WO2024093175A1 - 流光放电驱动装置、净化设备及流光放电驱动控制方法 - Google Patents

流光放电驱动装置、净化设备及流光放电驱动控制方法 Download PDF

Info

Publication number
WO2024093175A1
WO2024093175A1 PCT/CN2023/092240 CN2023092240W WO2024093175A1 WO 2024093175 A1 WO2024093175 A1 WO 2024093175A1 CN 2023092240 W CN2023092240 W CN 2023092240W WO 2024093175 A1 WO2024093175 A1 WO 2024093175A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control signal
pulse
switch tube
pulse control
Prior art date
Application number
PCT/CN2023/092240
Other languages
English (en)
French (fr)
Inventor
王慧锋
李思逸
李伯东
张明正
陈武
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024093175A1 publication Critical patent/WO2024093175A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Definitions

  • the present disclosure relates to the technical field of purification equipment, and in particular to a streamer discharge driving device, purification equipment, and a streamer discharge driving control method.
  • Active substances with chemical properties can be produced during streamer discharge, which can be used for purification and sterilization, and have a visual effect.
  • the DC power supply used in the related art provides a relatively narrow operating range of streamer breakdown voltage.
  • the DC power supply is sensitive to the electrode installation accuracy, difficult to control, has poor stability, is prone to sparking, and produces a lot of ozone.
  • the present disclosure aims to solve one of the technical problems in the related art to at least a certain extent.
  • the purpose of the present disclosure is to propose a streamer discharge driving device, a purification device and a streamer discharge driving control method to increase the limit range of the breakdown voltage, reduce the frequency of the ignition phenomenon, improve the stability and reduce the concentration of ozone.
  • the first aspect of the present disclosure proposes a streamer discharge driving device, comprising: a DC power conversion unit, the DC power conversion unit comprising a first switch tube and a second switch tube, the DC power conversion unit being configured to convert the input DC voltage according to the alternating operation of the first switch tube and the second switch tube; a pulse cluster control unit, the pulse cluster control unit being connected to the DC power conversion unit, the pulse cluster control unit being configured to output complementary first pulse control signals and second pulse control signals, and by adjusting the pulse parameters of the first pulse control signal and the second pulse control signal, the DC power conversion unit outputs a square wave driving load with a DC bias voltage, wherein the first pulse control signal is used to control the conduction or cut-off of the first switch tube, and the second pulse control signal is used to control the conduction or cut-off of the second switch tube.
  • the streamer discharge driving device of the above embodiment of the present disclosure may also have the following additional technical features:
  • the DC power conversion unit further includes a first transformer and a rectifier voltage doubling unit, wherein the first end of the first switch tube is connected to the first end of the primary winding of the first transformer, the second end of the first switch tube is connected to the first end of the second switch tube and then connected to the negative end of the DC voltage, the second end of the second switch tube is connected to the second end of the primary winding, the middle tap of the primary winding is connected to the positive end of the DC voltage, and the first transformer connects the primary winding to the positive end according to the alternating operation of the first switch tube and the second switch tube.
  • the alternating voltage is coupled to the secondary winding
  • the rectifying and voltage doubling unit is connected to the secondary winding to rectify and voltage-double the alternating voltage coupled to the secondary winding to output the square wave with the DC bias voltage.
  • the rectifier and voltage doubler unit is at least one stage of voltage doubler circuit.
  • the rectifier and voltage doubler unit includes: a first diode, an anode of the first diode is connected to the first end of the secondary winding; a first capacitor, one end of the first capacitor is connected to the second end of the secondary winding and then grounded, and the other end of the first capacitor is connected to the cathode of the first diode; a second capacitor, one end of the second capacitor is connected to the anode of the first diode; a second diode, an anode of the second diode is connected to the cathode of the first diode, and the cathode of the second diode is connected to the other end of the second capacitor; a third capacitor, one end of the third capacitor is connected to the anode of the second diode; a third diode, an anode of the third diode is connected to the cathode of the second diode, and the cathode of the third diode is connected to the other end of the third end of the third diode;
  • the pulse cluster control unit includes a voltage feedback unit and a control unit, the voltage feedback unit is configured to feed back the output voltage of the DC power conversion unit to obtain a feedback voltage, and the control unit is configured to adjust the duty cycle of the first pulse control signal and the second pulse control signal according to the feedback voltage.
  • the voltage feedback unit includes: a first feedback resistor, one end of which is connected to the output end of the DC power conversion unit; a second feedback resistor, one end of which is connected to the other end of the first feedback resistor and has a first node, and the other end of the second feedback resistor is grounded; a first operational amplifier, a first input end of the first operational amplifier is connected to the first node, a second input end of the first operational amplifier is connected to the output end of the first operational amplifier, and serves as the output end of the voltage feedback unit.
  • the pulse cluster control unit further includes an isolation chip, and the isolation chip is arranged between the control unit and the first operational amplifier.
  • the high voltage amplitude and the low voltage amplitude of the square wave are positively correlated with the duty cycles of the first pulse control signal and the second pulse control signal, respectively.
  • both the high voltage duration and the low voltage duration of the square wave are adjustable.
  • a second embodiment of the present disclosure proposes a purification device, including the above-mentioned streamer discharge driving device.
  • the third aspect embodiment of the present disclosure proposes a streamer discharge driving control method for purification equipment, the method comprising: outputting complementary first pulse control signal and second pulse control signal to control the first switch tube and the second switch tube to work alternately, so that the DC power conversion unit converts the input DC voltage, wherein the first pulse control signal is used to control the conduction or off-state of the first switch tube, and the second pulse control signal is used to control the conduction or off-state of the second switch tube; adjusting the pulse parameters of the first pulse control signal and the second pulse control signal so that the DC power conversion unit outputs a square wave with a DC bias voltage, wherein the square wave is used to drive a load.
  • the streamer discharge driving control method of the purification device of the above embodiment of the present disclosure may also have the following additional technical features:
  • the method when the DC power conversion unit converts the input DC voltage, the method further includes: obtaining a feedback voltage, and adjusting the duty cycle of the first pulse control signal and the second pulse control signal according to the feedback voltage.
  • the streamer discharge driving device, purification equipment and streamer discharge driving control method of the embodiments of the present disclosure can increase the limit range of the breakdown voltage, reduce the frequency of the ignition phenomenon, improve stability, and reduce the concentration of ozone.
  • FIG1 is a structural block diagram of a streamer discharge driving device according to an embodiment of the present disclosure
  • FIG2 is a circuit topology diagram of a streamer discharge driving device according to an embodiment of the present disclosure
  • FIG3 is a circuit topology diagram of a streamer discharge driving device according to another embodiment of the present disclosure.
  • FIG4 is a flow chart of a method for adjusting a bias voltage and a pulse control signal according to an embodiment of the present disclosure
  • FIG5 is a schematic diagram of a voltage square wave and a pulse waveform according to an embodiment of the present disclosure
  • FIG6 is a structural diagram of a purification device according to an embodiment of the present disclosure.
  • FIG. 7 is a flow chart of a streamer discharge driving control method for a purification device according to an embodiment of the present disclosure.
  • FIG. 1 is a structural block diagram of a streamer discharge driving device according to an embodiment of the present disclosure.
  • the streamer discharge driving device includes a DC power conversion unit 10 and a pulse cluster control unit 20 .
  • the DC power conversion unit 10 includes a first switch tube Q1 and a second switch tube Q2.
  • the DC power conversion unit 10 is configured to convert the input DC voltage according to the alternating operation of the first switch tube Q1 and the second switch tube Q2.
  • the pulse cluster control unit 20 is connected to the DC power conversion unit 10.
  • the pulse cluster control unit 20 is configured to output a complementary first pulse control signal and a second pulse control signal, and adjust the pulse parameters of the first pulse control signal and the second pulse control signal so that the DC power conversion unit outputs a square wave with a DC bias voltage to drive the load, wherein the first pulse control signal is used to control the conduction or shutoff of the first switch tube Q1, and the second pulse control signal is used to control the conduction or shutoff of the second switch tube Q2.
  • the first switch tube Q1 and the second switch tube Q2 can be MOS tubes (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the first pulse control signal and the second pulse control signal are complementary, and when the first pulse control signal is a high voltage signal, the second pulse control signal is a low voltage signal. voltage signal; and when the first pulse control signal is a low voltage signal, the second pulse control signal is a high voltage signal.
  • the pulse parameters of the two pulse control signals may include pulse width, pulse amplitude, pulse frequency, etc.
  • a square wave with a DC bias voltage means that the low voltage signal of the square wave signal is a voltage signal higher than 0V.
  • streamer discharge refers to a discharge phenomenon in which a local area of the discharge space is highly ionized and rapidly transmitted.
  • molecular excited states such as high-energy electrons, particles, free radicals (such as O, OH, H) can be generated.
  • Harmful gases such as nitrogen oxides, sulfur dioxide, hydrogen sulfide, dioxins, heavy metals, etc. can be oxidized in the above molecular excited states and absorbed in the presence of neutralizers or absorbents to achieve the purpose of purification. If the streamer discharge effect is to be improved, the streamer breakdown voltage needs to be increased, and the controllability and stability of the breakdown voltage need to be guaranteed.
  • the present disclosure proposes a streamer discharge driving device, which controls the power devices (i.e., the first switch tube Q1 and the second switch tube Q2) in the DC power conversion unit 10 through the pulse cluster control unit 20, so that the DC power conversion unit 10 outputs a biased high-voltage square wave to drive the load and realize AC light discharge.
  • the limit range of the breakdown voltage can be increased, the frequency of the sparking phenomenon can be reduced, the stability can be improved, and the concentration of ozone can be reduced.
  • the DC power conversion unit 10 further includes a first transformer T1 and a rectifying and voltage doubling unit 13, wherein a first end of the first switch tube Q1 is connected to a first end (i.e., an end of winding A away from winding B) of a primary winding (composed of two windings A and B in FIG2 ) of the first transformer T1, a second end of the first switch tube Q1 is connected to a first end of the second switch tube Q2 and then connected to a negative terminal of a DC voltage, a second end of the second switch tube Q2 is connected to a second end of the primary winding (i.e., an end of winding B away from winding A), a middle tap of the primary winding (i.e., a connection point of windings A and B) is connected to a positive terminal of a DC voltage, and the first transformer T1 couples an alternating voltage on the primary winding to a secondary winding C according to the alternating operation of the first transformer T1
  • the DC power conversion unit 10 may further include a bus capacitor C1.
  • the bus capacitor C1 may be used to smooth the DC voltage so that the bus voltage is relatively smooth when the first switch tube Q1 and the second switch tube Q2 are turned on and off, and may also be used to absorb the high pulse current generated during voltage conversion.
  • the rectifier and voltage doubler unit 13 is at least one stage of voltage doubler circuit.
  • the rectifier voltage doubler unit 13 shown in FIG2 is a three-stage voltage doubler circuit.
  • the rectifier voltage doubler unit 13 includes: a first diode D1, a first capacitor Co1, a second capacitor Co2, a second diode D2, a third capacitor Co3 and a third diode D3, wherein the anode of the first diode D1 is connected to the first end of the secondary winding C; one end of the first capacitor Co1 is connected to the second end of the secondary winding C and then grounded, and the other end of the first capacitor Co1 is connected to the cathode of the first diode D1; one end of the second capacitor Co2 is connected to the anode of the first diode D1; the anode of the second diode D2 is connected to the cathode of the first diode D1, and the cathode of the second diode D2 is connected to the other end of the second capacitor Co2; one end of the third capacitor Co3 is connected to
  • the DC power conversion unit 10 includes a DC/AC conversion unit 11, a first transformer T1, and a rectifier voltage doubling unit 13, wherein the DC/AC conversion unit 11 is composed of a first switch tube Q1 and a second switch tube Q2.
  • the DC end of the DC/AC conversion unit 11 is used to input a DC voltage.
  • the DC/AC conversion unit 11 can be controlled by the pulse cluster control unit 20. Under the condition, direct current is converted into alternating current and input into the primary winding of the first transformer T1.
  • the converted alternating current is boosted by the first transformer T1 and input into the rectifier and voltage doubler unit 13, and voltage is doubled by the rectifier and voltage doubler unit 13, and finally a high-voltage direct current Vo (i.e., a square wave with a DC bias voltage) is obtained to be provided to the streamer load.
  • a high-voltage direct current Vo i.e., a square wave with a DC bias voltage
  • the limit range of the streamer breakdown voltage can be increased by boosting and doubling the voltage, and the stability and controllability of the output square wave can be guaranteed by controlling the first switch tube Q1 and the second switch tube Q2, thereby reducing the frequency of the ignition phenomenon, and reducing the concentration of ozone by controlling the duration.
  • the pulse cluster control unit 20 includes a voltage feedback unit 21 and a control unit 22.
  • the voltage feedback unit 21 is configured to feed back the output voltage of the DC power conversion unit 10 to obtain a feedback voltage
  • the control unit 22 is configured to adjust the duty cycle of the first pulse control signal and the second pulse control signal according to the feedback voltage.
  • the control unit 22 may adopt an MCU (Microcontroller Unit).
  • the MCU may output a first pulse control signal PWM1 to the first switch tube Q1, and output a second pulse control signal PWM2 to the second switch tube Q2.
  • the first pulse control signal PWM1 and the second pulse control signal PWM2 are complementary.
  • the DC/AC conversion unit in the DC power conversion unit 10 converts DC power into AC power, and then the voltage is increased by the first transformer T1 and doubled by the rectifier voltage doubler 13 to obtain a square wave with a DC bias voltage.
  • the voltage feedback unit 21 includes: a first feedback resistor RR1 , a second feedback resistor RR2 , and a first operational amplifier IC3 .
  • one end of the first feedback resistor RR1 is connected to the output end of the DC power conversion unit 10 ; one end of the second feedback resistor RR2 is connected to the other end of the first feedback resistor RR1 and has a first node, and the other end of the second feedback resistor RR2 is grounded; a first input end of the first operational amplifier IC3 is connected to the first node, a second input end of the first operational amplifier IC3 is connected to the output end of the first operational amplifier IC3 and serves as the output end of the voltage feedback unit 21 .
  • the first feedback resistor RR1 and the second feedback resistor RR2 play the role of voltage division sampling, and the voltage across the second feedback resistor RR2 is essentially input to the first operational amplifier IC3.
  • the voltage at the output end of the current rectifier voltage multiplier unit 13 i.e., the current square wave
  • the voltage across the second feedback resistor RR2 is amplified and processed by the first operational amplifier IC3, which can improve the calculation accuracy, help to improve the accuracy of the subsequent control of the first switch tube Q1 and the second switch tube Q2, and finally ensure the stability and controllability of the output square wave.
  • the pulse cluster control unit 20 further includes an isolation chip IC2 , and the isolation chip IC2 is disposed between the control unit 22 and the first operational amplifier IC3 .
  • the isolation chip IC2 may be an optocoupler isolation chip.
  • the isolation chip IC2 By configuring the isolation chip IC2 , the output end of the first operational amplifier IC3 and the analog signal acquisition end of the MCU may be isolated, thereby reducing the influence of the secondary stage on the input stage.
  • the pulse frequency of the first pulse control signal and the second pulse control signal when the DC power conversion unit 10 outputs a square wave high voltage, the pulse frequency of the first pulse control signal and the second pulse control signal is a first frequency; when the DC power conversion unit 10 outputs a square wave low voltage, the first pulse control signal and the second pulse control signal are a first frequency. The pulse frequency of the first pulse control signal and the second pulse control signal is a second frequency.
  • the first frequency is smaller than the second frequency.
  • the high voltage amplitude and the low voltage amplitude of the square wave are positively correlated with the duty cycles of the first pulse control signal and the second pulse control signal, respectively.
  • the DC power supply DC provides a DC voltage Vref to the streamer discharge driving device 100.
  • Vref DC voltage
  • the first switch tube Q1 and the second switch tube Q2 have greater driving energy, thereby increasing the output voltage HV.
  • the corresponding HV decreases.
  • duty2 increases, the corresponding LV value also increases.
  • the square wave high voltage HV and the low voltage LV can be adjusted by changing the duty cycle.
  • both the high voltage duration and the low voltage duration of the square wave are adjustable.
  • the duration of the duty cycle needs to be changed. If the duration T(LV) of the low voltage LV is to be extended, the duration of the duty cycle duty2 needs to be increased; conversely, if the duration T(LV) of the low voltage LV is to be shortened, the duration of the duty cycle duty2 needs to be reduced. Similarly, if the duration T(HV) of the high voltage HV is to be extended, the duration of the duty cycle duty1 needs to be increased; conversely, if the duration T(HV) of the high voltage HV is to be shortened, the duration of the duty cycle duty1 needs to be reduced.
  • the pulse cluster control unit 20 may further include an external communication interface 23, which is used to establish a communication connection between the MCU and an external control device.
  • the MCU may receive external instructions through the external communication interface 23 to obtain a given high voltage and its duration, a low voltage and its duration, and then the MCU may realize the above functions by adjusting the duty cycle of the first switch tube Q1 and the second switch tube Q2, and the duration of the duty cycle.
  • the streamer discharge driving device of the disclosed embodiment adopts a biased high-voltage square wave control method, which can increase the limit range of the breakdown voltage, reduce the frequency of sparking, improve stability, and reduce the concentration of ozone.
  • FIG. 6 is a structural block diagram of a purification device according to an embodiment of the present disclosure.
  • the purification device 1000 includes the above-mentioned streamer discharge driving device.
  • the present disclosure proposes a streamer discharge driving control method of the purification device.
  • FIG. 7 is a flow chart of a streamer discharge driving control method for a purification device according to an embodiment of the present disclosure.
  • the method includes:
  • S41 output complementary first pulse control signal and second pulse control signal to control the first switch tube and the second switch tube to work alternately, so that the DC power conversion unit converts the input DC voltage, wherein the first pulse control signal is used to control the conduction or cutoff of the first switch tube, and the second pulse control signal is used to control the conduction or cutoff of the second switch tube.
  • the streamer discharge driving control method of the purification device of the embodiment of the present disclosure adopts a high-voltage square wave control method with bias. It can increase the limit range of breakdown voltage, reduce the frequency of sparking, improve stability, and reduce the concentration of ozone.
  • the method when the DC power conversion unit converts the input DC voltage, the method further includes: obtaining a feedback voltage, and adjusting the duty cycle of the first pulse control signal and the second pulse control signal according to the feedback voltage.
  • the pulse frequency of the first pulse control signal and the second pulse control signal when the DC power conversion unit outputs a square wave high voltage, the pulse frequency of the first pulse control signal and the second pulse control signal is a first frequency; when the DC power conversion unit outputs a square wave low voltage, the pulse frequency of the first pulse control signal and the second pulse control signal is a second frequency; wherein the first frequency is less than the second frequency.
  • the high voltage amplitude and the low voltage amplitude of the square wave are positively correlated with the duty cycles of the first pulse control signal and the second pulse control signal, respectively.
  • the DC power supply DC provides a DC voltage Vref to the streamer discharge driving device 100.
  • Vref DC voltage
  • the first switch tube Q1 and the second switch tube Q2 have greater driving energy, thereby increasing the output voltage HV.
  • the corresponding HV decreases.
  • duty2 increases, the corresponding LV value also increases.
  • the square wave high voltage HV and the low voltage LV can be adjusted by changing the duty cycle.
  • both the high voltage duration and the low voltage duration of the square wave are adjustable.
  • the duration of the duty cycle needs to be changed. If the duration T(LV) of the low voltage LV is to be extended, the duration of the duty cycle duty2 needs to be increased; conversely, if the duration T(LV) of the low voltage LV is to be shortened, the duration of the duty cycle duty2 needs to be reduced. Similarly, if the duration T(HV) of the high voltage HV is to be extended, the duration of the duty cycle duty1 needs to be increased; conversely, if the duration T(HV) of the high voltage HV is to be shortened, the duration of the duty cycle duty1 needs to be reduced.
  • the streamer discharge driving control method of the purification equipment provided in the embodiment of the present application corresponds to the streamer discharge driving devices provided in the above-mentioned embodiments
  • the implementation method of the aforementioned streamer discharge driving device is also applicable to the streamer discharge driving control method of the purification equipment provided in this embodiment. In order to reduce redundancy, it will not be described in detail in this embodiment.
  • computer-readable media include the following: an electrical connection portion with one or more wirings (electronic device), a portable computer disk box (magnetic device), a random access memory (RAM), a read-only memory (ROM), an erasable and programmable read-only memory (EPROM or flash memory), Fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program is printed, since the program may be obtained electronically, for example, by optically scanning the paper or other medium, followed by editing, interpreting or processing in other suitable ways as necessary, and then stored in a computer memory.
  • the terms “first”, “second”, etc. used in the embodiments of the present disclosure are only used for descriptive purposes and should not be understood as indicating or implying relative importance, or implicitly indicating the number of technical features indicated in the present embodiment. Therefore, the features defined by the terms “first”, “second”, etc. in the embodiments of the present disclosure may explicitly or implicitly indicate that at least one of the features is included in the embodiment.
  • the word “multiple” means at least two or two or more, such as two, three, four, etc., unless otherwise clearly and specifically defined in the embodiments.
  • connection can be a fixed connection, a detachable connection, or an integrated connection. It can be understood that it can also be a mechanical connection, an electrical connection, etc.; of course, it can also be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal connection of two elements, or the interaction relationship between two elements.
  • connection can be a fixed connection, a detachable connection, or an integrated connection. It can be understood that it can also be a mechanical connection, an electrical connection, etc.; of course, it can also be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal connection of two elements, or the interaction relationship between two elements.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or below the second feature.
  • "Below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower than the second feature in level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

一种流光放电驱动装置、净化设备及流光放电驱动控制方法,涉及净化设备技术领域,装置包括:直流电源变换部,包括第一开关管和第二开关管,被配置为根据第一开关管和第二开关管的交替工作,对输入的直流电压进行变换;脉冲簇控制部,与直流电源变换部相连,被配置为输出互补的第一脉冲控制信号和第二脉冲控制信号,并通过调节第一脉冲控制信号和第二脉冲控制信号的脉冲参数,以使直流电源变换部输出带直流偏置电压的方波驱动负载。

Description

流光放电驱动装置、净化设备及流光放电驱动控制方法
相关申请的交叉引用
本公开要求于2022年10月31日提交的申请号为202211348528.9、名称为“流光放电驱动装置、净化设备及流光放电驱动控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及净化设备技术领域,尤其涉及一种流光放电驱动装置、净化设备及流光放电驱动控制方法。
背景技术
流光放电的过程中可以产生具有化学特性的活性物质,可以用在净化杀菌方面,且多了可视化的效果。相关技术中所采用的直流电源提供的流光击穿电压工作区间比较窄,该直流电源对电极安装精度敏感,难以控制,稳定性差,容易发生打火,且产生的臭氧也比较多。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的目的在于提出一种流光放电驱动装置、净化设备及流光放电驱动控制方法,以提高击穿电压的界限范围,降低打火现象的发生频率,提升稳定性,降低臭氧的浓度。
为达到上述目的,本公开第一方面实施例提出了一种流光放电驱动装置,包括:直流电源变换部,所述直流电源变换部包括第一开关管和第二开关管,所述直流电源变换部被配置为根据所述第一开关管和所述第二开关管的交替工作,对输入的直流电压进行变换;脉冲簇控制部,所述脉冲簇控制部与所述直流电源变换部相连,所述脉冲簇控制部被配置为输出互补的第一脉冲控制信号和第二脉冲控制信号,并通过调节所述第一脉冲控制信号和第二脉冲控制信号的脉冲参数,以使所述直流电源变换部输出带直流偏置电压的方波驱动负载,其中,所述第一脉冲控制信号用于控制所述第一开关管的导通或关断,所述第二脉冲控制信号用于控制所述第二开关管的导通或关断。
另外,本公开上述实施例的流光放电驱动装置还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述直流电源变换部还包括第一变压器和整流倍压单元,其中,所述第一开关管的第一端与所述第一变压器的初级绕组的第一端相连,所述第一开关管的第二端与所述第二开关管的第一端相连后连接到直流电压负极端,所述第二开关管的第二端与所述初级绕组的第二端相连,所述初级绕组的中间抽头连接到直流电压正极端,所述第一变压器根据所述第一开关管和所述第二开关管的交替工作将所述初级绕组上 的交变电压耦合到次级绕组,所述整流倍压单元与所述次级绕组相连,以对所述次级绕组耦合的交变电压进行整流和倍压,以输出所述带直流偏置电压的方波。
根据本公开的一个实施例,所述整流倍压单元为至少一级倍压电路。
根据本公开的一个实施例,所述整流倍压单元包括:第一二极管,所述第一二极管的阳极与所述次级绕组的第一端相连;第一电容,所述第一电容的一端与所述次级绕组的第二端相连后接地,所述第一电容的另一端与所述第一二极管的阴极相连;第二电容,所述第二电容的一端与所述第一二极管的阳极相连;第二二极管,所述第二二极管的阳极与所述第一二极管的阴极相连,所述第二二极管的阴极与所述第二电容的另一端相连;第三电容,所述第三电容的一端与所述第二二极管的阳极相连;第三二极管,所述第三二极管的阳极与所述第二二极管的阴极相连,所述第三二极管的阴极与所述第三电容的另一端相连,且作为所述整流倍压单元的输出端。
根据本公开的一个实施例,所述脉冲簇控制部包括电压反馈单元和控制单元,所述电压反馈单元被配置为对所述直流电源变换部的输出电压进行反馈,获得反馈电压,所述控制单元被配置为根据所述反馈电压对所述第一脉冲控制信号和所述第二脉冲控制信号的占空比进行调节。
根据本公开的一个实施例,所述电压反馈单元包括:第一反馈电阻,所述第一反馈电阻的一端与所述直流电源变换部的输出端相连;第二反馈电阻,所述第二反馈电阻的一端与所述第一反馈电阻的另一端相连,且具有第一节点,所述第二反馈电阻的另一端接地;第一运算放大器,所述第一运算放大器的第一输入端与所述第一节点相连,所述第一运算放大器的第二输入端与所述第一运算放大器的输出端相连,且作为所述电压反馈单元的输出端。
根据本公开的一个实施例,所述脉冲簇控制部还包括隔离芯片,所述隔离芯片设置在所述控制单元与所述第一运算放大器之间。
根据本公开的一个实施例,所述方波的高电压幅值和低电压幅值分别与所述第一脉冲控制信号和第二脉冲控制信号的占空比呈正相关关系。
根据本公开的一个实施例,所述方波的高电压持续时间和低电压持续时间均可调。
为达到上述目的,本公开第二方面实施例提出了一种净化设备,包括上述的流光放电驱动装置。
为达到上述目的,本公开第三方面实施例提出了一种净化设备的流光放电驱动控制方法,所述方法包括:输出互补的第一脉冲控制信号和第二脉冲控制信号,以控制所述第一开关管和所述第二开关管进行交替工作,使得所述直流电源变换部对输入的直流电压进行变换,其中,所述第一脉冲控制信号用于控制所述第一开关管的导通或关断,所述第二脉冲控制信号用于控制所述第二开关管的导通或关断;对所述第一脉冲控制信号和第二脉冲控制信号的脉冲参数进行调节,以使所述直流电源变换部输出带直流偏置电压的方波,其中,所述方波用于驱动负载。
另外,本公开上述实施例的净化设备的流光放电驱动控制方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,在所述直流电源变换部对输入的直流电压进行变换时,所述方法还包括:获得反馈电压,并根据所述反馈电压对所述第一脉冲控制信号和所述第二脉冲控制信号的占空比进行调节。
本公开实施例的流光放电驱动装置、净化设备及流光放电驱动控制方法,可提高击穿电压的界限范围,降低打火现象的发生频率,提升稳定性,也降低了臭氧的浓度。
附图说明
图1是本公开一个实施例的流光放电驱动装置的结构框图;
图2是本公开一个实施例的流光放电驱动装置的电路拓扑图;
图3是本公开另一个实施例的流光放电驱动装置的电路拓扑图;
图4是本公开一个实施例的偏置电压与脉冲控制信号调节方法的流程图;
图5是本公开一个实施例的电压方波与脉冲波形的示意图;
图6是本公开实施例的净化设备的结构图;
图7是本公开一个实施例的净化设备的流光放电驱动控制方法的流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的流光放电驱动装置、净化设备及流光放电驱动控制方法。
图1是本公开实施例的流光放电驱动装置的结构框图。
如图1所示,流光放电驱动装置包括:直流电源变换部10和脉冲簇控制部20。
参见图1,直流电源变换部10包括第一开关管Q1和第二开关管Q2,直流电源变换部10被配置为根据第一开关管Q1和第二开关管Q2的交替工作,对输入的直流电压进行变换。脉冲簇控制部20与直流电源变换部10相连,脉冲簇控制部20被配置为输出互补的第一脉冲控制信号和第二脉冲控制信号,并通过调节第一脉冲控制信号和第二脉冲控制信号的脉冲参数,以使直流电源变换部输出带直流偏置电压的方波驱动负载,其中,第一脉冲控制信号用于控制第一开关管Q1的导通或关断,第二脉冲控制信号用于控制第二开关管Q2的导通或关断。
其中,第一开关管Q1和第二开关管Q2可以为MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)。第一脉冲控制信号和第二脉冲控制信号互补,可以为第一脉冲控制信号为高电压信号时,第二脉冲控制信号为低 电压信号;以及第一脉冲控制信号为低电压信号时,第二脉冲控制信号为高电压信号。两脉冲控制信号的脉冲参数可以包括脉冲宽度、脉冲幅值、脉冲频率等。带直流偏置电压的方波,是指方波信号的低电压信号是比0V高的电压信号。
具体地,流光放电是指放电空间某一局部区域被高度电离并迅速传递的一种放电现象,通过流光放电可产生高能电子、粒子、自由基(如O、OH、H)等多种分子激发态,有害气体如氮氧化合物、二氧化硫、硫化氢、二噁英、重金属等在上述分子激发态中可被氧化,在有中和剂或吸收剂的情况下被吸收,达到净化的目的。若要提升流光放电效果,则需要提高流光击穿电压,且需保证击穿电压的可控性和稳定性。
为此,本公开提出了一种流光放电驱动装置,通过脉冲簇控制部20对直流电源变换部10中功率器件(即第一开关管Q1、第二开关管Q2)的控制,使直流电源变换部10输出带偏置的高压方波,以驱动负载,实现交流光放电。通过控制输出带偏置的高压方波,可提高击穿电压的界限范围,降低打火现象的发生频率,提升稳定性,也降低了臭氧的浓度。
在一些实施例中,如图2所示,直流电源变换部10还包括第一变压器T1和整流倍压单元13,其中,第一开关管Q1的第一端与第一变压器T1的初级绕组(由图2中的A、B两绕组组成)的第一端(即绕组A远离绕组B的一端)相连,第一开关管Q1的第二端与第二开关管Q2的第一端相连后连接到直流电压负极端,第二开关管Q2的第二端与初级绕组的第二端(即绕组B远离绕组A的一端)相连,初级绕组的中间抽头(即绕组A、B的连接点)连接到直流电压正极端,第一变压器T1根据第一开关管Q1和第二开关管Q2的交替工作将初级绕组上的交变电压耦合到次级绕组C,整流倍压单元13与次级绕组C相连,以对次级绕组C耦合的交变电压进行整流和倍压,以输出带直流偏置电压的方波。
在该实施例中,参见图2,直流电源变换部10还可包括母线电容C1。母线电容C1可用于平滑直流电压,使得在对第一开关管Q1、第二开关管Q2进行通断控制时,母线电压仍比较平滑,还可用于吸收电压变换时产生的高脉冲电流。
在一些实施例中,整流倍压单元13为至少一级倍压电路。
作为示例,图2中示出的整流倍压单元13为三级倍压电路。参见图2,整流倍压单元13包括:第一二极管D1、第一电容Co1、第二电容Co2、第二二极管D2、第三电容Co3和第三二极管D3,其中,第一二极管D1的阳极与次级绕组C的第一端相连;第一电容Co1的一端与次级绕组C的第二端相连后接地,第一电容Co1的另一端与第一二极管D1的阴极相连;第二电容Co2的一端与第一二极管D1的阳极相连;第二二极管D2的阳极与第一二极管D1的阴极相连,第二二极管D2的阴极与第二电容Co2的另一端相连;第三电容Co3的一端与第二二极管D2的阳极相连;第三二极管D3的阳极与第二二极管D2的阴极相连,第三二极管D3的阴极与第三电容Co3的另一端相连,且作为整流倍压单元13的输出端。
具体地,参见图2,直流电源变换部10包括DC/AC变换单元11、第一变压器T1和整流倍压单元13,其中,DC/AC变换单元11由第一开关管Q1和第二开关管Q2组成。DC/AC变换单元11的DC端用以输入直流电压,DC/AC变换单元11可在脉冲簇控制部20的控制 下,将直流电变换为交流电,输入至第一变压器T1的初级绕组。变换的交流电经过第一变压器T1升压后,输入至整流倍压单元13,通过整流倍压单元13实现倍压,最后得到高压直流电Vo(即带直流偏置电压的方波),以提供给流光负载。该过程中,通过升压、倍压可提高流光击穿电压的界限范围,且通过对第一开关管Q1、第二开关管Q2的控制,可保证输出方波的稳定性和可控性,进而可降低打火现象的发生频率,通过持续时间的控制可降低臭氧的浓度。
在一些实施例中,如图2所示,脉冲簇控制部20包括电压反馈单元21和控制单元22,电压反馈单元21被配置为对直流电源变换部10的输出电压进行反馈,获得反馈电压,控制单元22被配置为根据反馈电压对第一脉冲控制信号和第二脉冲控制信号的占空比进行调节。
具体地,参见图2,控制单元22可采用MCU((Microcontroller Unit,微控制单元),MCU可输出第一脉冲控制信号PWM1至第一开关管Q1,输出第二脉冲控制信号PWM2至第二开关管Q2,第一脉冲控制信号PWM1和第二脉冲控制信号PWM2互补,通过控制第一开关管Q1和第二开关管Q2的导通、关断,实现直流电源变换部10中的DC/AC变换单元将直流电变换为交流电,进而通过第一变压器T1升压和整流倍压单元13倍压,得到带直流偏置电压的方波。
在一些实施例中,如图2所示,电压反馈单元21包括:第一反馈电阻RR1、第二反馈电阻RR2、第一运算放大器IC3。
参见图2,第一反馈电阻RR1的一端与直流电源变换部10的输出端相连;第二反馈电阻RR2的一端与第一反馈电阻RR1的另一端相连,且具有第一节点,第二反馈电阻RR2的另一端接地;第一运算放大器IC3的第一输入端与第一节点相连,第一运算放大器IC3的第二输入端与第一运算放大器IC3的输出端相连,且作为电压反馈单元21的输出端。
具体地,第一反馈电阻RR1和第二反馈电阻RR2起到分压采样的作用,输入至第一运算放大器IC3的实质为第二反馈电阻RR2两端的电压,在已知第一反馈电阻RR1和第二反馈电阻RR2的阻值,以及第二反馈电阻RR2两端的电压情况下,可计算得到当前整流倍压单元13输出端(即当前方波)的电压。通过第一运算放大器IC3对第二反馈电阻RR2两端的电压进行放大之后进行处理,可提高计算精度,助于后续提高对第一开关管Q1、第二开关管Q2进行控制的准确性,最终保证输出方波的稳定性和可控性。
在一些实施例中,如图3所示,脉冲簇控制部20还包括隔离芯片IC2,隔离芯片IC2设置在控制单元22与第一运算放大器IC3之间。
具体地,参见图2,隔离芯片IC2可为光耦隔离芯片,通过该隔离芯片IC2的设置,可实现第一运算放大器IC3输出端与MCU模拟信号采集端的隔离,由此可以减小次级对输入级的影响。
在一些实施例中,在直流电源变换部10输出方波的高电压时,第一脉冲控制信号和第二脉冲控制信号的脉冲频率为第一频率;在直流电源变换部10输出方波的低电压时,第 一脉冲控制信号和第二脉冲控制信号的脉冲频率为第二频率。
其中,第一频率小于第二频率。
在一些实施例中,方波的高电压幅值和低电压幅值分别与第一脉冲控制信号和第二脉冲控制信号的占空比呈正相关关系。
具体地,如图4、图5所示,上电后,直流电源DC给流光放电驱动装置100提供直流电压Vref。若需要调整方波高电压HV的输出,则需要改变第一开关管Q1的占空比duty1的大小。duty1变大,使得第一开关管Q1和第二开关管Q2具有更大的驱动能量,实现输出电压HV的增加。反之,duty1减小,对应的HV减小。若要调整方波低电压LV的输出,则需要改变第二开关管Q2的占空比duty2的大小。duty2增加,则对应的LV值也增大。由此,可通过改变占空比的方式实现对方波高电压HV和低电压LV的调节。
在一些实施例中,方波的高电压持续时间和低电压持续时间均可调。
具体地,参见图4、图5,若要对高电压HV和低电压LV的持续时间进行调整,则需要改变占空比的持续时间。若要使低电压LV持续时间T(LV)延长,则需增加占空比duty2的持续时间;反之,若要使低电压LV持续时间T(LV)缩短,则需减少占空比duty2的持续时间。同理,若要使高电压HV持续时间T(HV)延长,则需增加占空比duty1的持续时间;反之,若要使高电压HV持续时间T(HV)缩短,则需减少占空比duty1的持续时间。
另外,参见图2、图3,脉冲簇控制部20还可包括外部通讯接口23,该外部通讯接口23用以建立MCU与外部控制设备之间的通信连接。MCU通过外部通讯接口23可接收外部指令,以获取给定的高电压及其持续时间、低电压及其持续时间,进而MCU可通过调整第一开关管Q1、第二开关管Q2占空比的大小、占空比的持续时间来实现上述功能。
综上所述,本公开实施例的流光放电驱动装置,采用带偏置的高压方波控制方式,可提高击穿电压的界限范围,降低打火现象的发生频率,提升稳定性,也降低了臭氧的浓度。
图6是本公开实施例的净化设备的结构框图。
如图6所示,净化设备1000包括上述的流光放电驱动装置。
基于上述实施例的净化设备1000,本公开提出了一种净化设备的流光放电驱动控制方法。
图7是本公开一个实施例的净化设备的流光放电驱动控制方法的流程图。
如图7所示,方法包括:
S41,输出互补的第一脉冲控制信号和第二脉冲控制信号,以控制第一开关管和第二开关管进行交替工作,使得直流电源变换部对输入的直流电压进行变换,其中,第一脉冲控制信号用于控制第一开关管的导通或关断,第二脉冲控制信号用于控制第二开关管的导通或关断。
S42,对第一脉冲控制信号和第二脉冲控制信号的脉冲参数进行调节,以使直流电源变换部输出带直流偏置电压的方波,其中,方波用于驱动负载。
本公开实施例的净化设备的流光放电驱动控制方法,通过带偏置的高压方波控制方式, 可提高击穿电压的界限范围,降低打火现象的发生频率,提升稳定性,也降低了臭氧的浓度。
在一些实施例中,在直流电源变换部对输入的直流电压进行变换时,方法还包括:获得反馈电压,并根据反馈电压对第一脉冲控制信号和第二脉冲控制信号的占空比进行调节。
在一些实施例中,在直流电源变换部输出方波的高电压时,第一脉冲控制信号和第二脉冲控制信号的脉冲频率为第一频率;在直流电源变换部输出方波的低电压时,第一脉冲控制信号和第二脉冲控制信号的脉冲频率为第二频率;其中,第一频率小于第二频率。
在一些实施例中,方波的高电压幅值和低电压幅值分别与第一脉冲控制信号和第二脉冲控制信号的占空比呈正相关关系。
具体地,如图4、图5所示,上电后,直流电源DC给流光放电驱动装置100提供直流电压Vref。若需要调整方波高电压HV的输出,则需要改变第一开关管Q1的占空比duty1的大小。duty1变大,使得第一开关管Q1和第二开关管Q2具有更大的驱动能量,实现输出电压HV的增加。反之,duty1减小,对应的HV减小。若要调整方波低电压LV的输出,则需要改变第二开关管Q2的占空比duty2的大小。duty2增加,则对应的LV值也增大。由此,可通过改变占空比的方式实现对方波高电压HV和低电压LV的调节。
在一些实施例中,方波的高电压持续时间和低电压持续时间均可调。
具体地,参见图4、图5,若要对高电压HV和低电压LV的持续时间进行调整,则需要改变占空比的持续时间。若要使低电压LV持续时间T(LV)延长,则需增加占空比duty2的持续时间;反之,若要使低电压LV持续时间T(LV)缩短,则需减少占空比duty2的持续时间。同理,若要使高电压HV持续时间T(HV)延长,则需增加占空比duty1的持续时间;反之,若要使高电压HV持续时间T(HV)缩短,则需减少占空比duty1的持续时间。
需要说明的是,由于本申请实施例提供的净化设备的流光放电驱动控制方法与上述几种实施例提供的流光放电驱动装置相对应,因此在前述流光放电驱动装置的实施方式也适用于本实施例提供的净化设备的流光放电驱动控制方法,为减少冗余,在本实施例中不再详细描述。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器), 光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,本公开实施例中所使用的“第一”、“第二”等术语,仅用于描述目的,而不可以理解为指示或者暗示相对重要性,或者隐含指明本实施例中所指示的技术特征数量。由此,本公开实施例中限定有“第一”、“第二”等术语的特征,可以明确或者隐含地表示该实施例中包括至少一个该特征。在本公开的描述中,词语“多个”的含义是至少两个或者两个及以上,例如两个、三个、四个等,除非实施例中另有明确具体的限定。
在本公开中,除非实施例中另有明确的相关规定或者限定,否则实施例中出现的术语“安装”、“相连”、“连接”和“固定”等应做广义理解,例如,连接可以是固定连接,也可以是可拆卸连接,或成一体,可以理解的,也可以是机械连接、电连接等;当然,还可以是直接相连,或者通过中间媒介进行间接连接,或者可以是两个元件内部的连通,或者两个元件的相互作用关系。对于本领域的普通技术人员而言,能够根据具体的实施情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或 斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种流光放电驱动装置,其中,所述装置包括:
    直流电源变换部,所述直流电源变换部包括第一开关管和第二开关管,所述直流电源变换部被配置为根据所述第一开关管和所述第二开关管的交替工作,对输入的直流电压进行变换;
    脉冲簇控制部,所述脉冲簇控制部与所述直流电源变换部相连,所述脉冲簇控制部被配置为输出互补的第一脉冲控制信号和第二脉冲控制信号,并通过调节所述第一脉冲控制信号和第二脉冲控制信号的脉冲参数,以使所述直流电源变换部输出带直流偏置电压的方波驱动负载,其中,所述第一脉冲控制信号用于控制所述第一开关管的导通或关断,所述第二脉冲控制信号用于控制所述第二开关管的导通或关断。
  2. 根据权利要求1所述的流光放电驱动装置,其中,所述直流电源变换部还包括第一变压器和整流倍压单元,其中,所述第一开关管的第一端与所述第一变压器的初级绕组的第一端相连,所述第一开关管的第二端与所述第二开关管的第一端相连后连接到直流电压负极端,所述第二开关管的第二端与所述初级绕组的第二端相连,所述初级绕组的中间抽头连接到直流电压正极端,所述第一变压器根据所述第一开关管和所述第二开关管的交替工作将所述初级绕组上的交变电压耦合到次级绕组,所述整流倍压单元与所述次级绕组相连,以对所述次级绕组耦合的交变电压进行整流和倍压,以输出所述带直流偏置电压的方波。
  3. 根据权利要求2所述的流光放电驱动装置,其中,所述整流倍压单元为至少一级倍压电路。
  4. 根据权利要求3所述的流光放电驱动装置,其中,所述整流倍压单元包括:
    第一二极管,所述第一二极管的阳极与所述次级绕组的第一端相连;
    第一电容,所述第一电容的一端与所述次级绕组的第二端相连后接地,所述第一电容的另一端与所述第一二极管的阴极相连;
    第二电容,所述第二电容的一端与所述第一二极管的阳极相连;
    第二二极管,所述第二二极管的阳极与所述第一二极管的阴极相连,所述第二二极管的阴极与所述第二电容的另一端相连;
    第三电容,所述第三电容的一端与所述第二二极管的阳极相连;
    第三二极管,所述第三二极管的阳极与所述第二二极管的阴极相连,所述第三二极管的阴极与所述第三电容的另一端相连,且作为所述整流倍压单元的输出端。
  5. 根据权利要求1-4中任一项所述的流光放电驱动装置,其中,所述脉冲簇控制部包括电压反馈单元和控制单元,所述电压反馈单元被配置为对所述直流电源变换部的输出电压进行反馈,获得反馈电压,所述控制单元被配置为根据所述反馈电压对所述第一脉冲控制信号和所述第二脉冲控制信号的占空比进行调节。
  6. 根据权利要求5所述的流光放电驱动装置,其中,所述电压反馈单元包括:
    第一反馈电阻,所述第一反馈电阻的一端与所述直流电源变换部的输出端相连;
    第二反馈电阻,所述第二反馈电阻的一端与所述第一反馈电阻的另一端相连,且具有第一节点,所述第二反馈电阻的另一端接地;
    第一运算放大器,所述第一运算放大器的第一输入端与所述第一节点相连,所述第一运算放大器的第二输入端与所述第一运算放大器的输出端相连,且作为所述电压反馈单元的输出端。
  7. 根据权利要求6所述的流光放电驱动装置,其中,所述脉冲簇控制部还包括隔离芯片,所述隔离芯片设置在所述控制单元与所述第一运算放大器之间。
  8. 根据权利要求1-7中任一项所述的流光放电驱动装置,其中,在所述直流电源变换部输出所述方波的高电压时,所述第一脉冲控制信号和第二脉冲控制信号的脉冲频率为第一频率;在所述直流电源变换部输出所述方波的低电压时,所述第一脉冲控制信号和第二脉冲控制信号的脉冲频率为第二频率;其中,所述第一频率小于所述第二频率。
  9. 根据权利要求8所述的流光放电驱动装置,其中,所述方波的高电压幅值和低电压幅值分别与所述第一脉冲控制信号和第二脉冲控制信号的占空比呈正相关关系。
  10. 根据权利要求1-9中任一项所述的流光放电驱动装置,其中,所述方波的高电压持续时间和低电压持续时间均可调。
  11. 一种净化设备,其中,所述净化设备包括根据权利要求1-10中任一项所述的流光放电驱动装置。
  12. 一种净化设备的流光放电驱动控制方法,其中,所述净化设备包括根据权利要求1-10中任一项所述的流光放电驱动装置,所述方法包括:
    输出互补的第一脉冲控制信号和第二脉冲控制信号,以控制所述第一开关管和所述第二开关管进行交替工作,使得所述直流电源变换部对输入的直流电压进行变换,其中,所述第一脉冲控制信号用于控制所述第一开关管的导通或关断,所述第二脉冲控制信号用于控制所述第二开关管的导通或关断;
    对所述第一脉冲控制信号和第二脉冲控制信号的脉冲参数进行调节,以使所述直流电源变换部输出带直流偏置电压的方波,其中,所述方波用于驱动负载。
  13. 根据权利要求12所述的方法,其中,在所述直流电源变换部对输入的直流电压进行变换时,所述方法还包括:
    获得反馈电压,并根据所述反馈电压对所述第一脉冲控制信号和所述第二脉冲控制信号的占空比进行调节。
PCT/CN2023/092240 2022-10-31 2023-05-05 流光放电驱动装置、净化设备及流光放电驱动控制方法 WO2024093175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211348528.9A CN117997122A (zh) 2022-10-31 2022-10-31 流光放电驱动装置、净化设备及流光放电驱动控制方法
CN202211348528.9 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093175A1 true WO2024093175A1 (zh) 2024-05-10

Family

ID=90900131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092240 WO2024093175A1 (zh) 2022-10-31 2023-05-05 流光放电驱动装置、净化设备及流光放电驱动控制方法

Country Status (2)

Country Link
CN (1) CN117997122A (zh)
WO (1) WO2024093175A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845488A (en) * 1996-08-19 1998-12-08 Raytheon Company Power processor circuit and method for corona discharge pollutant destruction apparatus
CN1562445A (zh) * 2004-03-29 2005-01-12 广东杰特科技发展有限公司 流光放电等离子体烟气污染物同步净化方法
CN107769582A (zh) * 2017-11-30 2018-03-06 中国人民解放军国防科技大学 一种用于微型脉冲等离子体推进器的充电电路
CN216086484U (zh) * 2021-10-18 2022-03-18 佛山市顺德区美的电子科技有限公司 低压离子风发生器及其正输出电压控制电路
CN218678851U (zh) * 2022-10-31 2023-03-21 广东美的制冷设备有限公司 流光放电驱动装置和净化设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5845488A (en) * 1996-08-19 1998-12-08 Raytheon Company Power processor circuit and method for corona discharge pollutant destruction apparatus
CN1562445A (zh) * 2004-03-29 2005-01-12 广东杰特科技发展有限公司 流光放电等离子体烟气污染物同步净化方法
CN107769582A (zh) * 2017-11-30 2018-03-06 中国人民解放军国防科技大学 一种用于微型脉冲等离子体推进器的充电电路
CN216086484U (zh) * 2021-10-18 2022-03-18 佛山市顺德区美的电子科技有限公司 低压离子风发生器及其正输出电压控制电路
CN218678851U (zh) * 2022-10-31 2023-03-21 广东美的制冷设备有限公司 流光放电驱动装置和净化设备

Also Published As

Publication number Publication date
CN117997122A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US9712045B2 (en) System and method for a startup cell circuit
JP6374261B2 (ja) 絶縁同期整流型dc/dcコンバータおよびその同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
JP6563729B2 (ja) 絶縁同期整流型dc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器
JP2007185072A (ja) Dc−dcコンバータ
JP2008187801A (ja) スイッチング電源装置
JP2008035633A (ja) インバータ装置
JP2016116415A (ja) 絶縁型のdc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器、1次側コントローラ
US20240113631A1 (en) Control Method of ZVS Flyback Using Transformer Auxiliary Winding
JP6356545B2 (ja) スイッチング電源装置
CN108696133B (zh) 控制装置及控制方法
WO2024093175A1 (zh) 流光放电驱动装置、净化设备及流光放电驱动控制方法
US11870354B2 (en) Asymmetric half-bridge flyback circuit-based converter and control method thereof
JP2008086114A (ja) スイッチング電源装置および電圧検出回路
JP2002119054A (ja) スイッチング電源装置
JP6393962B2 (ja) スイッチング電源装置
KR20100069038A (ko) 방전가공기의 직류전압공급장치
US7894217B2 (en) DC to DC converter
CN115333379A (zh) 一种应用于电力产品的串联双反激转换器
JP7325059B2 (ja) 力率改善回路
JP2002374672A (ja) スイッチング電源装置
JP2003259644A (ja) スイッチングコンバータ回路
Chen et al. An overview of soft-switching technique for flyback converters
WO2024093173A1 (zh) 流光放电驱动装置、净化设备及流光放电驱动控制方法
TWI814062B (zh) 改良型llc諧振轉換裝置
JP2005057988A (ja) パルス幅変調直流対直流変換器の制御回路及びその方法