium oxynitride, yttrium oxide, yttrium oxynitride, and Ga-Zn oxide can be used.
  • a nitride insulating film such as silicon nitride, silicon nitride oxide, aluminum nitride, or aluminum nitride oxide can be used as the insulating layer 22.
  • the insulating layer 22 may have a stacked structure, and may have, for example, a stacked structure having one or more oxide insulating films and one or more nitride insulating films.
  • oxynitride refers to a material that contains more oxygen than nitrogen.
  • Nitrogen oxide refers to a material that contains more nitrogen than oxygen.
  • the insulating layer 22 is preferably made of a high-k insulating material, and preferably has a laminated structure of a high dielectric constant (high-k) material and a material with a higher dielectric strength than the high-k material.
  • the insulating layer 22 can be made of an insulating film (also called ZAZ) in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order.
  • an insulating film also called ZAZA in which zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulating film in which hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide are laminated in this order can be used.
  • an insulating film with a relatively high dielectric strength, such as aluminum oxide, in a laminated state the dielectric strength is improved and electrostatic breakdown of the capacitance element can be suppressed.
  • a material exhibiting ferroelectricity may be used as the insulating layer 22.
  • materials exhibiting ferroelectricity include metal oxides such as hafnium oxide, zirconium oxide, and HfZrO x (x is a real number greater than 0).
  • Conductive Layer The upper surfaces of the conductive layers 31 and 32 are in contact with the semiconductor layer 21.
  • an oxide semiconductor is used as the semiconductor layer 21
  • an insulating oxide e.g., aluminum oxide
  • conductive layer 31 and conductive layer 32 it is preferable to use, for example, titanium, tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. These are preferable because they are conductive materials that are difficult to oxidize, or materials that maintain their conductivity even when oxidized.
  • conductive oxides such as indium oxide, zinc oxide, In-Sn oxide, In-Zn oxide, In-W oxide, In-W-Zn oxide, In-Ti oxide, In-Ti-Sn oxide, In-Sn-Si oxide, and Ga-Zn oxide can be used.
  • Conductive oxides containing indium are particularly preferred because of their high conductivity.
  • oxide materials such as In-Ga-Zn oxide that can be applied to the semiconductor layer 21 can also be used as a conductive layer by increasing the carrier concentration.
  • the conductive layer 23 functions as a gate electrode, and various conductive materials can be used.
  • a metal element selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, lanthanum, etc., or an alloy containing the metal element. It is also possible to use a nitride of the above metal or alloy, or an oxide of the above metal or alloy.
  • tantalum nitride titanium nitride, tungsten, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, etc.
  • a semiconductor with high electrical conductivity such as polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide.
  • the conductive layer 23 may also be made of nitrides and oxides that can be used for the conductive layers 31 and 32.
  • conductive layer 31 and conductive layer 32 also function as wiring, low-resistance conductive materials can be stacked and used. The lower the resistance of conductive layer 33, the more preferable it is. The same conductive material as conductive layer 23 can be used for conductive layer 31, conductive layer 32, and conductive layer 33.
  • Insulating layer 41 (or the insulating layer 41b) has a portion in contact with the semiconductor layer 21.
  • an oxide semiconductor is used for the semiconductor layer 21, it is preferable to use an oxide for at least the portion of the insulating layer 41 in contact with the semiconductor layer 21 in order to improve the interface characteristics between the semiconductor layer 21 and the insulating layer 41.
  • silicon oxide or silicon oxynitride can be suitably used.
  • a film that releases oxygen when heated for the insulating layer 41 it is more preferable to use a film that releases oxygen when heated for the insulating layer 41.
  • oxygen is supplied to the semiconductor layer 21 by the heat applied during the manufacturing process of the transistor 10, and oxygen vacancies in the semiconductor layer 21 can be reduced, thereby improving reliability.
  • Methods for supplying oxygen to the insulating layer 41 include heat treatment in an oxygen atmosphere and plasma treatment in an oxygen atmosphere.
  • Oxygen may also be supplied by forming an oxide film in an oxygen atmosphere on the upper surface of the insulating layer 41 by a sputtering method. The oxide film may then be removed.
  • the insulating layer 41 is preferably formed by a deposition method such as a sputtering method or a plasma CVD method.
  • a deposition method such as a sputtering method or a plasma CVD method.
  • a sputtering method that does not use hydrogen gas as a deposition gas a film with an extremely low hydrogen content can be obtained. This makes it possible to suppress the supply of hydrogen to the semiconductor layer 21 and stabilize the electrical characteristics of the transistor 10.
  • the insulating layers 41a and 41c are preferably made of a film through which oxygen does not easily diffuse. This makes it possible to prevent oxygen contained in the insulating layer 41b from permeating to the insulating layer 11 side through the insulating layer 41a due to heating, and from permeating to the insulating layer 45 side through the insulating layer 41c. In other words, by sandwiching the insulating layer 41b from above and below with the insulating layers 41a and 41c, through which oxygen does not easily diffuse, the oxygen contained in the insulating layer 41b can be trapped. This makes it possible to effectively supply oxygen to the semiconductor layer 21.
  • silicon nitride, silicon nitride oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, aluminum nitride, hafnium oxide, and hafnium aluminate can be used as the insulating layer 41a and the insulating layer 41c.
  • silicon nitride and silicon nitride oxide have the characteristics of releasing little impurities (e.g., water and hydrogen) from themselves and being difficult for oxygen and hydrogen to permeate, and therefore can be suitably used as the insulating layer 41a and the insulating layer 41c.
  • ⁇ Variation 1> 4A and 4B are schematic cross-sectional views of a transistor 10a, which differs from the transistor 10 mainly in the shape of an opening 20b.
  • opening 20b reaches not only semiconductor layer 21, but also part of conductive layer 32 and part of insulating layer 45. As a result, part of insulating layer 22 is provided in contact with conductive layer 32 and insulating layer 45.
  • ⁇ Modification 2> 4C and 4D are schematic cross-sectional views of a transistor 10b.
  • the transistor 10b is different from the transistor 10 in that an insulating layer 47 is provided.
  • the insulating layer 47 is located between the conductive layer 32 and the insulating layer 42, and between the insulating layer 45 and the insulating layer 42.
  • the insulating layer 47 is also provided to cover the end of the semiconductor layer 21.
  • the insulating layer 47 can function as an etching stopper when forming the opening 20b in the insulating layer 42. By providing the insulating layer 47, damage to the semiconductor layer 21 can be reduced when the opening 20b is formed.
  • the insulating layer 47 may be made of an insulating material that can increase the etching rate selectivity with respect to the insulating layer 42.
  • the insulating layer 47 is made of an insulating material that has at least a different composition or density from the insulating layer 42.
  • the insulating layer 47 may contain different constituent elements from the insulating layer 42, the insulating layer 42 may contain different constituent elements from the insulating layer 47, or the insulating layer 47 and the insulating layer 42 may contain the same constituent elements.
  • a silicon oxide film or a silicon oxynitride film can be used for insulating layer 42, and an insulating film having at least one of the composition and constituent elements different from insulating layer 42, such as a silicon nitride film, a silicon nitride oxide film, an aluminum oxide film, or a hafnium oxide film, can be used for insulating layer 47.
  • an insulating film formed by a sputtering method can be used for insulating layer 42, and a dense insulating film formed by a film formation method such as a CVD method or an ALD method can be used for insulating layer 47, so that insulating films containing the same elements (for example, a silicon oxide film) can be applied.
  • ⁇ Modification 3> 5A and 5B is an example of a transistor 10c in which the sidewall of the opening 20a has a tapered shape.
  • the diameter (opening diameter) of the opening 20a at its upper end is larger than the diameter (opening diameter) at its lower end.
  • the angle ⁇ can be 45 degrees or more and 90 degrees or less, or 60 degrees or more and less than 90 degrees, or 70 degrees or more and less than 90 degrees. Note that when a film formation method with extremely high coverage such as ALD is used, the angle ⁇ may be greater than 90 degrees.
  • the diameter of opening 20a which corresponds to the channel width of transistor 10c, increases from the conductive layer 31 side toward the conductive layer 32 side. At this time, the magnitude of the current flowing through transistor 10c is limited to the part with the smallest diameter. Therefore, the channel width of transistor 10c can be considered to be the circumference of the part with the smallest diameter. Therefore, by making the sidewall of opening 20a tapered, it is possible to fabricate a transistor with a channel width smaller than the diameter at the top end of opening 20a.
  • Transistor 10d shown in Figures 5C and 5D is an example in which not only opening 20a but also opening 20b has a tapered shape. Transistor 10d further has an insulating layer 46.
  • the diameter of the upper end of opening 20b is larger than the diameter of the lower end, which is preferable because it increases the contact area between conductive layer 23 and conductive layer 33.
  • a transistor 10 e shown in FIGS. 6A and 6B differs from the transistors 10 and 10 a described above mainly in that a conductive layer 26 and an insulating layer 27 are included.
  • the conductive layer 26 functions as a second gate electrode (or back gate electrode).
  • the insulating layer 27 is located between the conductive layer 26 and the semiconductor layer 21 and functions as a second gate insulating layer (or back gate insulating layer).
  • a fixed potential or any signal can be applied to the conductive layer 26.
  • the conductive layer 26 may also be electrically connected to any one of the conductive layers 31, 32, and 23 and be applied with the same potential.
  • the conductive layer 26 is embedded in the insulating layer 41b. Therefore, the conductive layer 26 is provided between the insulating layer 41a and the insulating layer 41c.
  • the insulating layer 27 is provided along the side surfaces of the conductive layer 32, the insulating layer 41c, the conductive layer 26, and the insulating layer 41a.
  • the insulating layer 27 can be formed by forming openings in the conductive layer 32, the insulating layer 41c, the conductive layer 26, and the insulating layer 41a, depositing an insulating film that covers the openings using a film deposition method with high coverage, and then performing anisotropic etching.
  • a transistor 10f shown in FIGS. 6C and 6D differs from the transistors 10, 10a, and the like mainly in that the shape of the conductive layer 31 is different.
  • a recess is provided in the conductive layer 31, and the semiconductor layer 21, the insulating layer 22, and the conductive layer 23 are provided along the recess.
  • the height of the lower end of the conductive layer 23 is lower than the height of the upper surface of the conductive layer 31.
  • the portion of semiconductor layer 21 that contacts conductive layer 31 is a region with lower resistance than the channel formation region. Therefore, by positioning the lower end of conductive layer 23 lower than the upper surface of conductive layer 31, a gate electric field can be applied uniformly to the entire channel formation region of semiconductor layer 21, and it is possible to prevent the formation of a high-resistance region (offset region) due to the difficulty of the gate electric field reaching semiconductor layer 21. As a result, a transistor with an increased on-current can be realized. To achieve such a configuration, for example, it is preferable to make the thickness of conductive layer 31 at least thicker than the sum of the thicknesses of semiconductor layer 21 and insulating layer 22.
  • a transistor 10g shown in FIGS. 7A and 7B differs from the transistor 10 and the like mainly in that the configuration of the insulating layer 22 is different.
  • the insulating layer 22 is provided to cover not only the semiconductor layer 21 but also the conductive layer 32 and the insulating layer 45. A part of the insulating layer 22 is located between the conductive layer 32 and the insulating layer 42, and another part is located between the insulating layer 45 and the insulating layer 42.
  • An opening 20b is provided in the insulating layer 42 that reaches the insulating layer 22, and the conductive layer 23 is provided to fill the opening 20b. A part of the conductive layer 23 is provided in contact with the side surface of the insulating layer 42 at the opening 20b.
  • insulating layer 22 In the case of the configuration shown in transistor 10g, there is a risk that insulating layer 22 will be etched away and disappear when opening 20b in insulating layer 42 is formed. For this reason, it is preferable to use a material that can increase the etching rate selectivity to insulating layer 42 for at least the uppermost part of insulating layer 22.
  • the same insulating material as insulating layer 47 described above can be used.
  • insulating layer 22 may have a single layer structure including the insulating material, or a laminated structure in which the insulating material is used in the film located at the uppermost part.
  • the insulating layer 22 may be partially etched and thinned when the opening 20b is formed, a film that has been deposited thickly in advance may be used.
  • the transistor 10h shown in Figures 7C and 7D is an example in which the insulating layer 22 shown in this modification is applied to the transistor 10c shown in modification 3 above. Note that the insulating layer 22 shown in this modification can be applied to each of the configurations exemplified above, without being limited to this.
  • FIGS. 8A to 11B are schematic cross-sectional views of each step in the manufacturing method of a semiconductor device, which will be described below.
  • the cross section corresponding to FIG. 2B is shown on the left side
  • the cross section corresponding to FIG. 2C is shown on the right side.
  • the insulating material for forming the insulating layer, the conductive material for forming the conductive layer, or the semiconductor material for forming the semiconductor layer can be formed by appropriately using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • Sputtering methods include RF sputtering, which uses a high-frequency power supply as the sputtering power source, DC sputtering, which uses a direct current power supply, and pulsed DC sputtering, which changes the voltage applied to the electrodes in a pulsed manner.
  • RF sputtering is mainly used when depositing insulating films
  • DC sputtering is mainly used when depositing metal conductive films.
  • Pulsed DC sputtering is mainly used when depositing compounds such as oxides, nitrides, and carbides using the reactive sputtering method.
  • CVD methods can be classified into plasma CVD (PECVD) methods, which use plasma, thermal CVD (TCVD: Thermal CVD) methods, which use heat, and photo CVD (Photo CVD) methods, which use light. They can also be further divided into metal CVD (MCVD: Metal CVD) methods and metal organic CVD (MOCVD: Metal CVD) methods, depending on the source gas used.
  • PECVD plasma CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal CVD
  • the plasma CVD method can produce high-quality films at relatively low temperatures.
  • the thermal CVD method does not use plasma, it is possible to reduce plasma damage to the workpiece.
  • the thermal CVD method does not cause plasma damage during film formation, it is possible to produce films with fewer defects.
  • the ALD method can be a thermal ALD method in which the reaction between the precursor and reactant is carried out using only thermal energy, or a PEALD method in which a plasma-excited reactant is used.
  • CVD and ALD are film formation methods that are less affected by the shape of the workpiece and have good step coverage.
  • ALD has excellent step coverage and excellent thickness uniformity, making it suitable for coating the surfaces of openings with high aspect ratios.
  • CVD has a relatively slow film formation speed, it may be preferable to use it in combination with other film formation methods such as CVD, which has a faster film formation speed.
  • a film of any composition can be formed by changing the flow rate ratio of the source gases.
  • a film with a continuously changing composition can be formed by changing the flow rate ratio of the source gases while forming the film.
  • a film of any composition can be formed by simultaneously introducing multiple different types of precursors. Or, when multiple different types of precursors are introduced, a film of any composition can be formed by controlling the number of cycles of each precursor. Also, like the CVD method, a film with a continuously changing composition can be formed.
  • the insulating layer 11 can be an inorganic insulating film such as a silicon oxide film or a silicon oxynitride film.
  • the insulating layer 11 can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. If the surface on which the insulating layer 11 is to be formed is not flat, it is preferable to perform a planarization process so that the upper surface of the insulating layer 11 becomes flat after the insulating layer 11 is formed.
  • a conductive film that will become the conductive layer 31 is formed on the insulating layer 11.
  • a resist mask is formed on the conductive film by photolithography or the like, and the portion of the conductive film that is not covered by the resist mask is removed by etching, and then the resist mask is removed. This allows the conductive layer 31 to be formed.
  • an insulating film that will become the insulating layer 44 is formed, and the portion that overlaps with the conductive layer 31 is removed, thereby forming the insulating layer 44 and the conductive layer 31 embedded in the insulating layer 44 (FIG. 8A).
  • the insulating film that will become the insulating layer 44 is preferably processed by CMP (Chemical Mechanical Polishing), and for example, the insulating film is processed until the top surface of the conductive layer 31 is exposed, thereby forming the insulating layer 44 shown in FIG. 8A.
  • CMP Chemical Mechanical Polishing
  • the insulating layer 44 and the conductive layer 31 may be formed by first forming an insulating film that will become the insulating layer 44, then forming an opening in the insulating film, forming a conductive film so as to fill the opening, and performing a polishing process (planarization process) using the CMP method until the top surface of the insulating film is exposed.
  • the upper surface of the subsequently formed insulating layer 41 can be made flat.
  • the insulating layer 41 may be provided to cover the conductive layer 31 without providing the insulating layer 44. In that case, it is preferable to perform a planarization process by CMP on the upper surface of the insulating layer 41 to flatten the upper surface.
  • insulating layers 41a, 41b, and 41c are formed on the conductive layer 31 and the insulating layer 44 (FIG. 8B).
  • the insulating layers 41a, 41b, and 41c may be formed by appropriately using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the thickness of the insulating layer 41 affects the channel length of the transistor.
  • the insulating layer 41b by forming the insulating layer 41b using a sputtering method in an oxygen-containing atmosphere, it is possible to form an insulating layer 41b that contains a large amount of oxygen in the film.
  • the hydrogen concentration in the insulating layer 41b can be reduced.
  • Conductive layer 32 and insulating layer 45 are formed on insulating layer 41 ( Figure 8C). Conductive layer 32 and insulating layer 45 can be formed in the same manner as conductive layer 31 and insulating layer 44.
  • the sidewalls of the opening 20a are preferably perpendicular to the top surface of the conductive layer 31. With this configuration, a transistor with a small occupancy area can be fabricated. Alternatively, the sidewalls of the opening 20a may be tapered. The tapered shape can improve the coverage of the film formed inside the opening 20a.
  • the maximum width of the opening 20a (maximum diameter if the opening 20a is circular in plan view) is as fine as possible.
  • the maximum width of the opening 20a is 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, or 20 nm or less, and is preferably 5 nm or more.
  • the aspect ratio of the opening 20a is large, it is preferable to form it using anisotropic etching. In particular, processing by dry etching is preferable because it is suitable for fine processing. Furthermore, the etching conditions in this processing may be different for each of the conductive layer 32, the insulating layer 41c, the insulating layer 41b, and the insulating layer 41a. The angle of the sidewall of the opening 20a may be different for each of the conductive layer 32, the insulating layer 41c, the insulating layer 41b, and the insulating layer 41a.
  • a portion of the upper part of the conductive layer 31 may be etched, and the conductive layer 31 at the bottom of the opening 20a may become thin.
  • a portion of the upper part of the conductive layer 31 may be etched to make the conductive layer 31 thin.
  • the heat treatment may be performed at 250°C or higher and 650°C or lower, preferably 300°C or higher and 500°C or lower, and more preferably 320°C or higher and 450°C or lower.
  • the heat treatment may be performed in a nitrogen gas or inert gas atmosphere, or in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the oxygen gas may be about 20%.
  • the heat treatment may be performed under reduced pressure.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the desorbed oxygen after the heat treatment in a nitrogen gas or inert gas atmosphere.
  • impurities such as water contained in the insulating layer 41 and the like can be reduced before the formation of the oxide semiconductor film that becomes the semiconductor layer.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of moisture contained in the gas used in the heat treatment is 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • a semiconductor film that will become semiconductor layer 21 is formed to cover insulating layer 41, conductive layer 32, opening 20a, insulating layer 45, etc., and unnecessary portions are removed by etching to form semiconductor layer 21 ( Figure 9A).
  • an oxide semiconductor film can be used as the semiconductor film.
  • the oxide semiconductor film can be formed by appropriately using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide semiconductor film is preferably formed in contact with the bottom and sidewall of the opening 20a having a large aspect ratio. Therefore, the oxide semiconductor film is preferably formed by a film formation method with good coverage, and more preferably by a CVD method or an ALD method.
  • the oxide semiconductor film can be formed by forming an In-Ga-Zn oxide film by the ALD method. Note that when the opening 20a has a tapered shape, the oxide semiconductor film can be formed by a sputtering method.
  • the microwave treatment refers to a treatment using an apparatus having a power source that generates high-density plasma using microwaves, for example.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequency waves such as RF, and the oxygen plasma can be made to act.
  • Oxygen acting on an oxide semiconductor can take various forms, such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also called O radicals, which are atoms, molecules, or ions with an unpaired electron).
  • the oxygen acting on an oxide semiconductor can take any one or more of the above forms, and oxygen radicals are particularly preferred.
  • the temperature at which the substrate is heated may be 100°C or higher and 650°C or lower, preferably 200°C or higher and 600°C or lower, and more preferably 300°C or higher and 450°C or lower.
  • the carbon concentration in the oxide semiconductor film measured by SIMS can be set to less than 1 ⁇ 10 atoms/cm 3 , preferably less than 1 ⁇ 10 atoms/cm 3 , further preferably less than 1 ⁇ 10 atoms/cm 3 .
  • the microwave treatment may be performed on an insulating film, more specifically, a silicon oxide film, located near the oxide semiconductor film in an atmosphere containing oxygen.
  • a silicon oxide film located near the oxide semiconductor film in an atmosphere containing oxygen. This allows hydrogen contained in the silicon oxide film to be released to the outside as H 2 O. By releasing hydrogen from the silicon oxide film located near the oxide semiconductor film, a highly reliable semiconductor device can be provided.
  • the deposition method of each layer may be the same or different.
  • the lower layer of the oxide semiconductor film may be deposited by a sputtering method
  • the upper layer of the oxide semiconductor film may be deposited by an ALD method.
  • An oxide semiconductor film deposited by a sputtering method is likely to have crystallinity. Therefore, by providing a crystalline oxide semiconductor film as the lower layer of the oxide semiconductor film, the crystallinity of the upper layer of the oxide semiconductor film can be improved.
  • the portions overlapping with these can be blocked by the upper layer of the oxide semiconductor film deposited by an ALD method, which has good coverage.
  • the oxide semiconductor film is preferably formed in contact with the upper surface of the conductive layer 31 in the opening 20a, the side surface of the insulating layer 41 in the opening 20a, and the side surface and upper surface of the conductive layer 32 on the insulating layer 41.
  • the heat treatment may be performed in a temperature range in which the oxide semiconductor film does not become polycrystallized, and may be performed at 250° C. to 650° C., preferably 400° C. to 600° C.
  • the heat treatment is performed in a nitrogen gas or inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment may be performed under reduced pressure.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to compensate for the oxygen that has been desorbed after the heat treatment in the nitrogen gas or inert gas atmosphere.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of moisture contained in the gas used in the heat treatment is 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • a heat treatment is performed after the oxide semiconductor film is formed, but the present invention is not limited to this.
  • a heat treatment may be performed in a later step.
  • Insulating layer 42 is formed to cover conductive layer 32, semiconductor layer 21, and insulating layer 45 ( Figure 9B). Insulating layer 42 can be formed in the same manner as insulating layer 41b, etc.
  • the insulating layer 42 is formed so as to fill the opening 20a. If the upper surface of the insulating layer 42 is uneven, the upper surface of the insulating layer 42 may be flattened.
  • an opening 20b is formed in the insulating layer 42, reaching the semiconductor layer 21 (FIG. 9C).
  • the insulating layer 42 embedded inside the opening 20a is also removed by etching, exposing the side and bottom of the semiconductor layer 21 located inside the opening 20a.
  • etching damage may occur in the semiconductor layer 21. Therefore, after the opening 20b is formed, a part of the damaged surface portion of the semiconductor layer 21 may be removed by etching.
  • This etching may be dry etching, but wet etching is preferable.
  • a heat treatment may be performed to remove water adsorbed on the surface. The heat treatment can be performed under the conditions described above.
  • the diameter of opening 20b is shown as being smaller than the width of semiconductor layer 21 and larger than opening 20a, but this is not limited thereto.
  • the configuration illustrated in FIG. 4A and FIG. 4B can be realized by making the diameter of opening 20b larger than the width of semiconductor layer 21.
  • the diameter of opening 20b may be smaller than that of opening 20a, making it larger is preferable since this improves the coverage of the layers (insulating layer 22, conductive layer 23, etc.) provided inside opening 20b and opening 20a.
  • Insulating film 22f is formed to cover semiconductor layer 21 and insulating layer 42 (FIG. 10A).
  • Insulating film 22f is an insulating film that will later become insulating layer 22.
  • the insulating film 22f can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like, as appropriate.
  • the insulating film 22f is provided on the side surface of the semiconductor layer 21 in the opening 20a with a thickness as uniform as possible. For this reason, it is particularly preferable to form the insulating film 22f by the ALD method, which is a film formation method with extremely excellent coverage. Note that, if the side walls of the openings 20a and 20b are tapered, the insulating film 22f can be formed using a film formation method such as a sputtering method.
  • a conductive film 23f is formed on the insulating film 22f (FIG. 10B).
  • the conductive film 23f is a conductive film that will later become the conductive layer 23.
  • the conductive film 23f is provided so that a portion of it is embedded in the openings 20a and 20b.
  • the conductive film 23f is preferably formed by a film forming method with high coverage or embedding properties, and more preferably, for example, a CVD method or an ALD method. If the side walls of the openings 20a and 20b are tapered, the conductive film can be formed by a sputtering method.
  • the upper portion of the conductive film 23f and the insulating film 22f are etched by a CMP method, a dry etching method, or the like until the upper surface of the insulating layer 42 is exposed, thereby forming the insulating layer 22 and the conductive layer 23 embedded in the openings 20a and 20b (FIG. 11A).
  • the upper part of the conductive film 23f may be etched until the upper surface of the insulating film 22f is exposed, thereby leaving the part of the insulating layer 22 (insulating film 22f) covering the upper part of the insulating layer 42.
  • Conductive layer 33 and insulating layer 46 are formed on insulating layer 42, insulating layer 22, and conductive layer 23 (FIG. 11B). Conductive layer 33 and insulating layer 46 can be formed in the same manner as conductive layer 31 and insulating layer 44.
  • the transistor 10 can be manufactured.
  • the semiconductor layer 21 is formed.
  • the schematic cross-sectional view at this point corresponds to FIG. 9A.
  • Insulating film 47f is formed to cover conductive layer 32, insulating layer 45, and semiconductor layer 21 (FIG. 12A).
  • Insulating film 47f preferably covers the side surface of opening 20a of semiconductor layer 21, and is preferably formed by a film formation method such as ALD, which has excellent step coverage. If opening 20a has a tapered shape, a film formation method such as sputtering or CVD may also be used.
  • the insulating film 47f functions as a protective layer for protecting the semiconductor layer 21 from damage caused by etching of the insulating layer 42 when the opening 20b is formed later.
  • the insulating film 47f can also be called an etching stopper, and a material having a large etching selectivity with respect to the insulating layer 42 can be used.
  • the insulating film 47f can be a film containing different constituent elements from the insulating layer 42, a film containing the same constituent elements as the insulating layer 42 but with a different composition, a film having a different density from the insulating layer 42, or the like.
  • an opening 20b is formed in the insulating layer 42, reaching the insulating film 47f (FIG. 12C).
  • the semiconductor layer 21 is covered and protected by the insulating film 47f, so it is not damaged by the etching of the insulating layer 42.
  • the insulating film 47f is removed from the portion overlapping the opening 20b, exposing the top and side surfaces of the semiconductor layer 21 (FIG. 13A). This also results in the formation of an insulating layer 47 located between the conductive layer 32 and the insulating layer 42, covering the end of the semiconductor layer 21.
  • the etching of the insulating film 47f is performed while minimizing damage to the semiconductor layer 21.
  • the insulating film 47f can be removed by wet etching.
  • the insulating film 47f may be etched by dry etching.
  • a heat treatment may be performed after etching the insulating film 47f.
  • the heat treatment may be performed under the above-mentioned conditions.
  • Insulating film 22f is formed to cover insulating layer 42, insulating layer 47, and semiconductor layer 21 and become insulating layer 22 (FIG. 13B). Insulating film 22f can be formed in the same manner as in Example 1 of the manufacturing method described above.
  • the insulating film 47f can be used as it is as the gate insulating layer (insulating layer 22) without etching. That is, after the opening 20b is formed, the conductive film 23f that becomes the conductive layer 23 can be formed. By using this method, the process can be simplified. On the other hand, if the insulating film 47f is damaged by etching and altered during the formation of the opening 20b, the gate insulating layer will contain defects, so it is preferable to form the insulating layer 22 separately from the insulating film 47f as described above.
  • the above steps allow the transistor 10b to be manufactured.
  • defects in the semiconductor layer 21 in which the channel is formed are reduced, suppressing variations in electrical characteristics and enabling the realization of a highly reliable transistor.
  • FIG. 14A shows a circuit diagram of memory cell 30.
  • Memory cell 30 is composed of one transistor Tr1 and one capacitance element C, and can also be written as 1Tr1C.
  • the gate of transistor Tr1 is connected to wiring WL, one of the source and drain is connected to wiring BL, and the other is connected to one electrode of capacitance element C.
  • the other electrode of capacitance element C is connected to wiring PL.
  • the memory cell 30 can store data by retaining in the capacitance element C the data potential input from the wiring BL via the transistor Tr1. Also, data can be retained by making the transistor Tr1 non-conductive. Also, by making the transistor Tr1 conductive, a potential corresponding to the retained data is output to the wiring BL, and the data can be read out. A signal that controls the conduction/non-conduction of the transistor Tr1 is applied to the wiring WL. Also, a predetermined potential (e.g., a fixed potential) is applied to the wiring PL.
  • a predetermined potential e.g., a fixed potential
  • FIGS. 14B and 14C show cross-sectional views of memory cell 30.
  • Memory cell 30 has a configuration in which transistor 10 is stacked on capacitive element 50.
  • Transistor 10 corresponds to transistor Tr1
  • capacitive element 50 corresponds to capacitive element C.
  • transistor 10 The configuration of transistor 10 can be seen from the above description, so a detailed description will be omitted. Note that, although an example using transistor 10 is shown here, the transistor is not limited to transistor 10 and can be replaced with any of the various transistors described above.
  • the capacitance element 50 has a conductive layer 51, a conductive layer 52, and an insulating layer 53 sandwiched between them.
  • the capacitance element 50 constitutes a so-called MIM (Metal-Insulator-Metal) capacitance.
  • the capacitance element 50 is provided on the insulating layer 11.
  • a conductive layer 34 is provided on the insulating layer 11, and an insulating layer 47 is provided on the conductive layer 34.
  • An opening 20c is provided in the insulating layer 47, reaching the conductive layer 34.
  • a conductive layer 51 is provided inside the opening 20c, contacting the side of the insulating layer 47 and the upper surface of the conductive layer 34.
  • An insulating layer 53 is provided to cover the insulating layer 47 and the conductive layer 51.
  • An insulating layer 48 is provided on the insulating layer 53, and an opening 20d is provided in the insulating layer 48, overlapping with the opening 20c.
  • a conductive layer 52 is provided so as to be embedded in the opening 20d and the opening 20c.
  • the conductive layer 52 and the insulating layer 48 have flattened upper surfaces and are roughly the same height.
  • the insulating layer 44 and the conductive layer 31 are provided on the conductive layer 52 and the insulating layer 48.
  • the conductive layer 31 is provided in contact with the upper surface of the conductive layer 52.
  • conductive layer 32 corresponds to wiring BL
  • conductive layer 33 corresponds to wiring WL
  • conductive layer 34 corresponds to the wiring PL.
  • a low-resistance conductive material can be used for the conductive layer 34, the conductive layer 51, and the conductive layer 52.
  • the material that can be used for the conductive layer 23 can be applied.
  • the insulating layer 53 functions as a dielectric layer for the capacitance element 50, so the thinner it is and the higher its relative dielectric constant, the greater the capacitance of the capacitance element 50 can be.
  • FIG. 15A and 15B show an example of a memory device in which two memory cells 30 are connected to a common wiring.
  • FIG. 15A is a schematic top view of the memory device
  • FIG. 15B is a schematic cross-sectional view taken along the cutting line A3-A4 in FIG. 15A.
  • the conductive layer 33 functioning as the wiring WL is provided individually for the two memory cells 30.
  • the conductive layer 32 functioning as the wiring BL is provided in common to the two memory cells 30.
  • the conductive layer 32 functioning as the wiring BL is embedded in each interlayer insulating layer and is electrically connected to the conductive layer 61 and the conductive layer 62 functioning as plugs (also called connection electrodes).
  • the conductive layer 61 may be electrically connected to a sense amplifier (not shown) provided below the insulating layer 11.
  • the conductive layer 61 may be electrically connected to the conductive layer 32 of the memory cell stacked above the insulating layer 65.
  • the insulating layer 65 functions as a barrier layer, preventing impurities such as water and hydrogen from diffusing into the memory device from the outside.
  • a memory cell array can be configured by arranging the memory cells 30 in a three-dimensional matrix.
  • Figs. 16A and 16B show an example of a storage device in which 4 x 2 x 4 memory cells 30 are arranged in the X, Y, and Z directions.
  • FIG. 16 shows eight memory units (memory unit 60[1,1] to memory unit 60[2,4]).
  • memory unit 60[a,b] (a and b are positive integers), a indicates an address in the Y direction, and b indicates an address in the Z direction.
  • the memory unit 60 two memory cells 30 are arranged symmetrically around the conductive layer 61 or conductive layer 62.
  • the conductive layers 32 of the memory units 60 stacked in the Z direction are electrically connected to each other by the conductive layer 62. In this way, by stacking multiple memory units 60, the memory capacity per unit area can be increased, and a memory device that can be miniaturized or highly integrated can be provided.
  • FIGS. 17A and 17B show an example in which the connection parts are arranged at the ends of the memory units.
  • a memory cell array an example of a storage device in which 3 x 3 x m (m is an integer of 2 or more) memory cells 30 are arranged is shown.
  • the first layer is denoted as layer 70[1]
  • the mth layer is denoted as layer 70[m].
  • the conductive layer 63 is provided outside the memory unit.
  • the conductive layer 63 may be connected to wiring in a layer above the layer 70 including the conductive layer 63.
  • the conductive layer 63 provided in the layer 70[1] is electrically connected to wiring in the layer 70[2].
  • this is not limited, and the conductive layer 63 may be configured to be electrically connected to wiring in the layer 70 located below the layer 70 including the conductive layer 63.
  • FIG. 18 shows an example of a cross-sectional configuration of a memory device in which a layer having memory cells 30 is stacked on a layer in which a drive circuit including a sense amplifier is provided.
  • FIG. 18 shows an example in which a capacitive element 50 is stacked above a transistor 90, and a transistor 10 is stacked on top of the capacitive element 50.
  • the transistor 90 is one of the transistors included in the sense amplifier.
  • the bit line can be made shorter. This reduces the load on the bit line, improving the sensitivity of the readout by the sense amplifier. This allows the storage capacitance of the memory cell to be reduced.
  • Transistor 90 is provided on substrate 91 and has a conductive layer 94 that functions as a gate, an insulating layer 93 that functions as a gate insulating layer, a semiconductor region 92 that is a part of substrate 91, and low-resistance regions 95a and 95b that function as source and drain regions.
  • Transistor 90 may be either a p-channel type or an n-channel type.
  • the semiconductor region 92 (part of the substrate 91) in which the channel is formed has a convex shape.
  • the side and top surfaces of the semiconductor region 92 are covered with a conductive layer 94 via an insulating layer 93.
  • This type of transistor 90 is also called a FIN type transistor because it utilizes the convex portion of the semiconductor substrate.
  • FIG. 18 shows an example in which the low-resistance region 95b of the transistor 90 is electrically connected to the conductive layer 32 that functions as the bit line of the memory cell 30 via wiring and a plug.
  • This embodiment can be implemented by combining at least a portion of it with other embodiments described in this specification.
  • ⁇ Configuration example of storage device> 19 is a block diagram illustrating a configuration example of a memory device 480 according to one embodiment of the present invention.
  • the memory device 480 illustrated in FIG. 19 includes a layer 420 and a stacked layer 470.
  • Layer 420 is a layer having a Si transistor.
  • element layers 430[1] to 430[m] (m is an integer of 2 or more) are stacked.
  • Element layers 430[1] to 430[m] are layers having an OS transistor.
  • Layer 470, in which layers having OS transistors are stacked, can be stacked on layer 420.
  • FIG. 19 shows an example in which the element layers 430[1] to 430[m] have a plurality of memory cells 432 arranged in a matrix of m rows and n columns (n is an integer of 2 or more).
  • the memory cell 432 in the first row and first column is indicated as memory cell 432[1,1] and the memory cell 432 in the mth row and nth column is indicated as memory cell 432[m,n].
  • an arbitrary row may be indicated as row i.
  • An arbitrary column may be indicated as column j.
  • i is an integer between 1 and m
  • j is an integer between 1 and n.
  • the memory cell 432 in the ith row and jth column is indicated as memory cell 432[i,j].
  • i+ ⁇ ⁇ is a positive or negative integer
  • the first wiring WL (first row) is shown as wiring WL[1], and the mth wiring WL (mth row) is shown as wiring WL[m].
  • the first wiring PL (first row) is shown as wiring PL[1]
  • the mth wiring PL (mth row) is shown as wiring PL[m].
  • the first wiring BL (first column) is shown as wiring BL[1]
  • the nth wiring BL (nth column) is shown as wiring BL[n]. Note that the number of layers of the element layers 430[1] to 430[m] and the number of wirings WL (and wirings PL) do not have to be the same.
  • the multiple memory cells 432 provided in the i-th row are electrically connected to the wiring WL (wiring WL[i]) in the i-th row and the wiring PL (wiring PL[i]) in the i-th row.
  • the multiple memory cells 432 provided in the j-th column are electrically connected to the wiring BL (wiring BL[j]) in the j-th column.
  • the wiring BL functions as a bit line for writing and reading data.
  • the wiring WL functions as a word line for controlling the on/off (conductive or non-conductive) of an access transistor that functions as a switch.
  • the wiring PL functions as a constant potential line connected to a capacitor. Note that a separate wiring for transmitting the backgate potential can be provided.
  • the memory cells 432 of the element layers 430[1] to 430[m] are connected to the sense amplifier 446 via wiring BL.
  • the wiring BL can be arranged in a parallel direction and a vertical direction of the substrate surface on which the layer 420 is provided.
  • the length of the wiring between the element layer 430 and the sense amplifier 446 can be shortened.
  • the signal propagation distance between the memory cell and the sense amplifier can be shortened, and the resistance and parasitic capacitance of the bit line can be significantly reduced, thereby reducing power consumption and signal delay. Therefore, the power consumption and signal delay of the memory device 480 can be reduced.
  • Layer 420 has PSW 471 (power switch), PSW 472, and peripheral circuit 422.
  • Peripheral circuit 422 has drive circuit 440, control circuit 473, and voltage generation circuit 474.
  • Each circuit in layer 420 has a Si transistor.
  • each circuit, signal, and voltage can be selected or removed as needed. Alternatively, other circuits or other signals may be added.
  • Signals BW, CE, GW, CLK, WAKE, ADDR, WDA, PON1, and PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • signals BW, CE, and GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • Signal WDA is write data
  • signal RDA is read data.
  • Signals PON1 and PON2 are power gating control signals. Signals PON1 and PON2 may be generated by control circuit 473.
  • the control circuit 473 is a logic circuit that has the function of controlling the overall operation of the memory device 480. For example, the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 480. Alternatively, the control circuit 473 generates a control signal for the drive circuit 440 so that this operation mode is executed.
  • the control circuit performs a logical operation on the signals CE, GW, and BW to determine the operation mode (e.g., write operation, read operation) of the memory device 480.
  • the control circuit 473 generates a control signal for the drive circuit 440 so that this operation mode is executed.
  • the voltage generation circuit 474 has the function of generating a negative voltage.
  • the signal WAKE has the function of controlling the input of the signal CLK to the voltage generation circuit 474. For example, when an H-level signal is given to the signal WAKE, the signal CLK is input to the voltage generation circuit 474, and the voltage generation circuit 474 generates a negative voltage.
  • the drive circuit 440 is a circuit for writing and reading data to the memory cells 432.
  • the drive circuit 440 has a row decoder 442, a column decoder 444, a row driver 443, a column driver 445, an input circuit 447, an output circuit 448, and the sense amplifier 446 described above.
  • the row decoder 442 and column decoder 444 have the function of decoding the signal ADDR.
  • the row decoder 442 is a circuit for specifying the row to be accessed
  • the column decoder 444 is a circuit for specifying the column to be accessed.
  • the row driver 443 has the function of selecting the wiring WL specified by the row decoder 442.
  • the column driver 445 has the function of writing data to the memory cell 432, reading data from the memory cell 432, and retaining the read data.
  • the input circuit 447 has a function of holding a signal WDA.
  • the data held by the input circuit 447 is output to the column driver 445.
  • the output data of the input circuit 447 is the data (Din) to be written to the memory cell 432.
  • the data (Dout) read from the memory cell 432 by the column driver 445 is output to the output circuit 448.
  • the output circuit 448 has a function of holding Dout.
  • the output circuit 448 has a function of outputting Dout to the outside of the memory device 480.
  • the data output from the output circuit 448 is the signal RDA.
  • PSW471 has a function of controlling the supply of VDD to the peripheral circuit 422.
  • PSW472 has a function of controlling the supply of VHM to the row driver 443.
  • the high power supply voltage of the memory device 480 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to set the word line to a high level, and is higher than VDD.
  • the on/off of PSW471 is controlled by signal PON1, and the on/off of PSW472 is controlled by signal PON2.
  • the number of power domains to which VDD is supplied in the peripheral circuit 422 is one, but it is also possible to have multiple power domains. In this case, a power switch can be provided for each power domain.
  • the element layer 430 provided in the first layer is shown as element layer 430[1]
  • the element layer 430 provided in the second layer is shown as element layer 430[2]
  • the element layer 430 provided in the fifth layer is shown as element layer 430[5].
  • wiring WL and wiring PL extending in the X direction
  • wiring BL and wiring BLB extending in the Y direction and Z direction (directions perpendicular to the substrate surface on which the driver circuit is provided).
  • Wiring BLB is an inverted bit line. Note that in order to make the drawing easier to understand, some of the wiring WL and wiring PL of each element layer 430 are omitted.
  • FIG. 20B is a schematic diagram illustrating a configuration example of the sense amplifier 446 connected to the wiring BL and wiring BLB shown in FIG. 20A, and the memory cells 432 included in the element layers 430[1] to 430[5] connected to the wiring BL and wiring BLB. Note that a configuration in which multiple memory cells (memory cells 432) are electrically connected to one wiring BL and wiring BLB is also referred to as a "memory string.”
  • the 20B illustrates an example of a circuit configuration of a memory cell 432 connected to wiring BLB.
  • the memory cell 432 includes a transistor 437 and a capacitor 438.
  • the transistor 437, the capacitor 438, and each wiring (BL, WL, etc.) may also be referred to as wiring BL and wiring WL, instead of wiring BL[1] and wiring WL[1].
  • the memory cell 30 illustrated in the previous embodiment can be used as the memory cell 432. That is, the transistor 10 can be used as the transistor 437, and the capacitor 50 can be used as the capacitor 438.
  • the transistor included in the sense amplifier 446 can be a transistor 90 (see FIG. 18).
  • one of the source and drain of the transistor 437 is connected to the wiring BL.
  • the other of the source and drain of the transistor 437 is connected to one electrode of the capacitor 438.
  • the other electrode of the capacitor 438 is connected to the wiring PL.
  • the gate of the transistor 437 is connected to the wiring WL.
  • the wiring PL is a wiring that provides a constant potential to maintain the potential of the capacitor element 438. By connecting multiple wirings PL together and using them as one wiring, the number of wirings can be reduced.
  • OS transistors are stacked and wirings that function as bit lines are arranged in a direction perpendicular to the surface of the substrate on which the layer 420 is provided.
  • the transistor 437 and the capacitor 438 of the memory cell 432 are arranged in a direction perpendicular to the surface of the substrate on which the layer 420 is provided.
  • 21A and 21B show a circuit diagram corresponding to the memory cell 432 described above and a circuit block diagram corresponding to the circuit diagram.
  • the memory cell 432 may be shown as a block in the drawings. Note that the wiring BL shown in Fig. 21A and Fig. 21B can be similarly expressed when replaced with a wiring BLB.
  • 21C and 21D show a circuit diagram corresponding to the above-mentioned sense amplifier 446 and a circuit block diagram corresponding to the circuit diagram.
  • the sense amplifier 446 shows a switch circuit 482, a precharge circuit 483, a precharge circuit 484, and an amplifier circuit 485.
  • wiring SA_OUT and wiring SA_OUTB that output the read signal are also shown.
  • the switch circuit 482 has, for example, n-channel transistors 482_1 and 482_2.
  • the transistors 482_1 and 482_2 switch the conduction state between the wiring pair of the wiring SA_OUT and the wiring SA_OUTB and the wiring pair of the wiring BL and the wiring BLB in response to the signal CSEL.
  • the precharge circuit 483 is composed of n-channel transistors 483_1 to 483_3 as shown in FIG. 21C.
  • the precharge circuit 483 is a circuit for precharging the wiring BL and the wiring BLB to an intermediate potential VPRE that corresponds to a potential VDD/2 in response to a signal EQ.
  • the precharge circuit 484 is composed of p-channel transistors 484_1 to 484_3 as shown in FIG. 21C.
  • the precharge circuit 484 is a circuit for precharging the wiring BL and the wiring BLB to an intermediate potential VPRE that corresponds to a potential VDD/2 in response to a signal EQB.
  • the amplifier circuit 485 is composed of p-channel transistors 485_1 and 485_2 and n-channel transistors 485_3 and 485_4 connected to a wiring SAP or wiring SAN.
  • the wiring SAP or wiring SAN is a wiring that has a function of providing VDD or VSS.
  • the transistors 485_1 to 485_4 are transistors that form an inverter loop.
  • FIG. 21D also shows a circuit block diagram corresponding to the sense amplifier 446 described in FIG. 21C etc. As shown in FIG. 21D, the sense amplifier 446 may be represented as a block in drawings etc.
  • FIG. 22 is a circuit diagram of the memory device 480 of FIG. 19. In FIG. 22, the circuit blocks described in FIG. 21A to FIG. 21D are used for illustration.
  • the layer 470 including the element layer 430[m] has a memory cell 432.
  • the memory cell 432 shown in FIG. 22 is connected to a pair of wirings BL[1] and BLB[1], or wirings BL[2] and BLB[2], as an example.
  • the memory cell 432 connected to the wiring BL is a memory cell to which data is written or read.
  • the wiring BL[1] and the wiring BLB[1] are connected to the sense amplifier 446[1], and the wiring BL[2] and the wiring BLB[2] are connected to the sense amplifier 446[2].
  • the sense amplifier 446[1] and the sense amplifier 446[2] can read data in response to the various signals described in FIG. 21C.
  • This embodiment can be implemented by combining at least a portion of it with other embodiments described in this specification.
  • a display device to which the transistor of one embodiment of the present invention is applied can be a display device with extremely high resolution.
  • the display device of one embodiment of the present invention can be used in the display portion of a wristwatch-type or bracelet-type information terminal (wearable device), as well as in the display portion of a head-mounted display (HMD), a VR device such as a head-mounted display, and a glasses-type AR device that can be worn on the head.
  • Display module 23A shows a perspective view of a display module 280.
  • the display module 280 includes a display device 200A and an FPC 290.
  • the display panel included in the display module 280 is not limited to the display device 200A, and may be a display device 200B or a display device 200C described later.
  • Display module 280 has substrate 291 and substrate 292.
  • Display module 280 has display section 281.
  • Display section 281 is an area that displays an image.
  • FIG. 23B shows a perspective view that shows a schematic configuration on the substrate 291 side.
  • a circuit section 282 On the substrate 291, a circuit section 282, a pixel circuit section 283 on the circuit section 282, and a pixel section 284 on the pixel circuit section 283 are stacked.
  • a terminal section 285 for connecting to an FPC 290 is provided in a portion of the substrate 291 that does not overlap with the pixel section 284.
  • the terminal section 285 and the circuit section 282 are electrically connected by a wiring section 286 that is composed of a plurality of wirings.
  • the pixel section 284 has a number of pixels 284a arranged periodically. An enlarged view of one pixel 284a is shown on the right side of FIG. 23B.
  • the pixel 284a has a light-emitting element 110R that emits red light, a light-emitting element 110G that emits green light, and a light-emitting element 110B that emits blue light.
  • the pixel circuit section 283 has a number of pixel circuits 283a arranged periodically. Each pixel circuit 283a is a circuit that controls the light emission of three light-emitting devices in one pixel 284a.
  • One pixel circuit 283a may be configured to have three circuits that control the light emission of one light-emitting device.
  • the pixel circuit 283a may be configured to have at least one selection transistor, one current control transistor (drive transistor), and a capacitance element for each light-emitting device. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to the source. This realizes an active matrix display panel.
  • the circuit portion 282 has a circuit that drives each pixel circuit 283a of the pixel circuit portion 283.
  • a gate line driver circuit and a source line driver circuit may have at least one of an arithmetic circuit, a memory circuit, a power supply circuit, etc.
  • a transistor provided in the circuit portion 282 may constitute a part of the pixel circuit 283a.
  • the pixel circuit 283a may be constituted by a transistor included in the pixel circuit portion 283 and a transistor included in the circuit portion 282.
  • the FPC 290 functions as wiring for supplying video signals, power supply potential, etc. from the outside to the circuit section 282.
  • An IC may also be mounted on the FPC 290.
  • the display module 280 can be configured such that one or both of the pixel circuit section 283 and the circuit section 282 are provided overlappingly under the pixel section 284, so that the aperture ratio (effective display area ratio) of the display section 281 can be extremely high.
  • the aperture ratio of the display section 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, and more preferably 60% or more and 95% or less.
  • the pixels 284a can be arranged at an extremely high density, so that the resolution of the display section 281 can be extremely high.
  • the pixels 284a are arranged in the display section 281 at a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and even more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less.
  • a display module 280 Since such a display module 280 has extremely high resolution, it can be suitably used in VR devices such as head-mounted displays, or glasses-type AR devices. For example, even in a configuration in which the display section of the display module 280 is viewed through a lens, the display module 280 has an extremely high resolution display section 281, so that even if the display section is enlarged with a lens, the pixels are not visible, and a highly immersive display can be performed. Furthermore, the display module 280 is not limited to this, and can be suitably used in electronic devices with relatively small display sections. For example, it can be suitably used in the display section of a wearable electronic device such as a wristwatch.
  • the display device 200A shown in FIG. 24 includes a substrate 331, a light emitting element 110R, a light emitting element 110G, a light emitting element 110B, a capacitor 240, and a transistor 320.
  • Substrate 331 corresponds to substrate 291 in FIG. 23A.
  • Transistor 320 is a vertical channel transistor in which an oxide semiconductor is applied to the semiconductor layer in which the channel is formed.
  • Transistor 320 has a semiconductor layer 321, an insulating layer 323, a conductive layer 324, a conductive layer 325, and a conductive layer 326.
  • the various transistors exemplified in embodiment 1 can be used for transistor 320.
  • An insulating layer 332 is provided on the substrate 331.
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 to the transistor 320 and prevents oxygen from being released from the semiconductor layer 321 to the insulating layer 332 side.
  • a film in which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 327 is provided on the insulating layer 332, and a conductive layer 325 is provided on the conductive layer 327.
  • An insulating layer 334 is provided on the conductive layer 325, and a conductive layer 326 is provided on the insulating layer 334.
  • An opening is provided in the insulating layer 334 and the conductive layer 326, and a semiconductor layer 321 is provided in the opening.
  • An insulating layer 264 is provided to cover the semiconductor layer 321 and the conductive layer 326, and an insulating layer 323 and a conductive layer 324 are stacked in this order in the opening provided in the insulating layer 264.
  • An insulating layer 265 and a conductive layer 328 are provided on the insulating layer 264 and the conductive layer 324.
  • An insulating layer 266 is provided on the insulating layer 265 and the conductive layer 328.
  • the insulating layers 264, 265, and 266 function as interlayer insulating layers.
  • a barrier layer may be provided between the insulating layers 266 and 265 to prevent impurities such as water or hydrogen from diffusing from the insulating layer 266 to the transistor 320.
  • An insulating film similar to the insulating layer 332 can be used as the barrier layer.
  • a plug 274 electrically connected to one side of the conductive layer 326 is provided so as to be embedded in the insulating layer 266, the insulating layer 265, and the insulating layer 264.
  • the plug 274 preferably has a conductive layer 274a covering the side surfaces of the openings of the insulating layer 266, the insulating layer 265, and the insulating layer 264, and a part of the upper surface of the conductive layer 326, and a conductive layer 274b in contact with the upper surface of the conductive layer 274a.
  • a capacitor 240 is provided on the insulating layer 266.
  • the capacitor 240 has a conductive layer 241, a conductive layer 245, and an insulating layer 243 located between them.
  • the conductive layer 241 functions as one electrode of the capacitor 240
  • the conductive layer 245 functions as the other electrode of the capacitor 240
  • the insulating layer 243 functions as a dielectric of the capacitor 240.
  • the conductive layer 241 is provided on the insulating layer 266 and is embedded in the insulating layer 254.
  • the conductive layer 241 is electrically connected to the conductive layer 326 of the transistor 320 by a plug 274.
  • the insulating layer 243 is provided to cover the conductive layer 241.
  • the conductive layer 245 is provided in a region that overlaps with the conductive layer 241 via the insulating layer 243.
  • An insulating layer 255a is provided covering the capacitor 240, an insulating layer 255b is provided on the insulating layer 255a, and an insulating layer 255c is provided on the insulating layer 255b.
  • Insulating layer 255a, insulating layer 255b, and insulating layer 255c can each preferably be made of an inorganic insulating film.
  • a silicon oxide film for insulating layer 255a and insulating layer 255c and a silicon nitride film for insulating layer 255b. This allows insulating layer 255b to function as an etching protection film.
  • an example is shown in which part of insulating layer 255c is etched to form a recess, but insulating layer 255c does not necessarily have to have a recess.
  • Light emitting elements 110R, 110G, and 110B are provided on insulating layer 255c. Details of light emitting elements 110R, 110G, and 110B are described in embodiment 3.
  • Light-emitting element 110R has pixel electrode 111R, organic layer 112R, common layer 114, and common electrode 113.
  • Light-emitting element 110G has pixel electrode 111G, organic layer 112G, common layer 114, and common electrode 113.
  • Light-emitting element 110B has pixel electrode 111B, organic layer 112B, common layer 114, and common electrode 113.
  • Common layer 114 and common electrode 113 are provided in common to light-emitting element 110R, light-emitting element 110G, and light-emitting element 110B.
  • the organic layer 112R of the light-emitting element 110R has a light-emitting organic compound that emits at least red light.
  • the organic layer 112G of the light-emitting element 110G has a light-emitting organic compound that emits at least green light.
  • the organic layer 112B of the light-emitting element 110B has a light-emitting organic compound that emits at least blue light.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B can each be called an EL layer, and have at least a layer (light-emitting layer) that contains a light-emitting organic compound.
  • display device 200A a separate light-emitting device is created for each emitted color, so there is little change in chromaticity between light emitted at low and high luminance.
  • organic layers 112R, 112G, and 112B are spaced apart from each other, crosstalk between adjacent subpixels can be suppressed even in a high-definition display panel. This makes it possible to realize a display panel that is both high-definition and has high display quality.
  • the pixel electrodes 111R, 111G, and 111B of the light-emitting element are electrically connected to the conductive layer 326 of the transistor 320 by the plug 256 embedded in the insulating layers 255a, 255b, and 255c, the conductive layer 241 embedded in the insulating layer 254, and the plug 274.
  • the height of the top surface of the insulating layer 255c and the height of the top surface of the plug 256 are the same or approximately the same.
  • Various conductive materials can be used for the plug.
  • a protective layer 121 is provided on the light-emitting elements 110R, 110G, and 110B.
  • a substrate 170 is attached to the protective layer 121 by an adhesive layer 171.
  • Display device 200B A display device having a configuration partially different from that described above will be described below, but the same configuration as the above will be referred to and the description thereof may be omitted.
  • the display device 200B shown in FIG. 25 shows an example in which a transistor 320A, which is a planar type transistor in which a semiconductor layer is formed on a flat surface, and a transistor 320B, which is a vertical channel type transistor, are stacked.
  • the transistor 320B has a similar configuration to the transistor 320 in the display device 200A described above.
  • Transistor 320A has a semiconductor layer 351, an insulating layer 353, a conductive layer 354, a pair of conductive layers 355, an insulating layer 356, and a conductive layer 357.
  • the insulating layer 352 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 to the transistor 320 and prevents oxygen from being released from the semiconductor layer 351 toward the insulating layer 352.
  • impurities such as water or hydrogen
  • an aluminum oxide film, a hafnium oxide film, a silicon nitride film, or other film through which hydrogen or oxygen is less likely to diffuse than a silicon oxide film can be used as the insulating layer 352.
  • a conductive layer 357 is provided on the insulating layer 352, and an insulating layer 356 is provided covering the conductive layer 357.
  • the conductive layer 357 functions as a first gate electrode of the transistor 320A, and a part of the insulating layer 356 functions as a first gate insulating layer. It is preferable to use an oxide insulating film such as a silicon oxide film for at least the portion of the insulating layer 356 that is in contact with the semiconductor layer 351. It is preferable that the upper surface of the insulating layer 356 is planarized.
  • the semiconductor layer 351 is provided on the insulating layer 356.
  • the semiconductor layer 351 preferably has a metal oxide (also called an oxide semiconductor) film that exhibits semiconductor characteristics.
  • a pair of conductive layers 355 is provided on and in contact with the semiconductor layer 351 and functions as a source electrode and a drain electrode.
  • Insulating layers 358 and 350 are provided to cover the top and side surfaces of the pair of conductive layers 355 and the side surfaces of the semiconductor layer 351.
  • the insulating layer 358 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 351 and prevents oxygen from being released from the semiconductor layer 351.
  • the insulating layer 358 can be an insulating film similar to the insulating layer 352.
  • Insulating layer 358 and insulating layer 350 have openings that reach semiconductor layer 351. Inside the openings, insulating layer 353 in contact with the upper surface of semiconductor layer 351 and conductive layer 354 are embedded. Conductive layer 354 functions as a second gate electrode, and insulating layer 353 functions as a second gate insulating layer.
  • the top surface of the conductive layer 354, the top surface of the insulating layer 353, and the top surface of the insulating layer 350 are planarized so that their heights are the same or approximately the same, and an insulating layer 359 is provided to cover them.
  • the insulating layer 359 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 320.
  • the insulating layer 359 can be an insulating film similar to the insulating layer 352 described above.
  • Transistor 320 has a configuration in which a semiconductor layer in which a channel is formed is sandwiched between two gates.
  • the two gates may be connected and the transistor may be driven by supplying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential to one of the two gates for controlling the threshold voltage and a potential to drive the other.
  • a display device 200C shown in FIG. 26 has a structure in which a transistor 310 having a channel formed in a semiconductor substrate and a transistor 320 which is a vertical channel transistor are stacked.
  • the transistor 310 has a channel formation region in the substrate 301.
  • the substrate 301 may be a semiconductor substrate such as a single crystal silicon substrate.
  • the transistor 310 has a part of the substrate 301, a conductive layer 311, a low resistance region 312, an insulating layer 313, and an insulating layer 314.
  • the conductive layer 311 functions as a gate electrode.
  • the insulating layer 313 is located between the substrate 301 and the conductive layer 311, and functions as a gate insulating layer.
  • the low resistance region 312 is a region in which the substrate 301 is doped with impurities, and functions as either a source or a drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311.
  • an element isolation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301.
  • This embodiment can be implemented by combining at least a portion of it with other embodiments described in this specification.
  • Embodiment 4 a structural example of a display device that can be used for a display device manufactured using a transistor according to one embodiment of the present invention will be described.
  • the display device described below can be used for the pixel portion 284 in the above-described embodiment 3, or the like.
  • One embodiment of the present invention is a display device having a light-emitting element (also called a light-emitting device).
  • the display device has two or more pixels that emit different light colors.
  • Each pixel has a light-emitting element.
  • Each light-emitting element has a pair of electrodes and an EL layer between them.
  • the light-emitting element is preferably an organic EL element (organic electroluminescent element).
  • Two or more light-emitting elements that emit different light colors each have an EL layer that contains a different light-emitting material.
  • a full-color display device can be realized by having three types of light-emitting elements that emit red (R), green (G), or blue (B) light.
  • the contour of the layer may become blurred and the thickness of the edge may become thin.
  • the thickness of the island-shaped light-emitting layer may vary depending on the location.
  • measures have been taken to artificially increase the definition (also called pixel density) by adopting a special pixel arrangement method such as a pentile arrangement.
  • an island-like light-emitting layer refers to a state in which the light-emitting layer is physically separated from the adjacent light-emitting layer.
  • the EL layer is processed into a fine pattern by photolithography without using a shadow mask such as a fine metal mask (FMM).
  • FMM fine metal mask
  • the EL layer can be produced separately, a display device that is extremely vivid, has high contrast, and has high display quality can be realized.
  • the EL layer may be processed into a fine pattern using both a metal mask and photolithography.
  • a part or the whole of the EL layer can be physically separated. This makes it possible to suppress leakage current between light-emitting elements via a layer shared between adjacent light-emitting elements (also called a common layer). This makes it possible to prevent crosstalk caused by unintended light emission, and to realize a display device with extremely high contrast. In particular, it makes it possible to realize a display device with high current efficiency at low luminance.
  • One aspect of the present invention can be a display device that combines a white-emitting light-emitting element with a color filter.
  • light-emitting elements of the same configuration can be applied to light-emitting elements provided in pixels (subpixels) that emit light of different colors, and all layers can be common layers. Furthermore, a part or all of each EL layer can be divided by photolithography. This suppresses leakage current through the common layer, and a display device with high contrast can be realized.
  • leakage current through the intermediate layer can be effectively prevented, and a display device that combines high brightness, high definition, and high contrast can be realized.
  • the insulating layer that covers at least the side surface of the island-shaped light-emitting layer.
  • the insulating layer may be configured to cover a part of the top surface of the island-shaped EL layer.
  • a material that has barrier properties against water and oxygen For example, an inorganic insulating film that does not easily diffuse water or oxygen can be used. This makes it possible to suppress deterioration of the EL layer and realize a highly reliable display device.
  • FIG. 27A shows a schematic top view of a display device 100 according to one embodiment of the present invention.
  • the display device 100 includes a plurality of light-emitting elements 110R that exhibit red light, a plurality of light-emitting elements 110G that exhibit green light, and a plurality of light-emitting elements 110B that exhibit blue light, over a substrate 101.
  • the symbols R, G, and B are assigned within the light-emitting regions of the light-emitting elements in order to easily distinguish between the light-emitting elements.
  • Light emitting elements 110R, 110G, and 110B are each arranged in a matrix.
  • Figure 27A shows a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction. Note that the method of arranging the light emitting elements is not limited to this, and arrangement methods such as an S-stripe arrangement, a delta arrangement, a Bayer arrangement, or a zigzag arrangement may also be used, and a pentile arrangement, diamond arrangement, etc. may also be used.
  • the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B for example, it is preferable to use an OLED (organic light-emitting diode) or a QLED (quantum-dot light-emitting diode).
  • the light-emitting material possessed by the EL element include a material that emits fluorescence (fluorescent material), a material that emits phosphorescence (phosphorescent material), and a material that exhibits thermally activated delayed fluorescence (thermally activated delayed fluorescence (TADF) material).
  • TADF thermally activated delayed fluorescence
  • the light-emitting material possessed by the EL element not only organic compounds but also inorganic compounds (such as quantum dot materials) can be used.
  • FIG. 27A also shows a connection electrode 111C that is electrically connected to the common electrode 113.
  • the connection electrode 111C is given a potential (e.g., an anode potential or a cathode potential) to be supplied to the common electrode 113.
  • the connection electrode 111C is provided outside the display area where the light-emitting elements 110R and the like are arranged.
  • connection electrode 111C can be provided along the periphery of the display area. For example, it may be provided along one side of the periphery of the display area, or it may be provided over two or more sides of the periphery of the display area. In other words, if the top surface shape of the display area is rectangular, the top surface shape of the connection electrode 111C can be strip-shaped (rectangular), L-shaped, U-shaped (square bracket shaped), square, or the like.
  • FIGS. 27B and 27C are schematic cross-sectional views corresponding to dashed lines A1-A2 and A3-A4 in FIG. 27A, respectively.
  • FIG. 27B shows schematic cross-sectional views of light-emitting element 110R, light-emitting element 110G, and light-emitting element 110B
  • FIG. 27C shows a schematic cross-sectional view of connection portion 140 where connection electrode 111C and common electrode 113 are connected.
  • Light-emitting element 110R has pixel electrode 111R, organic layer 112R, common layer 114, and common electrode 113.
  • Light-emitting element 110G has pixel electrode 111G, organic layer 112G, common layer 114, and common electrode 113.
  • Light-emitting element 110B has pixel electrode 111B, organic layer 112B, common layer 114, and common electrode 113.
  • Common layer 114 and common electrode 113 are provided in common to light-emitting element 110R, light-emitting element 110G, and light-emitting element 110B.
  • the organic layer 112R of the light-emitting element 110R has a light-emitting organic compound that emits at least red light.
  • the organic layer 112G of the light-emitting element 110G has a light-emitting organic compound that emits at least green light.
  • the organic layer 112B of the light-emitting element 110B has a light-emitting organic compound that emits at least blue light.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B can each be called an EL layer, and have at least a layer (light-emitting layer) that contains a light-emitting organic compound.
  • light-emitting element 110R when describing matters common to light-emitting element 110R, light-emitting element 110G, and light-emitting element 110B, they may be referred to as light-emitting element 110.
  • components distinguished by alphabets such as organic layer 112R, organic layer 112G, and organic layer 112B, they may be described using symbols without the alphabet.
  • the organic layer 112 and the common layer 114 can each independently have one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the organic layer 112 can have a layered structure of a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer from the pixel electrode 111 side, and the common layer 114 can have an electron injection layer.
  • the pixel electrode 111R, pixel electrode 111G, and pixel electrode 111B are provided for each light-emitting element.
  • the common electrode 113 and common layer 114 are provided as a continuous layer common to each light-emitting element.
  • a conductive film that is transparent to visible light is used for either one of the pixel electrodes or the common electrode 113, and a conductive film that is reflective is used for the other.
  • a protective layer 121 is provided on the common electrode 113, covering the light-emitting elements 110R, 110G, and 110B.
  • the protective layer 121 has the function of preventing impurities such as water from diffusing from above into each light-emitting element.
  • the end of the pixel electrode 111 is preferably tapered.
  • the organic layer 112 provided along the end of the pixel electrode 111 can also be tapered.
  • the coverage of the organic layer 112 provided over the end of the pixel electrode 111 can be improved.
  • foreign matter for example, also called dust or particles
  • a tapered shape refers to a shape in which at least a portion of the side of the structure is inclined with respect to the substrate surface.
  • the structure it is preferable for the structure to have a region in which the angle between the inclined side and the substrate surface (also called the taper angle) is less than 90°.
  • the organic layer 112 is processed into an island shape by photolithography. Therefore, the angle between the top surface and the side surface of the organic layer 112 at its edge is close to 90 degrees.
  • an organic film formed using FMM (Fine Metal Mask) or the like tends to become gradually thinner the closer it is to the edge.
  • the top surface is formed in a slope over a range of 1 ⁇ m to 10 ⁇ m to the edge, resulting in a shape in which it is difficult to distinguish between the top surface and the side surface.
  • an insulating layer 125 Between two adjacent light-emitting elements are an insulating layer 125, a resin layer 126, and a layer 128.
  • the resin layer 126 is located between the two adjacent light-emitting elements, and is provided so as to fill the ends of each organic layer 112 and the area between the two organic layers 112.
  • the resin layer 126 has a smooth convex upper surface, and a common layer 114 and a common electrode 113 are provided covering the upper surface of the resin layer 126.
  • the resin layer 126 functions as a planarization film that fills in the step between two adjacent light-emitting elements. By providing the resin layer 126, it is possible to prevent the phenomenon in which the common electrode 113 is divided by the step at the end of the organic layer 112 (also called step disconnection), which would cause the common electrode on the organic layer 112 to become insulated.
  • the resin layer 126 can also be called an LFP (Local Filling Planarization) layer.
  • an insulating layer containing an organic material can be suitably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene resin, phenol resin, and precursors of these resins can be applied.
  • organic materials such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin can be used.
  • a photosensitive resin can be used as the resin layer 126.
  • a photoresist can be used as the photosensitive resin.
  • a positive type material or a negative type material can be used as the photosensitive resin.
  • the resin layer 126 may contain a material that absorbs visible light.
  • the resin layer 126 itself may be made of a material that absorbs visible light, or the resin layer 126 may contain a pigment that absorbs visible light.
  • the resin layer 126 may be, for example, a resin that can be used as a color filter that transmits red, blue, or green light and absorbs other light, or a resin that contains carbon black as a pigment and functions as a black matrix.
  • the insulating layer 125 is provided in contact with the side surface of the organic layer 112.
  • the insulating layer 125 is also provided to cover the upper end portion of the organic layer 112.
  • a portion of the insulating layer 125 is also provided in contact with the upper surface of the substrate 101.
  • the insulating layer 125 is located between the resin layer 126 and the organic layer 112, and functions as a protective film to prevent the resin layer 126 from coming into contact with the organic layer 112. If the organic layer 112 and the resin layer 126 come into contact with each other, the organic layer 112 may dissolve due to the organic solvent used in forming the resin layer 126. Therefore, by providing the insulating layer 125 between the organic layer 112 and the resin layer 126, it is possible to protect the side surface of the organic layer 112.
  • the insulating layer 125 may be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film may be used for the insulating layer 125.
  • the insulating layer 125 may have a single layer structure or a laminated structure.
  • the oxide insulating film examples include a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, and a tantalum oxide film.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • the oxynitride insulating film examples include a silicon oxynitride film and an aluminum oxynitride film.
  • nitride oxide insulating film examples include a silicon nitride oxide film and an aluminum nitride oxide film.
  • an inorganic insulating film such as an aluminum oxide film or a hafnium oxide film formed by the ALD method to the insulating layer 125, an insulating layer 125 with few pinholes and excellent function of protecting the EL layer can be formed.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen
  • the insulating layer 125 can be formed by sputtering, CVD, PLD, ALD, or the like. It is preferable to form the insulating layer 125 by the ALD method, which has good coating properties.
  • a reflective film e.g., a metal film containing one or more selected from silver, palladium, copper, titanium, aluminum, etc.
  • a reflective film may be provided between the insulating layer 125 and the resin layer 126, and the light emitted from the light-emitting layer may be reflected by the reflective film. This can improve the light extraction efficiency.
  • Layer 128 is a portion of a protective layer (also called a mask layer or a sacrificial layer) that protects organic layer 112 when the organic layer 112 is etched.
  • a protective layer also called a mask layer or a sacrificial layer
  • the material that can be used for insulating layer 125 can be used for layer 128. In particular, it is preferable to use the same material for layer 128 and insulating layer 125, since the same processing equipment can be used for both layers.
  • inorganic insulating films such as aluminum oxide films, metal oxide films such as hafnium oxide films, and silicon oxide films formed by the ALD method have few pinholes, so they have excellent functionality for protecting the EL layer and can be suitably used for insulating layer 125 and layer 128.
  • the protective layer 121 can have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • the inorganic insulating film include oxide films or nitride films such as a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, an aluminum oxynitride film, and a hafnium oxide film.
  • a semiconductor material or a conductive material such as indium gallium oxide, indium zinc oxide, indium tin oxide, or indium gallium zinc oxide may be used as the protective layer 121.
  • the protective layer 121 may be a laminated film of an inorganic insulating film and an organic insulating film.
  • an organic insulating film is sandwiched between a pair of inorganic insulating films.
  • the organic insulating film it is preferable for the organic insulating film to function as a planarizing film. This allows the upper surface of the organic insulating film to be flat, improving the coverage of the inorganic insulating film thereon and enhancing the barrier properties.
  • the upper surface of the protective layer 121 is flat, it is preferable that when a structure (e.g., a color filter, an electrode of a touch sensor, or a lens array) is provided above the protective layer 121, the effect of uneven shapes caused by the structure below can be reduced.
  • a structure e.g., a color filter, an electrode of a touch sensor, or a lens array
  • FIG. 27C shows a connection portion 140 where the connection electrode 111C and the common electrode 113 are electrically connected.
  • connection portion 140 an opening is provided in the insulating layer 125 and the resin layer 126 above the connection electrode 111C.
  • the connection electrode 111C and the common electrode 113 are electrically connected in the opening.
  • FIG. 27C shows a connection portion 140 that electrically connects the connection electrode 111C and the common electrode 113
  • the common electrode 113 may be provided on the connection electrode 111C via the common layer 114.
  • the electrical resistivity of the material used for the common layer 114 is sufficiently low and the common layer 114 can be formed thin, so there are many cases where no problem occurs even if the common layer 114 is located at the connection portion 140. This allows the common electrode 113 and the common layer 114 to be formed using the same shielding mask, thereby reducing manufacturing costs.
  • FIG. 28A shows a schematic cross-sectional view of the display device 100a.
  • the display device 100a differs from the display device 100 described above mainly in that the light-emitting element has a different configuration and in that the display device 100a has a colored layer.
  • the display device 100a has a light-emitting element 110W that emits white light.
  • the light-emitting element 110W has a pixel electrode 111, an organic layer 112W, a common layer 114, and a common electrode 113.
  • the organic layer 112W emits white light.
  • the organic layer 112W can be configured to include two or more types of light-emitting materials whose emitted light colors are complementary to each other.
  • the organic layer 112W can be configured to include a light-emitting organic compound that emits red light, a light-emitting organic compound that emits green light, and a light-emitting organic compound that emits blue light. It may also be configured to include a light-emitting organic compound that emits blue light and a light-emitting organic compound that emits yellow light.
  • the organic layers 112W are separated between two adjacent light-emitting elements 110W. This makes it possible to suppress leakage current flowing between adjacent light-emitting elements 110W via the organic layers 112W, and to suppress crosstalk caused by the leakage current. This makes it possible to realize a display device with high contrast and color reproducibility.
  • An insulating layer 122 that functions as a planarizing film is provided on the protective layer 121, and colored layers 116R, 116G, and 116B are provided on the insulating layer 122.
  • the insulating layer 122 can be an organic resin film or an inorganic insulating film with a flattened upper surface.
  • the insulating layer 122 forms the surface on which the colored layers 116R, 116G, and 116B are formed. Therefore, by making the upper surface of the insulating layer 122 flat, the thickness of the colored layers 116R, etc. can be made uniform, thereby improving the color purity. Note that if the thickness of the colored layers 116R, etc. is not uniform, the amount of light absorbed will vary depending on the location of the colored layer 116R, which may result in a decrease in color purity.
  • FIG. 28B shows a schematic cross-sectional view of the display device 100b.
  • Light-emitting element 110R has pixel electrode 111, conductive layer 115R, organic layer 112W, and common electrode 113.
  • Light-emitting element 110G has pixel electrode 111, conductive layer 115G, organic layer 112W, and common electrode 113.
  • Light-emitting element 110B has pixel electrode 111, conductive layer 115B, organic layer 112W, and common electrode 113.
  • Conductive layer 115R, conductive layer 115G, and conductive layer 115B each have translucency and function as an optical adjustment layer.
  • a microresonator (microcavity) structure By using a film that reflects visible light for the pixel electrode 111 and a film that is both reflective and transparent to visible light for the common electrode 113, a microresonator (microcavity) structure can be realized.
  • a microresonator (microcavity) structure By adjusting the thicknesses of the conductive layers 115R, 115G, and 115B so as to provide optimal optical path lengths, it is possible to obtain intensified light of different wavelengths from the light-emitting elements 110R, 110G, and 110B, even when an organic layer 112 that emits white light is used.
  • colored layers 116R, 116G, and 116B are provided on the optical paths of light-emitting elements 110R, 110G, and 110B, respectively, to obtain light with high color purity.
  • an insulating layer 123 is provided to cover the ends of the pixel electrode 111 and the optical adjustment layer 115.
  • the insulating layer 123 preferably has a tapered end.
  • the organic layer 112W and the common electrode 113 are each provided as a continuous film common to each light-emitting element. This configuration is preferable because it can greatly simplify the manufacturing process of the display device.
  • the pixel electrode 111 has an end shape that is nearly vertical. This allows a steeply inclined portion to be formed on the surface of the insulating layer 123, and a thin portion can be formed in the part of the organic layer 112W that covers this portion, or a part of the organic layer 112W can be separated. Therefore, it is possible to suppress leakage current that occurs through the organic layer 112W between adjacent light-emitting elements without processing the organic layer 112W by a photolithography method or the like.
  • This embodiment can be implemented by combining at least a portion of it with other embodiments described in this specification.
  • the electronic device of this embodiment has a display panel (display device) in which a transistor of one embodiment of the present invention is applied to a display portion.
  • the display device of one embodiment of the present invention can easily achieve high definition and high resolution, and can also achieve high display quality. Therefore, the display device can be used in the display portion of various electronic devices.
  • Electronic devices include, for example, electronic devices with relatively large screens such as television sets, desktop or notebook personal computers, computer monitors, digital signage, large game machines such as pachinko machines, as well as digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and audio playback devices.
  • the display panel of one embodiment of the present invention is capable of increasing the resolution, and therefore can be suitably used in electronic devices having a relatively small display.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), as well as wearable devices that can be worn on the head, such as VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • the display panel of one embodiment of the present invention preferably has an extremely high resolution such as HD (1280 x 720 pixels), FHD (1920 x 1080 pixels), WQHD (2560 x 1440 pixels), WQXGA (2560 x 1600 pixels), 4K (3840 x 2160 pixels), or 8K (7680 x 4320 pixels).
  • an extremely high resolution such as HD (1280 x 720 pixels), FHD (1920 x 1080 pixels), WQHD (2560 x 1440 pixels), WQXGA (2560 x 1600 pixels), 4K (3840 x 2160 pixels), or 8K (7680 x 4320 pixels).
  • HD 1280 x 720 pixels
  • FHD (1920 x 1080 pixels
  • WQHD 2560 x 1440 pixels
  • WQXGA 2560 x 1600 pixels
  • 4K 3840 x 2160 pixels
  • 8K 8K
  • the pixel density (resolution) of the display panel of one embodiment of the present invention is preferably 100 ppi or more, more preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, more preferably 5000 ppi or more, and even more preferably 7000 ppi or more.
  • the screen ratio (aspect ratio) of the display panel of one embodiment of the present invention can support various screen ratios such as 1:1 (square), 4:3, 16:9, and 16:10.
  • the electronic device of this embodiment may have a sensor (including a function to sense, detect, or measure force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light).
  • a sensor including a function to sense, detect, or measure force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light).
  • the electronic device of this embodiment can have various functions. For example, it can have a function to display various information (still images, videos, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to execute various software (programs), a wireless communication function, a function to read out programs or data recorded on a recording medium, etc.
  • a function to display various information still images, videos, text images, etc.
  • a touch panel function a function to display a calendar, date or time, etc.
  • a function to execute various software (programs) a wireless communication function
  • a function to read out programs or data recorded on a recording medium etc.
  • FIG. 29A to 29D An example of a wearable device that can be worn on the head will be described using Figures 29A to 29D.
  • These wearable devices have one or both of the functions of displaying AR content and VR content. Note that these wearable devices may also have the function of displaying SR or MR content in addition to AR and VR.
  • Electronic device 700A shown in FIG. 29A and electronic device 700B shown in FIG. 29B each have a pair of display panels 751, a pair of housings 721, a communication unit (not shown), a pair of mounting units 723, a control unit (not shown), an imaging unit (not shown), a pair of optical members 753, a frame 757, and a pair of nose pads 758.
  • a display panel according to one embodiment of the present invention can be applied to the display panel 751. Therefore, the electronic device can display images with extremely high resolution.
  • Electronic device 700A and electronic device 700B can each project an image displayed on display panel 751 onto display area 756 of optical member 753. Because optical member 753 is translucent, the user can see the image displayed in the display area superimposed on the transmitted image visible through optical member 753. Therefore, electronic device 700A and electronic device 700B are each electronic devices capable of AR display.
  • Electronic device 700A and electronic device 700B may be provided with a camera capable of capturing an image of the front as an imaging unit. Furthermore, electronic device 700A and electronic device 700B may each be provided with an acceleration sensor such as a gyro sensor, thereby detecting the orientation of the user's head and displaying an image corresponding to that orientation in display area 756.
  • an acceleration sensor such as a gyro sensor
  • the communication unit has a wireless communication device, and can supply video signals and the like via the wireless communication device.
  • a connector can be provided to which a cable through which a video signal and power supply potential can be connected.
  • electronic device 700A and electronic device 700B are provided with batteries, and can be charged wirelessly and/or wired.
  • the housing 721 may be provided with a touch sensor module.
  • the touch sensor module has a function of detecting that the outer surface of the housing 721 is touched.
  • the touch sensor module can detect a tap operation or a slide operation by the user and execute various processes. For example, a tap operation can execute processes such as pausing or resuming a video, and a slide operation can execute processes such as fast-forwarding or rewinding. Furthermore, by providing a touch sensor module on each of the two housings 721, the range of operations can be expanded.
  • touch sensors can be used as the touch sensor module.
  • various types can be adopted, such as the capacitance type, resistive film type, infrared type, electromagnetic induction type, surface acoustic wave type, and optical type.
  • a photoelectric conversion device (also called a photoelectric conversion element) can be used as the light receiving device (also called a light receiving element).
  • the active layer of the photoelectric conversion device can be made of either or both of an inorganic semiconductor and an organic semiconductor.
  • Electronic device 800A shown in FIG. 29C and electronic device 800B shown in FIG. 29D each have a pair of display units 820, a housing 821, a communication unit 822, a pair of mounting units 823, a control unit 824, a pair of imaging units 825, and a pair of lenses 832.
  • a display panel according to one embodiment of the present invention can be applied to the display portion 820. Therefore, the electronic device can display images with extremely high resolution. This allows the user to feel a high sense of immersion.
  • the display unit 820 is provided inside the housing 821 at a position that can be seen through the lens 832. In addition, by displaying different images on the pair of display units 820, it is also possible to perform a three-dimensional display using parallax.
  • the electronic device 800A and the electronic device 800B can each be considered electronic devices for VR.
  • a user wearing the electronic device 800A or the electronic device 800B can view the image displayed on the display unit 820 through the lens 832.
  • Electric device 800A and electronic device 800B each preferably have a mechanism that can adjust the left-right positions of lens 832 and display unit 820 so that they are optimally positioned according to the position of the user's eyes. Also, it is preferable that they have a mechanism that adjusts the focus by changing the distance between lens 832 and display unit 820.
  • the attachment unit 823 allows the user to attach the electronic device 800A or electronic device 800B to the head. Note that in FIG. 29C and other figures, the attachment unit 823 is shaped like the temples of glasses, but is not limited to this. The attachment unit 823 only needs to be wearable by the user, and may be shaped like a helmet or band, for example.
  • the imaging unit 825 has a function of acquiring external information.
  • the data acquired by the imaging unit 825 can be output to the display unit 820.
  • An image sensor can be used for the imaging unit 825.
  • multiple cameras may be provided to support multiple angles of view, such as telephoto and wide angle.
  • a distance measuring sensor capable of measuring the distance to an object
  • the imaging unit 825 is one aspect of the detection unit.
  • the detection unit for example, an image sensor or a distance image sensor such as a LIDAR (Light Detection and Ranging) can be used.
  • LIDAR Light Detection and Ranging
  • the electronic device 800A may have a vibration mechanism that functions as a bone conduction earphone.
  • a vibration mechanism that functions as a bone conduction earphone.
  • a configuration having such a vibration mechanism can be applied to one or more of the display unit 820, the housing 821, and the wearing unit 823. This makes it possible to enjoy video and audio by simply wearing the electronic device 800A without the need for separate audio equipment such as headphones, earphones, or speakers.
  • Each of the electronic devices 800A and 800B may have an input terminal.
  • the input terminal can be connected to a cable that supplies a video signal from a video output device or the like, and power for charging a battery provided within the electronic device.
  • the electronic device of one embodiment of the present invention may have a function of wireless communication with an earphone 750.
  • the earphone 750 has a communication unit (not shown) and has a wireless communication function.
  • the earphone 750 can receive information (e.g., audio data) from the electronic device through the wireless communication function.
  • the electronic device 700A shown in FIG. 29A has a function of transmitting information to the earphone 750 through the wireless communication function.
  • the electronic device 800A shown in FIG. 29C has a function of transmitting information to the earphone 750 through the wireless communication function.
  • the electronic device may also have an earphone unit.
  • Electronic device 700B shown in FIG. 29B has earphone unit 727.
  • earphone unit 727 and the control unit may be configured to be connected to each other by wire.
  • Part of the wiring connecting earphone unit 727 and the control unit may be disposed inside housing 721 or attachment unit 723.
  • electronic device 800B shown in FIG. 29D has earphone unit 827.
  • earphone unit 827 and control unit 824 can be configured to be connected to each other by wire.
  • Part of the wiring connecting earphone unit 827 and control unit 824 may be disposed inside housing 821 or mounting unit 823.
  • earphone unit 827 and mounting unit 823 may have magnets. This allows earphone unit 827 to be fixed to mounting unit 823 by magnetic force, which is preferable as it makes storage easier.
  • the electronic device may have an audio output terminal to which earphones or headphones can be connected.
  • the electronic device may also have one or both of an audio input terminal and an audio input mechanism.
  • a sound collection device such as a microphone can be used as the audio input mechanism.
  • the electronic device may be endowed with the functionality of a so-called headset.
  • both glasses-type devices such as electronic device 700A and electronic device 700B
  • goggle-type devices such as electronic device 800A and electronic device 800B
  • the electronic device 6500 shown in FIG. 30A is a portable information terminal that can be used as a smartphone.
  • the electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and a control device 6509.
  • the display portion 6502 has a touch panel function.
  • the control device 6509 includes, for example, one or more of a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 6502, the control device 6509, and the like. The use of the semiconductor device of one embodiment of the present invention for the control device 6509 is preferable because power consumption can be reduced.
  • a display panel according to one embodiment of the present invention can be applied to the display portion 6502.
  • Figure 30B is a schematic cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a translucent protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, optical members 6512, a touch sensor panel 6513, a printed circuit board 6517, a battery 6518, etc. are arranged in the space surrounded by the housing 6501 and the protective member 6510.
  • the display panel 6511, the optical member 6512, and the touch sensor panel 6513 are fixed to the protective member 6510 by an adhesive layer (not shown).
  • a part of the display panel 6511 is folded back in the area outside the display unit 6502, and the FPC 6515 is connected to the folded back part.
  • An IC 6516 is mounted on the FPC 6515.
  • the FPC 6515 is connected to a terminal provided on a printed circuit board 6517.
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511. Therefore, an extremely lightweight electronic device can be realized.
  • the display panel 6511 is extremely thin, a large-capacity battery 6518 can be mounted thereon while keeping the thickness of the electronic device small.
  • a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG 30C shows an example of a television device.
  • a display unit 7000 is built into a housing 7101.
  • the housing 7101 is supported by a stand 7103.
  • the television device 7100 shown in FIG. 30C can be operated using operation switches provided on the housing 7101 and a separate remote control 7111.
  • the display unit 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display unit 7000 with a finger or the like.
  • the remote control 7111 may have a display unit that displays information output from the remote control 7111.
  • the channel and volume can be operated using operation keys or a touch panel provided on the remote control 7111, and the image displayed on the display unit 7000 can be operated.
  • the television device 7100 is configured to include a receiver and a modem.
  • the receiver can receive general television broadcasts.
  • by connecting to a wired or wireless communication network via the modem it is also possible to carry out one-way (from sender to receiver) or two-way (between sender and receiver, or between receivers, etc.) information communication.
  • FIG. 30D shows an example of a laptop personal computer.
  • the laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, a control device 7216, and the like.
  • a display portion 7000 is incorporated in the housing 7211.
  • the control device 7216 includes, for example, one or more of a CPU, a GPU, and a storage device.
  • the semiconductor device of one embodiment of the present invention can be applied to the display portion 7000, the control device 7216, and the like.
  • the use of the semiconductor device of one embodiment of the present invention for the control device 7216 is preferable because power consumption can be reduced.
  • Figures 30E and 30F show an example of digital signage.
  • the digital signage 7300 shown in FIG. 30E has a housing 7301, a display unit 7000, and a speaker 7303. It can also have LED lamps, operation keys (including a power switch or an operation switch), connection terminals, various sensors, a microphone, etc.
  • FIG. 30F shows digital signage 7400 attached to a cylindrical pole 7401.
  • Digital signage 7400 has a display unit 7000 that is provided along the curved surface of pole 7401.
  • the larger the display unit 7000 the more information can be provided at one time. Also, the larger the display unit 7000, the more easily it catches people's attention, which can increase the advertising effectiveness of an advertisement, for example.
  • a touch panel By applying a touch panel to the display unit 7000, not only can images or videos be displayed on the display unit 7000, but the user can also intuitively operate it, which is preferable. Furthermore, when used to provide information such as route information or traffic information, the intuitive operation can improve usability.
  • the digital signage 7300 or the digital signage 7400 can be linked via wireless communication with an information terminal 7311 or an information terminal 7411 such as a smartphone carried by a user.
  • advertising information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411.
  • the display on the display unit 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
  • the digital signage 7300 or the digital signage 7400 execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operating means (controller). This allows an unspecified number of users to participate in and enjoy the game at the same time.
  • a display panel according to one embodiment of the present invention can be applied to the display portion 7000.
  • the electronic device shown in Figures 31A to 31G has a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006, a sensor 9007 (including a function to sense, detect, or measure force, displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared light), a microphone 9008, etc.
  • the electronic devices shown in Figures 31A to 31G have various functions. For example, they can have a function to display various information (still images, videos, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, etc., a function to control processing by various software (programs), a wireless communication function, a function to read and process programs or data recorded on a recording medium, etc.
  • the functions of the electronic devices are not limited to these, and they can have various functions.
  • the electronic devices may have multiple display units.
  • the electronic devices may have a function to provide a camera or the like, capture still images or videos, and store them on a recording medium (external or built into the camera), a function to display the captured images on the display unit, etc.
  • FIG. 31A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smartphone, for example.
  • the mobile information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on multiple surfaces.
  • FIG. 31A shows an example in which three icons 9050 are displayed.
  • Information 9051 shown in a dashed rectangle can also be displayed on another surface of the display unit 9001. Examples of the information 9051 include notifications of incoming e-mail, SNS, telephone calls, etc., the title of e-mail or SNS, the sender's name, the date and time, the remaining battery level, and radio wave strength.
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG 31B is a perspective view showing a mobile information terminal 9102.
  • the mobile information terminal 9102 has a function of displaying information on three or more sides of the display unit 9001.
  • information 9052, information 9053, and information 9054 are each displayed on different sides.
  • a user can check information 9053 displayed in a position that can be observed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in a breast pocket of clothes. The user can check the display without taking the mobile information terminal 9102 out of the pocket and decide, for example, whether or not to answer a call.
  • FIG. 31C is a perspective view showing a tablet terminal 9103.
  • the tablet terminal 9103 is capable of executing various applications such as mobile phone calls, e-mail, text browsing and creation, music playback, Internet communication, and computer games, for example.
  • the tablet terminal 9103 has a display unit 9001, a camera 9002, a microphone 9008, and a speaker 9003 on the front side of the housing 9000, operation keys 9005 as operation buttons on the left side of the housing 9000, and a connection terminal 9006 on the bottom.
  • FIG. 31D is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as, for example, a smart watch (registered trademark).
  • the display surface of the display unit 9001 is curved, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make hands-free calls by communicating with, for example, a headset capable of wireless communication.
  • the mobile information terminal 9200 can also transmit data to and from other information terminals and charge itself via a connection terminal 9006. Charging may be performed by wireless power supply.
  • FIG. 31E to 31G are perspective views showing a foldable mobile information terminal 9201.
  • FIG. 31E is a perspective view of the mobile information terminal 9201 in an unfolded state
  • FIG. 31G is a perspective view of the mobile information terminal 9201 in a folded state
  • FIG. 31F is a perspective view of a state in the process of changing from one of FIG. 31E and FIG. 31G to the other.
  • the mobile information terminal 9201 is highly portable when folded, and is highly viewable due to a seamless, wide display area when unfolded.
  • the display unit 9001 of the mobile information terminal 9201 is supported by three housings 9000 connected by hinges 9055.
  • the display unit 9001 can be bent with a radius of curvature of 0.1 mm or more and 150 mm or less.
  • This embodiment can be implemented by combining at least a portion of it with other embodiments described in this specification.
  • the semiconductor device of one embodiment of the present invention can be used for, for example, electronic components, electronic devices, large scale computers, space equipment, and data centers (also referred to as data centers (DCs)).
  • Electronic components, electronic devices, large scale computers, space equipment, and data centers using the semiconductor device of one embodiment of the present invention are effective in achieving high performance, such as low power consumption.
  • Electronic components to which the semiconductor device according to one embodiment of the present invention is applied can be applied to the electronic devices exemplified in embodiment 5.
  • FIG. 32A shows a perspective view of a substrate (mounting substrate 704) on which an electronic component 700 is mounted.
  • the electronic component 700 shown in FIG. 32A has a semiconductor device 710 in a mold 711. In FIG. 32A, some parts are omitted in order to show the inside of the electronic component 700.
  • the electronic component 700 has lands 712 on the outside of the mold 711. The lands 712 are electrically connected to electrode pads 713, and the electrode pads 713 are electrically connected to the semiconductor device 710 via wires 714.
  • the electronic component 700 is mounted on, for example, a printed circuit board 702. A plurality of such electronic components are combined and electrically connected on the printed circuit board 702 to complete the mounting substrate 704.
  • the semiconductor device 710 also has a drive circuit layer 715 and a memory layer 716.
  • the memory layer 716 is configured by stacking a plurality of memory cell arrays.
  • the stacked configuration of the drive circuit layer 715 and the memory layer 716 can be a monolithic stacked configuration. In the monolithic stacked configuration, the layers can be connected without using through-electrode technology such as TSV (Through Silicon Via) and bonding technology such as Cu-Cu direct bonding.
  • TSV Through Silicon Via
  • bonding technology such as Cu-Cu direct bonding.
  • connection wiring can be reduced compared to technologies that use through electrodes such as TSVs, and it is therefore possible to increase the number of connection pins.
  • Increasing the number of connection pins enables parallel operation, which makes it possible to improve the memory bandwidth (also called memory bandwidth).
  • the multiple memory cell arrays in the memory layer 716 are formed using OS transistors and the multiple memory cell arrays are monolithically stacked.
  • OS transistors By configuring the multiple memory cell arrays as monolithic stacks, it is possible to improve one or both of the memory bandwidth and the memory access latency.
  • the bandwidth is the amount of data transferred per unit time
  • the access latency is the time from access to the start of data exchange.
  • Si transistors when Si transistors are used for the memory layer 716, it is difficult to configure the memory layer 716 as a monolithic stack compared to OS transistors. Therefore, it can be said that OS transistors have a superior structure to Si transistors in the monolithic stack configuration.
  • the semiconductor device 710 may also be referred to as a die.
  • a die refers to a chip piece obtained during the manufacturing process of a semiconductor chip by forming a circuit pattern on, for example, a disk-shaped substrate (also called a wafer) and cutting it into cubes.
  • Semiconductor materials that can be used for the die include, for example, silicon (Si), silicon carbide (SiC), and gallium nitride (GaN).
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • a die obtained from a silicon substrate also called a silicon wafer
  • a silicon die obtained from a silicon substrate (also called a silicon wafer) may be called a silicon die.
  • Electronic component 730 is an example of a SiP (System in Package) or MCM (Multi Chip Module).
  • Electronic component 730 has an interposer 731 provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and multiple semiconductor devices 710 provided on interposer 731.
  • semiconductor device 710 is used as a high bandwidth memory (HBM).
  • semiconductor device 735 can be used in integrated circuits such as a central processing unit (CPU), a graphics processing unit (GPU), or a field programmable gate array (FPGA).
  • CPU central processing unit
  • GPU graphics processing unit
  • FPGA field programmable gate array
  • the package substrate 732 may be, for example, a ceramic substrate, a plastic substrate, or a glass epoxy substrate.
  • the interposer 731 may be, for example, a silicon interposer or a resin interposer.
  • the interposer 731 has multiple wirings and functions to electrically connect multiple integrated circuits with different terminal pitches.
  • the multiple wirings are provided in a single layer or multiple layers.
  • the interposer 731 also functions to electrically connect the integrated circuits provided on the interposer 731 to electrodes provided on the package substrate 732.
  • the interposer may be called a "rewiring substrate” or "intermediate substrate.”
  • a through electrode may be provided in the interposer 731, and the integrated circuits and the package substrate 732 may be electrically connected using the through electrode.
  • a TSV may be used as the through electrode.
  • the interposer that implements the HBM requires fine, high-density wiring. Therefore, it is preferable to use a silicon interposer for the interposer that implements the HBM.
  • silicon interposers Furthermore, in SiP and MCM using silicon interposers, deterioration in reliability due to differences in the expansion coefficient between the integrated circuit and the interposer is unlikely to occur. Furthermore, since the surface of the silicon interposer is highly flat, poor connection between the integrated circuit mounted on the silicon interposer and the silicon interposer is unlikely to occur. In particular, it is preferable to use silicon interposers in 2.5D packages (2.5-dimensional mounting) in which multiple integrated circuits are arranged horizontally on the interposer.
  • a composite structure may be used that combines a memory cell array stacked using TSVs and a monolithic stacking memory cell array.
  • a heat sink may be provided overlapping the electronic component 730.
  • electrodes 733 may be provided on the bottom of the package substrate 732.
  • FIG. 32B shows an example in which the electrodes 733 are formed from solder balls. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be achieved.
  • the electrodes 733 may also be formed from conductive pins. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be achieved.
  • the electronic component 730 can be mounted on other substrates using various mounting methods, including but not limited to BGA and PGA.
  • mounting methods include SPGA (Staggered Pin Grid Array), LGA (Land Grid Array), QFP (Quad Flat Package), QFJ (Quad Flat J-leaded package), and QFN (Quad Flat Non-leaded package).
  • [Mainframe computers] 33A shows a perspective view of a large scale computer 5600.
  • the large scale computer 5600 has a rack 5610 housing a plurality of rack-mounted computers 5620.
  • the large scale computer 5600 may also be called a supercomputer.
  • Figure 33B shows an oblique view of an example of a computer 5620.
  • Computer 5620 is connected to a motherboard 5630.
  • Motherboard 5630 is provided with a plurality of slots 5631 and a plurality of connection terminals.
  • PC card 5621 is inserted into slot 5631.
  • PC card 5621 has connection terminal 5623, connection terminal 5624, and connection terminal 5625, each of which is connected to motherboard 5630.
  • FIG. 33C shows an example of a PC card 5621.
  • PC card 5621 is a processing board equipped with, for example, a CPU, a GPU, a storage device, etc.
  • PC card 5621 has board 5622, and connection terminals 5623, 5624, 5625, electronic components 5626, 5627, 5628, and 5629, which are mounted on board 5622.
  • FIG. 33C illustrates components other than electronic components 5626, 5627, and 5628.
  • connection terminal 5629 has a shape that allows it to be inserted into the slot 5631 of the motherboard 5630, and the connection terminal 5629 functions as an interface for connecting the PC card 5621 and the motherboard 5630.
  • An example of the standard for the connection terminal 5629 is PCIe.
  • Connection terminals 5623, 5624, and 5625 can be interfaces for supplying power to PC card 5621, inputting signals, and the like. They can also be interfaces for outputting signals calculated by PC card 5621, and the like. Examples of standards for connection terminals 5623, 5624, and 5625 include USB (Universal Serial Bus), SATA (Serial ATA), and SCSI (Small Computer System Interface). In addition, when a video signal is output from connection terminals 5623, 5624, and 5625, examples of standards for each include HDMI (registered trademark).
  • the electronic component 5626 has a terminal (not shown) for inputting and outputting signals, and the electronic component 5626 and the board 5622 can be electrically connected by inserting the terminal into a socket (not shown) provided on the board 5622.
  • Electronic component 5627 and electronic component 5628 have multiple terminals, and can be mounted on wiring provided on board 5622 by, for example, soldering the terminals using a reflow method.
  • Examples of electronic component 5627 include an FPGA, a GPU, and a CPU.
  • electronic component 730 can be used as electronic component 5627.
  • electronic component 5628 includes a storage device.
  • electronic component 700 can be used as electronic component 5628.
  • the mainframe computer 5600 can also function as a parallel computer. By using the mainframe computer 5600 as a parallel computer, it is possible to perform large-scale calculations required for artificial intelligence learning and inference, for example.
  • the semiconductor device of one embodiment of the present invention can be suitably used in space equipment.
  • a semiconductor device includes an OS transistor.
  • the OS transistor has small changes in electrical characteristics due to radiation exposure. In other words, it has high resistance to radiation and can be suitably used in an environment where radiation may be incident.
  • the OS transistor can be suitably used in outer space.
  • the OS transistor can be used as a transistor constituting a semiconductor device provided in a space shuttle, an artificial satellite, or a space probe. Examples of radiation include X-rays and neutron rays.
  • outer space refers to an altitude of 100 km or higher, for example, and the outer space described in this specification may include one or more of the thermosphere, the mesosphere, and the stratosphere.
  • FIG. 34A shows an artificial satellite 6800 as an example of space equipment.
  • the artificial satellite 6800 has a body 6801, a solar panel 6802, an antenna 6803, a secondary battery 6805, and a control device 6807. Note that FIG. 34A also shows a planet 6804 in space.
  • the secondary battery 6805 may be provided with a battery management system (also called a BMS) or a battery control circuit.
  • a battery management system also called a BMS
  • a battery control circuit The use of OS transistors in the battery management system or battery control circuit described above is preferable because it consumes low power and has high reliability even in space.
  • outer space is an environment with radiation levels 100 times higher than on Earth.
  • radiation include electromagnetic waves (electromagnetic radiation) such as X-rays and gamma rays, as well as particle radiation such as alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, and meson rays.
  • the power required for the operation of the satellite 6800 is generated.
  • the amount of power generated is small. Therefore, there is a possibility that the power required for the operation of the satellite 6800 will not be generated.
  • the solar panel may be called a solar cell module.
  • Satellite 6800 can generate a signal.
  • the signal is transmitted via antenna 6803, and can be received, for example, by a receiver installed on the ground or by another satellite.
  • the position of the receiver that received the signal can be measured.
  • satellite 6800 can constitute a satellite positioning system.
  • the control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using, for example, one or more of a CPU, a GPU, and a storage device.
  • a semiconductor device including an OS transistor which is one embodiment of the present invention, is preferably used for the control device 6807.
  • the OS transistor has smaller fluctuations in electrical characteristics due to radiation exposure than a Si transistor. In other words, it has high reliability even in an environment where radiation may be incident, and can be preferably used.
  • the artificial satellite 6800 can also be configured to have a sensor. For example, by configuring it to have a visible light sensor, the artificial satellite 6800 can have the function of detecting sunlight reflected off an object located on the ground. Or, by configuring it to have a thermal infrared sensor, the artificial satellite 6800 can have the function of detecting thermal infrared rays emitted from the earth's surface. From the above, the artificial satellite 6800 can have the function of, for example, an earth observation satellite.
  • an artificial satellite is given as an example of space equipment, but the invention is not limited thereto.
  • a semiconductor device according to one embodiment of the present invention can be suitably used in space equipment such as a spaceship, a space capsule, or a space probe.
  • OS transistors have the advantages of being able to achieve a wider memory bandwidth and having higher radiation resistance than Si transistors.
  • the semiconductor device can be suitably used in a storage system applied to a data center or the like.
  • the data center is required to perform long-term management of data, such as ensuring the immutability of the data.
  • it is necessary to increase the size of the building, for example, by installing storage and servers for storing a huge amount of data, securing a stable power source for holding the data, or securing cooling equipment required for holding the data.
  • a semiconductor device By using a semiconductor device according to one embodiment of the present invention in a storage system applied to a data center, it is possible to reduce the power required to store data and to miniaturize the semiconductor device that stores the data. This makes it possible to miniaturize the storage system, miniaturize the power source for storing data, and reduce the scale of cooling equipment. This makes it possible to save space in the data center.
  • the semiconductor device of one embodiment of the present invention consumes less power, and therefore heat generation from the circuit can be reduced. This reduces adverse effects of heat generation on the circuit itself, peripheral circuits, and modules. Furthermore, by using the semiconductor device of one embodiment of the present invention, a data center that operates stably even in a high-temperature environment can be realized. This improves the reliability of the data center.
  • FIG. 34B shows a storage system applicable to a data center.
  • the storage system 6000 shown in FIG. 34B has multiple servers 6001sb as hosts 6001 (illustrated as Host Computer). It also has multiple storage devices 6003md as storage 6003 (illustrated as Storage).
  • the host 6001 and storage 6003 are shown connected via a storage area network 6004 (illustrated as SAN: Storage Area Network) and a storage control circuit 6002 (illustrated as Storage Controller).
  • SAN Storage Area Network
  • the host 6001 corresponds to a computer that accesses data stored in the storage 6003.
  • the hosts 6001 may be connected to each other via a network.
  • Storage 6003 uses flash memory to reduce data access speed, i.e. the time required to store and output data, but this time is significantly longer than the time required by DRAM, which can be used as cache memory within the storage.
  • storage systems usually provide cache memory within the storage to reduce the time required to store and output data.
  • the above-mentioned cache memory is used in the storage control circuit 6002 and the storage 6003. Data exchanged between the host 6001 and the storage 6003 is stored in the cache memory in the storage control circuit 6002 and the storage 6003, and then output to the host 6001 or the storage 6003.
  • OS transistors as transistors for storing data in the cache memory, which hold a potential according to the data, the frequency of refreshing can be reduced and power consumption can be reduced.
  • the memory cell array miniaturization is possible.
  • the application of the semiconductor device of one embodiment of the present invention to any one or more selected from electronic components, electronic devices, mainframe computers, space equipment, and data centers is expected to have an effect of reducing power consumption. Therefore, while energy demand is expected to increase with the improvement in performance or high integration of semiconductor devices, the use of the semiconductor device of one embodiment of the present invention can also reduce emissions of greenhouse gases such as carbon dioxide (CO 2 ). In addition, the semiconductor device of one embodiment of the present invention is effective as a measure against global warming because of its low power consumption.
  • CO 2 greenhouse gases
  • This embodiment can be implemented by combining at least a portion of it with other embodiments described in this specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

微細化が容易な半導体装置を提供する。寄生容量が低減された半導体装置を提供する。半導体装置はトランジスタ、第1、第2の絶縁層、及び配線を有する。トランジスタは第1乃至第3の導電層、半導体層、及び第3の絶縁層を有する。第1の絶縁層は第1の導電層に達する第1の開口を有する。半導体層は第1の絶縁層上の第2の導電層、第1の開口内の第1の絶縁層の側面及び第1の導電層の上面に接する。第2の絶縁層は第1の開口と重なる位置に半導体層に達する第2の開口を有する。第3の絶縁層は第2の開口内の第2の絶縁層の側面、及び記第1の開口内における半導体層と接する。第3の導電層は第2の開口及び第1の開口に埋め込まれる。配線は第2の絶縁層上に位置し、 第3の導電層と接し、且つ、第2の絶縁層を介して半導体層または第2の導電層と重なる部分を有する。

Description

半導体装置、及びその作製方法
 本発明の一態様は、トランジスタ、半導体装置、記憶装置、表示装置、および電子機器に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、半導体装置の開発が進められ、CPU、メモリ、またはこれら以外のLSIが主に半導体装置に用いられている。CPUは、半導体ウエハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 CPU、メモリ、またはこれら以外のLSIの半導体回路(ICチップ)は、回路基板、例えばプリント配線基板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路、及び画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態におけるリーク電流が極めて小さいことが知られている。例えば、特許文献1には、リーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている。また、例えば、特許文献2には、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。例えば、特許文献3及び非特許文献1では、酸化物半導体膜を用いる第1のトランジスタと、酸化物半導体膜を用いる第2のトランジスタとを積層させることで、メモリセルを複数重畳して設けることにより、集積回路の高密度化を図る技術が開示されている。また、特許文献4には、酸化物半導体の側面がゲート絶縁体を介してゲート電極に覆われている縦型のトランジスタが開示されている。
特開2012−257187号公報 特開2011−151383号公報 国際公開第2021/053473号 特開2013−211537号公報
M.Oota et.al,"3D−Stacked CAAC−In−Ga−Zn Oxide FETs with Gate Length of 72nm",IEDM Tech.Dig.,2019,pp.50−53
 本発明の一態様は、微細化が容易な半導体装置を提供することを課題の一とする。または、高集積化が可能な半導体装置を提供することを課題の一とする。または、寄生容量が低減された半導体装置を提供することを課題の一とする。または、配線の負荷が低減された半導体装置を提供することを課題の一とする。または、良好な電気特性を示す半導体装置を提供することを課題の一とする。または、動作速度が高い半導体装置を提供することを課題の一とする。
 本発明の一態様は、新規な構成を有する半導体装置、記憶装置、表示装置、または電子機器を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一を、少なくとも軽減することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、トランジスタ、第1の絶縁層、第2の絶縁層、及び配線を有する半導体装置である。トランジスタは、第1の導電層、第2の導電層、第3の導電層、半導体層、及び第3の絶縁層を有する。第1の絶縁層は第1の導電層の上方に位置し、且つ、第1の導電層に達する第1の開口を有する。第2の導電層は第1の絶縁層の上方に位置する。半導体層は第2の導電層、ならびに第1の開口における第1の絶縁層の側面及び第1の導電層の上面に接する。第2の絶縁層は半導体層の上方に位置し、且つ、第1の開口と重なる位置に半導体層に達する第2の開口を有する。第3の絶縁層は第2の開口における第2の絶縁層の側面、及び第1の開口内における半導体層と接する。第3の導電層は第2の開口、及び第1の開口を埋めるように設けられる。配線は第3の導電層の上面と接し、且つ、第2の絶縁層を介して半導体層または第2の導電層と重なる部分を有する。
 また、上記において、第2の絶縁層は、第3の絶縁層よりも厚い部分を有することが好ましい。
 また、上記において、第2の導電層と第2の絶縁層との間に、第4の絶縁層を有することが好ましい。このとき、第4の絶縁層は第2の絶縁層とは異なる組成であることが好ましい。さらにこのとき、第4の絶縁層は、半導体層の端部を覆うことが好ましい。
 また、上記において、第1の開口は、下端の開口径よりも、上端の開口径が大きいことが好ましい。
 また、本発明の他の一態様は、第1の開口を有する第1の絶縁層を形成し、第1の絶縁層の第1の開口における側面に接して半導体層を形成し、第1の絶縁層及び半導体層を覆って第2の絶縁層を形成し、第2の絶縁層に第1の開口と重なり、且つ半導体層に達する第2の開口を形成し、第2の開口及び第1の開口内に第3の絶縁層と、導電層と、を順に形成し、第2の絶縁層上に導電層と接する配線を形成する、半導体装置の作製方法である。
 また、本発明の他の一態様は、第1の開口を有する第1の絶縁層を形成し、第1の絶縁層の第1の開口における側面に接して半導体層を形成し、半導体層を覆う保護層を形成し、第1の絶縁層及び保護層を覆って第2の絶縁層を形成し、第2の絶縁層に第1の開口と重なり、且つ、保護層に達する第2の開口を形成し、第2の開口と重なる保護層をエッチングして半導体層を露出させ、第2の開口及び第1の開口内に第3の絶縁層と、導電層と、を順に形成し、第2の絶縁層上に導電層と接する配線を形成する、半導体装置の作製方法である。
 本発明の一態様によれば、微細化が容易な半導体装置を提供できる。または、高集積化が可能な半導体装置を提供できる。または、寄生容量が低減された半導体装置を提供できる。または、配線の負荷が低減された半導体装置を提供できる。または、良好な電気特性を示す半導体装置を提供できる。または、動作速度が高い半導体装置を提供できる。
 本発明の一態様によれば、新規な構成を有する半導体装置、記憶装置、表示装置、または電子機器を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一を、少なくとも軽減できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1A及び図1Bは、半導体装置の構成例である。
図2A乃至図2Cは、半導体装置の構成例である。
図3A及び図3Bは、半導体装置の構成例である。
図4A乃至図4Dは、半導体装置の構成例である。
図5A乃至図5Dは、半導体装置の構成例である。
図6A乃至図6Dは、半導体装置の構成例である。
図7A乃至図7Dは、半導体装置の構成例である。
図8A乃至図8Dは、半導体装置の作製方法例を説明する図である。
図9A乃至図9Cは、半導体装置の作製方法例を説明する図である。
図10A及び図10Bは、半導体装置の作製方法例を説明する図である。
図11A及び図11Bは、半導体装置の作製方法例を説明する図である。
図12A乃至図12Cは、半導体装置の作製方法例を説明する図である。
図13A及び図13Bは、半導体装置の作製方法例を説明する図である。
図14A乃至図14Cは、記憶装置の構成例である。
図15A及び図15Bは、記憶装置の構成例である。
図16A及び図16Bは、記憶装置の構成例である。
図17A及び図17Bは、記憶装置の構成例である。
図18は、記憶装置の構成例である。
図19は、記憶装置の構成例である。
図20A及び図20Bは、記憶装置の構成例である。
図21A乃至図21Dは、記憶装置の構成例である。
図22は、記憶装置の構成例である。
図23A及び図23Bは、表示装置の構成例である。
図24は、表示装置の構成例である。
図25は、表示装置の構成例である。
図26は、表示装置の構成例である。
図27A乃至図27Cは、表示装置の構成例である。
図28A及び図28Bは、表示装置の構成例である。
図29A乃至図29Dは、電子機器の構成例である。
図30A乃至図30Fは、電子機器の構成例である。
図31A乃至図31Gは、電子機器の構成例である。
図32A及び図32Bは、電子部品の構成例である。
図33A乃至図33Cは、大型計算機の構成例である。
図34Aは、宇宙用機器の構成例である。図34Bは、ストレージシステムの構成例である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 トランジスタは半導体素子の一種であり、電流または電圧を増幅する機能、及び、導通または非導通を制御するスイッチング動作などを実現することができる。本明細書におけるトランジスタは、IGFET(Insulated Gate Field Effect Transistor)及び薄膜トランジスタ(TFT:Thin Film Transistor)を含む。
 また、「ソース」と「ドレイン」の機能は、異なる極性のトランジスタを採用する場合、または回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」と「ドレイン」の用語は、入れ替えて用いることができるものとする。
 また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極または配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、コイル、容量素子、その他の各種機能を有する素子などが含まれる。
 なお、本明細書等において、ある構成要素の上面形状とは、その平面視における当該構成要素の輪郭形状のことを言う。また平面視とは、当該構成要素の被形成面、または当該構成要素が形成される支持体(例えば基板)の表面の法線方向から見ることを言う。
 なお、本明細書等において「上面形状が概略一致」とは、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、または上層が下層の外側に位置することもあり、この場合も「上面形状が概略一致」という場合がある。
 なお、以下では「上」、「下」などの向きを示す表現は、基本的には図面の向きと合わせて用いるものとする。しかしながら、説明を容易にするためなどの目的で、明細書中の「上」または「下」が意味する向きが、図面とは一致しない場合がある。一例としては、積層体等の積層順(または形成順)などを説明する場合に、図面において当該積層体が設けられる側の面(被形成面、支持面、接着面、平坦面など)が当該積層体よりも上側に位置していても、その向きを下、これとは反対の向きを上、などと表現する場合がある。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「絶縁層」という用語は、「絶縁膜」という用語に相互に交換することが可能な場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の半導体装置の構成例、及び作製方法例について説明する。以下では、半導体装置の一例として、トランジスタについて説明する。
 本発明の一態様のトランジスタは、ソース電極とドレイン電極とが異なる高さ(例えばトランジスタが設けられる基板面または絶縁平面に対して垂直な方向における高さ)に位置し、半導体層を流れる電流は高さ方向に流れる。すなわち、チャネル長方向が高さ方向(縦方向)の成分を有するということができるため、本発明の一態様は、縦型トランジスタ、縦型チャネルトランジスタなどとも呼ぶことができる。
 より具体的には、トランジスタのソース電極及びドレイン電極の一方である下部電極と、他方である上部電極との間に第1のスペーサとして機能する絶縁層が設けられ、当該絶縁層に設けられた第1の開口の内部において、下部電極と上部電極を繋ぐように、チャネルが形成される半導体層が設けられる。第1の開口の内部には、半導体層と重ねてゲート絶縁層と、ゲート電極とが設けられる。ソース電極、半導体層、及びドレイン電極を重ねて設けることが可能なため、半導体層を平面上に配置した、いわゆるプレーナ型のトランジスタと比較して、大幅に占有面積を縮小することができる。
 さらに、ゲート電極と電気的に接続するゲート配線を設ける。このとき、ゲート配線と上部電極との間に、第2のスペーサとして機能する絶縁層を設ける。例えば第2のスペーサはゲート絶縁層よりも厚いことが好ましい。また、第2のスペーサは、酸化シリコン、酸化窒化シリコンなどの低誘電率材料を用いることが好ましい。これにより、ゲート配線と上部電極との間の寄生容量を効果的に低減することができる。
 ゲート電極及びゲート絶縁層は、第2のスペーサに設けられた第2の開口、及び第1のスペーサに設けられた第1の開口のそれぞれの内部に設けられる。ゲート電極は、その上面が第2のスペーサ上に設けられるゲート配線と接する構成とすることができる。
 ここで、トランジスタのチャネル長は、第1のスペーサとして機能する絶縁層の厚さによって精密に制御することが可能となるため、プレーナ型のトランジスタと比較して、チャネル長のばらつきを極めて小さくできる。さらには、当該絶縁層を薄くすることで、極めてチャネル長の短いトランジスタも作製することができる。例えばチャネル長が2μm以下、1μm以下、500nm以下、300nm以下、200nm以下、100nm以下、50nm以下、30nm以下、または20nm以下であって、5nm以上、7nm以上、または10nm以上のトランジスタを作製することができる。そのため、量産用の露光装置では実現できなかった、極めて小さいチャネル長のトランジスタを実現することができる。また、最先端のLSI技術で用いられる極めて高額な露光装置を用いることなく、チャネル長が10nm未満のトランジスタを実現することもできる。
 本発明の一態様のトランジスタは、チャネル長を極めて小さくでき、占有面積を縮小することができ、大きな電流を流すことができ、寄生容量を小さくでき、高速に動作させることができる。本発明の一態様のトランジスタは、様々な半導体装置に適用することができる。例えば、記憶装置、演算装置、表示装置、撮像装置などがある。
 以下では、より具体的な例について図面を参照して説明する。
[構成例]
 図1A、図1Bに、それぞれトランジスタ10の斜視概略図を示す。図1Bは、図1Aの一部を切り欠いた斜視図である。また、図1A、図1Bでは一部の構成要素(層間絶縁層など)については輪郭のみ破線で示している。
 図1A及び図1Bでは、X方向、Y方向、及びZ方向を矢印で示している。なお、図1Aと図1Bとで同じX、Y、Zの符号で示しているが、必ずしもこれらの間で方向が一致しなくてもよい。
 また、図2Aにトランジスタ10の平面図を、図2B、図2Cにはそれぞれ図2A中の切断線A1−A2、B1−B2に対する断面概略図を示している。なお図2Aでは、一部の構成要素(絶縁層など)を省略している。
 トランジスタ10は、基板(図示しない)上に設けられる絶縁層11上に設けられる。トランジスタ10は、ソース電極及びドレイン電極の一方として機能する導電層31と、半導体層21と、ゲート絶縁層として機能する絶縁層22と、ゲート電極として機能する導電層23と、ソース電極及びドレイン電極の他方として機能する導電層32と、を有する。導電層31、及び導電層32は配線としても機能する。
 絶縁層11上に導電層31が設けられ、導電層31上に絶縁層41が設けられる。絶縁層41上には導電層32が設けられる。絶縁層41は導電層31に達する開口20aを有する。半導体層21は、絶縁層41の開口20aの内壁(側面、側壁ともいう)に接して設けられ、導電層31の上面、ならびに導電層32の上面及び側面とそれぞれ接する。
 半導体層21及び導電層32上に、絶縁層42が設けられる。絶縁層42は半導体層21に達する開口20bを有する。絶縁層22は、開口20a及び開口20bの内部に位置する。絶縁層22の開口20aの内側に位置する部分は、半導体層21の上面に沿って設けられる。また開口20bの内側に位置する部分は、絶縁層42の開口20bの内壁に沿って設けられる。さらに、導電層23が、開口20a及び開口20b内に埋め込まれるように設けられる。
 絶縁層42、絶縁層22、及び導電層23は、それぞれ上面が平坦化され、上面の高さが概略一致している。絶縁層42上には、配線として機能する導電層33が設けられる。導電層33は、導電層23の上面に接して設けられる。導電層33は、例えばゲート配線として機能する。
 ここで、導電層31は絶縁層44に埋め込まれ、導電層32は絶縁層45に埋め込まれ、導電層33は絶縁層46に埋め込まれている。さらにこれらは、上面が平坦化されており、導電層と絶縁層の上面の高さが概略一致している。このような構成とすることで、段差の影響を無くすことができるため好ましい。絶縁層44、絶縁層45、及び絶縁層46は層間絶縁層として機能する。例えば酸化シリコン、酸化窒化シリコンなどの低誘電率の無機絶縁材料を用いることが好ましい。
 上記のような構成のトランジスタ10は、ソース電極とドレイン電極とが、異なる高さに位置しているため、半導体を流れる電流は高さ方向に流れることとなる。すなわち、チャネル長方向が高さ方向(縦方向)の成分を有するということができるため、本発明の一態様のトランジスタは、VFET(Vertical Field Effect Transistor)、縦型トランジスタ、縦型チャネルトランジスタ、などとも呼ぶことができる。トランジスタ10は、ソース電極、半導体、及びドレイン電極を、それぞれ重ねて設けることが可能となるため、半導体を平面上に配置した、いわゆるプレーナ型のトランジスタ(横型トランジスタ、LFET(Lateral FET)などとも呼ぶことができる)と比較して、大幅に占有面積を縮小することができる。
 また、トランジスタ10のチャネル長は、スペーサとして機能する絶縁層41の厚さによって精密に制御することが可能となるため、プレーナ型のトランジスタと比較して、チャネル長のばらつきを極めて小さくできる。さらには、絶縁層41を薄くすることで、極めてチャネル長の短いトランジスタも作製することができる。例えばチャネル長が50nm以下、30nm以下、または20nm以下であって、5nm以上、7nm以上、または10nm以上のトランジスタを作製することができる。そのため、最先端のLSI技術で用いられる極めて高額な露光装置を用いることなく、従来の量産用の露光装置であっても、チャネル長が10nm未満のトランジスタを実現することもできる。
 半導体層21には様々な半導体材料を用いることができるが、特に金属酸化物を含む酸化物半導体を用いることが好ましい。適切な条件で形成された酸化物半導体を用いることで、高いオン電流と極めて低いオフ電流を兼ね備えたトランジスタを低コストで実現することができる。以下では特に断りのない場合、半導体層21に酸化物半導体を用いた場合の好適な構成例について説明する。
 導電層31及び導電層32は、それぞれ上面に半導体層21が接する構成となる。そのため半導体層21に酸化物半導体を用いた場合、半導体層21となる半導体膜の成膜工程またはその後にかかる熱の影響などにより導電層31及び導電層32の露出した表面近傍が酸化し、半導体層21との間に絶縁性の酸化物膜が形成され、接触抵抗が増大してしまう恐れがある。そこで、導電層31及び導電層32の少なくとも最上部には導電性の酸化物を含む酸化物導電体を用いることが好ましい。これにより、導電層31及び導電層32の表面の酸化による接触抵抗の上昇を防止することができる。導電層31及び導電層32は、酸化物層、金属酸化物層、または酸化物導電体層などとも呼ぶことができる。
 導電層31は、ソース配線及びドレイン配線の一方として用いることができる。また導電層32は、ソース配線及びドレイン配線の他方として用いることができる。このように、導電層31及び導電層32の一方または双方を配線として用いる場合、電気抵抗が低いことが好ましい。そのため、金属、合金、またはこれらの窒化物など、酸化物導電体と比較して導電性の高い材料を用いることが好ましい。特に、導電層31及び導電層32の一方または双方を当該導電性の高い材料の層を含む積層構造とし、少なくとも最上部には上述した酸化物導電体を用いることが好ましい。
 ここで、トランジスタ10は、ゲート配線として機能する導電層33と、ソース配線またはドレイン配線として機能する導電層32の交差部に設けられる。そのため、導電層33と導電層32の交差部において、これらが重畳する部分には寄生容量が生じることとなる。しかしながら、本発明の一態様では、導電層33と導電層32との間には絶縁層42が設けられているため、絶縁層42を設けない場合(例えば導電層33と導電層32とが絶縁層22を介して重なる場合)と比較して、寄生容量が大幅に低減されている。
 さらに、絶縁層42の厚さを厚くすることにより、導電層33と導電層32との間の寄生容量を低減することができる。例えば、絶縁層42は、絶縁層22よりも厚くすることができる。また、絶縁層42を、絶縁層44、絶縁層45、または絶縁層46の少なくとも一つよりも厚くすることがより好ましい。絶縁層42は厚いほど、導電層33と導電層32との寄生容量を減らすことができるため好ましいが、生産性を考慮した厚さとすればよい。例えば絶縁層41の厚さの2倍以下、または3倍以下とすることができる。
 図2B、図2Cには、図1A、図1Bにおける絶縁層41として、絶縁層41a、絶縁層41b、及び絶縁層41cの積層膜を用いた場合を示している。また、図3Aには、図2Bの拡大図を示している。
 半導体層21は、開口20a内における絶縁層41bの側面(内壁ともいう)と接して設けられる。絶縁層41bには酸化物絶縁膜を用いることが好ましい。特に、加熱により酸素を放出する酸化物絶縁膜を用いることが好ましい。また、絶縁層41bを酸素に対するバリア性を有する絶縁層41a及び41cで挟み込む構造とすることが好ましい。これにより、絶縁層41bに含まれる酸素は、絶縁層41a、絶縁層41c、及び半導体層21に囲まれた領域に閉じ込めることが可能で、絶縁層41b中の酸素が工程中に脱離し、減少することを防ぐことができるため、より効率的に半導体層21に絶縁層41bから酸素を供給することができる。
 半導体層21のうち、絶縁層41bと接する部分は酸素欠損が低減された領域であり、i型の領域と言える。一方、絶縁層41bと接しない部分はキャリアを多く含むn型の領域とすることが好ましい。すなわち、半導体層21の絶縁層41bと接する部分をチャネル形成領域、それよりも外側の領域を低抵抗領域(ソース領域、またはドレイン領域ともいう)と呼ぶことができる。図3Aでは、半導体層21のチャネル形成領域21iと、低抵抗領域21nとに異なるハッチングパターンを付して示している。
 このとき、トランジスタ10のチャネル長Lは、図3Aに示すように、半導体層21の導電層31と接する部分と導電層32と接する部分とを最短距離でつなぐ経路上であって、絶縁層41bと接する部分の長さということができる。絶縁層41bの開口20aの側壁の角度(θ)が90度のとき、チャネル長Lは絶縁層41bの厚さと一致する。θを90度よりも小さく(または大きく)することで、チャネル長Lを大きくすることができる。
 一方、トランジスタ10のチャネル幅Wは、開口20aの形状に依存する。図3Bは、図3A中の絶縁層41bが設けられる高さに位置する切断線C1−C2で切断したときの切断面を、Z方向から見た時の平面図である。ここでは、開口20aを円筒状の形状とした場合について示している。開口20aの輪郭が直径Rの円であるとき、チャネル幅Wは、開口20aの円周(すなわち、=π×R)とみなすことができる。ここで、絶縁層41bの開口20aの側壁の角度θが90度からずれる場合には、高さに応じて開口20aの円周が異なる。その場合には、開口20aの径が最も小さい高さの円周をチャネル幅Wとみなしてもよいし、開口20aの上端の高さにおける円周をチャネル幅Wとみなしてもよい。
 半導体層21及び絶縁層22は、絶縁層41bの開口20aの内壁に沿って形成されるため、成膜方法によっては、この部分の厚さが薄くなる場合がある。例えばスパッタリング法、またはプラズマCVD法などの成膜方法では、基板面に対して平行な面に成膜される膜と比較して、基板面に対して傾斜している面又は垂直な面に成膜される膜が薄くなる傾向がある。一方、原子層堆積(ALD:Atomic Layer Deposition)法または熱CVD法などの成膜方法では、被形成面の角度に寄らず厚さの均一な膜を成膜することができる。例えば、絶縁層41bの開口20aの側壁の角度θが75度以上、80度以上、または85度以上の場合には、ALD法を用いて半導体層21及び絶縁層22を形成することが好ましい。
 絶縁層42に設けられる開口20bの径は、絶縁層41bに設けられる開口20aと同じ、またはこれよりも大きい方が好ましい。開口20bを開口20aよりも大きくすることで、開口20bを形成する際の位置ずれなどにより開口20aと開口20bが重ならず、開口20aが塞がってしまうことを防ぐことができる。
 ここで、絶縁層42の厚さは、チャネル長L以上としてもよい。例えば、絶縁層42の厚さを、絶縁層41bの厚さ以上とすることにより、より効果的に寄生容量を低減することができる。
[構成要素について]
〈基板〉
 トランジスタを形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などを用いることもできる。さらには、絶縁体基板に導電層または半導体層が設けられた基板、半導体基板に導電層または絶縁層が設けられた基板、導電体基板に半導体層または絶縁層が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
〈半導体層〉
 半導体層21は、金属酸化物(酸化物半導体)を有することが好ましい。
 半導体層21に用いることができる金属酸化物として、例えば、In酸化物、Ga酸化物、及びZn酸化物が挙げられる。金属酸化物は、少なくともInまたはZnを含むことが好ましい。また、金属酸化物は、Inと、元素Mと、Znと、の中から選ばれる二または三を有することが好ましい。なお、元素Mは、酸素との結合エネルギーが高い金属元素又は半金属元素であり、例えば、酸素との結合エネルギーがインジウムよりも高い金属元素又は半金属元素である。元素Mとして、具体的には、Al、Ga、Sn、Y、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、Mo、Hf、Ta、W、La、Ce、Nd、Mg、Ca、Sr、Ba、B、Si、Ge、及びSbなどが挙げられる。金属酸化物が有する元素Mは、上記元素のいずれか一種または複数種であることが好ましく、特に、Al、Ga、Y、及びSnから選ばれた一種または複数種であることが好ましく、ガリウムがより好ましい。なお、Inと、Mと、Znとを有する金属酸化物を、以降ではIn−M−Zn酸化物と呼ぶ場合がある。なお、本明細書等において、金属元素と半金属元素をまとめて「金属元素」と呼ぶことがあり、本明細書等に記載の「金属元素」には半金属元素が含まれることがある。
 金属酸化物がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。例えば、このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:3、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5、またはこれらの近傍の組成等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。金属酸化物中のインジウムの原子数比を大きくすることで、トランジスタのオン電流、または電界効果移動度などを高めることができる。
 また、In−M−Zn酸化物におけるInの原子数比はMの原子数比未満であってもよい。例えば、このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:3:2、In:M:Zn=1:3:3、In:M:Zn=1:3:4、またはこれらの近傍の組成等が挙げられる。金属酸化物中のMの原子数比を大きくすることで、酸素欠損の生成を抑制することができる。
 半導体層21は、例えば、In−Zn酸化物、In−Ga酸化物、In−Sn酸化物、In−Ti酸化物、In−Ga−Al酸化物、In−Ga−Sn酸化物、In−Ga−Zn酸化物、In−Sn−Zn酸化物、In−Al−Zn酸化物、In−Ti−Zn酸化物、In−Ga−Sn−Zn酸化物、In−Ga−Al−Zn酸化物などを用いることができる。また、Ga−Zn酸化物を用いてもよい。
 なお、金属酸化物は、インジウムに代えて、又は、インジウムに加えて、周期の数が大きい金属元素の一種または複数種を有してもよい。金属元素の軌道の重なりが大きいほど、金属酸化物におけるキャリア伝導は大きくなる傾向がある。よって、周期の数が大きい金属元素を含むことで、トランジスタの電界効果移動度を高めることができる場合がある。周期の数が大きい金属元素として、第5周期に属する金属元素、及び第6周期に属する金属元素などが挙げられる。当該金属元素として、具体的には、Y、Zr、Ag、Cd、Sn、Sb、Ba、Pb、Bi、La、Ce、Pr、Nd、Pm、Sm、及びEuなどが挙げられる。なお、La、Ce、Pr、Nd、Pm、Sm、及びEuは、軽希土類元素と呼ばれる。
 また、金属酸化物は、非金属元素の一種または複数種を有してもよい。金属酸化物が非金属元素を有することで、トランジスタの電界効果移動度を高めることができる場合がある。非金属元素として、例えば、炭素、窒素、リン、硫黄、セレン、フッ素、塩素、臭素、及び水素などが挙げられる。
 金属酸化物の形成は、スパッタリング法、または原子層堆積法を好適に用いることができる。なお、金属酸化物をスパッタリング法で形成する場合、成膜後の金属酸化物の組成はターゲットの組成と異なる場合がある。特に亜鉛は、成膜後の金属酸化物における含有率が、ターゲットと比較して50%程度にまで減少する場合がある。
 本明細書等において、金属酸化物のある金属元素の含有率とは、金属酸化物に含まれる金属元素の原子数の総数に対する、その元素の原子数の割合をいう。例えば金属酸化物が金属元素X、金属元素Y、金属元素Zを含み、当該金属酸化物に含まれる金属元素X、金属元素Y、金属元素Zのそれぞれの原子数をA、A、Aとしたとき、金属元素Xの含有率は、A/(A+A+A)で示すことができる。また、金属酸化物中の金属元素X、金属元素Y、金属元素Zのそれぞれの原子数の比(原子数比)が、B:B:Bで示されるとき、金属元素Xの含有率は、B/(B+B+B)で示すことができる。
 例えば、Inを含む金属酸化物の場合、Inの含有率を高くすることにより、オン電流の大きいトランジスタを実現することができる。
 半導体層21にGaを含まない、またはGaの含有率の低い金属酸化物を用いることにより、正バイアス印加に対する信頼性が高いトランジスタとすることができる。つまり、PBTS(Positive Bias Temperature Stress)試験でのしきい値電圧の変動量が小さいトランジスタとすることができる。また、Gaを含む金属酸化物を用いる場合は、Inの含有率よりも、Gaの含有率を低くすることが好ましい。これにより、高移動度で且つ信頼性の高いトランジスタを実現することができる。
 一方、Gaの含有率を高くすることにより、光に対する信頼性の高いトランジスタとすることができる。つまり、NBTIS(Negative Bias Temperature Illumination Stress)試験でのしきい値電圧の変動量が小さいトランジスタとすることができる。具体的には、Gaの原子数比がInの原子数比以上である金属酸化物はバンドギャップがより大きくなり、トランジスタのNBTIS試験でのしきい値電圧の変動量を小さくすることができる。
 また、亜鉛の含有率を高くすることにより、結晶性の高い金属酸化物となり、金属酸化物中の不純物の拡散を抑制できる。したがって、トランジスタの電気特性の変動が抑制され、信頼性を高めることができる。
 半導体層21は、2以上の金属酸化物層を有する積層構造としてもよい。半導体層21が有する2以上の金属酸化物層は、組成が互いに同じ、または概略同じであってもよい。組成が同じ金属酸化物層の積層構造とすることで、例えば、同じスパッタリングターゲットを用いて形成できるため、製造コストを削減できる。なお、異なる組成の酸化物半導体層を2以上積層した積層構造としてもよい。また、ALD法を用いることで、組成が厚さ方向に連続的に異なる金属酸化物層を形成することもできる。これにより、決まった組成の膜を用いる場合と比較して設計の選択の幅が広がるだけでなく、組成の異なる2層の間に生じる界面準位などの生成を防ぐことができるため、電気特性及び信頼性を高めることができる。
 半導体層21を2層構造とする場合、二層目、すなわちゲート電極に近い側に一層目よりも高移動度の材料(導電性の高い材料)を用いることが好ましい。これによりノーマリオフであり、且つオン電流の大きいトランジスタとすることができる。そのため低い消費電力と高い性能を両立することができる。または、一層目、すなわちソース電極及びドレイン電極と接する側に、二層目よりも高移動度の材料を用いてもよい。これにより半導体層21とソース電極またはドレイン電極との接触抵抗を小さくできるため、寄生抵抗が低減され、オン電流の大きいトランジスタとすることができる。
 また、半導体層21を3層構造とする場合、二層目に一、三層目よりも高移動度の材料を用いることが好ましい。これにより、オン電流が高く、且つ信頼性の高いトランジスタを実現できる。
 上述した移動度の高さ、導電性の高さの違いは、例えばインジウムの含有率の高さに置き換えることができる。そのほか、インジウムの他に導電性の向上に寄与する元素を含むか否か、またはその元素の含有量なども移動度および導電性に影響する。高移動度の材料の一例としては、例えばIn:Ga:Zn=4:3:2[原子数比]及びその近傍の材料、In:Zn=1:1[原子数比]及びその近傍の材料、In:Zn=4:1[原子数比]及びその近傍の材料、In:Sn:Zn=40:X:10[原子数比](Xは0.1以上5以下、代表的にはX=1)及びその近傍の材料などが挙げられる。一方、上述した材料と比較して移動度または導電性の低い材料としては、In:Ga:Zn=1:3:2[原子数比]及びその近傍の材料、In:Ga:Zn=1:3:4[原子数比]及びその近傍の材料、In:Ga:Zn=2:2:1[原子数比]及びその近傍の材料、In:Ga:Zn=1:1:1[原子数比]及びその近傍の材料、In:Ga:Zn=1:1:2[原子数比]及びその近傍の材料などが挙げられる。
 半導体層21は、結晶性を有する金属酸化物層を用いることが好ましい。例えば、CAAC(c−axis aligned crystal)構造、多結晶構造、微結晶(nc:nano−crystal)構造等を有する金属酸化物層を用いることができる。結晶性を有する金属酸化物層を半導体層21に用いることにより、半導体層21中の欠陥準位密度を低減でき、信頼性の高い半導体装置を実現できる。
 半導体層21に用いる金属酸化物層の結晶性が高いほど、半導体層21中の欠陥準位密度を低減できる。一方、結晶性の低い金属酸化物層を用いることで、大きな電流を流すことができるトランジスタを実現することができる。
 酸化物半導体を用いたトランジスタ(以下、OSトランジスタと記す)は、非晶質シリコンを用いたトランジスタと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(以下、オフ電流ともいう)が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、半導体装置の消費電力を低減することができる。
 本発明の一態様である半導体装置は、例えば、表示装置に適用することができる。表示装置の画素回路に含まれる発光デバイスの発光輝度を高くする場合、発光デバイスに流す電流量を大きくする必要がある。そのためには、画素回路に含まれている駆動トランジスタのソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、シリコンを用いたトランジスタ(以下、Siトランジスタと記す)と比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加することができる。したがって、画素回路に含まれる駆動トランジスタをOSトランジスタとすることで、発光デバイスに流れる電流量を大きくし、発光デバイスの発光輝度を高くすることができる。
 トランジスタが飽和領域で動作する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化を小さくすることができる。このため、画素回路に含まれる駆動トランジスタにOSトランジスタを適用することで、発光デバイスに流れる電流量を細かく制御することができる。このため、画素回路における階調を大きくすることができる。また、発光デバイスの電気特性(例えば抵抗)の変動、または電気特性のばらつきが生じたとしても、安定した電流を流すことができる。
 上記のとおり、画素回路に含まれる駆動トランジスタにOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、「発光デバイスの製造ばらつきの影響の抑制」などを図ることができる。
 OSトランジスタは、放射線照射による電気特性の変動が小さい、つまり放射線に対する耐性が高いため、放射線が入射しうる環境においても好適に用いることができる。OSトランジスタは、放射線に対する信頼性が高いともいえる。例えば、X線のフラットパネルディテクタの画素回路に、OSトランジスタを好適に用いることができる。また、OSトランジスタは、宇宙空間で使用する半導体装置に好適に用いることができる。放射線として、電磁放射線(例えば、X線、及びガンマ線)、及び粒子放射線(例えば、アルファ線、ベータ線、陽子線、及び中性子線)が挙げられる。
 なお、半導体層21に用いることができる半導体材料は、酸化物半導体に限定されない。例えば、単体元素よりなる半導体、または化合物半導体を用いることができる。単体元素よりなる半導体としては、シリコン(単結晶シリコン、多結晶シリコン、微結晶シリコン、非晶質シリコンを含む)またはゲルマニウムなどが挙げられる。化合物半導体として、例えば、ヒ化ガリウム、シリコンゲルマニウムが挙げられる。化合物半導体として、有機半導体、窒化物半導体、または酸化物半導体等が挙げられる。なお、これらの半導体材料に、ドーパントとして不純物が含まれてもよい。
 または、半導体層21は、半導体として機能する層状物質を有してもよい。層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス結合のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
 上記層状物質として、例えば、グラフェン、シリセン、カルコゲン化物などが挙げられる。カルコゲン化物は、カルコゲン(第16族に属する元素)を含む化合物である。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。トランジスタの半導体層として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
 半導体層21に用いる半導体材料の結晶性は特に限定されず、非晶質半導体、単結晶性半導体、または単結晶以外の結晶性を有する半導体(多結晶半導体、微結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
〈ゲート絶縁層〉
 絶縁層22はトランジスタのゲート絶縁層として機能し、容量素子の誘電層としても機能する。半導体層21に酸化物半導体を用いた場合、絶縁層22の少なくとも半導体層21と接する膜には、酸化物絶縁膜を用いることが好ましい。例えば、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、及びGa−Zn酸化物の一または複数を用いることができる。このほか、絶縁層22として、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒化物絶縁膜を用いることもできる。また、絶縁層22は積層構造を有していてもよく、例えば酸化物絶縁膜と窒化物絶縁膜とをそれぞれ1以上有する積層構造としてもよい。
 なお、本明細書等において、酸化窒化物は窒素よりも酸素の含有量が多い材料を指す。窒化酸化物は酸素よりも窒素の含有量が多い材料を指す。
 また、絶縁層22は、high−k材料からなる絶縁材料を積層して用いることが好ましく、比誘電率が高い(high−k)材料と、当該high−k材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁層22として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜(ZAZともいう)を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁膜(ZAZAともいう)を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子の静電破壊を抑制できる。
 また、絶縁層22として、強誘電性を示す材料を用いてもよい。強誘電性を示す材料としては、酸化ハフニウム、酸化ジルコニウム、HfZrO(Xは0よりも大きい実数とする)などの金属酸化物が挙げられる。
〈導電層〉
 導電層31及び導電層32は、それぞれ上面が半導体層21と接する。ここで、半導体層21として酸化物半導体を用いた場合、導電層31または導電層32の上部に例えばアルミニウムなどの酸化しやすい金属を用いると、導電層31または導電層32と半導体層21との間に絶縁性の酸化物(例えば酸化アルミニウム)が形成され、これらの導通を妨げる恐れがある。そのため、導電層31及び導電層32の少なくとも最上部には、酸化しにくい導電材料、酸化しても電気抵抗が低く保たれる導電材料、または酸化物導電性材料を用いることが好ましい。
 導電層31及び導電層32としては、例えばチタン、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、ルテニウム、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。これらは、酸化されにくい導電性材料、または、酸化しても導電性を維持する材料であるため、好ましい。
 または、酸化インジウム、酸化亜鉛、In−Sn酸化物、In−Zn酸化物、In−W酸化物、In−W−Zn酸化物、In−Ti酸化物、In−Ti−Sn酸化物、In−Sn−Si酸化物、Ga−Zn酸化物などの導電性酸化物を用いることができる。特にインジウムを含む導電性酸化物は、導電性が高いため好ましい。または、上記半導体層21に適用できるIn−Ga−Zn酸化物などの酸化物材料も、キャリア濃度を高めることで導電層として用いることができる。
 導電層23はゲート電極として機能し、様々な導電性材料を用いることができる。導電層23としては、例えばアルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、当該金属元素を成分とする合金を用いることが好ましい。また、上記金属または合金の窒化物、もしくは上記金属または合金の酸化物を用いてもよい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また導電層23には、上記導電層31及び導電層32に用いることができる、窒化物、及び酸化物を適用してもよい。
 導電層31及び導電層32は、配線としても機能するため、低抵抗な導電性材料を積層して用いることもできる。また導電層33は低抵抗であるほど好ましい。導電層31、導電層32、及び導電層33としては、上記導電層23と同様の導電性材料を用いることができる。
〈絶縁層〉
 絶縁層41(又は絶縁層41b)は、半導体層21と接する部分を有する。半導体層21に酸化物半導体を用いた場合、半導体層21と絶縁層41との界面特性を向上させるため、絶縁層41の少なくとも半導体層21と接する部分には酸化物を用いることが好ましい。例えば、酸化シリコンまたは酸化窒化シリコンを好適に用いることができる。
 また、絶縁層41には、加熱により酸素を放出する膜を用いるとより好ましい。これにより、トランジスタ10の作製工程中にかかる熱により半導体層21に酸素が供給され、半導体層21中の酸素欠損の低減を図ることができ、信頼性を高めることができる。絶縁層41に酸素を供給する方法としては、酸素雰囲気下における加熱処理、酸素雰囲気下におけるプラズマ処理などが挙げられる。また、絶縁層41の上面に対してスパッタリング法により、酸素雰囲気下で酸化物膜を成膜することで酸素を供給してもよい。その後、当該酸化物膜を除去してもよい。
 絶縁層41は、スパッタリング法、またはプラズマCVD法などの成膜方法で形成することが好ましい。特に、スパッタリング法を用い、成膜ガスに水素ガスを用いない成膜方法で成膜することで、水素の含有量の極めて少ない膜とすることができる。そのため、半導体層21に水素が供給されることを抑制し、トランジスタ10の電気特性の安定化を図ることができる。
 絶縁層41a及び絶縁層41cは、酸素が拡散しにくい膜を用いることが好ましい。これにより、絶縁層41bに含まれる酸素が、加熱により絶縁層41aを介して絶縁層11側に透過すること、及び、絶縁層41cを介して絶縁層45側に透過することを防ぐことができる。言い換えると、酸素が拡散しにくい絶縁層41a及び絶縁層41cで絶縁層41bの上下を挟むことで、絶縁層41bに含まれる酸素を閉じ込めることができる。これにより、半導体層21に効果的に酸素を供給することができる。
 絶縁層41a及び絶縁層41cとしては、例えば窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化アルミニウム、酸化ハフニウム、及びハフニウムアルミネートの一または複数を用いることができる。特に窒化シリコン及び、窒化酸化シリコンは自身からの不純物(例えば、水及び水素)の放出が少なく、酸素及び水素が透過しにくい特徴を有するため、絶縁層41a及び絶縁層41cとして好適に用いることができる。
[変形例]
 以下では、上記構成例とは一部の構成が異なる例について説明する。なお、上記と重複する部分については説明を省略する場合がある。
〈変形例1〉
 図4A、図4Bに、トランジスタ10aの断面概略図を示す。トランジスタ10aは、上記トランジスタ10と比較して開口20bの形状が主に異なる。
 トランジスタ10aでは、半導体層21の端部が開口20bの内側に位置している。また開口20bは半導体層21だけでなく、導電層32の一部、及び絶縁層45の一部に達する。これにより、絶縁層22の一部は、導電層32及び絶縁層45と接して設けられている。
 このように、開口20bの径を大きくすることで、導電層23と導電層33との接触面積を大きくできるため、これらの接触抵抗を低減することができる。
〈変形例2〉
 図4C、図4Dに、トランジスタ10bの断面概略図を示す。トランジスタ10bは、上記トランジスタ10と比較して絶縁層47を有する点で主に相違している。
 絶縁層47は、導電層32と絶縁層42の間、及び絶縁層45と絶縁層42の間に位置する。また絶縁層47は、半導体層21の端部を覆って設けられている。
 絶縁層47は、絶縁層42に開口20bを形成する際のエッチングストッパとして機能することができる。絶縁層47を設けることにより、開口20bの形成時に半導体層21へのダメージを軽減することができる。
 絶縁層47は、絶縁層42とのエッチング速度の選択比を大きくできる絶縁材料を用いることができる。絶縁層47は、少なくとも絶縁層42と組成または密度の異なる絶縁膜を用いる。絶縁層47は絶縁層42と異なる構成元素を含んでいてもよいし、絶縁層42が絶縁層47とは異なる構成元素を含んでいてもよいし、絶縁層47と絶縁層42とが同じ構成元素を含んでいてもよい。
 例えば、絶縁層42に酸化シリコン膜または酸化窒化シリコン膜を用い、絶縁層47には、窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜などの、絶縁層42とは組成及び構成元素の少なくとも一方が異なる絶縁膜を用いることができる。または、絶縁層42にスパッタリング法で成膜した絶縁膜を用い、絶縁層47にはCVD法またはALD法などの成膜方法で成膜した、緻密な絶縁膜を用いることで、同じ元素を含む絶縁膜(例えば酸化シリコン膜)を適用することもできる。
〈変形例3〉
 図5A、図5Bに示すトランジスタ10cは、開口20aの側壁がテーパ形状である場合の例である。トランジスタ10cでは、開口20aの下端の径(開口径)よりも、上端の径(開口径)の方が大きい。
 開口20aの側壁をテーパ形状とすることで、半導体層21、絶縁層22などの被覆性が向上し、スパッタリング法などの成膜方法を用いても、膜中の低密度な領域などの欠陥の生成を抑制できる。例えば角度θは、45度以上90度以下、または60度以上90度未満、または70度以上90度未満とすることができる。なお、ALD法などの被覆性が極めて高い成膜方法を用いる場合には、角度θが90度よりも大きくてもよい。
 開口20aの側壁がテーパ形状である場合、トランジスタ10cのチャネル幅に対応する開口20aの径は導電層31側から導電層32側に向かって大きくなる。このとき、トランジスタ10cに流れる電流の大きさは最も小さい径である部分に制限される。したがって、トランジスタ10cのチャネル幅は、最も小さい径の部分の周長とみなすことができる。したがって、開口20aの側壁をテーパ形状とすることで、開口20aの上端の径よりも小さいチャネル幅のトランジスタを作製することができる。
 また、図5C、図5Dに示すトランジスタ10dは、開口20aだけでなく開口20bもテーパ形状を有する場合の例である。さらにトランジスタ10dは、絶縁層46を有している。
 図5C、図5Dに示すように、開口20bの上端の径が下端の径よりも大きいことで、導電層23と導電層33との接触面積を大きくできるため好ましい。
〈変形例4〉
 図6A、図6Bに示すトランジスタ10eは、主に導電層26及び絶縁層27を有する点で上記トランジスタ10、トランジスタ10aなどと相違している。
 導電層26は第2のゲート電極(またはバックゲート電極)として機能する。また絶縁層27は導電層26と半導体層21との間に位置し、第2のゲート絶縁層(またはバックゲート絶縁層)として機能する。導電層26には、固定電位、または任意の信号を与えることができる。導電層26を設け、導電層26に適当な電位を与えることにより、半導体層21のバックチャネル側の電位を固定することができるため、電気特性のばらつきを減らすことができる。また、導電層26は、導電層31、導電層32、または導電層23のいずれか一つと電気的に接続され、同一の電位が与えられてもよい。
 導電層26は絶縁層41bに埋め込まれている。そのため導電層26は絶縁層41aと絶縁層41cの間に設けられている。絶縁層27は、導電層32、絶縁層41c、導電層26、及び絶縁層41aの側面に沿って設けられている。例えば絶縁層27は、導電層32、絶縁層41c、導電層26、及び絶縁層41aに開口を形成し、被覆性の高い成膜方法により当該開口を覆う絶縁膜を成膜したのちに、異方性のエッチングを行うことで形成することができる。
〈変形例5〉
 図6C、図6Dに示すトランジスタ10fは、主に導電層31の形状が異なる点で、トランジスタ10、トランジスタ10aなどと相違している。
 導電層31には凹部が設けられ、当該凹部に沿って半導体層21、絶縁層22、及び導電層23が設けられている。このとき、導電層23の下端の高さが、導電層31の上面の高さよりも低いことが好ましい。
 トランジスタ10fにおいて、半導体層21の導電層31と接する部分はチャネル形成領域よりも低抵抗な領域となる。したがって、導電層23の下端の高さが導電層31の上面よりも低く位置することで、半導体層21のチャネル形成領域全体に均一にゲート電界を与えることができ、半導体層21中にゲート電界が届きにくいために高抵抗な領域(オフセット領域)ができることを防ぐことができる。そのため、オン電流が高められたトランジスタを実現することができる。このような構成を実現するためには、例えば導電層31の厚さを、少なくとも半導体層21の厚さと絶縁層22の厚さの総和よりも厚くすることが好ましい。
〈変形例6〉
 図7A、図7Bに示すトランジスタ10gは、絶縁層22の構成が異なる点で、トランジスタ10などと主に相違している。
 絶縁層22は、半導体層21だけでなく導電層32及び絶縁層45を覆って設けられる。絶縁層22の一部は、導電層32と絶縁層42の間に位置し、他の一部は絶縁層45と絶縁層42の間に位置する。絶縁層42には絶縁層22に達する開口20bが設けられ、当該開口20bを埋めるように導電層23が設けられている。導電層23の一部は、絶縁層42の開口20bにおける側面に接して設けられている。
 トランジスタ10gに示す構成の場合、絶縁層42の開口20bの形成時に、絶縁層22がエッチングされ消失してしまう恐れがある。そのため、絶縁層22の少なくとも最も上部には、絶縁層42とエッチング速度の選択比を大きくできる材料を用いることが好ましい。具体的には、上述した絶縁層47と同様の絶縁材料を用いることができる。例えば、絶縁層22は、当該絶縁材料を含む単層構造としてもよいし、最も上部に位置する膜に当該絶縁材料を用いた積層構造としてもよい。
 また、絶縁層22は、開口20bの形成時に一部がエッチングされ、薄膜化する場合があるため、あらかじめ厚く成膜した膜を用いてもよい。
 図7C、図7Dに示すトランジスタ10hは、上記変形例3で示したトランジスタ10cに、本変形例で示した絶縁層22を適用した場合の例である。なお、これに限られず上記で例示した各構成にも、本変形例で示した絶縁層22を適用することができる。
 以上が、変形例についての説明である。
[作製方法例1]
 続いて、本発明の一態様の半導体装置の作製方法について説明する。ここでは、上記トランジスタ10の作製方法の一例について説明する。
 図8A乃至図11Bは、以下で例示する半導体装置の作製方法の各工程における断面概略図である。各図において、左側に図2Bに対応する断面を、右側に図2Cに対応する断面をそれぞれ並べて示している。
 以下において、絶縁層を形成するための絶縁性材料、導電層を形成するための導電性材料、または半導体層を形成するための半導体材料は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能である。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。
 CVD法およびALD法はスパッタリング法とは異なり、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。またCVD法と同様に、組成が連続的に変化した膜を成膜することができる。
 まず、基板(図示しない)を準備し、当該基板上に絶縁層11を形成する。絶縁層11としては、酸化シリコン膜、酸化窒化シリコン膜などの無機絶縁膜を用いることができる。絶縁層11の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いることができる。絶縁層11の被形成面が平坦でない場合には、絶縁層11の成膜後に絶縁層11の上面が平坦となるように平坦化処理を行うことが好ましい。
 続いて、絶縁層11上に導電層31となる導電膜を形成する。続いて当該導電膜上にフォトリソグラフィ法等によりレジストマスクを形成し、導電膜の当該レジストマスクに覆われない部分をエッチングにより除去したのち、レジストマスクを除去する。これにより、導電層31を形成することができる。続いて、絶縁層44となる絶縁膜を成膜し、導電層31と重なる部分を除去することで、絶縁層44と、絶縁層44に埋め込まれた導電層31とを形成することができる(図8A)。絶縁層44となる絶縁膜の加工は、CMP(Chemical Mechanical Polishing)法を用いることが好ましく、例えば導電層31の上面が露出するまで当該絶縁膜を加工することで、図8Aに示す絶縁層44を形成することができる。
 なお、絶縁層44となる絶縁膜を先に形成したのち、当該絶縁膜に開口を形成し、当該開口を埋めるように導電膜を形成し、絶縁膜の上面が露出するまでCMP法を用いた研磨処理(平坦化処理)を行うことで、絶縁層44と導電層31とを形成してもよい。
 絶縁層44と導電層31の上面の高さが一致するように平坦化処理を行うことで、続いて形成する絶縁層41の上面を平坦にすることができる。なお、絶縁層44を設けず、導電層31を覆って絶縁層41を設けてもよく、その場合には絶縁層41の上面に対してCMP法による平坦化処理を行なって上面を平坦化させることが好ましい。
 続いて、導電層31及び絶縁層44上に、絶縁層41a、絶縁層41b、及び絶縁層41c(以下、これらをまとめて絶縁層41と呼ぶ場合がある)を形成する(図8B)。絶縁層41a、絶縁層41b、及び絶縁層41cの成膜はそれぞれスパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。
 ここで、絶縁層41の厚さがトランジスタのチャネル長に影響するため、絶縁層41の厚さにばらつきが生じないようにすることが重要である。
 また、絶縁層41bを、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、膜中の多くの酸素を含む絶縁層41bを形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁層41b中の水素濃度を低減できる。このように、絶縁層41bを成膜することで、絶縁層41bから半導体層21のチャネル形成領域に酸素を供給し、酸素欠損の低減を図ることができる。
 続いて絶縁層41上に、導電層32及び絶縁層45を形成する(図8C)。導電層32と絶縁層45とは、導電層31及び絶縁層44と同様の方法で形成することができる。
 続いて、導電層32及び絶縁層41に、導電層31に達する開口20aを形成する(図8D)。
 開口20aの側壁は、導電層31の上面に対して垂直であることが好ましい。このような構成とすることで、占有面積の小さなトランジスタを作製することができる。または、開口20aの側壁はテーパ形状としてもよい。テーパ形状とすることで、開口20aの内部に形成する膜の被覆性を高めることができる。
 開口20aの最大幅(平面視において開口20aが円形である場合は最大径)は、できるだけ微細であることが好ましい。例えば、開口20aの最大幅は、60nm以下、50nm以下、40nm以下、30nm以下、又は20nm以下であって、5nm以上であることが好ましい。このように、開口20aを微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィー法を用いることが好ましい。
 開口20aはアスペクト比が大きいため、異方性エッチングを用いて形成することが好ましい。特に、ドライエッチング法による加工は微細加工に適しているため好ましい。また、当該加工におけるエッチングの条件は、導電層32、絶縁層41c、絶縁層41b、及び絶縁層41aのそれぞれで異なってもよい。なお、導電層32、絶縁層41c、絶縁層41b、及び絶縁層41aのそれぞれで開口20aの側壁の角度が異なっていてもよい。
 また、絶縁層41のエッチング時に、導電層31の上部の一部がエッチングされ、開口20aの底部における導電層31が薄くなる場合がある。または、開口20aの形成後に続けて導電層31の上部の一部をエッチングし、導電層31を薄くしてもよい。
 続いて、加熱処理を行ってもよい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行なってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行なってもよい。以上のような加熱処理を行うことで、半導体層となる酸化物半導体膜の成膜前に、絶縁層41などに含まれる、水などの不純物を低減できる。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、絶縁層41などに水分等が取り込まれることを可能な限り防ぐことができる。
 続いて、絶縁層41、導電層32、開口20a、絶縁層45などを覆って半導体層21となる半導体膜を成膜し、不要な部分をエッチングにより除去することで半導体層21を形成する(図9A)。
 当該半導体膜としては、酸化物半導体膜を用いることができる。当該酸化物半導体膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて行えばよい。ここで、当該酸化物半導体膜は、アスペクト比の大きい開口20aの底部及び側壁に接して形成されることが好ましい。よって、当該酸化物半導体膜の成膜は、被覆性が良好な成膜方法を用いることが好ましく、CVD法またはALD法などを用いることがより好ましい。例えば、当該酸化物半導体膜として、ALD法を用いて、In−Ga−Zn酸化物を成膜すればよい。なお、開口20aがテーパ形状である場合には、酸化物半導体膜を、スパッタリング法を用いて成膜することができる。
 また、酸化物半導体膜の成膜中、または成膜後に、酸素を含む雰囲気でマイクロ波処理を行うことで、当該酸化物半導体膜中の不純物濃度を低減させる処理を行うと好ましい。なお、不純物としては、特に、水素、及び炭素が挙げられる。また、マイクロ波処理を行うことで、酸化物半導体膜の結晶性を高めることができる場合がある。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを作用させることができる。また、酸化物半導体に作用する酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、酸化物半導体に作用する酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。
 また、上述の酸素を含む雰囲気でマイクロ波処理を行う際に、基板を加熱することで、酸化物半導体膜中の不純物濃度を、さらに低減させることができるため好適である。上述の基板を加熱する温度としては、100℃以上650℃以下、好ましくは200℃以上600℃以下、さらに好ましくは300℃以上450℃以下で行えばよい。
 上述の酸素を含む雰囲気でマイクロ波処理を行う際に基板を加熱することで、SIMSにより得られる酸化物半導体膜中の炭素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とすることができる。
 なお、上記においては、酸化物半導体膜に対して、酸素を含む雰囲気でマイクロ波処理を行う構成について例示したが、これに限定されない。例えば、酸化物半導体膜近傍に位置する、絶縁膜、より具体的には酸化シリコン膜に対して、酸素を含む雰囲気でマイクロ波処理を行なってもよい。これにより、当該酸化シリコン膜中に含まれる水素をHOとして、外部に放出させることができる。酸化物半導体膜近傍に位置する、酸化シリコン膜から水素を放出させることで、信頼性の高い半導体装置を提供することができる。
 また、半導体層21を積層構造とする場合、各層の成膜方法は同じであってもよいし、異なってもよい。例えば、半導体層21を2層の積層構造とする場合、酸化物半導体膜の下層をスパッタリング法で成膜し、酸化物半導体膜の上層をALD法で成膜してもよい。スパッタリング法を用いて成膜された酸化物半導体膜は結晶性を有しやすい。そこで、結晶性を有する酸化物半導体膜を酸化物半導体膜の下層として設けることで、酸化物半導体膜の上層の結晶性を高めることができる。また、スパッタリング法で成膜した酸化物半導体膜の下層にピンホールまたは段切れなどが形成されたとしても、それらと重畳する部分を、被覆性の良好なALD法で成膜した酸化物半導体膜の上層で塞ぐことができる。
 ここで、酸化物半導体膜は、開口20aにおける導電層31上面、開口20aにおける絶縁層41の側面、及び絶縁層41上の導電層32の側面及び上面に接して形成されることが好ましい。
 酸化物半導体膜の成膜後、加熱処理を行うことが好ましい。加熱処理は、上記酸化物半導体膜が多結晶化しない温度範囲で行えばよく、250℃以上650℃以下、好ましくは400℃以上600℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行なってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行なってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、上記酸化物半導体膜などに水分等が取り込まれることを可能な限り防ぐことができる。
 ここで、半導体膜が、多くの酸素を含む絶縁層41bと接した状態で、上記加熱処理を行うことが好ましい。これにより絶縁層41bから半導体膜のチャネル形成領域となる部分に酸素を供給し、酸素欠損の低減を図ることができる。
 なお、上記においては、上記酸化物半導体膜の成膜後に加熱処理を行ったが、本発明はこれに限られるものではない。さらに後の工程で加熱処理を行ってもよい。
 続いて、導電層32、半導体層21、及び絶縁層45を覆って絶縁層42を形成する(図9B)。絶縁層42は絶縁層41bなどと同様の方法で形成することができる。
 絶縁層42は開口20aを埋めるように形成する。ここで、絶縁層42の上面に凹凸が形成される場合、絶縁層42の上面を平坦化してもよい。
 続いて、絶縁層42に、半導体層21に達する開口20bを形成する(図9C)。このとき、開口20aの内部に埋め込まれていた絶縁層42もエッチングにより除去し、半導体層21の開口20a内に位置する側面および底部を露出させる。
 開口20bの形成時、半導体層21にエッチングダメージが生じてしまう場合がある。そのため、開口20bの形成後に、半導体層21のダメージを受けている表層部の一部をエッチングにより除去してもよい。当該エッチングは、ドライエッチングを用いてもよいが、ウェットエッチングが好ましい。例えば、十分に希釈したリン酸、シュウ酸、硝酸などの酸を用いたウェットエッチングにより、半導体層21の表層部(例えば表面を含む厚さ1nm以上10nm以下の範囲)をエッチングすることが好ましい。また、ウェットエッチング後に、表面に吸着した水を除去するため、加熱処理を行ってもよい。加熱処理は上述した条件で行うことができる。
 ここで、図9C等では開口20bの開口径を、半導体層21の幅より小さく、開口20aより大きいものとして図示しているが、これに限られない。例えば開口20bの開口径を、半導体層21の幅よりも大きくすることで、図4A及び図4Bで例示した構成を実現できる。なお、開口20bの開口径は、開口20aよりも小さくしてもよいが、大きくすることで開口20b及び開口20aの内部に設ける層(絶縁層22、導電層23など)の被覆性が向上するため好ましい。
 続いて、半導体層21および絶縁層42を覆って、絶縁膜22fを形成する(図10A)。絶縁膜22fは、後に絶縁層22となる絶縁膜である。絶縁膜22fの成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いることができる。
 絶縁膜22fは、開口20a内における半導体層21の側面に、出来るだけ均一な厚さで設けることが好ましい。そのため被覆性に極めて優れた成膜方法であるALD法により、絶縁膜22fを形成することが特に好ましい。なお、開口20a及び開口20bの側壁がテーパ形状である場合には、絶縁膜22fを、スパッタリング法などの成膜方法を用いて成膜することができる。
 続いて、絶縁膜22f上に導電膜23fを形成する(図10B)。導電膜23fは、後に導電層23となる導電膜である。導電膜23fは、その一部が開口20aおよび開口20bに埋め込まれるように設けられる。
 導電膜23fは、被覆性または埋め込み性の高い成膜方法で成膜されることが好ましく、例えばCVD法またはALD法などを用いることがより好ましい。なお、開口20a及び開口20bの側壁がテーパ形状である場合には、当該導電膜を、スパッタリング法を用いて成膜することができる。
 続いて、CMP法、ドライエッチング法などにより、絶縁層42の上面が露出するまで導電膜23f及び絶縁膜22fの上部をエッチングすることで、開口20a及び開口20bに埋め込まれた絶縁層22と導電層23とを形成する(図11A)。
 なお、絶縁膜22fの上面が露出するまで導電膜23fの上部をエッチングすることで、絶縁層22(絶縁膜22f)の絶縁層42の上部を覆う部分を残存させてもよい。
 続いて、絶縁層42、絶縁層22、及び導電層23上に導電層33及び絶縁層46を形成する(図11B)。導電層33及び絶縁層46は、導電層31及び絶縁層44と同様の方法で形成することができる。
 以上の工程により、トランジスタ10を作製することができる。
[作製方法例2]
 続いて、上記作製方法例1とは一部が異なる半導体装置の作製方法例について説明する。より具体的には、図4C、図4Dで例示したトランジスタ10bの作製方法の一例について説明する。なお、上記作製方法例1と重複する部分については説明を省略する。
 まず、上記作製方法例1と同様に、半導体層21まで形成する。この時点の断面概略図が図9Aに相当する。
 続いて、導電層32、絶縁層45、及び半導体層21を覆って、絶縁膜47fを形成する(図12A)。絶縁膜47fは、半導体層21の開口20aにおける側面を被覆することが好ましく、段差被覆性に優れたALD法などの成膜方法により成膜することが好ましい。なお、開口20aがテーパ形状である場合には、スパッタリング法、CVD法などの成膜方法を用いてもよい。
 絶縁膜47fは、後に開口20bの形成時に、絶縁層42のエッチングによるダメージから半導体層21を保護するための保護層として機能する。絶縁膜47fは、エッチングストッパとも呼ぶことができ、絶縁層42とエッチングの選択比が大きい材料を用いることができる。すなわち、絶縁膜47fには、絶縁層42と組成の異なる膜を用いることが好ましい。より具体的には、絶縁膜47fには、絶縁層42とは異なる構成元素を含む膜、絶縁層42と同じ構成元素を含むが組成が異なる膜、絶縁層42とは密度の異なる膜などを用いることができる。
 続いて、絶縁膜47f上に絶縁層42を形成する(図12B)。
 続いて、絶縁層42に、絶縁膜47fに達する開口20bを形成する(図12C)。このとき、半導体層21は絶縁膜47fに覆われ、保護されているため、絶縁層42のエッチングによるダメージを受けない。
 続いて、開口20bと重なる部分の絶縁膜47fを除去し、半導体層21の上面及び側面を露出する(図13A)。また、これにより、導電層32と絶縁層42の間に位置し、半導体層21の端部を覆う絶縁層47が形成される。
 絶縁膜47fのエッチングは、半導体層21にダメージをできるだけ与えないように行うことが重要である。例えば、ウェットエッチングにより絶縁膜47fを除去することができる。または、ドライエッチングにより絶縁膜47fのエッチングを行ってもよい。ドライエッチングで絶縁膜47fをエッチングする場合には、絶縁層42のエッチング条件よりも低ダメージの条件(低パワーの条件)とすることが好ましい。
 また、絶縁膜47fのエッチング後に、加熱処理を行ってもよい。加熱処理は上述した条件で行うことができる。
 続いて、絶縁層42、絶縁層47、半導体層21を覆って、絶縁層22となる絶縁膜22fを形成する(図13B)。絶縁膜22fは、上記作製方法例1と同様に形成することができる。
 なお、上記変形例で例示したトランジスタ10gなどのように、ゲート絶縁層がエッチングストッパとしての機能を有する場合には、絶縁膜47fをエッチングすることなく、そのままゲート絶縁層(絶縁層22)として用いることもできる。すなわち、開口20bの形成後に、続けて導電層23となる導電膜23fを形成することができる。このような方法とすることで、工程を簡略化することができる。一方、開口20bの形成時に、絶縁膜47fがエッチングダメージを受け、変質してしまうような場合には、ゲート絶縁層が欠陥を含むことになるため、上述したとおり絶縁膜47fとは別に絶縁層22を形成することが好ましい。
 以降の工程は、上記作製方法例1を参照できる。
 以上の工程により、トランジスタ10bを作製することができる。このような方法を用いることで、チャネルが形成される半導体層21中の欠陥が低減されるため、電気特性のばらつきが抑えられ、且つ、信頼性の高いトランジスタを実現することができる。
 以上が、作製方法例についての説明である。
[応用例]
 以下では、トランジスタと容量素子を用いた記憶装置の構成について説明する。
 図14Aには、メモリセル30の回路図を示している。メモリセル30は、一つのトランジスタTr1と、一つの容量素子Cにより構成され、1Tr1Cとも表記することができる。トランジスタTr1は、ゲートが配線WLに、ソース及びドレインの一方が配線BLに、他方が容量素子Cの一方の電極に、それぞれ接続されている。容量素子Cは、他方の電極が配線PLに接続されている。
 メモリセル30は、トランジスタTr1を介して配線BLから入力されるデータ電位を容量素子Cに保持することで、データを格納することができる。またトランジスタTr1を非導通状態とすることで、データを保持することができる。またトランジスタTr1を導通状態とすることで、保持されたデータに対応した電位が配線BLに出力され、データを読み出すことができる。配線WLには、トランジスタTr1の導通、非導通を制御する信号が与えられる。また配線PLには、所定の電位(例えば固定電位)が与えられる。
 図14B、図14Cには、メモリセル30の断面図を示す。メモリセル30は、容量素子50上にトランジスタ10が積層された構成を有する。トランジスタ10が上記トランジスタTr1に、容量素子50が上記容量素子Cに、それぞれ対応する。
 トランジスタ10の構成は、上記記載を参照できるため、説明を省略する。なお、ここではトランジスタ10を用いた場合の例を示すが、トランジスタ10に限られず、上記で説明した各種トランジスタに置き換えることができる。
 容量素子50は、導電層51と、導電層52、と、これらの間に挟持された絶縁層53と、を有する。容量素子50は、いわゆるMIM(Metal−Insulator−Metal)容量を構成している。
 容量素子50は絶縁層11上に設けられる。絶縁層11上には、導電層34と、導電層34上に絶縁層47が設けられている。絶縁層47には導電層34に達する開口20cが設けられる。開口20cの内部において、絶縁層47の側面及び導電層34の上面に接して導電層51が設けられる。また絶縁層47及び導電層51を覆って、絶縁層53が設けられる。絶縁層53上には絶縁層48が設けられ、絶縁層48には開口20cと重なる開口20dが設けられる。導電層52は、開口20d及び開口20cに埋め込まれるように設けられる。
 導電層52と絶縁層48は、上面が平坦化され、上面の高さが概略一致する。導電層52及び絶縁層48上には絶縁層44と導電層31が設けられる。導電層31は、導電層52の上面に接して設けられる。
 図14B、図14Cにおいて、導電層32は配線BLに対応し、導電層33は配線WLに対応し、導電層34は上記配線PLに対応する。
 導電層34、導電層51、及び導電層52には、低抵抗な導電性材料を用いることができる。例えば、上記導電層23に用いることのできる材料を適用できる。
 絶縁層53は、容量素子50の誘電体層として機能するため、厚さが薄く、比誘電率が高いほど、容量素子50の容量を大きくできる。例えば、上記絶縁層22に用いることのできるhigh−k材料を用いることが好ましい。
 図15A、図15Bには、2個のメモリセル30を共通の配線に接続する記憶装置の例を示している。図15Aは記憶装置の上面概略図であり、図15Bは、図15A中の切断線A3−A4における断面概略図である。
 配線WLとして機能する導電層33は、2つのメモリセル30に個別に設けられる。配線BLとして機能する導電層32は、2つのメモリセル30に共通して設けられる。
 また、配線BLとして機能する導電層32は、各層間絶縁層に埋め込まれ、プラグ(接続電極ともいう)として機能する導電層61、及び導電層62と電気的に接続されている。導電層61は、絶縁層11の下方に設けられたセンスアンプ(図示しない)に電気的に接続される構成としてもよい。また導電層61は、絶縁層65よりも上に積層されたメモリセルの導電層32と電気的に接続される構成としてもよい。
 絶縁層65は、バリア層として機能し、外部から水、水素などの不純物が記憶装置に拡散することを防ぐ機能を有する。
 また、メモリセル30を3次元的にマトリクス状に配置することで、メモリセルアレイを構成することができる。メモリセルアレイの一例として、図16A及び図16Bに、X方向、Y方向、及びZ方向に、4個×2個×4個のメモリセル30を配置した記憶装置の例を示す。
 4つのメモリセル30からなる群をメモリユニット60と呼ぶことができる。図16では、8つのメモリユニット(メモリユニット60[1,1]乃至メモリユニット60[2,4])を示している。メモリユニット60[a,b](a、bはそれぞれ正の整数)において、aはY方向のアドレスを、bはZ方向のアドレスをそれぞれ示している。
 メモリユニット60は、導電層61または導電層62を中心にして、2つずつメモリセル30が対称に配置されている。導電層62により、Z方向に積層される各メモリユニット60の導電層32同士が電気的に接続されている。このように、複数のメモリユニット60を積層することで、単位面積当たりの記憶容量を大きくすることができ、微細化または高集積化が可能な記憶装置を提供できる。
 図17A、図17Bでは、接続部をメモリユニットの端に配置した場合の例を示している。ここでは、メモリセルアレイの一例として、3個×3個×m個(mは2以上の整数)のメモリセル30を配置した記憶装置の例を示す。メモリセル30を有する層のうち、1層目を層70[1]、m層目(最も上)を層70[m]と表記する。
 導電層63はメモリユニットの外側に設けられる。導電層63は、導電層63を含む層70よりも上部の層の配線と接続されていてもよい。例えば、層70[1]に設けられる導電層63は、層70[2]に設けられる配線と電気的に接続されている。なお、これに限られず、導電層63は、自身を含む層70よりも下に位置する層70の配線と電気的に接続される構成としてもよい。
 図18に、センスアンプを含む駆動回路が設けられる層上に、メモリセル30を有する層が積層して設けられた記憶装置の断面構成例を示す。
 図18では、トランジスタ90の上方に容量素子50と、その上にトランジスタ10と、が積層されている例を示している。トランジスタ90は、センスアンプが有するトランジスタの一つである。
 メモリセル30と重なるように、センスアンプを設ける構成にすることで、ビット線を短くすることができる。これにより、ビット線の負荷が小さくなるため、センスアンプでの読み出しの感度を向上させることができる。そのため、メモリセルの保持容量を低減することができる。
 トランジスタ90は、基板91上に設けられ、ゲートとして機能する導電層94と、ゲート絶縁層として機能する絶縁層93と、基板91の一部からなる半導体領域92と、ソース領域またはドレイン領域として機能する低抵抗領域95a及び低抵抗領域95bと、を有する。トランジスタ90は、pチャネル型またはnチャネル型のいずれでもよい。
 ここで、図18に示すトランジスタ90はチャネルが形成される半導体領域92(基板91の一部)が凸形状を有する。また、半導体領域92の側面及び上面を、絶縁層93を介して、導電層94が覆うように設けられている。このようなトランジスタ90は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。
 トランジスタ90が設けられる層とメモリセル30が設けられる層との間には、層間絶縁層と配線層とが交互に積層された構成(多層配線層ともいう)を有することが好ましい。図18では、トランジスタ90の低抵抗領域95bが、配線及びプラグを介してメモリセル30のビット線として機能する導電層32と電気的に接続されている例を示している。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の記憶装置について図19乃至図22を用いて説明する。本実施の形態では、センスアンプを含む駆動回路が設けられる層上に、メモリセルを有する層が積層して設けられた記憶装置の構成例について説明する。
<記憶装置の構成例>
 図19に、本発明の一態様に係る記憶装置480の構成例を示すブロック図を示す。図19に示す記憶装置480は、層420と、積層された層470と、を有する。
 層420は、Siトランジスタを有する層である。層470では、素子層430[1]乃至430[m](mは2以上の整数。)が積層して設けられる。素子層430[1]乃至430[m]は、OSトランジスタを有する層である。OSトランジスタを有する層が積層して設けられる層470は、層420上に積層して設けることができる。
 素子層430[1]乃至430[m]が有するOSトランジスタ及び容量素子といった素子は、メモリセルを構成する。図19では、素子層430[1]乃至430[m]において、m行n列(nは2以上の整数)のマトリクス状に配置された複数のメモリセル432を有する例を示している。
 図19では、1行1列目のメモリセル432をメモリセル432[1,1]と示し、m行n列目のメモリセル432をメモリセル432[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル432をメモリセル432[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また図19では、一例として、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を図示している。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。なお素子層430[1]乃至430[m]の層数と、配線WL(及び配線PL)の本数は、同じでなくてもよい。
 i行目に設けられた複数のメモリセル432は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に電気的に接続される。j列目に設けられた複数のメモリセル432は、j列目の配線BL(配線BL[j])と電気的に接続される。
 配線BLは、データの書き込み及び読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、キャパシタに接続される定電位線としての機能を有する。なおバックゲート電位を伝える配線を別途設けることができる。
 素子層430[1]乃至430[m]がそれぞれ有するメモリセル432は、配線BLを介してセンスアンプ446(Sense Amplifier)に接続される。配線BLは、層420が設けられる基板表面の平行方向及び垂直方向に配置することができる。素子層430[1]乃至430[m]が有するメモリセル432から延びて設けられる配線BLを、基板表面の水平方向に配置される配線に加え、垂直方向に配置される配線で構成することで、素子層430とセンスアンプ446との間の配線の長さを短くできる。メモリセルとセンスアンプとの間の信号伝搬距離を短くでき、ビット線の抵抗及び寄生容量が大幅に削減されるため、消費電力及び信号遅延の低減が実現できる。そのため、記憶装置480の消費電力及び信号遅延の低減が実現できる。またメモリセル432が有するキャパシタの容量を小さくしても動作させることが可能となる。そのため、記憶装置480の小型化が実現できる。
 層420は、PSW471(パワースイッチ)、PSW472、及び周辺回路422を有する。周辺回路422は、駆動回路440、コントロール回路473(Control Circuit)、及び電圧生成回路474を有する。なお層420が有する各回路は、Siトランジスタを有する回路である。
 記憶装置480において、各回路、各信号及び各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、及び信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路473で生成してもよい。
 コントロール回路473は、記憶装置480の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GW及び信号BWを論理演算して、記憶装置480の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路473は、この動作モードが実行されるように、駆動回路440の制御信号を生成する。
 電圧生成回路474は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路474への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路474へ入力され、電圧生成回路474は負電圧を生成する。
 駆動回路440は、メモリセル432に対するデータの書き込み及び読み出しをするための回路である。駆動回路440は、行デコーダ442(Row Decoder)、列デコーダ444(Column Decoder)、行ドライバ443(Row Driver)、列ドライバ445(Column Driver)、入力回路447(Input Cir.)、出力回路448(Output Cir.)に加え、前述したセンスアンプ446を有する。
 行デコーダ442及び列デコーダ444は、信号ADDRをデコードする機能を有する。行デコーダ442は、アクセスする行を指定するための回路であり、列デコーダ444は、アクセスする列を指定するための回路である。行ドライバ443は、行デコーダ442が指定する配線WLを選択する機能を有する。列ドライバ445は、データをメモリセル432に書き込む機能、メモリセル432からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路447は、信号WDAを保持する機能を有する。入力回路447が保持するデータは、列ドライバ445に出力される。入力回路447の出力データが、メモリセル432に書き込むデータ(Din)である。列ドライバ445がメモリセル432から読み出したデータ(Dout)は、出力回路448に出力される。出力回路448は、Doutを保持する機能を有する。また、出力回路448は、Doutを記憶装置480の外部に出力する機能を有する。出力回路448から出力されるデータが信号RDAである。
 PSW471は周辺回路422へのVDDの供給を制御する機能を有する。PSW472は、行ドライバ443へのVHMの供給を制御する機能を有する。ここでは、記憶装置480の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW471のオン・オフが制御され、信号PON2によってPSW472のオン・オフが制御される。図19では、周辺回路422において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 素子層430[1]乃至430[m]は、層420上に重ねて設けることができる。図20Aに、層420上に5層(m=5)の素子層430[1]乃至430[5]を重ねて設けられる様子を示す記憶装置480の斜視図を示している。
 図20Aでは、1層目に設けられた素子層430を素子層430[1]と示し、2層目に設けられた素子層430を素子層430[2]と示し、5層目に設けられた素子層430を素子層430[5]と示している。また図20Aにおいて、X方向に延びて設けられる配線WL、及び配線PLと、Y方向及びZ方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BL及び配線BLBと、を図示している。配線BLBは、反転ビット線である。なお、図面を見やすくするため、素子層430それぞれが有する配線WL及び配線PLの記載を一部省略している。
 図20Bに、図20Aで図示した配線BL及び配線BLBに接続されたセンスアンプ446、及び配線BL及び配線BLBに接続された素子層430[1]乃至430[5]が有するメモリセル432の構成例を説明する模式図を示す。なお、1つの配線BL及び配線BLBに複数のメモリセル(メモリセル432)が電気的に接続される構成を「メモリストリング」ともいう。
 図20Bでは、配線BLBに接続されるメモリセル432の回路構成の一例を図示している。メモリセル432は、トランジスタ437及び容量素子438を有する。トランジスタ437、容量素子438、及び各配線(BL、及びWLなど)についても、例えば配線BL[1]及び配線WL[1]を配線BL及び配線WLなどのようにいう場合がある。メモリセル432には、例えば、先の実施の形態で例示したメモリセル30を適用することができる。つまり、トランジスタ437として、トランジスタ10を用い、容量素子438として、容量素子50を用いることができる。また、センスアンプ446が有するトランジスタとしては、トランジスタ90(図18参照)を用いることができる。
 メモリセル432において、トランジスタ437のソースまたはドレインの一方は配線BLに接続される。トランジスタ437のソースまたはドレインの他方は容量素子438の一方の電極に接続される。容量素子438の他方の電極は、配線PLに接続される。トランジスタ437のゲートは配線WLに接続される。
 配線PLは、容量素子438の電位を保持するための定電位を与える配線である。複数の配線PL同士を接続して1つの配線として用いることで配線数を削減することができる。
 本発明の一態様では、OSトランジスタは積層して設けるとともに、ビット線として機能する配線を、層420が設けられる基板表面の垂直方向に配置する。加えて、メモリセル432が有するトランジスタ437及び容量素子438を、層420が設けられる基板表面の垂直方向に並べて配置する。各素子及び各配線を基板表面の垂直方向に設けることで、素子層間の配線の長さを短くできるとともに、単位面積当たりに設けられる素子の密度を高めることができる。そのため、記憶容量及び消費電力の低減に優れた記憶装置とすることができる。
[メモリセル432、センスアンプ446の構成例]
 図21A及び図21Bには、上述したメモリセル432に対応する回路図、及び当該回路図に対応する回路ブロック図を示す。図21A及び図21Bに図示するように、メモリセル432は図面等においてブロックとして表す場合がある。なお図21A及び図21Bに図示する配線BLは、配線BLBに置き換えた場合も同様に表すことができる。
 また、図21C及び図21Dには、上述したセンスアンプ446に対応する回路図、及び当該回路図に対応する回路ブロック図を示す。センスアンプ446は、スイッチ回路482、プリチャージ回路483、プリチャージ回路484、増幅回路485を図示している。また、配線BL、配線BLBの他、読み出される信号を出力する配線SA_OUT、配線SA_OUTBを図示している。
 スイッチ回路482は、図21Cに図示するように、例えばnチャネル型のトランジスタ482_1、482_2を有する。トランジスタ482_1、482_2は、信号CSELに応じて、配線SA_OUT、配線SA_OUTBの配線対と、配線BL、配線BLBの配線対と、の導通状態を切り替える。
 プリチャージ回路483は、図21Cに図示するように、nチャネル型のトランジスタ483_1乃至483_3で構成される。プリチャージ回路483は、信号EQに応じて、配線BL及び配線BLBを電位VDD/2に相当する中間電位VPREにプリチャージするための回路である。
 プリチャージ回路484は、図21Cに図示するように、pチャネル型のトランジスタ484_1乃至484_3で構成される。プリチャージ回路484は、信号EQBに応じて、配線BL及び配線BLBを電位VDD/2に相当する中間電位VPREにプリチャージするための回路である。
 増幅回路485は、図21Cに図示するように、配線SAPまたは配線SANに接続された、pチャネル型のトランジスタ485_1、485_2及びnチャネル型のトランジスタ485_3、485_4で構成される。配線SAPまたは配線SANは、VDDまたはVSSを与える機能を有する配線である。トランジスタ485_1乃至485_4は、インバータループを構成するトランジスタである。
 また、図21Dには図21C等で説明したセンスアンプ446に対応する回路ブロック図を示す。図21Dに図示するように、センスアンプ446は図面等においてブロックとして表す場合がある。
 図22は、図19の記憶装置480の回路図である。図22では、図21A乃至図21Dで説明した回路ブロックを用いて図示している。
 図22に図示するように素子層430[m]を含む層470は、メモリセル432を有する。図22に図示するメモリセル432は、一例として、対になる配線BL[1]及び配線BLB[1]、または配線BL[2]及び配線BLB[2]に接続される。配線BLに接続されるメモリセル432は、データの書き込みまたは読み出しがされるメモリセルである。
 配線BL[1]及び配線BLB[1]は、センスアンプ446[1]に接続され、配線BL[2]及び配線BLB[2]は、センスアンプ446[2]に接続される。センスアンプ446[1]及びセンスアンプ446[2]は、図21Cで説明した各種信号に応じてデータの読み出しを行うことができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様のトランジスタを適用することのできる表示装置の構成例について説明する。
 本発明の一態様のトランジスタは、極めて微細なものとすることができるため、本発明の一態様のトランジスタを適用する表示装置は、極めて高精細な表示装置とすることができる。例えば、本発明の一態様の表示装置は、腕時計型、及び、ブレスレット型などの情報端末機(ウェアラブル機器)の表示部、並びに、ヘッドマウントディスプレイなどのVR向け機器、及び、メガネ型のAR向け機器などの頭部に装着可能な機器(HMD:Head Mounted Display)の表示部に用いることができる。
[表示モジュール]
 図23Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示装置200Aと、FPC290と、を有する。なお、表示モジュール280が有する表示パネルは表示装置200Aに限られず、後述する表示装置200Bまたは表示装置200Cであってもよい。
 表示モジュール280は、基板291及び基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、画像を表示する領域である。
 図23Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
 画素部284は、周期的に配列した複数の画素284aを有する。図23Bの右側に、1つの画素284aの拡大図を示している。画素284aは、赤色の光を発する発光素子110R、緑色の光を発する発光素子110G、及び、青色の光を発する発光素子110Bを有する。
 画素回路部283は、周期的に配列した複数の画素回路283aを有する。1つの画素回路283aは、1つの画素284aが有する3つの発光デバイスの発光を制御する回路である。1つの画素回路283aには、1つの発光デバイスの発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光デバイスにつき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースにはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示パネルが実現されている。
 回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。また、回路部282に設けられるトランジスタが画素回路283aの一部を構成してもよい。すなわち、画素回路283aが、画素回路部283が有するトランジスタと、回路部282が有するトランジスタと、により構成されていてもよい。
 FPC290は、外部から回路部282にビデオ信号及び電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
 表示モジュール280は、画素部284の下側に画素回路部283及び回路部282の一方または双方が重ねて設けられた構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
 このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置200A]
 図24に示す表示装置200Aは、基板331、発光素子110R、発光素子110G、発光素子110B、容量240、及びトランジスタ320を有する。
 基板331は、図23Aにおける基板291に相当する。
 トランジスタ320は、チャネルが形成される半導体層に酸化物半導体が適用された、縦チャネル型のトランジスタである。トランジスタ320は、半導体層321、絶縁層323、導電層324、導電層325、及び導電層326等を有する。
 トランジスタ320には、実施の形態1で例示した各種トランジスタを適用できる。
 基板331上に、絶縁層332が設けられている。絶縁層332は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
 絶縁層332上に導電層327が設けられ、導電層327上に導電層325が設けられている。また導電層325上に絶縁層334と、絶縁層334上に導電層326が設けられている。絶縁層334及び導電層326には開口が設けられ、当該開口内に、半導体層321が設けられている。半導体層321及び導電層326を覆って絶縁層264が設けられ、絶縁層264に設けられた開口内に、絶縁層323、及び導電層324が順に積層している。また絶縁層264及び導電層324上に絶縁層265及び導電層328が設けられている。また絶縁層265及び導電層328上に絶縁層266が設けられている。
 絶縁層264、絶縁層265、及び絶縁層266は、層間絶縁層として機能する。絶縁層266と絶縁層265との間に、トランジスタ320に絶縁層266等から水または水素などの不純物が拡散することを防ぐバリア層を設けてもよい。バリア層としては、絶縁層332と同様の絶縁膜を用いることができる。
 導電層326の一方と電気的に接続するプラグ274は、絶縁層266、絶縁層265、及び絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層266、絶縁層265及び絶縁層264のそれぞれの開口の側面、及び導電層326の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
 また、絶縁層266上に容量240が設けられている。容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は、容量240の一方の電極として機能し、導電層245は、容量240の他方の電極として機能し、絶縁層243は、容量240の誘電体として機能する。
 導電層241は絶縁層266上に設けられ、絶縁層254に埋め込まれている。導電層241は、プラグ274によってトランジスタ320の導電層326と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
 容量240を覆って、絶縁層255aが設けられ、絶縁層255a上に絶縁層255bが設けられ、絶縁層255b上に絶縁層255cが設けられている。
 絶縁層255a、絶縁層255b、及び絶縁層255cには、それぞれ無機絶縁膜を好適に用いることができる。例えば、絶縁層255a及び絶縁層255cに酸化シリコン膜を用い、絶縁層255bに窒化シリコン膜を用いることが好ましい。これにより、絶縁層255bは、エッチング保護膜として機能させることができる。本実施の形態では、絶縁層255cの一部がエッチングされ、凹部が形成されている例を示すが、絶縁層255cに凹部が設けられていなくてもよい。
 絶縁層255c上に発光素子110R、発光素子110G、及び、発光素子110Bが設けられている。発光素子110R、発光素子110G、及び、発光素子110Bの詳細は、実施の形態3で説明する。
 発光素子110Rは、画素電極111R、有機層112R、共通層114、及び共通電極113を有する。発光素子110Gは、画素電極111G、有機層112G、共通層114、及び共通電極113を有する。発光素子110Bは、画素電極111B、有機層112B、共通層114、及び共通電極113を有する。共通層114と共通電極113は、発光素子110R、発光素子110G、及び発光素子110Bに共通に設けられる。
 発光素子110Rが有する有機層112Rは、少なくとも赤色の光を発する発光性の有機化合物を有する。発光素子110Gが有する有機層112Gは、少なくとも緑色の光を発する発光性の有機化合物を有する。発光素子110Bが有する有機層112Bは、少なくとも青色の光を発する発光性の有機化合物を有する。有機層112R、有機層112G、及び有機層112Bは、それぞれEL層とも呼ぶことができ、少なくとも発光性の有機化合物を含む層(発光層)を有する。
 表示装置200Aは、発光色ごとに、発光デバイスを作り分けているため、低輝度での発光と高輝度での発光で色度の変化が小さい。また、有機層112R、112G、112Bがそれぞれ離隔しているため、高精細な表示パネルであっても、隣接する副画素間におけるクロストークの発生を抑制することができる。したがって、高精細であり、かつ、表示品位の高い表示パネルを実現することができる。
 隣り合う発光素子の間の領域には、絶縁層125、樹脂層126、及び層128が設けられる。
 発光素子の画素電極111R、画素電極111G、及び、画素電極111Bは、絶縁層255a、絶縁層255b、及び、絶縁層255cに埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、及びプラグ274によってトランジスタ320の導電層326と電気的に接続されている。絶縁層255cの上面の高さと、プラグ256の上面の高さは、一致または概略一致している。プラグには各種導電材料を用いることができる。
 また、発光素子110R、110G、及び110B上には保護層121が設けられている。保護層121上には、接着層171によって基板170が貼り合わされている。
 隣接する2つの画素電極111間には、画素電極111の上面端部を覆う絶縁層が設けられていない。そのため、隣り合う発光素子の間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示装置とすることができる。
[表示装置200B]
 以下では、上記とは一部の構成が異なる表示装置について説明する。なお、上記と共通する部分はこれを参照し、説明を省略する場合がある。
 図25に示す表示装置200Bは、半導体層が平面上に形成されたプレーナ型のトランジスタであるトランジスタ320Aと、縦チャネル型トランジスタであるトランジスタ320Bとが積層された例を示している。トランジスタ320Bは、上記表示装置200Aにおけるトランジスタ320と同様の構成を有する。
 トランジスタ320Aは、半導体層351、絶縁層353、導電層354、一対の導電層355、絶縁層356、及び、導電層357を有する。
 基板331上に、絶縁層352が設けられている。絶縁層352は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、及び半導体層351から絶縁層352側に酸素が脱離することを防ぐバリア層として機能する。絶縁層352としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
 絶縁層352上に導電層357が設けられ、導電層357を覆って絶縁層356が設けられている。導電層357は、トランジスタ320Aの第1のゲート電極として機能し、絶縁層356の一部は、第1のゲート絶縁層として機能する。絶縁層356の少なくとも半導体層351と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層356の上面は、平坦化されていることが好ましい。
 半導体層351は、絶縁層356上に設けられる。半導体層351は、半導体特性を示す金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。一対の導電層355は、半導体層351上に接して設けられ、ソース電極及びドレイン電極として機能する。
 一対の導電層355の上面及び側面、並びに半導体層351の側面等を覆って絶縁層358、絶縁層350が設けられている。絶縁層358は、半導体層351に水または水素などの不純物が拡散すること、及び半導体層351から酸素が脱離することを防ぐバリア層として機能する。絶縁層358としては、上記絶縁層352と同様の絶縁膜を用いることができる。
 絶縁層358及び絶縁層350に、半導体層351に達する開口が設けられている。当該開口の内部に、半導体層351の上面に接する絶縁層353と、導電層354とが埋め込まれている。導電層354は、第2のゲート電極として機能し、絶縁層353は第2のゲート絶縁層として機能する。
 導電層354の上面、絶縁層353の上面、及び絶縁層350の上面は、それぞれ高さが一致または概略一致するように平坦化処理され、これらを覆って絶縁層359が設けられている。絶縁層359は、トランジスタ320に水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層359としては、上記絶縁層352と同様の絶縁膜を用いることができる。
 トランジスタ320には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
[表示装置200C]
 図26に示す表示装置200Cは、半導体基板にチャネルが形成されるトランジスタ310と、縦チャネル型トランジスタであるトランジスタ320とが積層された構成を有する。
 トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、及び、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられる。
 また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態では、本発明の一態様のトランジスタを用いて作製される表示装置に適用可能な、表示装置の構成例について説明する。以下で例示する表示装置は、上記実施の形態3の画素部284などに適用することができる。
 本発明の一態様は、発光素子(発光デバイスともいう)を有する表示装置である。表示装置は、発光色の異なる2つ以上の画素を有する。画素は、それぞれ発光素子を有する。発光素子は、それぞれ一対の電極と、その間にEL層を有する。発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。発光色の異なる2つ以上の発光素子は、それぞれ異なる発光材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示装置を実現できる。
 発光色がそれぞれ異なる複数の発光素子を有する表示装置を作製する場合、少なくとも発光材料を含む層(発光層)をそれぞれ島状に形成する必要がある。EL層の一部または全部を作り分ける場合、メタルマスクなどのシャドーマスクを用いた蒸着法により島状の有機膜を形成する方法が知られている。しかしながらこの方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。また、蒸着の際に、層の輪郭がぼやけて、端部の厚さが薄くなることがある。つまり、島状の発光層は場所によって厚さにばらつきが生じることがある。また、大型、高解像度、または高精細な表示装置を作製する場合、メタルマスクの寸法精度の低さ、及び熱などによる変形により、製造歩留まりが低くなる懸念がある。そのため、ペンタイル配列などの特殊な画素配列方式を採用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
 なお、本明細書等において、島状とは、同一工程で形成された同一材料を用いた2以上の層が物理的に分離されている状態であることを示す。例えば、島状の発光層とは、当該発光層と、隣接する発光層とが、物理的に分離されている状態であることを示す。
 本発明の一態様は、EL層をファインメタルマスク(FMM)などのシャドーマスクを用いることなく、フォトリソグラフィにより、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。なお、例えば、EL層をメタルマスクと、フォトリソグラフィと、の双方を用いて微細なパターンに加工してもよい。
 また、EL層の一部または全部を物理的に分断することができる。これにより、隣接する発光素子間で共通に用いる層(共通層ともいう)を介した、発光素子間のリーク電流を抑制することができる。これにより、意図しない発光に起因したクロストークを防ぐことができ、コントラストの極めて高い表示装置を実現できる。特に、低輝度における電流効率の高い表示装置を実現できる。
 本発明の一態様は、白色発光の発光素子と、カラーフィルタとを組み合わせた表示装置とすることもできる。この場合、異なる色の光を呈する画素(副画素)に設けられる発光素子に、それぞれ同じ構成の発光素子を適用することができ、全ての層を共通層とすることができる。さらに、それぞれのEL層の一部または全部を、フォトリソグラフィにより分断してもよい。これにより、共通層を介したリーク電流が抑制され、コントラストの高い表示装置を実現できる。特に、導電性の高い中間層を介して、複数の発光層を積層したタンデム構造を有する素子では、当該中間層を介したリーク電流を効果的に防ぐことができるため、高い輝度、高い精細度、及び高いコントラストを兼ね備えた表示装置を実現できる。
 EL層をフォトリソグラフィ法により加工する場合、発光層の一部が露出し、劣化の要因となる場合がある。そのため、少なくとも島状の発光層の側面を覆う絶縁層を設けることが好ましい。当該絶縁層は、島状のEL層の上面の一部を覆う構成としてもよい。当該絶縁層としては、水及び酸素に対してバリア性を有する材料を用いることが好ましい。例えば、水または酸素を拡散しにくい、無機絶縁膜を用いることができる。これにより、EL層の劣化を抑制し、信頼性の高い表示装置を実現できる。
 さらに、隣接する2つの発光素子間には、いずれの発光素子のEL層も設けられない領域(凹部)を有する。当該凹部を覆って共通電極、または共通電極及び共通層を形成する場合、共通電極がEL層の端部の段差により分断されてしまう現象(段切れともいう)が生じ、EL層上の共通電極が絶縁してしまう場合がある。そこで、隣接する2つの発光素子間に位置する局所的な段差を、平坦化膜として機能する樹脂層により埋める構成(LFP:Local Filling Planarizationともいう)とすることが好ましい。当該樹脂層は、平坦化膜としての機能を有する。これにより、共通層または共通電極の段切れを抑制し、信頼性の高い表示装置を実現できる。
 以下では、本発明の一態様の表示装置の、より具体的な構成例について、図面を参照して説明する。
[構成例1]
 図27Aに、本発明の一態様の表示装置100の上面概略図を示す。表示装置100は、基板101上に、赤色を呈する発光素子110R、緑色を呈する発光素子110G、及び青色を呈する発光素子110Bをそれぞれ複数有する。図27Aでは、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
 発光素子110R、発光素子110G、及び発光素子110Bは、それぞれマトリクス状に配列している。図27Aは、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、Sストライプ配列、デルタ配列、ベイヤー配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列などを用いることもできる。
 発光素子110R、発光素子110G、及び発光素子110Bとしては、例えばOLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)を用いることが好ましい。EL素子が有する発光物質としては、例えば蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、及び熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)が挙げられる。EL素子が有する発光物質としては、有機化合物だけでなく、無機化合物(量子ドット材料など)を用いることができる。
 また、図27Aには、共通電極113と電気的に接続する接続電極111Cを示している。接続電極111Cは、共通電極113に供給するための電位(例えばアノード電位、またはカソード電位)が与えられる。接続電極111Cは、発光素子110Rなどが配列する表示領域の外に設けられる。
 接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上にわたって設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状(長方形)、L字状、コの字状(角括弧状)、または四角形などとすることができる。
 図27B、図27Cはそれぞれ、図27A中の一点鎖線A1−A2、一点鎖線A3−A4に対応する断面概略図である。図27Bには、発光素子110R、発光素子110G、及び発光素子110Bの断面概略図を示し、図27Cには、接続電極111Cと共通電極113とが接続される接続部140の断面概略図を示している。
 発光素子110Rは、画素電極111R、有機層112R、共通層114、及び共通電極113を有する。発光素子110Gは、画素電極111G、有機層112G、共通層114、及び共通電極113を有する。発光素子110Bは、画素電極111B、有機層112B、共通層114、及び共通電極113を有する。共通層114と共通電極113は、発光素子110R、発光素子110G、及び発光素子110Bに共通に設けられる。
 発光素子110Rが有する有機層112Rは、少なくとも赤色の光を発する発光性の有機化合物を有する。発光素子110Gが有する有機層112Gは、少なくとも緑色の光を発する発光性の有機化合物を有する。発光素子110Bが有する有機層112Bは、少なくとも青色の光を発する発光性の有機化合物を有する。有機層112R、有機層112G、及び有機層112Bは、それぞれEL層とも呼ぶことができ、少なくとも発光性の有機化合物を含む層(発光層)を有する。
 以下では、発光素子110R、発光素子110G、及び発光素子110Bに共通する事項を説明する場合には、発光素子110と呼称して説明する場合がある。同様に、有機層112R、有機層112G、及び有機層112Bなど、アルファベットで区別する構成要素についても、これらに共通する事項を説明する場合には、アルファベットを省略した符号を用いて説明する場合がある。
 有機層112、及び共通層114は、それぞれ独立に電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有することができる。例えば、有機層112が、画素電極111側から正孔注入層、正孔輸送層、発光層、電子輸送層の積層構造を有し、共通層114が電子注入層を有する構成とすることができる。
 画素電極111R、画素電極111G、及び画素電極111Bは、それぞれ発光素子毎に設けられている。また、共通電極113及び共通層114は、各発光素子に共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
 共通電極113上には、発光素子110R、発光素子110G、及び発光素子110Bを覆って、保護層121が設けられている。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
 画素電極111の端部はテーパ形状を有することが好ましい。画素電極111の端部がテーパ形状を有する場合、画素電極111の端部に沿って設けられる有機層112も、テーパ形状とすることができる。画素電極111の端部をテーパ形状とすることで、画素電極111の端部を乗り越えて設けられる有機層112の被覆性を高めることができる。また、画素電極111の側面をテーパ形状とすることで、作製工程中の異物(例えば、ゴミ、またはパーティクルなどともいう)を、洗浄などの処理により除去することが容易となり好ましい。
 なお、本明細書等において、テーパ形状とは、構造の側面の少なくとも一部が、基板面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面とがなす角(テーパ角ともいう)が90°未満である領域を有すると好ましい。
 有機層112は、フォトリソグラフィ法により島状に加工されている。そのため、有機層112は、その端部において、上面と側面との成す角が90度に近い形状となる。一方、FMM(Fine Metal Mask)などを用いて形成された有機膜は、その厚さが端部に近いほど徐々に薄くなる傾向があり、例えば端部まで1μm以上10μm以下の範囲にわたって、上面がスロープ状に形成されるため、上面と側面の区別が困難な形状となる。
 隣接する2つの発光素子間には、絶縁層125、樹脂層126及び層128を有する。
 隣接する2つの発光素子間において、互いの有機層112の側面が樹脂層126を挟んで対向して設けられている。樹脂層126は、隣接する2つの発光素子の間に位置し、それぞれの有機層112の端部、及び2つの有機層112の間の領域を埋めるように設けられている。樹脂層126は、滑らかな凸状の上面形状を有しており、樹脂層126の上面を覆って、共通層114及び共通電極113が設けられている。
 樹脂層126は、隣接する2つの発光素子間に位置する段差を埋める平坦化膜として機能する。樹脂層126を設けることにより、共通電極113が有機層112の端部の段差により分断されてしまう現象(段切れともいう)が生じ、有機層112上の共通電極が絶縁してしまうことを防ぐことができる。樹脂層126は、LFP(Local Filling Planarization)層ともいうことができる。
 樹脂層126としては、有機材料を有する絶縁層を好適に用いることができる。例えば、樹脂層126として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、樹脂層126として、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。
 また、樹脂層126として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
 樹脂層126は、可視光を吸収する材料を含んでいてもよい。例えば、樹脂層126自体が可視光を吸収する材料により構成されていてもよいし、樹脂層126が、可視光を吸収する顔料を含んでいてもよい。樹脂層126としては、例えば、赤色、青色、または緑色の光を透過し、他の光を吸収するカラーフィルタとして用いることのできる樹脂、またはカーボンブラックを顔料として含み、ブラックマトリクスとして機能する樹脂などを用いることができる。
 絶縁層125は、有機層112の側面に接して設けられている。また絶縁層125は、有機層112の上端部を覆って設けられている。また絶縁層125の一部は、基板101の上面に接して設けられている。
 絶縁層125は、樹脂層126と有機層112との間に位置し、樹脂層126が有機層112に接することを防ぐための保護膜として機能する。有機層112と樹脂層126とが接すると、樹脂層126の形成時に用いられる有機溶媒などにより有機層112が溶解する可能性がある。そのため、有機層112と樹脂層126との間に絶縁層125を設ける構成とすることで、有機層112の側面を保護することが可能となる。
 絶縁層125としては、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜などの酸化金属膜、または酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。
 なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁層125の形成は、スパッタリング法、CVD法、PLD法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
 また、絶縁層125と、樹脂層126との間に、反射膜(例えば、銀、パラジウム、銅、チタン、及びアルミニウムなどの中から選ばれる一または複数を含む金属膜)を設け、発光層から射出される光を上記反射膜により反射させる構成としてもよい。これにより、光取り出し効率を向上させることができる。
 層128は、有機層112のエッチング時に、有機層112を保護するための保護層(マスク層、犠牲層ともいう)の一部が残存したものである。層128には、上記絶縁層125に用いることのできる材料を用いることができる。特に、層128と絶縁層125とに同じ材料を用いると、加工のための装置等を共通に用いることができるため、好ましい。
 特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜などの酸化金属膜、または酸化シリコン膜などの無機絶縁膜はピンホールが少ないため、EL層を保護する機能に優れ、絶縁層125及び層128に好適に用いることができる。
 保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウム亜鉛酸化物、インジウムスズ酸化物、インジウムガリウム亜鉛酸化物などの半導体材料または導電性材料を用いてもよい。
 保護層121としては、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
 図27Cには、接続電極111Cと共通電極113とが電気的に接続する接続部140を示している。接続部140では、接続電極111C上において、絶縁層125及び樹脂層126に開口部が設けられる。当該開口部において、接続電極111Cと共通電極113とが電気的に接続されている。
 なお、図27Cには、接続電極111Cと共通電極113とが電気的に接続する接続部140を示しているが、接続電極111C上に共通層114を介して共通電極113が設けられていてもよい。特に共通層114にキャリア注入層を用いた場合などでは、当該共通層114に用いる材料の電気抵抗率が十分に低く、且つ厚さも薄く形成できるため、共通層114が接続部140に位置していても問題は生じない場合が多い。これにより、共通電極113と共通層114とを同じ遮蔽マスクを用いて形成することができるため、製造コストを低減できる。
[構成例2]
 以下では、上記構成例1とは一部の構成が異なる表示装置について説明する。なお、上記構成例1と共通する部分はこれを参照し、説明を省略する場合がある。
 図28Aに、表示装置100aの断面概略図を示す。表示装置100aは、発光素子の構成が異なる点、及び着色層を有する点で、上記表示装置100と主に相違している。
 表示装置100aは、白色光を呈する発光素子110Wを有する。発光素子110Wは、画素電極111、有機層112W、共通層114、及び共通電極113を有する。有機層112Wは、白色発光を呈する。例えば、有機層112Wは、発光色が補色の関係となる2種類以上の発光材料を含む構成とすることができる。例えば、有機層112Wは、赤色の光を発する発光性の有機化合物と、緑色の光を発する発光性の有機化合物と、青色の光を発する発光性の有機化合物と、を有する構成とすることができる。また、青色の光を発する発光性の有機化合物と、黄色の光を発する発光性の有機化合物と、を有する構成としてもよい。
 隣接する2つの発光素子110W間において、それぞれの有機層112Wは分断されている。これにより、有機層112Wを介して隣接する発光素子110W間に流れるリーク電流を抑制することができ、当該リーク電流に起因したクロストークを抑制できる。そのため、コントラスト、及び色再現性の高い表示装置を実現できる。
 保護層121上には、平坦化膜として機能する絶縁層122が設けられ、絶縁層122上には着色層116R、着色層116G、及び着色層116Bが設けられている。
 絶縁層122としては、有機樹脂膜、または上面が平坦化された無機絶縁膜を用いることができる。絶縁層122は、着色層116R、着色層116G、及び着色層116Bの被形成面を成すため、絶縁層122の上面が平坦であることで、着色層116R等の厚さを均一にできるため、色純度を高めることができる。なお、着色層116R等の厚さが不均一であると、光の吸収量が着色層116Rの場所によって変わるため、色純度が低下してしまう恐れがある。
[構成例3]
 図28Bに、表示装置100bの断面概略図を示す。
 発光素子110Rは、画素電極111、導電層115R、有機層112W、及び共通電極113を有する。発光素子110Gは、画素電極111、導電層115G、有機層112W、及び共通電極113を有する。発光素子110Bは、画素電極111、導電層115B、有機層112W、及び共通電極113を有する。導電層115R、導電層115G、及び導電層115Bはそれぞれ透光性を有し、光学調整層として機能する。
 画素電極111に、可視光を反射する膜を用い、共通電極113に、可視光に対して反射性と透過性の両方を有する膜を用いることにより、微小共振器(マイクロキャビティ)構造を実現することができる。このとき、導電層115R、導電層115G、及び導電層115Bの厚さをそれぞれ、最適な光路長となるように調整することで、白色発光を呈する有機層112を用いた場合であっても、発光素子110R、発光素子110G、及び発光素子110Bからは、それぞれ異なる波長の光が強められた光を得ることができる。
 さらに、発光素子110R、発光素子110G、及び発光素子110Bの光路上には、それぞれ着色層116R、着色層116G、着色層116Bが設けられることで、色純度の高い光を得ることができる。
 また、画素電極111及び光学調整層115の端部を覆う絶縁層123が設けられている。絶縁層123は、端部がテーパ形状を有していることが好ましい。絶縁層123を設けることで、その上に形成される有機層112W、共通電極113、及び保護層121などによる被覆性を高めることができる。
 有機層112W及び共通電極113は、それぞれ一続きの膜として、各発光素子に共通して設けられている。このような構成とすることで、表示装置の作製工程を大幅に簡略化できるため好ましい。
 ここで、画素電極111は、その端部が垂直に近い形状であることが好ましい。これにより、絶縁層123の表面に傾斜が急峻な部分を形成することができ、この部分を被覆する有機層112Wの一部に厚さの薄い部分を形成すること、または有機層112Wの一部を分断することができる。そのため、フォトリソグラフィ法などによる有機層112Wの加工を行うことなく、隣接する発光素子間に生じる有機層112Wを介したリーク電流を抑制することができる。
 以上が、表示装置の構成例についての説明である。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、本発明の一態様の電子機器について、図29乃至図31を用いて説明する。
 本実施の形態の電子機器は、表示部に本発明の一態様のトランジスタが適用された表示パネル(表示装置)を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易であり、また、高い表示品位を実現できる。したがって、様々な電子機器の表示部に用いることができる。
 電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
 特に、本発明の一態様の表示パネルは、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器、及び、MR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。
 本発明の一態様の表示パネルは、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、またはそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示パネルにおける画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方または双方を有する表示パネルを用いることで、臨場感及び奥行き感などをより高めることが可能となる。また、本発明の一態様の表示パネルの画面比率(アスペクト比)については、特に限定はない。例えば、表示パネルは、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図29A乃至図29Dを用いて、頭部に装着可能なウェアラブル機器の一例を説明する。これらウェアラブル機器は、ARのコンテンツを表示する機能、及びVRのコンテンツを表示する機能の一方または双方を有する。なお、これらウェアラブル機器は、AR、VRの他に、SRまたはMRのコンテンツを表示する機能を有していてもよい。電子機器が、AR、VR、SR、及びMRなどのうち少なくとも一つのコンテンツを表示する機能を有することで、使用者の没入感を高めることが可能となる。
 図29Aに示す電子機器700A、及び、図29Bに示す電子機器700Bは、それぞれ、一対の表示パネル751と、一対の筐体721と、通信部(図示しない)と、一対の装着部723と、制御部(図示しない)と、撮像部(図示しない)と、一対の光学部材753と、フレーム757と、一対の鼻パッド758と、を有する。
 表示パネル751には、本発明の一態様の表示パネルを適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。
 電子機器700A、及び、電子機器700Bは、それぞれ、光学部材753の表示領域756に、表示パネル751で表示した画像を投影することができる。光学部材753は透光性を有するため、使用者は光学部材753を通して視認される透過像に重ねて、表示領域に表示された画像を見ることができる。したがって、電子機器700A、及び、電子機器700Bは、それぞれ、AR表示が可能な電子機器である。
 電子機器700A、及び、電子機器700Bには、撮像部として、前方を撮像することのできるカメラが設けられていてもよい。また、電子機器700A、及び、電子機器700Bは、それぞれ、ジャイロセンサなどの加速度センサを備えることで、使用者の頭部の向きを検知して、その向きに応じた画像を表示領域756に表示することもできる。
 通信部は無線通信機を有し、当該無線通信機により映像信号等を供給することができる。なお、無線通信機に代えて、または無線通信機に加えて、映像信号及び電源電位が供給されるケーブルを接続可能なコネクタを備えていてもよい。
 また、電子機器700A、及び、電子機器700Bには、バッテリが設けられており、無線及び有線の一方または双方によって充電することができる。
 筐体721には、タッチセンサモジュールが設けられていてもよい。タッチセンサモジュールは、筐体721の外側の面がタッチされることを検出する機能を有する。タッチセンサモジュールにより、使用者のタップ操作またはスライド操作などを検出し、様々な処理を実行することができる。例えば、タップ操作によって動画の一時停止または再開などの処理を実行することが可能となり、スライド操作により、早送りまたは早戻しの処理を実行することなどが可能となる。また、2つの筐体721のそれぞれにタッチセンサモジュールを設けることで、操作の幅を広げることができる。
 タッチセンサモジュールとしては、様々なタッチセンサを適用することができる。例えば、静電容量方式、抵抗膜方式、赤外線方式、電磁誘導方式、表面弾性波方式、光学方式等、種々の方式を採用することができる。特に、静電容量方式または光学方式のセンサを、タッチセンサモジュールに適用することが好ましい。
 光学方式のタッチセンサを用いる場合には、受光デバイス(受光素子ともいう)として、光電変換デバイス(光電変換素子ともいう)を用いることができる。光電変換デバイスの活性層には、無機半導体及び有機半導体の一方または双方を用いることができる。
 図29Cに示す電子機器800A、及び、図29Dに示す電子機器800Bは、それぞれ、一対の表示部820と、筐体821と、通信部822と、一対の装着部823と、制御部824と、一対の撮像部825と、一対のレンズ832と、を有する。
 表示部820には、本発明の一態様の表示パネルを適用することができる。したがって極めて精細度の高い表示が可能な電子機器とすることができる。これにより、使用者に高い没入感を感じさせることができる。
 表示部820は、筐体821の内部の、レンズ832を通して視認できる位置に設けられる。また、一対の表示部820に異なる画像を表示させることで、視差を用いた3次元表示を行うこともできる。
 電子機器800A、及び、電子機器800Bは、それぞれ、VR向けの電子機器ということができる。電子機器800Aまたは電子機器800Bを装着した使用者は、レンズ832を通して、表示部820に表示される画像を視認することができる。
 電子機器800A、及び、電子機器800Bは、それぞれ、レンズ832及び表示部820が、使用者の目の位置に応じて最適な位置となるように、これらの左右の位置を調整可能な機構を有していることが好ましい。また、レンズ832と表示部820との距離を変えることで、ピントを調整する機構を有していることが好ましい。
 装着部823により、使用者は電子機器800Aまたは電子機器800Bを頭部に装着することができる。なお、図29Cなどにおいては、メガネのつる(テンプルなどともいう)のような形状として例示しているがこれに限定されない。装着部823は、使用者が装着できればよく、例えば、ヘルメット型またはバンド型の形状としてもよい。
 撮像部825は、外部の情報を取得する機能を有する。撮像部825が取得したデータは、表示部820に出力することができる。撮像部825には、イメージセンサを用いることができる。また、望遠、広角などの複数の画角に対応可能なように複数のカメラを設けてもよい。
 なお、ここでは撮像部825を有する例を示したが、対象物の距離を測定することのできる測距センサ(以下、検知部ともよぶ)を設ければよい。すなわち、撮像部825は、検知部の一態様である。検知部としては、例えばイメージセンサ、または、ライダー(LIDAR:Light Detection and Ranging)などの距離画像センサを用いることができる。カメラによって得られた画像と、距離画像センサによって得られた画像とを用いることにより、より多くの情報を取得し、より高精度なジェスチャー操作を可能とすることができる。
 電子機器800Aは、骨伝導イヤホンとして機能する振動機構を有していてもよい。例えば、表示部820、筐体821、及び装着部823のいずれか一または複数に、当該振動機構を有する構成を適用することができる。これにより、別途、ヘッドホン、イヤホン、またはスピーカなどの音響機器を必要とせず、電子機器800Aを装着しただけで映像と音声を楽しむことができる。
 電子機器800A、及び、電子機器800Bは、それぞれ、入力端子を有していてもよい。入力端子には映像出力機器等からの映像信号、及び、電子機器内に設けられるバッテリを充電するための電力等を供給するケーブルを接続することができる。
 本発明の一態様の電子機器は、イヤホン750と無線通信を行う機能を有していてもよい。イヤホン750は、通信部(図示しない)を有し、無線通信機能を有する。イヤホン750は、無線通信機能により、電子機器から情報(例えば音声データ)を受信することができる。例えば、図29Aに示す電子機器700Aは、無線通信機能によって、イヤホン750に情報を送信する機能を有する。また、例えば、図29Cに示す電子機器800Aは、無線通信機能によって、イヤホン750に情報を送信する機能を有する。
 また、電子機器がイヤホン部を有していてもよい。図29Bに示す電子機器700Bは、イヤホン部727を有する。例えば、イヤホン部727と制御部とは、互いに有線接続されている構成とすることができる。イヤホン部727と制御部とをつなぐ配線の一部は、筐体721または装着部723の内部に配置されていてもよい。
 同様に、図29Dに示す電子機器800Bは、イヤホン部827を有する。例えば、イヤホン部827と制御部824とは、互いに有線接続されている構成とすることができる。イヤホン部827と制御部824とをつなぐ配線の一部は、筐体821または装着部823の内部に配置されていてもよい。また、イヤホン部827と装着部823とがマグネットを有していてもよい。これにより、イヤホン部827を装着部823に磁力によって固定することができ、収納が容易となり好ましい。
 なお、電子機器は、イヤホンまたはヘッドホンなどを接続することができる音声出力端子を有していてもよい。また、電子機器は、音声入力端子及び音声入力機構の一方または双方を有していてもよい。音声入力機構としては、例えば、マイクなどの集音装置を用いることができる。電子機器が音声入力機構を有することで、電子機器に、いわゆるヘッドセットとしての機能を付与してもよい。
 このように、本発明の一態様の電子機器としては、メガネ型(電子機器700A、及び、電子機器700Bなど)と、ゴーグル型(電子機器800A、及び、電子機器800Bなど)と、のどちらも好適である。
 図30Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
 電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、光源6508及び制御装置6509などを有する。表示部6502はタッチパネル機能を備える。なお、制御装置6509としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部6502、制御装置6509などに適用することができる。本発明の一態様の半導体装置を制御装置6509に用いることで、消費電力を低減させることができるため好適である。
 表示部6502に、本発明の一態様の表示パネルを適用することができる。
 図30Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
 筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
 保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
 表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
 表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
 図30Cにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
 図30Cに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
 なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間など)の情報通信を行うことも可能である。
 図30Dに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214、制御装置7216等を有する。筐体7211に、表示部7000が組み込まれている。制御装置7216としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を有する。本発明の一態様の半導体装置は、表示部7000、制御装置7216などに適用することができる。本発明の一態様の半導体装置を制御装置7216に用いることで、消費電力を低減させることができるため好適である。
 図30E及び図30Fに、デジタルサイネージの一例を示す。
 図30Eに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
 図30Fは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
 表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
 表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
 また、図30E及び図30Fに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
 また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。
 図30C乃至図30Fにおいて、表示部7000に、本発明の一態様の表示パネルを適用することができる。
 図31A乃至図31Gに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図31A乃至図31Gに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 図31A乃至図31Gに示す電子機器の詳細について、以下説明を行う。
 図31Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図31Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールまたはSNSなどの題名、送信者名、日時、時刻、バッテリの残量、電波強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
 図31Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図31Cは、タブレット端末9103を示す斜視図である。タブレット端末9103は、一例として、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲーム等の種々のアプリケーションの実行が可能である。タブレット端末9103は、筐体9000の正面に表示部9001、カメラ9002、マイクロフォン9008、スピーカ9003を有し、筐体9000の左側面には操作用のボタンとしての操作キー9005、底面には接続端子9006を有する。
 図31Dは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図31E乃至図31Gは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図31Eは携帯情報端末9201を展開した状態、図31Gは折り畳んだ状態、図31Fは図31Eと図31Gの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
 本実施の形態では、本発明の一態様の半導体装置の応用例について説明する。本発明の一態様の半導体装置は、例えば、電子部品、電子機器、大型計算機、宇宙用機器、及びデータセンター(Data Center:DCとも呼称する)に用いることができる。本発明の一態様の半導体装置を用いた、電子部品、電子機器、大型計算機、宇宙用機器、及びデータセンターは、低消費電力化といった高性能化に有効である。
 本発明の一態様の半導体装置が適用された電子部品等は、実施の形態5で例示した電子機器に適用することができる。
[電子部品]
 電子部品700が実装された基板(実装基板704)の斜視図を、図32Aに示す。図32Aに示す電子部品700は、モールド711内に半導体装置710を有している。図32Aは、電子部品700の内部を示すために、一部の記載を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は半導体装置710とワイヤ714を介して電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 また、半導体装置710は、駆動回路層715と、記憶層716と、を有する。なお、記憶層716は、複数のメモリセルアレイが積層された構成である。駆動回路層715と、記憶層716と、が積層された構成は、モノリシック積層の構成とすることができる。モノリシック積層の構成では、TSV(Through Silicon Via)などの貫通電極技術、及び、Cu−Cu直接接合などの接合技術、を用いることなく、各層間を接続することができる。駆動回路層715と、記憶層716と、をモノリシック積層の構成とすることで、例えば、プロセッサ上にメモリが直接形成される、いわゆるオンチップメモリの構成とすることができる。オンチップメモリの構成とすることで、プロセッサと、メモリとのインターフェース部分の動作を高速にすることが可能となる。
 また、オンチップメモリの構成とすることで、TSVなどの貫通電極を用いる技術と比較し、接続配線などのサイズを小さくできるため、接続ピン数を増加させることも可能となる。接続ピン数を増加させることで、並列動作が可能となるため、メモリのバンド幅(メモリバンド幅ともいう)を向上させることが可能となる。
 また、記憶層716が有する、複数のメモリセルアレイを、OSトランジスタを用いて形成し、当該複数のメモリセルアレイをモノリシックで積層することが好ましい。複数のメモリセルアレイをモノリシック積層の構成とすることで、メモリのバンド幅、及びメモリのアクセスレイテンシの一方または双方を向上させることができる。なお、バンド幅とは、単位時間あたりのデータ転送量であり、アクセスレイテンシとは、アクセスしてからデータのやり取りが始まるまでの時間である。なお、記憶層716にSiトランジスタを用いる構成の場合、OSトランジスタと比較し、モノリシック積層の構成とすることが困難である。そのため、モノリシック積層の構成において、OSトランジスタは、Siトランジスタよりも優れた構造であるといえる。
 また、半導体装置710を、ダイと呼称してもよい。なお、本明細書等において、ダイとは、半導体チップの製造工程で、例えば円盤状の基板(ウエハともいう)などに回路パターンを形成し、さいの目状に切り分けて得られたチップ片を表す。なお、ダイに用いることのできる半導体材料として、例えば、シリコン(Si)、炭化ケイ素(SiC)、または窒化ガリウム(GaN)などが挙げられる。例えば、シリコン基板(シリコンウエハともいう)から得られたダイを、シリコンダイという場合がある。
 次に、電子部品730の斜視図を図32Bに示す。電子部品730は、SiP(System in Package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、及び複数の半導体装置710が設けられている。
 電子部品730では、半導体装置710を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、またはFPGA(Field Programmable Gate Array)等の集積回路に用いることができる。
 パッケージ基板732は、例えば、セラミックス基板、プラスチック基板、または、ガラスエポキシ基板を用いることができる。インターポーザ731は、例えば、シリコンインターポーザ、または樹脂インターポーザを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSVを用いることもできる。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いた、SiP及びMCM等では、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 一方で、シリコンインターポーザ、及びTSVなどを用いて端子ピッチの異なる複数の集積回路を電気的に接続する場合、当該端子ピッチの幅などのスペースが必要となる。そのため、電子部品730のサイズを小さくしようとした場合、上記の端子ピッチの幅が問題になり、広いメモリバンド幅を実現するために必要な多くの配線を設けることが、困難になる場合がある。そこで、前述したように、OSトランジスタを用いたモノリシック積層の構成が好適である。TSVを用いて積層したメモリセルアレイと、モノリシック積層したメモリセルアレイと、を組み合わせた複合化構造としてもよい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、半導体装置710と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図32Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGA及びPGAに限らず様々な実装方法を用いて他の基板に実装することができる。実装方法としては、例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、及び、QFN(Quad Flat Non−leaded package)が挙げられる。
[大型計算機]
 大型計算機5600の斜視図を図33Aに示す。大型計算機5600には、ラック5610にラックマウント型の計算機5620が複数格納されている。なお、大型計算機5600を、スーパーコンピュータと呼称してもよい。
 図33Bに計算機5620の一例の斜視図を示す。計算機5620は、マザーボード5630する。マザーボード5630には複数のスロット5631、及び複数の接続端子が設けられる。スロット5631には、PCカード5621が挿入されている。加えて、PCカード5621は、接続端子5623、接続端子5624、接続端子5625を有し、それぞれ、マザーボード5630に接続されている。
 図33CにPCカード5621の一例を示す。PCカード5621は、例えばCPU、GPU、記憶装置などを備えた処理ボードである。PCカード5621は、ボード5622と、ボード5622に実装される、接続端子5623、接続端子5624、接続端子5625、電子部品5626、電子部品5627、電子部品5628、接続端子5629などを有する。なお、図33Cには、電子部品5626、電子部品5627、及び電子部品5628以外の部品を図示している。
 接続端子5629は、マザーボード5630のスロット5631に挿入することができる形状を有しており、接続端子5629は、PCカード5621とマザーボード5630とを接続するためのインターフェースとして機能する。接続端子5629の規格としては、例えば、PCIeなどが挙げられる。
 接続端子5623、接続端子5624、接続端子5625は、例えば、PCカード5621に対して電力供給、信号入力などを行うためのインターフェースとすることができる。また、例えば、PCカード5621によって計算された信号の出力などを行うためのインターフェースとすることができる。接続端子5623、接続端子5624、接続端子5625のそれぞれの規格としては、例えば、USB(Universal Serial Bus)、SATA(Serial ATA)、SCSI(Small Computer System Interface)などが挙げられる。また、接続端子5623、接続端子5624、接続端子5625から映像信号を出力する場合、それぞれの規格としては、HDMI(登録商標)などが挙げられる。
 電子部品5626は、信号の入出力を行う端子(図示しない)を有しており、当該端子をボード5622が備えるソケット(図示しない)に対して差し込むことで、電子部品5626とボード5622を電気的に接続することができる。
 電子部品5627及び電子部品5628は、複数の端子を有しており、当該端子をボード5622が備える配線に対して、例えば、リフロー方式のはんだ付けを行うことで、実装することができる。電子部品5627としては、例えば、FPGA、GPU、CPUなどが挙げられる。電子部品5627として、例えば、電子部品730を用いることができる。電子部品5628としては、例えば、記憶装置などが挙げられる。電子部品5628として、例えば、電子部品700を用いることができる。
 大型計算機5600は並列計算機としても機能できる。大型計算機5600を並列計算機として用いることで、例えば、人工知能の学習、及び推論に必要な大規模の計算を行うことができる。
[宇宙用機器]
 本発明の一態様の半導体装置は、宇宙用機器に好適に用いることができる。
 本発明の一態様の半導体装置は、OSトランジスタを含む。OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。具体的には、OSトランジスタを、スペースシャトル、人工衛星、または、宇宙探査機に設けられる半導体装置を構成するトランジスタに用いることができる。放射線として、例えば、X線、及び中性子線が挙げられる。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏のうち一つまたは複数を含んでもよい。
 図34Aには、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図34Aにおいては、宇宙空間に惑星6804を例示している。
 また、図34Aには、図示していないが、二次電池6805に、バッテリマネジメントシステム(BMSともいう)、またはバッテリ制御回路を設けてもよい。前述のバッテリマネジメントシステム、またはバッテリ制御回路に、OSトランジスタを用いると、消費電力が低く、且つ宇宙空間においても高い信頼性を有するため好適である。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、例えば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様であるOSトランジスタを含む半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。例えば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、例えば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
 以上の説明の通り、OSトランジスタは、Siトランジスタと比較し、広いメモリバンド幅の実現が可能なこと、放射線耐性が高いこと、といった優れた効果を有する。
[データセンター]
 本発明の一態様の半導体装置は、例えば、データセンターなどに適用されるストレージシステムに好適に用いることができる。データセンターは、データの不変性を保障するなど、データの長期的な管理を行うことが求められる。長期的なデータを管理する場合、膨大なデータを記憶するためのストレージ及びサーバの設置、データを保持するための安定した電源の確保、あるいはデータの保持に要する冷却設備の確保、など建屋の大型化が必要となる。
 データセンターに適用されるストレージシステムに本発明の一態様の半導体装置を用いることにより、データの保持に要する電力の低減、データを保持する半導体装置の小型化を図ることができる。そのため、ストレージシステムの小型化、データを保持するための電源の小型化、冷却設備の小規模化、などを図ることができる。そのため、データセンターの省スペース化を図ることができる。
 また、本発明の一態様の半導体装置は、消費電力が少ないため、回路からの発熱を低減することができる。よって、当該発熱によるその回路自体、周辺回路、及びモジュールへの悪影響を低減できる。また、本発明の一態様の半導体装置を用いることにより、高温環境下においても動作が安定したデータセンターを実現できる。よってデータセンターの信頼性を高めることができる。
 図34Bにデータセンターに適用可能なストレージシステムを示す。図34Bに示すストレージシステム6000は、ホスト6001(Host Computerと図示)として複数のサーバ6001sbを有する。また、ストレージ6003(Storageと図示)として複数の記憶装置6003mdを有する。ホスト6001とストレージ6003とは、ストレージエリアネットワーク6004(SAN:Storage Area Networkと図示)及びストレージ制御回路6002(Storage Controllerと図示)を介して接続されている形態を図示している。
 ホスト6001は、ストレージ6003に記憶されたデータにアクセスするコンピュータに相当する。ホスト6001同士は、ネットワークで互いに接続されていてもよい。
 ストレージ6003は、フラッシュメモリを用いることで、データのアクセススピード、つまりデータの記憶及び出力に要する時間を短くしているものの、当該時間は、ストレージ内のキャッシュメモリとして用いることのできるDRAMが要する時間に比べて格段に長い。ストレージシステムでは、ストレージ6003のアクセススピードの長さの問題を解決するために、通常ストレージ内にキャッシュメモリを設けてデータの記憶及び出力に要する時間を短くしている。
 前述のキャッシュメモリは、ストレージ制御回路6002及びストレージ6003内に用いられる。ホスト6001とストレージ6003との間でやり取りされるデータは、ストレージ制御回路6002及びストレージ6003内の当該キャッシュメモリに記憶されたのち、ホスト6001またはストレージ6003に出力される。
 前述のキャッシュメモリのデータを記憶するためのトランジスタとして、OSトランジスタを用いてデータに応じた電位を保持する構成とすることで、リフレッシュする頻度を減らし、消費電力を小さくすることができる。またメモリセルアレイを積層する構成とすることで小型化が可能である。
 なお、本発明の一態様の半導体装置を、電子部品、電子機器、大型計算機、宇宙用機器、及びデータセンターの中から選ばれるいずれか一または複数に適用することで、消費電力を低減させる効果が期待される。そのため、半導体装置の高性能化、または高集積化に伴うエネルギー需要の増加が見込まれる中、本発明の一態様の半導体装置を用いることで、二酸化炭素(CO)に代表される、温室効果ガスの排出量を低減させることも可能となる。また、本発明の一態様の半導体装置は、低消費電力であるため地球温暖化対策としても有効である。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
10a:トランジスタ、10b:トランジスタ、10c:トランジスタ、10d:トランジスタ、10e:トランジスタ、10f:トランジスタ、10g:トランジスタ、10h:トランジスタ、10:トランジスタ、11:絶縁層、20a:開口、20b:開口、20c:開口、20d:開口、21i:チャネル形成領域、21n:低抵抗領域、21:半導体層、22f:絶縁膜、22:絶縁層、23f:導電膜、23:導電層、26:導電層、27:絶縁層、30:メモリセル、31:導電層、32:導電層、33:導電層、34:導電層、41a:絶縁層、41b:絶縁層、41c:絶縁層、41:絶縁層、42:絶縁層、44:絶縁層、45:絶縁層、46:絶縁層、47f:絶縁膜、47:絶縁層、48:絶縁層、50:容量素子、51:導電層、52:導電層、53:絶縁層、60:メモリユニット、61:導電層、62:導電層、63:導電層、65:絶縁層、70:層、90:トランジスタ、91:基板、92:半導体領域、93:絶縁層、94:導電層、95a:低抵抗領域、95b:低抵抗領域

Claims (7)

  1.  トランジスタ、第1の絶縁層、第2の絶縁層、及び配線を有し、
     前記トランジスタは、第1の導電層、第2の導電層、第3の導電層、半導体層、及び第3の絶縁層を有し、
     前記第1の絶縁層は、前記第1の導電層の上方に位置し、且つ、前記第1の導電層に達する第1の開口を有し、
     前記第2の導電層は、前記第1の絶縁層の上方に位置し、
     前記半導体層は、前記第2の導電層、ならびに前記第1の開口における前記第1の絶縁層の側面及び前記第1の導電層の上面に接し、
     前記第2の絶縁層は、前記半導体層の上方に位置し、且つ、前記第1の開口と重なる位置に前記半導体層に達する第2の開口を有し、
     前記第3の絶縁層は、前記第2の開口における前記第2の絶縁層の側面、及び前記第1の開口内における前記半導体層と接し、
     前記第3の導電層は、前記第2の開口、及び前記第1の開口を埋めるように設けられ、
     前記配線は、前記第3の導電層の上面と接し、且つ、前記第2の絶縁層を介して前記半導体層または前記第2の導電層と重なる部分を有する、
     半導体装置。
  2.  請求項1において、
     前記第2の絶縁層は、前記第3の絶縁層よりも厚い部分を有する、
     半導体装置。
  3.  請求項1において、
     前記第2の導電層と前記第2の絶縁層との間に、第4の絶縁層を有し、
     前記第4の絶縁層は、前記第2の絶縁層とは異なる組成である、
     半導体装置。
  4.  請求項3において、
     前記第4の絶縁層は、前記半導体層の端部を覆う、
     半導体装置。
  5.  請求項1において、
     前記第1の開口は、下端の開口径よりも、上端の開口径が大きい、
     半導体装置。
  6.  第1の開口を有する第1の絶縁層を形成し、
     前記第1の絶縁層の、前記第1の開口における側面に接して、半導体層を形成し、
     前記第1の絶縁層及び前記半導体層を覆って第2の絶縁層を形成し、
     前記第2の絶縁層に、前記第1の開口と重なり、且つ前記半導体層に達する第2の開口を形成し、
     前記第2の開口及び前記第1の開口内に、第3の絶縁層と、導電層と、を順に形成し、
     前記第2の絶縁層上に、前記導電層と接する配線を形成する、
     半導体装置の作製方法。
  7.  第1の開口を有する第1の絶縁層を形成し、
     前記第1の絶縁層の、前記第1の開口における側面に接して、半導体層を形成し、
     前記半導体層を覆う、保護層を形成し、
     前記第1の絶縁層及び前記保護層を覆って第2の絶縁層を形成し、
     前記第2の絶縁層に、前記第1の開口と重なり、且つ、前記保護層に達する第2の開口を形成し、
     前記第2の開口と重なる前記保護層をエッチングして、前記半導体層を露出させ、
     前記第2の開口及び前記第1の開口内に、第3の絶縁層と、導電層と、を順に形成し、
     前記第2の絶縁層上に、前記導電層と接する配線を形成する、
     半導体装置の作製方法。
PCT/IB2023/060839 2022-11-04 2023-10-27 半導体装置、及びその作製方法 WO2024095113A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-176862 2022-11-04
JP2022176862 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024095113A1 true WO2024095113A1 (ja) 2024-05-10

Family

ID=90929889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/060839 WO2024095113A1 (ja) 2022-11-04 2023-10-27 半導体装置、及びその作製方法

Country Status (1)

Country Link
WO (1) WO2024095113A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120354A (ja) * 1992-10-08 1994-04-28 Nec Corp 半導体装置及びその製造方法
JP2017168760A (ja) * 2016-03-18 2017-09-21 株式会社ジャパンディスプレイ 半導体装置
JP2019012822A (ja) * 2017-06-16 2019-01-24 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120354A (ja) * 1992-10-08 1994-04-28 Nec Corp 半導体装置及びその製造方法
JP2017168760A (ja) * 2016-03-18 2017-09-21 株式会社ジャパンディスプレイ 半導体装置
JP2019012822A (ja) * 2017-06-16 2019-01-24 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Similar Documents

Publication Publication Date Title
TWI739969B (zh) 半導體裝置以及半導體裝置的製造方法
JP2016189461A (ja) 半導体装置
US11594176B2 (en) Semiconductor device, display apparatus, electronic device, and operation method of semiconductor device
WO2024095113A1 (ja) 半導体装置、及びその作製方法
WO2024116036A1 (ja) 半導体装置
WO2024105515A1 (ja) 半導体装置、及びその作製方法
WO2024105516A1 (ja) 半導体装置、及びその作製方法
US20230419891A1 (en) Display system and electronic device
CN110678974B (zh) 半导体装置、电子构件及电子设备
WO2024074967A1 (ja) 半導体装置、記憶装置、及び電子機器
WO2023218280A1 (ja) 半導体装置、及び、半導体装置の作製方法
WO2024028682A1 (ja) 半導体装置及び電子機器
WO2023203425A1 (ja) 半導体装置及び半導体装置の作製方法
WO2024057168A1 (ja) 半導体装置
WO2023228004A1 (ja) 半導体装置
WO2022167893A1 (ja) 半導体装置
US20240054955A1 (en) Display device
WO2024018317A1 (ja) 半導体装置
WO2024079575A1 (ja) 半導体装置
US20220320184A1 (en) Display apparatus, display module, electronic device, and method for manufacturing display apparatus
WO2024042408A1 (ja) 半導体装置
WO2024028680A1 (ja) 半導体装置
US20240172516A1 (en) Display apparatus
WO2024095110A1 (ja) 半導体装置、及び、半導体装置の作製方法
WO2023199159A1 (ja) 半導体装置