WO2024094168A1 - 稻谷壳作为分子筛催化剂成型模板的应用 - Google Patents

稻谷壳作为分子筛催化剂成型模板的应用 Download PDF

Info

Publication number
WO2024094168A1
WO2024094168A1 PCT/CN2023/129579 CN2023129579W WO2024094168A1 WO 2024094168 A1 WO2024094168 A1 WO 2024094168A1 CN 2023129579 W CN2023129579 W CN 2023129579W WO 2024094168 A1 WO2024094168 A1 WO 2024094168A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
binder
molding
rice husks
rice husk
Prior art date
Application number
PCT/CN2023/129579
Other languages
English (en)
French (fr)
Inventor
詹国武
郭梅婷
周树锋
蔡东仁
许庆清
林建斌
Original Assignee
华侨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华侨大学 filed Critical 华侨大学
Publication of WO2024094168A1 publication Critical patent/WO2024094168A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids

Definitions

  • the invention belongs to the technical field of molecular sieve catalyst molding, and particularly relates to the application of rice husks as a molecular sieve catalyst molding template.
  • molecular sieve molding technology is a key step in the preparation of heterogeneous catalysts.
  • molecular sieves are in powder form, which has the disadvantages of being difficult to recycle, easy to clog pipelines, large losses during the molecular sieve loading process, and too low strength to meet the transportation and reaction requirements. Therefore, molecular sieve powder needs to be processed into a molded body of a certain shape, size and strength to meet the needs of industrial applications (such as the ability to resist loading impact, airflow impact, etc.).
  • the multi-level pore structure of the powder catalyst itself is the key to promoting the molding process of the molecular sieve and improving the mechanical properties of the molded body.
  • the main industrial molecular sieve molding technologies include extrusion molding, rotation molding, pressure molding, spherical molding, spray molding and compression molding.
  • extrusion molding is widely used due to its high level of equipment automation, continuity and intelligence.
  • Extrusion molding uses extrusion to shuttle the material through the mold.
  • the shape of the extruded molecular sieve can be controlled by replacing the mold.
  • the most common shapes are strips, clover shapes, honeycomb shapes, etc.
  • the molecular sieve molding and its mechanical and textural properties are affected by various factors, such as the particle fineness of the catalyst raw powder, the type and amount of binders, peptizers, extrusion aids and pore expanders.
  • the water-powder ratio and roasting condition parameters (temperature, time, heating rate, etc.) will also affect its performance.
  • a large amount of binder needs to be added in the molecular sieve molding process to improve the mechanical strength and wear resistance of the molded molecular sieve.
  • the binder reacts with the peptizing agent to bind the molecular sieve powder together.
  • the commonly used binders are mainly silicon, aluminum and magnesium binders.
  • the addition of binders will seriously affect the activity of the catalyst and also have an adverse effect on the post-processing of the catalyst.
  • the invention aims to overcome the defects of the prior art and provide an application of rice husk as a molecular sieve catalyst forming template.
  • Another object of the present invention is to provide a method for preparing a molecular sieve catalyst.
  • step (2) adding water to the material obtained in step (1), mixing well and kneading to form a cohesive mass;
  • step (3) Extruding the sticky dough obtained in step (2) using an extruder to obtain a wet strip material
  • step (3) drying, roasting and shaping the wet strip material obtained in step (3).
  • the mass percentages of the molecular sieve powder, the binder and the extrusion aid are 72-75%: 7-25%: 2-20%.
  • the amount of the peptizing agent is 1-3% of the total mass of the molecular sieve powder, the binder and the extrusion aid.
  • the amount of water added in step (2) is 32-34% of the material obtained in step (1).
  • a method for preparing a molecular sieve catalyst by molding comprises the following steps:
  • step (2) adding water to the material obtained in step (1), mixing well and kneading to form a cohesive mass;
  • step (3) Extruding the sticky dough obtained in step (2) using an extruder to obtain a wet strip material
  • step (3) drying, roasting and shaping the wet strip material obtained in step (3).
  • the mass percentages of the molecular sieve powder, the binder and the extrusion aid are 72-75%: 7-25%: 2-20%.
  • the amount of the peptizing agent is 1-3% of the total mass of the molecular sieve powder, the binder and the extrusion aid.
  • the amount of water added in step (2) is 32-34% of the mass of the material obtained in step (1).
  • the drying is: drying at 79-82°C for 100-120 min; the calcining is: calcining at 400-800°C for 4-8 h, with a heating rate of 10-20°C/min.
  • the present invention utilizes rice husks as templates, thereby increasing the mechanical strength of the product and improving the textural properties during the molecular sieve catalyst molding process; reducing the cost of molding binders, thereby realizing the comprehensive utilization of waste biomass resources and promoting environmental protection; and when the use of binders and peptizers is reduced, the mechanical strength is still higher than that of the molded body of the molecular sieve catalyst without a rice husk template.
  • FIG1 is a schematic diagram of the process flow of the present invention.
  • Figure 2 is the SEM image of the rice husk molecular sieve after molding (a, d are molding without rice husk nano molecular sieve, b, e are molding with rice husk nano molecular sieve, c, f are molding with rice husk micro molecular sieve).
  • FIG3 is a comparison of the selectivity of pure nano molecular sieve and rice husk molecular sieve as stearic acid thermal cracking catalysts.
  • step (3) Extruding the sticky mass obtained in step (2) into a wet strip material using an extruder, wherein the extrusion speed of the extruder is set to 50 r/min, and the wet strip material is placed at room temperature for 20 min, with a fixed length of 6 mm;
  • step (3) The wet strip material obtained in step (3) was dried at 80°C for 120 min and calcined at 670°C for 6 h (heating rate was 13°C/min), and then polished into a 5 ⁇ 3 mm regular cylinder for testing.
  • the molding process of the above molecular sieve catalyst is shown in FIG1 .
  • the process flow of this embodiment is shown in Figure 1.
  • the ZSM-5 molecular sieve powder in step (2) is replaced by a ZSM-5 molecular sieve powder containing rice husks (as a template).
  • the preparation method of the ZSM-5 molecular sieve powder containing rice husks is as follows: water, tetrapropylammonium hydroxide (40wt%), sodium aluminate, tetraethyl orthosilicate and rice husks are mixed evenly in the order and mass ratio of 79:46:1:77:15, and then subjected to a high-temperature hydrothermal reaction at 170°C for 24h.
  • step (2) The content of the binder in step (2) was changed to 18.75wt%, the amount of the peptizer was changed to 2.25%, and the rest of the steps were the same.
  • the content of the binder in step (2) was changed to 16.67 wt %, the amount of the peptizer was changed to 2%, and the rest was the same as in Example 1.
  • the content of the binder in step (2) was changed to 12.5 wt %, the amount of the peptizer was changed to 1.5%, and the rest was the same as in Example 1.
  • the content of the binder in step (2) was changed to 8.33 wt %, the amount of the peptizer was changed to 1%, and the rest was the same as in Example 1.
  • Example 7 Effect of rice husk on catalyst molding formula and mechanical strength
  • FIG3 is a comparison of the selectivity of pure nanomolecular sieve and nanomolecular sieve prepared using rice husk as a template as a catalyst for thermal cracking of stearic acid.
  • the invention discloses the application of rice husk as a molecular sieve catalyst molding template.
  • the invention uses rice husk as a template, increases the mechanical strength of the product in the molecular sieve catalyst molding process, improves the texture performance, reduces the cost of the molding binder, can realize the comprehensive utilization of waste biomass resources and promote environmental protection, and when the use of binders and peptizers is reduced, the mechanical strength is still higher than that of the molecular sieve catalyst molding body without rice husk template, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种稻谷壳作为分子筛催化剂成型模板的应用。利用稻谷壳作为模板,在分子筛催化剂成型过程中增加了产品的力学强度,并改善织构性能,降低了成型粘结剂的成本,可实现废弃生物质资源的综合利用以及促进环境保护,而且当减少粘结剂和胶溶剂使用时,力学强度依然比无稻谷壳模板的分子筛催化剂的成型体高。

Description

稻谷壳作为分子筛催化剂成型模板的应用 技术领域
本发明属于分子筛催化剂成型技术领域,具体涉及稻谷壳作为分子筛催化剂成型模板的应用。
背景技术
分子筛成型技术是制备多相催化剂的关键步骤。通常情况下,分子筛为粉末状,存在不易回收,易堵塞管路,装填分子筛过程中损失大和强度太低不能满足运输和反应要求等缺点。因此,分子筛粉末需要加工成一定形状、尺寸和强度的成型体来满足工业应用的需求(如:抵抗装填冲击、气流冲击的能力等)。此外,粉体催化剂自身的多级孔结构是促进分子筛的成型过程和提升成型体机械性能的关键。
目前,工业上分子筛成型技术主要有挤条成型、转动成型、压力成型、球形成型、喷雾成型和压缩成型。其中,挤条成型由于具备较高的设备自动化、连续化和智能化水平而得到广泛应用。挤条成型利用挤压使物料穿梭过模具,通过更换模具便可控制挤出分子筛的形状,其最常见的形状有条形、三叶草形、蜂窝形等。分子筛成型体及其力学和织构性能受到各种因素的影响,如催化剂原粉颗粒细度、粘结剂、胶溶剂、助挤剂和扩孔剂的种类以及用量。此外,水粉比、焙烧条件参数(温度、时间、升温速率等)也同样会影响其性能。
分子筛成型工艺中需添加大量粘结剂以提高成型分子筛的机械强度和耐磨程度。在成型过程中,粘结剂与胶溶剂发生胶溶反应,将分子筛粉末粘结在一起,其中常用的粘结剂主要有硅、铝和镁粘结剂。然而,粘结剂的添加会严重影响催化剂的活性,同时也对催化剂的后处理带来不利的影响。
发明内容
本发明目的在于克服现有技术缺陷,提供稻谷壳作为分子筛催化剂成型模板的应用。
本发明的另一目的在于提供一种分子筛催化剂的成型制备方法。
本发明的技术方案如下:
稻谷壳作为分子筛催化剂成型模板的制备方法。
在本发明的一个优选实施方案中,包括如下步骤:
(1)将含有所述稻谷壳的分子筛粉末、粘结剂、助挤剂混合均匀,然后加入胶溶剂混合均匀;
(2)在步骤(1)所得的物料中加入水,混合均匀后捏合形成粘料团;
(3)将步骤(2)所得的粘料团用挤出机挤出成型,获得湿条材料;
(4)将步骤(3)所得的湿条材料经烘干、焙烧和成型,即得。
进一步优选的,所述分子筛粉末、粘结剂和助挤剂的质量百分比为72-75%:7-25%:2-20%。
更进一步优选的,所述胶溶剂的量为分子筛粉末、粘结剂和助挤剂的总质量的1-3%。
再进一步优选的,所述步骤(2)中的水的加入量为步骤(1)所得的物料的32-34%。
本发明的另一技术方案如下:
一种分子筛催化剂的成型制备方法,包括如下步骤:
(1)将含有稻谷壳的分子筛粉末、粘结剂、助挤剂混合均匀,然后加入胶溶剂混合均匀;
(2)在步骤(1)所得的物料中加入水,混合均匀后捏合形成粘料团;
(3)将步骤(2)所得的粘料团用挤出机挤出成型,获得湿条材料;
(4)将步骤(3)所得的湿条材料经烘干、焙烧和成型,即得。
在本发明的一个优选实施方案中,所述分子筛粉末、粘结剂和助挤剂的质量百分比为72-75%:7-25%:2-20%。
进一步优选的,所述胶溶剂的量为分子筛粉末、粘结剂和助挤剂的总质量的1-3%。
更进一步优选的,所述步骤(2)中的水的加入量为步骤(1)所得的物料的质量的32-34%。
再进一步优选的,所述烘干为:79-82℃烘干100-120min;所述焙烧为:400-800℃焙烧4-8h,升温速率为10-20℃/min。
本发明的有益效果是:本发明利用稻谷壳作为模板,在分子筛催化剂成型过程中增加了产品的力学强度,并改善织构性能;降低了成型粘结剂的成本,可实现废弃生物质资源的综合利用以及促进环境保护;而且当减少粘结剂和胶溶剂使用时,力学强度依然比无稻谷壳模板的分子筛催化剂的成型体高。
附图说明
图1为本发明的工艺流程示意图。
图2为稻谷壳分子筛成型后的SEM图(a,d为无稻谷壳纳米分子筛成型、b,e为有稻谷壳纳米分子筛成型、c,f有稻谷壳微米分子筛成型)。
图3为作为硬脂酸热裂解催化剂,纯纳米分子筛与稻谷壳纲米分子筛的选择性对比。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。对比例1
(1)ZSM-5分子筛粉末的制备方法:将水、四丙基氢氧化铵(40wt%)、偏铝酸钠和正硅酸四乙酯按照顺序和质量比为79:46:1:77混合均匀,再进行170℃,24h的高温水热反应。将所得样品进行去离子水清洗和离心、80℃恒温烘干,最后于马弗炉550℃,6h,5℃/min的焙烧处理,即得。
(2)将ZSM-5分子筛粉末73.5wt%、粘结剂(拟薄水铝石)24.5wt%、助挤剂(田菁粉)2wt%混合均匀,然后加入量为ZSM-5分子筛粉末、粘结剂和助挤剂的总质量的3%的胶溶剂(硝酸)用搅拌棒或者混合机混合均匀;在所得的物料中加入其32.5wt%的水,用捏合机混合均匀后捏合20min形成粘料团;
(3)将步骤(2)所得的粘料团用挤出机挤出成型,获得湿条材料,挤条机的挤条转速设置为50r/min,湿条材料在室温放置20min,固定长度为6mm;
(4)将步骤(3)所得的湿条材料经80℃烘干120min和670℃焙烧6h(升温速率为13℃/min)后,统一打磨成5×3mm的规则圆柱状用于测试。上述分子筛催化剂的成型流程如附图1所示。
实施例1
本实施例工艺流程如图1所示。将步骤(2)中的ZSM-5分子筛粉末替换为含有稻谷壳(作为模板)的ZSM-5分子筛粉末。其中含有稻谷壳的ZSM-5分子筛粉末制备方法如下:将水、四丙基氢氧化铵(40wt%)、偏铝酸钠、正硅酸四乙酯和稻谷壳按照顺序和质量比为79:46:1:77:15混合均匀,再进行170℃,24h的高温水热反应。将所得样品进行去离子水和乙醇清洗和离心、80℃恒温烘干,最后于马弗炉550℃,6h,5℃/min的焙烧处理,即得。其余同对比例1。
实施例2
将步骤(2)中的粘结剂的含量改为18.75wt%,胶溶剂的量改为2.25%,其余同
实施例1。
实施例3
将步骤(2)中的粘结剂的含量改为16.67wt%,胶溶剂的量改为2%,其余同实施例1。
实施例4
将步骤(2)中的粘结剂的含量改为12.5wt%,胶溶剂的量改为1.5%,其余同实施例1。
实施例5
将步骤(2)中的粘结剂的含量改为8.33wt%,胶溶剂的量改为1%,其余同实施例1。
上述对比例1、实施例1至5所得产品的技术效果对比如下表1所示:
表1
实施例6:稻谷壳分子筛在催化剂力学强度方面的作用
[根据细则26改正 16.01.2024]
如图可以看出稻谷壳的加入使得分子筛平面粘结剂的附着更加均匀,说明稻谷壳可作为硅粘结剂促进分子筛颗粒之间的粘结。此外,硅可作为催化剂的载体和分散剂,有研究者通过添加硅粉来提升成型体的力学强度。因此,稻谷壳中的硅元素对分子筛成型体力学强度有大幅度提升的作用。
稻谷壳分子筛成型后的SEM图(a,d为无稻谷壳纳米分子筛成型、b,e为有稻谷壳纳米分子筛成型、c,f有稻谷壳微米分子筛成型)
表2不同分子筛的力学性能
实施例7:稻谷壳在催化剂成型配方和力学强度方面的作用
如表2可知,稻谷壳加入催化剂的合成样品中,随着粘结剂的减少,催化剂成型体随着粘结剂和胶溶剂减少力学强度有下降的趋势,即使粘结剂用量减少到原配方的1/3,其力学强度(32.6N)比未加稻谷壳样品催化剂成型体力学强度强两倍多(14,56N)。因此,稻谷壳的加入能大幅减少催化剂成型体粘结剂和胶溶剂的用量,从而降低成型催化剂配方的成本。
表3不同分子筛的力学性能
图3为作为硬脂酸热裂解催化剂,纯纳米分子筛与以稻谷壳为模板制备纳米分子筛的选择性对比。
结果表明,两种分子筛成型后,以稻谷壳为模板制备的分子筛由于孔结构调整使得热裂解产物的烯烃选择性更高。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了稻谷壳作为分子筛催化剂成型模板的应用。本发明利用稻谷壳作为模板,在分子筛催化剂成型过程中增加了产品的力学强度,并改善织构性能,降低了成型粘结剂的成本,可实现废弃生物质资源的综合利用以及促进环境保护,而且当减少粘结剂和胶溶剂使用时,力学强度依然比无稻谷壳模板的分子筛催化剂的成型体高,具有工业实用性。

Claims (8)

  1. 稻谷壳作为分子筛催化剂成型模板的用途。
  2. 如权利要求1的含稻谷壳的分子筛成型模板,在硬脂酸热解催化剂的应用。
  3. 一种稻谷壳分子筛的制造方法,其特征在于:包括如下步骤:
    (1)将含有稻谷壳的分子筛粉末、粘结剂、助挤剂混合均匀,然后加入胶溶剂混合均匀;
    (2)在步骤(1)所得的物料中加入水,混合均匀后捏合形成粘料团;
    (3)将步骤(2)所得的粘料团用挤出机挤出成型,获得湿条材料;
    (4)将步骤(3)所得的湿条材料经烘干、焙烧和成型,即得。
  4. 如权利要求3所述的制造方法,其特征在于:所述分子筛粉末、粘结剂和助挤剂的质量百分比为72-75%:7-25%:2-20%。
  5. 如权利要求4所述的制造方法,其特征在于:所述胶溶剂的量为分子筛粉末、粘结剂和助挤剂的总质量的1-3%。
  6. 如权利要求3所述的制造方法,其特征在于:所述步骤(2)中的水的加入量为步骤(1)所得的物料的32-34%。
  7. 根据权利要求3的一种分子筛催化剂的成型制备方法,其特征在于:所述含有稻谷壳的分子筛制备方法如下:将水、四丙基氢氧化铵(40wt%)、偏铝酸钠、正硅酸四乙酯和稻谷壳按照顺序和质量比为79:46:1:77:15混合均匀,再进行170℃,24h的高温水热反应;将所得样品进行去离子水和乙醇清洗和离心、80℃恒温烘干,然后于马弗炉550℃,6h,5℃/min的焙烧处理,即得。
  8. 如权利要求3所述的成型制备方法,其特征在于:所述步骤(4):烘干为:79-82℃烘干100-120min;所述焙烧为:400-800℃,焙烧4-8h,升温速率为10-20℃/min。
PCT/CN2023/129579 2022-11-03 2023-11-03 稻谷壳作为分子筛催化剂成型模板的应用 WO2024094168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211383481.X 2022-11-03
CN202211383481.XA CN115845930B (zh) 2022-11-03 2022-11-03 稻谷壳作为分子筛催化剂成型模板的应用

Publications (1)

Publication Number Publication Date
WO2024094168A1 true WO2024094168A1 (zh) 2024-05-10

Family

ID=85662607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129579 WO2024094168A1 (zh) 2022-11-03 2023-11-03 稻谷壳作为分子筛催化剂成型模板的应用

Country Status (2)

Country Link
CN (1) CN115845930B (zh)
WO (1) WO2024094168A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845930B (zh) * 2022-11-03 2024-03-29 华侨大学 稻谷壳作为分子筛催化剂成型模板的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587209A (zh) * 2004-09-02 2005-03-02 上海交通大学 利用植物模板制备多孔氧化物分子筛的方法
CN1749161A (zh) * 2005-08-26 2006-03-22 吉林大学 硬模板合成的复合孔沸石分子筛及其制备方法
JP2010208872A (ja) * 2009-03-06 2010-09-24 Yokohama National Univ 多孔性アルミノケイ酸塩−炭素複合体及びその製造方法
CN105330516A (zh) * 2015-11-07 2016-02-17 杭州凯名庞德生物科技有限公司 9-癸烯醇的合成方法
CN108187728A (zh) * 2018-01-11 2018-06-22 阳泉煤业(集团)有限责任公司 一种成型zsm-5分子筛催化剂的制备方法及其应用
CN115845930A (zh) * 2022-11-03 2023-03-28 华侨大学 稻谷壳作为分子筛催化剂成型模板的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923284B (zh) * 2014-03-18 2019-09-17 中国石油天然气股份有限公司 一种成型分子筛催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587209A (zh) * 2004-09-02 2005-03-02 上海交通大学 利用植物模板制备多孔氧化物分子筛的方法
CN1749161A (zh) * 2005-08-26 2006-03-22 吉林大学 硬模板合成的复合孔沸石分子筛及其制备方法
JP2010208872A (ja) * 2009-03-06 2010-09-24 Yokohama National Univ 多孔性アルミノケイ酸塩−炭素複合体及びその製造方法
CN105330516A (zh) * 2015-11-07 2016-02-17 杭州凯名庞德生物科技有限公司 9-癸烯醇的合成方法
CN108187728A (zh) * 2018-01-11 2018-06-22 阳泉煤业(集团)有限责任公司 一种成型zsm-5分子筛催化剂的制备方法及其应用
CN115845930A (zh) * 2022-11-03 2023-03-28 华侨大学 稻谷壳作为分子筛催化剂成型模板的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIANYU XU: "Effect of Catalytic Cracking of Single Fatty Acids and Their Glycerides on Preparation of Hydrocarbons", CHINA OILS AND FATS, vol. 45, no. 3, 1 January 2020 (2020-01-01), pages 22 - 27, XP093166255 *

Also Published As

Publication number Publication date
CN115845930B (zh) 2024-03-29
CN115845930A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2024094168A1 (zh) 稻谷壳作为分子筛催化剂成型模板的应用
CN111036187B (zh) 一种蜂窝载体及其制备方法与应用
CN112430123A (zh) 一种窄孔径分布、大尺寸堇青石汽油颗粒过滤器及其制备方法
JP2002535229A5 (zh)
CN109608227A (zh) 低膨胀高强度薄壁高孔密度蜂窝陶瓷载体
CN103934039A (zh) 提高分子筛催化剂强度的方法
RU2766506C1 (ru) Способ получения носителей на основе оксида алюминия для катализаторов процессов нефтепереработки
WO1997012670A1 (fr) Procede de preparation d'un support d'oxyde d'aluminium
CN109926037B (zh) 一种由钛基黏合剂制备TiO2成型催化剂载体的方法
JPH0751459B2 (ja) コージェライト質ハニカム構造体の製造法
CN107999047B (zh) 含硼水合氧化铝组合物和成型体及制备方法和应用以及催化剂及制备方法
US20090246523A1 (en) Small Diameter Calcium Aluminate Based Catalyst Supports by Extrusion and Pelletizing
CN113600207B (zh) 一种适用于高co的宽温变换催化剂及其制备和应用
US20090253568A1 (en) Method of making ceramic articles using proteinous material
CN114560482A (zh) 一种拟薄水铝石粉体、成型载体及其制备方法
CN1164687C (zh) 一种高导热石墨材料的制备方法
JP7503468B2 (ja) ニッケル触媒の製造方法
CN105314651B (zh) 一种小晶粒NaY分子筛的制备方法
CN113321512A (zh) 复合碳化硅蜂窝陶瓷体及其制备方法
CN115160013B (zh) 一种薄壁蜂窝结构的陶瓷载体制备方法以及应用
CN113101967A (zh) 一种c5和/或c9石油树脂二段加氢精制催化剂及其制备方法和应用
CN116037085B (zh) 一种大孔氧化铝载体及其制备方法
CN107999098B (zh) 含磷水合氧化铝组合物和成型体及制备方法和应用以及催化剂及制备方法
CN108014840B (zh) 含分子筛的水合氧化铝组合物和成型体及制备方法和应用以及催化剂和制备方法
CN115041174B (zh) 一种大型化甲醇制氢装置铜基催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885093

Country of ref document: EP

Kind code of ref document: A1