WO2024094210A1 - 柱状电池及包括柱状电池的用电装置 - Google Patents

柱状电池及包括柱状电池的用电装置 Download PDF

Info

Publication number
WO2024094210A1
WO2024094210A1 PCT/CN2023/129863 CN2023129863W WO2024094210A1 WO 2024094210 A1 WO2024094210 A1 WO 2024094210A1 CN 2023129863 W CN2023129863 W CN 2023129863W WO 2024094210 A1 WO2024094210 A1 WO 2024094210A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
cylindrical battery
positive electrode
oxide
active material
Prior art date
Application number
PCT/CN2023/129863
Other languages
English (en)
French (fr)
Inventor
黄吉民
张青文
戴志芳
Original Assignee
厦门新能达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门新能达科技有限公司 filed Critical 厦门新能达科技有限公司
Publication of WO2024094210A1 publication Critical patent/WO2024094210A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of energy storage devices, and in particular to a cylindrical battery and an electrical device comprising the cylindrical battery.
  • full-tab batteries such as cylindrical batteries
  • the tab flattening process is to press down the originally upright tabs so that the tabs are in contact with each other to achieve better current collection.
  • the flattened tabs are in the same plane, which is also convenient for subsequent current collecting plate welding.
  • the positive tabs are easily folded and contacted with the negative active layer, causing a short circuit.
  • One object of the present application is to provide a cylindrical battery and an electrical device including the cylindrical battery that can reduce the risk of short circuit.
  • the first aspect of the present application provides a cylindrical battery, including an electrode assembly.
  • the electrode assembly includes a structure in which a positive electrode sheet, a separator and a negative electrode sheet are stacked and wound.
  • the positive electrode sheet includes a positive electrode collector, and an active material layer, an insulating layer and an empty foil area are arranged on the first surface of the positive electrode collector, and the active material layer, the insulating layer and the empty foil area are arranged in sequence along the axial direction of the cylindrical battery.
  • the electrode assembly also includes a flattening portion, and the flattening portion has a flattening plane formed by bending and overlapping the empty foil area toward the winding center axis of the electrode assembly.
  • the cylindrical battery provided in the present application improves the hardness of a portion of the positive electrode current collector where the insulating layer is located by providing an insulating layer.
  • the insulating layer supports the portion of the positive electrode current collector and prevents the flattened portion from folding over the diaphragm and contacting the negative electrode plate to cause a short circuit.
  • the height L of the flattened portion is 0.2-4 mm.
  • the height L of the flattened portion is less than 0.2 mm, the stacked area of the flattened portion severely compresses the insulating layer and may cause it to break, and cannot provide good support and protection for the positive electrode current collector; when the height L of the flattened portion is greater than 4 mm, the flattening amount of the empty foil area is too small, and the flattened empty foil area (flattened portion) is easy to rebound.
  • the height W of the insulating layer is 1-5 mm.
  • the insulating layer is too narrow (too low in height), and due to the unstable coating process capability, the insulating layer may be leaked, and it will not be able to provide good support and protection for the positive electrode current collector when flattened; and the insulating layer
  • the height W of the insulating layer is 1.5-5 mm, so that on the basis of ensuring the stability of the coating process capability of the insulating layer, the insulating layer can further ensure sufficient supporting strength for the positive electrode current collector.
  • the thickness of the insulating layer is h, and the thickness of the active material layer is H, wherein 0.1H ⁇ h ⁇ H.
  • h ⁇ 0.1H the insulating layer is too thin, and due to the unstable coating process capability, the insulating layer may be missed, and the positive electrode current collector cannot be well supported and protected when flattened.
  • the insulating layer can further ensure sufficient support strength for the positive electrode current collector.
  • h>0.9H the insulating layer is too thick, because it has a certain hardness and brittleness, and when it is too thick, it may break under the action of flattening stress, and cannot provide good support and protection for the positive electrode current collector.
  • H is 50-100 ⁇ m.
  • the positive electrode current collector further has a second surface opposite to the first surface, and the active material layer, the insulating layer and the empty foil area are also arranged on the second surface.
  • the insulating layer includes inorganic particles, and the inorganic particles include at least one of aluminum oxide, zinc oxide, calcium oxide, silicon oxide, zirconium oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, cerium dioxide, nickel oxide, yttrium oxide, silicon carbide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate, and boehmite.
  • the second aspect of the present application also provides an electrical device, comprising the above-mentioned cylindrical battery
  • FIG1 is a schematic diagram of a cylindrical battery provided in one embodiment of the present application.
  • FIG2 is a schematic cross-sectional view of the cylindrical battery shown in FIG1 along line II-II;
  • FIG3 is a schematic diagram of an electrode assembly after being unfolded according to an embodiment of the present application.
  • FIG4 is a cross-sectional schematic diagram of a positive electrode sheet provided in one embodiment of the present application.
  • FIG5 is a cross-sectional schematic diagram of a positive electrode sheet provided in another embodiment of the present application.
  • Spatial related terms such as “on” and the like can be used herein for convenient description, to describe the relationship between an element or feature and another element (multiple elements) or feature (multiple features) as illustrated in the figure. It should be understood that, in addition to the directions described in the figure, spatial related terms are intended to include different directions of equipment or devices in use or operation. For example, if the equipment in the figure is turned over, the elements described as “above” or “on” other elements or features will be oriented “below” or “below” other elements or features. Therefore, the exemplary term “on” may include the direction above and below. It should be understood that although the terms first, second, third, etc.
  • an embodiment of the present application provides a cylindrical battery 100, including an electrode assembly 10 and a shell (not shown).
  • the shell is generally cylindrical, such as cylindrical, elliptical, square, etc.
  • the electrode assembly 10 is accommodated in the shell and has a shape that matches the shell; for example, the shape of the electrode assembly 10 is cylindrical, elliptical, square, etc.
  • the shell is made of a conductive material, such as a metal material.
  • the electrode assembly 10 includes a positive electrode sheet 20, a negative electrode sheet 30, and a separator 40 disposed between the positive electrode sheet 20 and the negative electrode sheet 30.
  • the electrode assembly 10 has a structure in which the positive electrode sheet 20, the separator 40, and the negative electrode sheet 30 are stacked and wound. That is, the electrode assembly 10 is formed by stacking the positive electrode sheet 20, the separator 40, and the negative electrode sheet 30 in sequence and then winding.
  • the positive electrode sheet 20 includes a positive electrode collector 21 and an active material layer 22 and an insulating layer 23 disposed on the positive electrode collector 21.
  • the positive electrode collector 21 includes a first surface 21a and a second surface 21b disposed opposite to each other.
  • the active material layer 22 and the insulating layer 23 are disposed on the first surface 21a.
  • the first surface 21a includes an empty foil area 24 that is not covered by the active material layer 22 and the insulating layer 23.
  • the empty foil area 24 is a portion of the positive electrode collector 21, which is used as a positive electrode tab.
  • the active material layer 22, the insulating layer 23 and the empty foil area 24 located on the first surface 21a are arranged in sequence along the axial direction X of the cylindrical battery 100, and the insulating layer 23 connects the active material layer 22 and the empty foil area 24.
  • the active material layer 22, the insulating layer 23 and the empty foil area 24 are also arranged on the second surface 21b.
  • the active material layer 22, the insulating layer 23 and the empty foil area 24 on the second surface 21b are arranged in sequence along the axial direction X of the cylindrical battery 100, and the insulating layer 23 connects the active material layer 22 and the empty foil area 24.
  • the positions of the active material layer 22, the insulating layer 23 and the empty foil area 24 on the first surface 21a may correspond to the positions of the active material layer 22, the insulating layer 23 and the empty foil area 24 on the second surface 21b, respectively, and the present application is not limited thereto.
  • the active material layer 22, the insulating layer 23 and the empty foil area 24 may be arranged only on the first surface 21a or the second surface 21b.
  • the insulating layer 23 located on the first surface 21a or the second surface 21b is adjacent to the active material layer 22; that is, along the axial direction X of the cylindrical battery 100, the end edge of the insulating layer 23 contacts the end edge of the active material layer 22.
  • the insulating layer 23 located on the first surface 21a or the second surface 21b may partially cover the active material layer 22 and be connected to the active material layer 22; that is, along the thickness direction Y of the electrode assembly 10, the insulating layer 23 partially overlaps the active material layer 22.
  • the axial direction X of the cylindrical battery 100 is perpendicular to the thickness direction Y.
  • the material of the positive electrode current collector 21 includes at least one of Ni, Ti, Cu, Ag, Au, Pt, Fe, Al and combinations thereof.
  • the active material layer 22 may include at least one of lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, lithium nickel cobalt manganese oxide, lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, lithium vanadium phosphate, lithium rich manganese-based material, lithium nickel cobalt aluminum oxide and combinations thereof.
  • the electrode assembly 10 also includes a flattened portion 101.
  • the flattened portion 101 is obtained by flattening the empty foil area 24, that is, the flattened portion 101 is composed of the empty foil area 24 bent toward the winding center axis OO' of the electrode assembly 10.
  • the flattened portion 101 has a flat surface 102 formed by bending and overlapping the empty foil area 24 toward the winding center axis of the electrode assembly 10.
  • the flat surface 102 is composed of the end of the flattened portion 101 on the axial direction X of the cylindrical battery 100, and the flat surface 102 is roughly a flat surface for connecting the current collecting plate (not shown).
  • the "flat surface" of the present application not only includes a completely flat surface, but also includes a surface with some bumps or surface roughness to the extent that the empty foil area 24 can be joined with the current collecting plate.
  • the present application improves the hardness of a portion of the positive electrode current collector 21 where the insulating layer 23 is located by providing the insulating layer 23 .
  • the insulating layer 23 supports the portion of the positive electrode current collector 21 , preventing the flattened portion 101 from folding over the separator 40 and contacting the negative electrode plate 30 to cause a short circuit.
  • the insulating layer 23 includes inorganic particles and a binder, and the inorganic particles include at least one of aluminum oxide, zinc oxide, calcium oxide, silicon oxide, zirconium oxide, magnesium oxide, titanium oxide, hafnium dioxide, tin oxide, cerium dioxide, nickel oxide, yttrium oxide, silicon carbide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium sulfate, and boehmite.
  • the binder is selected from at least one of polyvinylidene fluoride, a copolymer of vinylidene fluoride-hexafluoropropylene, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyethylene alkoxy, polymethyl methacrylate, polytetrafluoroethylene, and polyhexafluoropropylene.
  • the height of the flattened portion 101 along the axial direction X of the cylindrical battery 100 is L.
  • L is 0.2-4 mm.
  • L is less than 0.2 mm
  • the stacking area of the flattened portion 101 severely compresses the insulating layer 23 and may cause damage to the insulating layer, and cannot provide good support and protection for the positive electrode current collector 21.
  • L is greater than 4 mm
  • the flattening amount of the empty foil area 24 is too small, and the flattened empty foil area 24 (flattened portion 101) is easy to rebound.
  • the height of the insulating layer 23 located on the first surface 21a or the second surface 21b along the axial direction X of the cylindrical battery 100 is W.
  • W is 1-5mm.
  • the insulating layer 23 is too narrow (too low in height). Due to the unstable coating process capability, the insulating layer 23 may be leaked, and it cannot provide good support and protection for the positive electrode collector 21 when flattened; and the larger W is, the more energy density loss of the cylindrical battery 100.
  • W is 1.5-5 mm, so that on the basis of ensuring the stability of the coating process capability of the insulating layer 23 , the insulating layer 23 can further ensure sufficient supporting strength for the positive electrode current collector 21 .
  • the thickness of the insulating layer 23 on the first surface 21a or the second surface 21b is h
  • the thickness of the active material layer on the first surface 21a or the second surface 21b is H.
  • 0.1H ⁇ h ⁇ H When h ⁇ 0.1H, the insulating layer 23 is too thin, and due to the unstable coating process capability, the insulating layer 23 may be missed, and the positive electrode current collector 21 cannot be well supported and protected when flattened.
  • 0.2H ⁇ h ⁇ 0.9H so that on the basis of ensuring the stability of the coating process capability of the insulating layer 23, the insulating layer 23 can further ensure sufficient support strength for the positive electrode current collector 21.
  • h>0.9H the insulating layer 23 is too thick. Because it has a certain hardness and brittleness, it may break under the action of flattening stress when it is too thick, and cannot provide good support and protection for the positive electrode current collector 21.
  • H is 50-100 ⁇ m.
  • the positive electrode current collector 21 includes a first end 211 and a second end 212 opposite to the first end 211.
  • the insulating layer 23 located on the first surface 21a or the second surface 21b is arranged from the first end 211 to the second end 212. In other words, in the winding direction Z of the electrode assembly 10, the insulating layer 23 covers the first surface 21a or the second surface 21b of the positive electrode current collector 21.
  • the negative electrode plate 30 includes a negative electrode current collector 31 and a negative electrode active material layer 32 disposed on the negative electrode current collector 31.
  • the negative electrode active material layer 32 may be disposed on two opposite surfaces of the negative electrode current collector 31 or only on one surface, and the present application is not limited thereto.
  • the negative electrode current collector 31 includes an empty foil area 31a that is not covered by the negative electrode active material layer 32.
  • the empty foil area 31a is used as a negative electrode tab and is connected to the shell.
  • the insulating layer 23 may also be disposed on the empty foil area 31a and cover part of the empty foil area 31a to support the negative electrode current collector 31a.
  • the manner in which the insulating layer 23 is disposed on the negative electrode plate 30 may be the same as the manner in which the insulating layer 23 is disposed on the positive electrode plate 20, and will not be repeated here.
  • the material of the negative electrode current collector 31 may include at least one of Ni, Ti, Cu, Ag, Au, Pt, Fe, Al and combinations thereof.
  • the material of the negative electrode active material layer 32 can be selected from at least one of graphite materials, alloy materials, lithium metal and alloys thereof.
  • the graphite material can be selected from at least one of artificial graphite and natural graphite; the alloy material can be selected from at least one of silicon, silicon oxide, tin and titanium sulfide.
  • the separator 40 is used to prevent the positive electrode sheet 20 and the negative electrode sheet 30 from directly contacting each other, thereby reducing the risk of contact short circuit between the positive electrode sheet 20 and the negative electrode sheet 30.
  • the separator 40 comprises at least one insulating material selected from polypropylene, polyethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polymethyl methacrylate or polyethylene glycol.
  • the embodiment of the present application also provides an electric device, including a cylindrical battery 100.
  • the electric device specifically refers to a mobile phone, a portable device, a laptop computer, a battery car, an electric car, a ship, a spacecraft, an electric toy, and an electric tool, etc. It can be understood that the electric device is not limited thereto, and can also be any electric device using the cylindrical battery 100.
  • the electrode assembly 10 shown in FIG2 is used, loaded into a housing, and a finished battery is obtained after liquid injection, wherein the height L of the flattened portion 101 is 0.2 mm, the height W of the insulating layer 23 is 2 mm, the thickness h of the insulating layer 23 is 40 ⁇ m, and the thickness H of the active material layer 22 is 50 ⁇ m.
  • Example 1 The finished battery obtained in Example 1 was subjected to a Hi-pot test (insulation internal resistance test), and the specific method was as follows: a voltage of 250V was applied between the positive and negative tabs of the electrode assembly 10 for 2 seconds, and the resistance was tested. If the resistance was ⁇ 20M ⁇ (megaohms), it was considered to have passed the Hi-pot test; if the resistance was ⁇ 20M ⁇ (megaohms), it was considered to have failed the Hi-pot test and was a Hi-pot defective product.
  • a Hi-pot test insulation internal resistance test
  • a finished battery substantially the same as that in Example 1 is prepared, except that no insulating layer 23 is provided on the positive electrode current collector 21 , and the empty foil area 24 is directly connected to the active material layer 22 .
  • Example 2-8 The difference between Example 2-8 and Example 1 is that the height L of the flattened portion 101 is different.
  • X/20 means that the number of batteries that passed the Hi-pot test is X out of 20 samples.
  • Example 1 and Comparative Example 1 the same flattening process is used to flatten the empty foil area 24 to form the flattened portion 101. Since the insulating layer 23 is not provided on the positive electrode current collector 21 in Comparative Example 1, the empty foil area 24 in Comparative Document 1 is more likely to fold and contact the negative electrode active layer during flattening, causing a short circuit and failing the Hi-pot test. It can be seen from Example 1 and Comparative Example 1 that by providing the insulating layer 23, the pass rate of the Hi-pot test is greatly improved and the risk of short circuit is reduced.
  • the Hi-pot test pass rate is 100%.
  • the stacking area of the flattened portion 101 severely compresses the insulating layer 23 and may cause it to break, and the Hi-pot test pass rate is reduced.
  • the height L of the flattened portion 101 is greater than 4 mm, although the Hi-pot test pass rate is 100%, the energy density loss is relatively large.
  • Example 9-14 The difference between Examples 9-14 and Example 2 is that the height W of the insulating layer 23 is different.
  • the specific parameters and Hi-pot test results are shown in Table 2.
  • the pass rate of the Hi-pot test is high; when the height W of the insulating layer 23 is 1.5-5 mm, the pass rate of the Hi-pot test is 100%.
  • W is less than 1 mm, due to the unstable coating process capability, the insulating layer 23 may be missed, and the pass rate of the Hi-pot test is reduced.
  • W is greater than 5 mm, although the pass rate of the Hi-pot test is 100%, W is too large, and the space occupied is large, resulting in a large loss of battery volume energy density.
  • Example 15-21 The difference between Examples 15-21 and Example 2 is that the ratio of the thickness h of the insulating layer 23 to the thickness H of the active material layer 22 is different.
  • the specific parameters and Hi-pot test results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种柱状电池及用电装置,包括电极组件。电极组件包括正极极片、隔膜和负极极片层叠并卷绕的结构。正极极片包括正极集流体,正极集流体的第一表面上设置有活性材料层、绝缘层及空箔区,活性材料层、绝缘层及空箔区沿柱状电池的轴向方向依次排列。电极组件还包括揉平部,揉平部具有由空箔区向电极组件的卷绕中心轴弯折并重合形成的揉平面。绝缘层对正极集流体起到了支撑作用,可防止揉平部翻折超过隔膜与负极极片接触造成短路。

Description

柱状电池及包括柱状电池的用电装置
本申请要求于2022年11月4日提交中国国家知识产权局、申请号为202211379212.6、发明名称为“柱状电池及包括柱状电池的用电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能装置领域,尤其是涉及一种柱状电池及包括柱状电池的用电装置。
背景技术
在全极耳电池(如圆柱状电池)制作过程中,需要进行极耳揉平工序。极耳揉平工序是将原本直立的极耳压倒,使各极耳相互接触,以起到更好的集流作用。同时,揉平后的极耳处于同一平面内,也方便后续的集流盘焊接工作。然而,现有全极耳电池在揉平后,正极极耳易翻折与负极活性层接触,造成短路。
发明内容
本申请的一个目的在于提供可降低短路风险的柱状电池及包含该柱状电池的用电装置。
本申请第一方面提供一种柱状电池,包括电极组件。电极组件包括正极极片、隔膜和负极极片层叠并卷绕的结构。正极极片包括正极集流体,正极集流体的第一表面上设置有活性材料层、绝缘层及空箔区,活性材料层、绝缘层及空箔区沿柱状电池的轴向方向依次排列。电极组件还包括揉平部,揉平部具有由空箔区向电极组件的卷绕中心轴弯折并重合形成的揉平面。
本申请提供的柱状电池,通过设置绝缘层,提高了绝缘层所在位置处的部分正极集流体的硬度,绝缘层对该部分正极集流体起到了支撑作用,防止揉平部翻折超过隔膜与负极极片接触造成短路。
根据本申请的一些实施例,沿柱状电池的轴向方向,揉平部的高度L为0.2-4mm。当揉平部的高度L小于0.2mm时,揉平部堆叠区域严重压迫绝缘层并可能导致其破损,无法对正极集流体起到较好的支撑保护作用;当揉平部的高度L大于4mm时,空箔区揉平量过小,被揉平的空箔区(揉平部)容易反弹起来。
根据本申请的一些实施例,沿柱状电池的轴向方向,绝缘层的高度W为1-5mm。当绝缘层的高度W小于1mm时,绝缘层过窄(高度过低),由于涂敷工艺制程能力不稳定,可能造成绝缘层漏涂,则揉平时无法对正极集流体起到较好的支撑保护作用;而绝缘层的 高度W越大,柱状电池的能量密度损失越多。
根据本申请的一些实施例,绝缘层的高度W为1.5-5mm,如此在保证绝缘层的涂敷制程能力稳定的基础上,可进一步保证绝缘层对正极集流体足够的支撑强度。
根据本申请的一些实施例,绝缘层的厚度为h,活性材料层的厚度为H,其中,0.1H≤h≤H。当h<0.1H时,绝缘层过薄,由于涂敷工艺制程能力不稳定,可能造成绝缘层漏涂,则揉平时无法对正极集流体起到较好的支撑保护作用。
根据本申请的一些实施例,0.2H≤h≤0.9H,如此在保证绝缘层的涂敷制程能力稳定的基础上,可进一步保证绝缘层对正极集流体足够的支撑强度。当h>0.9H时,绝缘层过厚,因其具有一定硬度和脆性,过厚时在揉平应力作用下可能产生破裂,无法对正极集流体起到较好的支撑保护作用。
根据本申请的一些实施例,H为50-100μm。
根据本申请的一些实施例,正极集流体还具有与第一表面相对的第二表面,活性材料层、绝缘层和空箔区还设置于第二表面上。
根据本申请的一些实施例,绝缘层包括无机颗粒,无机颗粒包括氧化铝、氧化锌、氧化钙、氧化硅、氧化锆、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化钇、碳化硅、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡、勃姆石的至少一种。
本申请第二方面还提供一种用电装置,包括上述柱状电池
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一实施例提供的柱状电池的示意图;
图2为图1所示柱状电池沿II-II的截面示意图;
图3为本申请一实施例提供的电极组件展开后的示意图;
图4为本申请一实施例提供的正极极片的截面示意图;
图5为本申请另一实施例提供的正极极片的截面示意图。
柱状电池 100
电极组件 10
正极极片 20
负极极片 30
隔膜 40
正极集流体 21
活性材料层 22
绝缘层 23
第一表面 21a
第二表面 21b
空箔区 24、31a
揉平部 101
揉平面 102
第一端部 211
第二端部 212
负极集流体 31
负极活性材料层 32
具体实施方式
下面对本申请实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下文,将详细地描述本申请的实施方式。但是,本申请可体现为许多不同的形式,并且不应解释为限于本文阐释的示例性实施方式。而是,提供这些示例性实施方式,从而使本申请透彻的和详细的向本领域技术人员传达。
另外,为了简洁和清楚,在附图中,各种组件、层的尺寸或厚度可被放大。遍及全文,相同的数值指相同的要素。如本文所使用,术语“及/或”、“以及/或者”包括一个或多个相关列举项目的任何和所有组合。另外,应当理解,当要素A被称为“连接”要素B时,要素A可直接连接至要素B,或可能存在中间要素C并且要素A和要素B可彼此间接连接。
进一步,当描述本申请的实施方式时使用“可”指“本申请的一个或多个实施方式”。
本文使用的专业术语是为了描述具体实施方式的目的并且不旨在限制本申请。如本文所使用,单数形式旨在也包括复数形式,除非上下文另外明确指出。应进一步理解,术语“包括”,当在本说明书中使用时,指存在叙述的特征、数值、步骤、操作、要素和/或组分, 但是不排除存在或增加一个或多个其他特征、数值、步骤、操作、要素、组分和/或其组合。
空间相关术语,比如“上”等可在本文用于方便描述,以描述如图中阐释的一个要素或特征与另一要素(多个要素)或特征(多个特征)的关系。应理解,除了图中描述的方向之外,空间相关术语旨在包括设备或装置在使用或操作中的不同方向。例如,如果将图中的设备翻转,则描述为在其他要素或特征“上方”或“上”的要素将定向在其他要素或特征的“下方”或“下面”。因此,示例性术语“上”可包括上面和下面的方向。应理解,尽管术语第一、第二、第三等可在本文用于描述各种要素、组分、区域、层和/或部分,但是这些要素、组分、区域、层和/或部分不应受这些术语的限制。这些术语用于区分一个要素、组分、区域、层或部分与另一要素、组分、区域、层或部分。因此,下面讨论的第一要素、组分、区域、层或部分可称为第二要素、组分、区域、层或部分,而不背离示例性实施方式的教导。
请参阅1和图2,本申请一实施例提供一种柱状电池100,包括电极组件10和壳体(图未示)。壳体大致为柱状,例如圆柱状、椭圆柱状、方形柱状等。电极组件10容纳于壳体中并具有与壳体相适配的形状;例如,电极组件10的形状为圆柱状、椭圆柱状、方形柱状等。壳体由导电材料,例如金属材料制成。电极组件10包括正极极片20、负极极片30和配置在正极极片20和负极极片30之间的隔膜40。电极组件10具有正极极片20、隔膜40和负极极片30层叠并卷绕的结构。即,电极组件10由正极极片20、隔膜40和负极极片30依次层叠后卷绕形成。
请参阅图2和图4,正极极片20包括正极集流体21和设置在正极集流体21上的活性材料层22和绝缘层23。正极集流体21包括相对设置的第一表面21a和第二表面21b。活性材料层22和绝缘层23设置在第一表面21a上。第一表面21a包括未被活性材料层22和绝缘层23覆盖的空箔区24。空箔区24为正极集流体21的部分,其用作正极极耳。位于第一表面21a上的活性材料层22、绝缘层23和空箔区24沿柱状电池100的轴向X依次排列,且绝缘层23连接活性材料层22和空箔区24。
活性材料层22、绝缘层23和空箔区24还设置在第二表面21b上,位于第二表面21b上的活性材料层22、绝缘层23和空箔区24沿柱状电池100的轴向X依次排列,且绝缘层23连接活性材料层22和空箔区24。位于第一表面21a的活性材料层22、绝缘层23和空箔区24的位置可分别与位于第二表面21b的活性材料层22、绝缘层23和空箔区24的位置相对应,本申请不作限制。在其他实施例中,活性材料层22、绝缘层23和空箔区24可仅设置在第一表面21a或第二表面21b上。
位于第一表面21a或第二表面21b上的绝缘层23与活性材料层22邻接;即,沿柱状电池100的轴向X,绝缘层23的端缘与活性材料层22的端缘接触。请参阅图5,在其他实施例中,位于第一表面21a或第二表面21b上的绝缘层23可部分覆盖活性材料层22并与活性材料层22连接;即,沿电极组件10的厚度方向Y,绝缘层23与活性材料层22部分重叠。柱状电池100的轴向X与厚度方向Y相垂直。
正极集流体21的材质包括Ni、Ti、Cu、Ag、Au、Pt、Fe、Al及其组合物中的至少一种。活性材料层22可包括钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、富锂锰基材料、镍钴铝酸锂及其组合物中的至少一种。
请参阅图1和图2,电极组件10还包括揉平部101。揉平部101通过对空箔区24进行揉平工序制得,即揉平部101为向电极组件10的卷绕中心轴OO’弯曲的空箔区24构成。揉平部101具有由空箔区24通过向电极组件10的卷绕中心轴弯折并重合形成的揉平面102。揉平面102由揉平部101在柱状电池100的轴向X上的端部构成,揉平面102大致为平坦面,用于连接集流盘(图未示)。需要说明的是,本申请的“平坦面”不仅包括完全平坦的面,还包括在空箔区24与集流盘能够接合的程度上具有一些凹凸或表面粗糙度的表面。
本申请通过设置绝缘层23,提高了绝缘层23所在位置处的部分正极集流体21的硬度,绝缘层23对该部分正极集流体21起到了支撑作用,防止揉平部101翻折超过隔膜40与负极极片30接触造成短路。
在一些实施例中,绝缘层23包括无机颗粒和粘结剂,无机颗粒包括氧化铝、氧化锌、氧化钙、氧化硅、氧化锆、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化钇、碳化硅、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡、勃姆石中的至少一种。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯烷氧、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的至少一种。通过设置无机颗粒,提高了绝缘层23的硬度,进而增强对揉平部101的支撑作用。
请参阅图3,沿柱状电池100的轴向X,揉平部101的高度为L。在一些实施例中,L为0.2-4mm。当L小于0.2mm时,揉平部101堆叠区域严重压迫绝缘层23并可能导致其破损,无法对正极集流体21起到较好的支撑保护作用;当L大于4mm时,空箔区24揉平量过小,被揉平的空箔区24(揉平部101)容易反弹起来;且L越大,柱状电池100的 能量密度损失越多。以高度为70mm的柱状电池100为例,当L=4mm时比L=0.2mm时的能量密度减少了5.4%。
请参阅图3和图4,沿柱状电池100的轴向X,位于第一表面21a或第二表面21b上的绝缘层23的高度为W。在一些实施例中,W为1-5mm。当W小于1mm时,绝缘层23过窄(高度过低),由于涂敷工艺制程能力不稳定,可能造成绝缘层23漏涂,则揉平时无法对正极集流体21起到较好的支撑保护作用;而W越大,柱状电池100的能量密度损失越多。以高度为70mm的柱状电池100为例,当W=5mm时比W=1mm时的能量密度减少了5.7%。
在一些实施例中,W为1.5-5mm,如此在保证绝缘层23的涂敷制程能力稳定的基础上,可进一步保证绝缘层23对正极集流体21足够的支撑强度。
请参阅图4,沿电极组件10的厚度方向Y,位于第一表面21a或第二表面21b上的绝缘层23的厚度为h,位于第一表面21a或第二表面21b上的活性材料层的厚度为H。在一些实施例中,0.1H≤h≤H。当h<0.1H时,绝缘层23过薄,由于涂敷工艺制程能力不稳定,可能造成绝缘层23漏涂,则揉平时无法对正极集流体21起到较好的支撑保护作用。
在一些实施例中,0.2H≤h≤0.9H,如此在保证绝缘层23的涂敷制程能力稳定的基础上,可进一步保证绝缘层23对正极集流体21足够的支撑强度。当h>0.9H时,绝缘层23过厚,因其具有一定硬度和脆性,过厚时在揉平应力作用下可能产生破裂,无法对正极集流体21起到较好的支撑保护作用。在一些实施例中,H为50-100μm。
请参阅图3和图4,沿电极组件10的卷绕方向Z,正极集流体21包括第一端部211和与第一端部211相对的第二端部212。位于第一表面21a或第二表面21b上的绝缘层23自第一端部211至第二端部212配置。换句话说,在电极组件10的卷绕方向Z上,绝缘层23布满正极集流体21的第一表面21a或第二表面21b。
请参阅图2和图3,负极极片30包括负极集流体31和设置在负极集流体31上的负极活性材料层32。负极活性材料层32可设置在负极集流体31相对的两个表面或仅设置在一个表面上,本申请不作限制。负极集流体31包括未被负极活性材料层32覆盖的空箔区31a。空箔区31a用作负极极耳,并与壳体连接。在一些实施例中,绝缘层23还可设置于空箔区31a上并覆盖空箔区31a的部分,以对负极集流体31a起到支撑作用。绝缘层23设置在负极极片30上的方式可与绝缘层23设置在正极极片20上的方式相同,本处不再赘述。
负极集流体31的材质可包括Ni、Ti、Cu、Ag、Au、Pt、Fe、Al及其组合物中的至少 一种。负极活性材料层32的材质可选自石墨类材料、合金类材料、锂金属及其合金中的至少一种。石墨类材料可选自人造石墨、天然石墨中的至少一种;合金类材料可选自硅、氧化硅、锡、硫化钛中的至少一种。
隔膜40用于防止正极极片20和负极极片30直接接触,从而降低正极极片20和负极极片30发生接触短路的风险。隔膜40包含选自聚丙烯、聚乙烯、聚偏二氟乙烯、偏二氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯或聚乙二醇中至少一种的绝缘材料。
本申请的实施例还提供一种用电装置,包括柱状电池100。用电装置具体是指手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具以及电动工具等。可以理解,用电装置不限于此,还可为任一使用柱状电池100的用电设备。
以下通过具体实施例和对比例对本申请提供的电池的性能进行说明。
实施例1
采用如图2所示的电极组件10,装入壳体,经注液后得到成品电池。其中,揉平部101的高度L为0.2mm,绝缘层23的高度W为2mm,绝缘层23的厚度h为40μm,活性材料层22的厚度H为50μm。
对实施例1制得的成品电池进行Hi-pot测试(绝缘内阻测试),具体方法为:在电极组件10的正负极耳之间施加250V电压,持续2秒,并测试其电阻。若电阻≥20MΩ(兆欧),则视为通过Hi-pot测试;若电阻<20MΩ(兆欧),则视为未通过Hi-pot测试,为Hi-pot不良品。
对比例1
制备与实施例1大致相同的成品电池,区别在于,正极集流体21上未设置绝缘层23,空箔区24直接与活性材料层22连接。
实施例2-8与实施例1的不同之处在于,揉平部101的高度L不同。
实施例1-8和对比例1的具体参数及Hi-pot测试结果如表1所示。
表1

注:X/20表示测试20个样品中通过Hi-pot测试的电池的个数为X个。
实施例1和对比例1中采用相同的揉平工序对空箔区24进行揉平形成揉平部101。由于对比例1中的正极集流体21上未设置绝缘层23,使得对比文件1中的空箔区24在进行揉平时更易翻折与负极活性层接触,造成短路,不能通过Hi-pot测试。由实施例1和对比例1可知,通过设置绝缘层23,大大提高了Hi-pot测试通过率,降低了短路风险。
由实施例1-8可知,当揉平部101的高度L为0.2-4mm时,Hi-pot测试通过率为100%。当揉平部101的高度L小于0.2mm时,揉平部101堆叠区域严重压迫绝缘层23并可能导致其破损,Hi-pot测试通过率降低。当揉平部101的高度L大于4mm时,尽管Hi-pot测试通过率为100%,但能量密度损失较多。
实施例9-14与实施例2的不同之处在于,绝缘层23的高度W不同,具体参数及Hi-pot测试结果如表2所示。
表2
由表2可知,当绝缘层23的高度W为1-5mm时,Hi-pot测试通过率较高;当绝缘层23的高度W为1.5-5mm时,Hi-pot测试通过率为100%。当W小于1mm时,由于涂敷工艺制程能力不稳定,可能造成绝缘层23漏涂,Hi-pot测试通过率降低。当W大于5mm时,尽管Hi-pot测试通过率为100%,W过大,占用空间较大,导致电池体积能量密度损失较多。
实施例15-21与实施例2的不同之处在于,绝缘层23的厚度h与活性材料层22的厚度H的比值不同,具体参数及Hi-pot测试结果如表3所示。
表3
由表3可知,当0.1H≤h≤H时,Hi-pot测试通过率相对较高,在可接受的范围内;当0.2H≤h≤0.9H,Hi-pot测试通过率达到100%。当h<0.1H时,绝缘层23过薄,由于涂敷工艺制程能力不稳定,可能造成绝缘层23漏涂,降低了Hi-pot测试通过率;当h>0.9H时,绝缘层23过厚,其在揉平应力作用下可能产生破裂,降低了Hi-pot测试通过率。
以上所揭露的仅为本申请较佳实施方式而已,当然不能以此来限定本申请,因此依本申请所作的等同变化,仍属本申请所涵盖的范围。

Claims (12)

  1. 一种柱状电池,包括电极组件,所述电极组件包括正极极片、隔膜和负极极片层叠并卷绕的结构,其特征在于:
    正极极片包括正极集流体,所述正极集流体的第一表面上设置有活性材料层、绝缘层及空箔区,所述活性材料层、所述绝缘层及所述空箔区沿所述柱状电池的轴向依次排列;
    所述电极组件还包括揉平部,所述揉平部具有由所述空箔区向所述电极组件的卷绕中心轴弯折并重合形成的揉平面。
  2. 如权利要求1所述的柱状电池,其特征在于,沿所述柱状电池的轴向,所述揉平部的高度L为0.2-4mm。
  3. 如权利要求1所述的柱状电池,其特征在于,沿所述电池的轴向方向,所述绝缘层的高度W为1-5mm。
  4. 如权利要求3所述的柱状电池,其特征在于,所述绝缘层的高度W为1.5-5mm。
  5. 如权利要求4所述的柱状电池,其特征在于,所述绝缘层的高度W为1.5-3mm。
  6. 如权利要求1所述的柱状电池,其特征在于,所述绝缘层的厚度为h,所述活性材料层的厚度为H,其中,0.1H≤h≤H。
  7. 如权利要求6所述的柱状电池,其特征在于,0.2H≤h≤0.9H。
  8. 如权利要求6或7所述的柱状电池,其特征在于,H为50-100μm。
  9. 如权利要求6或7所述的柱状电池,其特征在于,h为10-45μm。
  10. 如权利要求1所述的柱状电池,其特征在于,所述正极集流体还具有与所述第一表面相对的第二表面,所述活性材料层、所述绝缘层和所述空箔区还设置于所述第二表面上。
  11. 如权利要求1所述的柱状电池,其特征在于,所述绝缘层包括无机颗粒,所述无机颗粒包括氧化铝、氧化锌、氧化钙、氧化硅、氧化锆、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化钇、碳化硅、氢氧化铝、氢氧化镁、氢氧化钙、硫酸钡、勃姆石的至少一种。
  12. 一种用电装置,其特征在于,包括如权利要求1-11中任一项所述的柱状电池。
PCT/CN2023/129863 2022-11-04 2023-11-06 柱状电池及包括柱状电池的用电装置 WO2024094210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211379212.6A CN115911256A (zh) 2022-11-04 2022-11-04 柱状电池及包含其的用电装置
CN202211379212.6 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024094210A1 true WO2024094210A1 (zh) 2024-05-10

Family

ID=86490680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129863 WO2024094210A1 (zh) 2022-11-04 2023-11-06 柱状电池及包括柱状电池的用电装置

Country Status (2)

Country Link
CN (1) CN115911256A (zh)
WO (1) WO2024094210A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115911256A (zh) * 2022-11-04 2023-04-04 厦门新能达科技有限公司 柱状电池及包含其的用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213878178U (zh) * 2020-12-14 2021-08-03 天津市捷威动力工业有限公司 锂离子圆柱电池
CN216054793U (zh) * 2021-09-18 2022-03-15 宁波久鼎新能源科技有限公司 一种锂电池极片结构
CN217062176U (zh) * 2022-03-21 2022-07-26 珠海冠宇电池股份有限公司 一种极片和电池
CN217306683U (zh) * 2022-04-02 2022-08-26 远景动力技术(江苏)有限公司 一种双层隔膜结构及圆柱电芯
CN115138985A (zh) * 2022-06-29 2022-10-04 江苏正力新能电池技术有限公司 一种多极耳电芯的制备方法及电池的制备方法
CN115911256A (zh) * 2022-11-04 2023-04-04 厦门新能达科技有限公司 柱状电池及包含其的用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213878178U (zh) * 2020-12-14 2021-08-03 天津市捷威动力工业有限公司 锂离子圆柱电池
CN216054793U (zh) * 2021-09-18 2022-03-15 宁波久鼎新能源科技有限公司 一种锂电池极片结构
CN217062176U (zh) * 2022-03-21 2022-07-26 珠海冠宇电池股份有限公司 一种极片和电池
CN217306683U (zh) * 2022-04-02 2022-08-26 远景动力技术(江苏)有限公司 一种双层隔膜结构及圆柱电芯
CN115138985A (zh) * 2022-06-29 2022-10-04 江苏正力新能电池技术有限公司 一种多极耳电芯的制备方法及电池的制备方法
CN115911256A (zh) * 2022-11-04 2023-04-04 厦门新能达科技有限公司 柱状电池及包含其的用电装置

Also Published As

Publication number Publication date
CN115911256A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP4554565B2 (ja) 二次電池
WO2024094210A1 (zh) 柱状电池及包括柱状电池的用电装置
JP5082256B2 (ja) 密閉型蓄電池
CN1221055C (zh) 硬币型电池
JP4478687B2 (ja) リチウムイオン2次電池
JP2007503100A5 (zh)
TWI404250B (zh) 具有導電板層之二次電池的單位晶胞及具有此種單位晶胞之鋰離子二次電池
JP2000200585A (ja) 電池用パッケ―ジ
JP2010199069A (ja) 円筒形二次電池
JP5899495B2 (ja) 円筒形リチウムイオン電池
JP2003272597A (ja) 密閉型電池
JP2019009045A (ja) 蓄電素子
JP5334429B2 (ja) リチウム二次電池
JP2007305477A (ja) 電池
JP2007123009A (ja) 巻回型電池
JP2015149161A (ja) 蓄電素子及び安全弁
JP2009193841A (ja) 電池の製造方法
JP2011054464A (ja) 角型電池
WO2023122881A1 (zh) 电池及包含其的电子装置
JP2003187779A (ja) 電 池
US20130004829A1 (en) Heterogeneous Ohmic Contact for a Voltaic Cell
JP2001313062A (ja) フィルムパッケージ型電池
JP2009187724A (ja) 捲回式リチウムイオン二次電池
JP2007305383A (ja) 電池の製造方法
JP2001185120A (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885134

Country of ref document: EP

Kind code of ref document: A1