WO2024093167A1 - 换热装置以及空调室内机 - Google Patents

换热装置以及空调室内机 Download PDF

Info

Publication number
WO2024093167A1
WO2024093167A1 PCT/CN2023/090962 CN2023090962W WO2024093167A1 WO 2024093167 A1 WO2024093167 A1 WO 2024093167A1 CN 2023090962 W CN2023090962 W CN 2023090962W WO 2024093167 A1 WO2024093167 A1 WO 2024093167A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
slit
channels
heat
heat exchanger
Prior art date
Application number
PCT/CN2023/090962
Other languages
English (en)
French (fr)
Inventor
赵夫峰
苏明泽
唐华
李日新
杜顺开
李金波
Original Assignee
邯郸美的制冷设备有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211351383.8A external-priority patent/CN117989602A/zh
Priority claimed from CN202222887796.XU external-priority patent/CN218672400U/zh
Application filed by 邯郸美的制冷设备有限公司, 广东美的制冷设备有限公司 filed Critical 邯郸美的制冷设备有限公司
Publication of WO2024093167A1 publication Critical patent/WO2024093167A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/30Artificial light

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular to a heat exchange device and an air conditioner indoor unit.
  • a heat exchange device exchanges heat with the surrounding environment through the refrigerant flowing in the heat exchange tube, for example, with the surrounding air, surrounding liquid, etc.
  • the refrigerant enters the flow path, the dryness is low and the flow velocity is low.
  • the dryness gradually increases and the flow velocity gradually increases, which will cause the refrigerant in the heat exchange tube to flow too fast, resulting in a large pressure drop in the heat exchange tube, making it difficult to take into account both the heat exchange efficiency and the problem of excessive pressure drop.
  • the refrigerant needs to flow in multiple heat exchange tubes arranged in a circulation manner, which will cause cross-tube phenomenon, increase the difficulty of layout, and increase the space occupied by the heat exchange device.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the present disclosure proposes a heat exchange device, which does not require cross-tubes inside, occupies a reasonable space, has low layout difficulty, and can take into account both heat exchange efficiency and excessive pressure drop.
  • the present disclosure also proposes an air-conditioning indoor unit using the above heat exchange device.
  • the heat exchange device includes: a front heat exchanger and a rear heat exchanger, the rear heat exchanger extends backward from top to bottom in an inclined manner, the rear heat exchanger is a first heat exchange part, the front heat exchanger includes a front upper heat exchange section and a front lower heat exchange section, the front upper heat exchange section extends forward from top to bottom in an inclined manner and the upper end of the front upper heat exchange section is connected with the upper end of the rear heat exchanger, the front lower heat exchange section is connected with the lower end of the front upper heat exchange section and extends backward from top to bottom in an inclined manner, the front upper heat exchange section is divided into a second heat exchange part and a third heat exchange part located below the second heat exchange part, and the front lower heat exchange section is a fourth heat exchange part; wherein the first heat exchange part is provided with a plurality of first heat exchange channels, and the plurality of first heat exchange channels The sum of the flow areas is A1, the second heat exchange part is provided with a plurality of second heat exchange channels The sum of the flow areas is
  • the flow area of any first heat exchange channel is greater than the flow area of any third heat exchange channel and greater than the flow area of any fourth heat exchange channel
  • the flow area of any second heat exchange channel is greater than the flow area of any third heat exchange channel and greater than the flow area of any fourth heat exchange channel.
  • the number of heat exchange tubes in each heat exchange part can be determined, corresponding to a variety of flow path solutions, and under each flow path connection method, there will be no cross-tube phenomenon; on the other hand, the number of heat exchange tubes is adapted to the dryness of the refrigerant.
  • the flow area of any of the first heat exchange channels is the same as that of any of the second heat exchange channels; and/or the flow area of any of the third heat exchange channels is the same as that of any of the second heat exchange channels.
  • the heat exchange device is a tube-fin heat exchanger with corresponding heat exchange channels defined by heat exchange tubes
  • the specifications of the multiple first heat exchange channels are the same or different and the diameters are all 5mm-7mm
  • the specifications of the multiple second heat exchange channels are the same or different and the diameters are all 5mm-7mm
  • the specifications of the multiple third heat exchange channels are the same or different and the diameters are all 4mm-6.5mm
  • the specifications of the multiple fourth heat exchange channels are the same or different and the diameters are all 4mm-6.5mm.
  • the third heat exchange part is smoothly connected to the fourth heat exchange part through a curved segment.
  • the length direction of the first heat exchange part extends along a straight line with a length of L1
  • the length direction of the second heat exchange part extends along a straight line with a length of L2
  • the length of the third heat exchange part extending along the straight line is L31 and the length extending along the curve is L32
  • the length direction of the fourth heat exchange part extending along the straight line is L41 and the length extending along the curve is L42, wherein 1.85 ⁇ L1/L2 ⁇ 3.56, 1.1 ⁇ (L31+L32)/L2 ⁇ 2.2, 0.7 ⁇ (L31+L32)/(L41+L42) ⁇ 1.9.
  • the width of the first heat exchange part is B1
  • the width of the second heat exchange part is B2
  • the width of the third heat exchange part is B3, 2.85 ⁇ L1/B1 ⁇ 5.14, 1.23 ⁇ L2/B2 ⁇ 1.94, 1.5 ⁇ L41/B3 ⁇ 2.44.
  • the heat exchange device is a tube-fin heat exchanger
  • the fins of the front upper heat exchange section and the fins of the front lower heat exchange section are different parts of the same fin
  • the fins of the rear heat exchanger and the fins of the front heat exchanger are two parts cut from one fin.
  • the heat exchange device is a tube-fin heat exchanger
  • the first heat exchange part, the second heat exchange part, the third heat exchange part and the fourth heat exchange part respectively have multiple rows of tube groups arranged along the width direction of the fin, each row of the tube group includes a plurality of heat exchange tubes arranged along the length direction of the fin, the heat exchange tubes define corresponding heat exchange flow channels, and a slit group is provided between every two adjacent heat exchange tubes along the length direction of the fin.
  • the number of slits included in at least one slit group in the upstream group is not less than the number of slits included in any slit group in the downstream group in the front heat exchanger.
  • the number of slits is set, and the width of at least one of the slit groups in the upstream group is not less than the width of any of the slit groups in the downstream group in the front heat exchanger.
  • the rear heat exchanger includes a rear upper heat exchange section and a rear lower heat exchange section, and the width of at least one of the slit groups in the rear upper heat exchange section is greater than or equal to the width of at least one of the slit groups in the rear lower heat exchange section.
  • the upper end of the rear heat exchanger has at least three slit groups; and/or, the upper end of the front heat exchanger has at least three slit groups, wherein at least one parameter of the width, slit length, slit number, and slit direction of different types of the slit groups is different.
  • a cross-flow air duct is suitable for being arranged between the rear heat exchanger and the front heat exchanger, and a groove is partially provided on the front side of the rear heat exchanger, and at least a part of the groove is opposite to the rear volute tongue of the cross-flow air duct.
  • connection between the front upper heat exchange section and the front lower heat exchange section has multiple slit groups, and the multiple slit groups located on the air inlet side are outer groups. At least one of the outer groups forms a setting group, and the setting group includes one or multiple slit structures arranged along the airflow direction. Among any two adjacent slit structures in the setting group, the slit length of the downstream slit structure is not less than the slit length of the upstream slit structure.
  • the air conditioner indoor unit includes: a shell, an air supply device and a heat exchange device, the shell has an air inlet on the top, the air supply device is arranged in the shell and includes a duct member and a cross-flow fan wheel, the cross-flow fan wheel is arranged at the air duct inlet of the duct member, and the heat exchange device is arranged in the shell and is located between the air inlet and the air supply device.
  • the diameter of the crossflow impeller is D
  • the maximum width of the shell in the front-to-back direction is W
  • FIG. 1 is a schematic diagram of an indoor unit of an air conditioner according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a heat exchange device according to an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of a first flow path arrangement that is feasible for a heat exchange device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a possible second flow path arrangement of a heat exchange device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a third possible flow path arrangement of the heat exchange device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a fourth possible flow path arrangement of the heat exchange device according to an embodiment of the present disclosure.
  • FIG. 7 is an energy efficiency diagram of first heat exchange tubes and second heat exchange tubes of different diameters of the heat exchange device according to an embodiment of the present disclosure.
  • FIG 8 is an energy efficiency diagram of the third heat exchange tube and the fourth heat exchange tube of different diameters of the heat exchange device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a slotted structure according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another slit structure at an angle according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another slit structure at another angle according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another slit structure according to an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present disclosure, unless otherwise specified, the meaning of "plurality” is two or more.
  • the heat exchange device 100 includes: a front heat exchanger 20 and a rear heat exchanger 10 .
  • the rear heat exchanger 10 extends obliquely from top to bottom and backward, and the rear heat exchanger 10 is a first heat exchange part a.
  • the front heat exchanger 20 includes a front upper heat exchange section 21 and a front lower heat exchange section 22.
  • the front upper heat exchange section 21 extends obliquely from top to bottom and forward, and the upper end of the front upper heat exchange section 21 is connected to the upper end of the rear heat exchanger 10.
  • the front lower heat exchange section 22 is connected to the lower end of the front upper heat exchange section 21 and extends obliquely from top to bottom and backward.
  • the front upper heat exchange section 21 is divided into a second heat exchange part b and a third heat exchange part c located below the second heat exchange part b, and the front lower heat exchange section 22 is a fourth heat exchange part d.
  • the front heat exchanger 20 defines a second heat exchange part b, a third heat exchange part c and a fourth heat exchange part d
  • the rear heat exchanger 10 defines a first heat exchange part a.
  • the first heat exchange part a is connected to the upper end of the second heat exchange part b (i.e., the front upper heat exchange section 21) in the front-to-back direction (the connection involved in the embodiment of the present disclosure can be a splicing between split parts or a bending of an integral part)
  • the third heat exchange part c is located below the second heat exchange part b and extends forward at an angle
  • the fourth heat exchange part d is located below the third heat exchange part c and extends backward at an angle, so as to form a wrapping structure through the first heat exchange part a, the second heat exchange part b, the third heat exchange part c and the fourth heat exchange part d, which is used to wrap the air supply device 200.
  • the diameters of the second heat exchange channels 211 in the second heat exchange portion b are the same and larger than the diameters of the third heat exchange channels 212 in the third heat exchange portion c.
  • the third heat exchange portion c and the fourth heat exchange portion d are connected and their extension directions form an angle.
  • the first heat exchange tube in the first row on the windward side of the front heat exchanger 20 The pipe section from the fifth heat exchange tube to the twelfth heat exchange tube is defined as the second heat exchange section b, the pipe section from the thirteenth heat exchange tube to the last heat exchange tube at the bottom is defined as the fourth heat exchange section, and the second heat exchange section b, the third heat exchange section c and the fourth heat exchange section d can be specifically defined based on the extension direction and the number of heat exchange tubes.
  • the first heat exchange portion a is provided with a plurality of first heat exchange channels 11, and the sum of the flow areas of the plurality of first heat exchange channels 11 is A1.
  • the second heat exchange portion b is provided with a plurality of second heat exchange channels 211, and the sum of the flow areas of the plurality of second heat exchange channels 211 is A2.
  • the third heat exchange portion c is provided with a plurality of third heat exchange channels 212, and the sum of the flow areas of the plurality of third heat exchange channels 212 is A3.
  • the fourth heat exchange portion d is provided with a plurality of fourth heat exchange channels 221, and the sum of the flow areas of the plurality of fourth heat exchange channels 221 is A4.
  • any first heat exchange channel 11 The flow area of any second heat exchange channel 211 is larger than the flow area of any third heat exchange channel 212 and larger than the flow area of any fourth heat exchange channel 221 (i.e., the first heat exchange channel 11>the third heat exchange channel 212, the first heat exchange channel 11>the fourth heat exchange channel 221), and the flow area of any second heat exchange channel 211 is larger than the flow area of any third heat exchange channel 212 and larger than the flow area of any fourth heat exchange channel 221 (i.e., the second heat exchange channel 211>the third heat exchange channel 212, the second heat exchange channel 211>the fourth heat exchange channel 221).
  • a first heat exchange tube may be arranged on the first heat exchange portion a, and a plurality of first heat exchange tubes define a first heat exchange channel 11; a second heat exchange tube may be arranged on the second heat exchange portion b, and a plurality of second heat exchange tubes define a second heat exchange channel 211; a third heat exchange tube may be arranged on the third heat exchange portion c, and a plurality of third heat exchange tubes define a third heat exchange channel 212; a fourth heat exchange tube may be arranged on the fourth heat exchange portion d, and a plurality of fourth heat exchange tubes define a fourth heat exchange channel 221; and on the cross section of the heat exchange device 100 (referring to the section perpendicular to the air supply device 20 0 is a cross-sectional area obtained by crossing the heat exchange device 100 on a plane of the axis of the cross-flow impeller 230), the sum of the cross-sectional areas of the plurality of first heat exchange tubes corresponds to the sum A1 of the flow areas of the first heat exchange
  • the dryness of the refrigerant is small, the mass of the liquid phase refrigerant is greater than the mass of the gas phase refrigerant, the flow area of any second heat exchange flow channel 211 is greater than the flow area of the third heat exchange flow channel 212 and the fourth heat exchange flow channel 221, and the refrigerant flow rate in the tube is low, which can increase the flow rate of the refrigerant at the inlet stage to improve the heat transfer coefficient;
  • the dryness of the refrigerant gradually increases, the mass of the gas phase refrigerant gradually becomes greater than the mass of the liquid phase refrigerant, the flow rate of the refrigerant in the tube gradually increases, and the flow area of any first heat exchange flow channel 11 is greater than the flow area of any third heat exchange flow channel 212 and greater than the flow area of any fourth heat exchange flow channel 221, so that the pressure drop can be within a reasonable range while the heat exchange can be stable;
  • the dryness of the refrigerant is relatively high, and the mass of the gas phase refrigerant is much greater than the mass of the liquid phase refrigerant.
  • the flow area of the third heat exchange channel 212 and the fourth heat exchange channel 221 decreases, and the refrigerant flow rate in the tube will be significantly increased, correspondingly forming more refrigerant sub-flow paths and a larger number of flow paths. Under the premise of ensuring heat exchange efficiency, excessive pressure drop of the refrigerant can be avoided.
  • the flow area of any first heat exchange channel 11 is greater than the flow area of any third heat exchange channel 212 and greater than the flow area of any fourth heat exchange channel 221
  • the flow area of any second heat exchange channel 211 is greater than the flow area of any third heat exchange channel 212 and greater than the flow area of any fourth heat exchange channel 221.
  • the flow area of 221, on the one hand, the number of heat exchange tubes in each heat exchange part can be determined, corresponding to a variety of flow path connection methods, and under each flow path connection method, there will be no cross-tube phenomenon; on the other hand, the number of heat exchange tubes is adapted to the dryness of the refrigerant.
  • A1, A2, A3, and A4 further satisfy: 2.17 ⁇ A1/A2 ⁇ 5.67, 2.5 ⁇ A3/A2 ⁇ 3.33, 0.75 ⁇ A3/A4 ⁇ 2, 0.8 ⁇ (A1+A2)/(A3+A4) ⁇ 2.22.
  • Table 1 is an energy efficiency table of the heat exchange device 100 at different A1/A2 values under the premise that the A3/A2 value is 2.8 and the A3/A4 value is 1.5. Preferably, when the A1/A2 value is 2.5, the energy efficiency of the heat exchange device 100 is higher.
  • Table 2 is an energy efficiency table of the heat exchange device 100 at different A3/A2 values under the premise that the A1/A2 value is 2.5 and the A3/A4 value is 1.5. Preferably, when the A3/A2 value is 2.9, the energy efficiency of the heat exchange device 100 is higher.
  • Table 3 is an energy efficiency table of the heat exchange device 100 under different A3/A4 values, under the premise that the A1/A2 value is 2.5 and the A3/A2 value is 2.9. Preferably, when the A3/A4 value is 1.4, the energy efficiency of the heat exchange device 100 is higher.
  • Table 4 is an energy efficiency table of the heat exchange device 100 under different (A1+A2)/(A3+A4) values. Preferably, when (A1+A2)/(A3+A4) is 1.5, the energy efficiency of the heat exchange device 100 is higher.
  • the flow area of the heat exchange tubes in each heat exchange part will affect the heat exchange performance of the heat exchange device 100.
  • the number of heat exchange tubes in the inlet stage, middle stage and outlet stage of the refrigerant flow path can be made more reasonable.
  • the flow rate is low, and the number of heat exchange tubes is reduced accordingly.
  • the flow rate is high and the pressure drop is large, and the number of heat exchange tubes is increased accordingly.
  • the energy efficiency of the heat exchange device 100 can be effectively improved, and the heat exchange efficiency can be improved by up to 35%.
  • each first heat exchange channel 11 is made larger than the flow areas of the third heat exchange channel 212 and the fourth heat exchange channel 221
  • the flow area of the second heat exchange channel 211 is larger than the flow areas of the third heat exchange channel 212 and the fourth heat exchange channel 221
  • the flow areas of the first heat exchange channel 11 and the second heat exchange channel 211 are relatively larger, and satisfy 2.17 ⁇ A1/A2 ⁇ 5.67, 2.5 ⁇ A3/A2 ⁇ 3.33, 2.5 ⁇ A3/A2 ⁇ 3.33, 0.75 ⁇ A3/A4 ⁇ 2, 0.8 ⁇ (A1+A2)/(A3+A4) ⁇ 2.22, and the number and arrangement of the first heat exchange tube, the second heat exchange tube, the third heat exchange tube and the fourth heat exchange tube are basically limited.
  • the present disclosure defines the relationship between the flow area size of any one of the plurality of first heat exchange channels 11, the plurality of second heat exchange channels 211, the plurality of third heat exchange channels 212, and the plurality of fourth heat exchange channels 221, and further defines the ratio of the total flow area of the first heat exchange channel 11 to the second heat exchange channel 211, the ratio of the total flow area of the second heat exchange channel 211 to the third heat exchange channel 212, the total flow area of the third heat exchange channel 221 to the fourth heat exchange channel 221.
  • the area ratio relationship, the sum of the total flow areas of the first heat exchange channel 11 and the second heat exchange channel 211, and the proportional relationship of the total flow areas of the third heat exchange channel 212 and the fourth heat exchange channel 221 can limit the number of heat exchange tubes in the first heat exchange part a, the second heat exchange part b, the third heat exchange part c and the fourth heat exchange part d. After the number of heat exchange tubes in each heat exchange part is determined, a variety of heat exchange tube connection methods can be formed accordingly, and the layout corresponding to each connection method can ensure that there is no cross-tube or tube jumping phenomenon.
  • FIG. 3 shows a first flow path arrangement that is feasible in the present disclosure.
  • the first row of second heat exchange tubes on the air inlet side of the second heat exchange part b constitutes a first group
  • the two second heat exchange tubes at the upper ends of the second and third rows constitute a second group
  • the two second heat exchange tubes at the lower ends of the second and third rows constitute a third group
  • the six first heat exchange tubes at the upper end of the first row on the air inlet side of the first heat exchange part a form a fourth group
  • the four first heat exchange tubes at the lower end of the first row on the air inlet side and the two first heat exchange tubes at the lower end of the second row and the third row form a fifth group
  • the two first heat exchange tubes at the upper end of the second row and the six first heat exchange tubes at the upper end of the third row form a sixth group
  • the six first heat exchange tubes in the middle of the second row and the two first heat exchange tubes in the middle of the third row form a seventh group
  • the third heat exchange tubes at the air inlet side of the third heat exchange part c are composed of two third heat exchange tubes at the top of the first row, three third heat exchange tubes at the top of the second row, and three third heat exchange tubes at the top of the third row, forming an eighth group; the third and fourth third heat exchange tubes in the first row, the fourth and fifth third heat exchange tubes in the second row, and the third to sixth third heat exchange tubes in the third row, forming a ninth group;
  • the first three fourth heat exchange tubes at the upper end of the third row on the air inlet side of the fourth heat exchange section d and the fifth and sixth fourth heat exchange tubes in the first row, the sixth to seventh fourth heat exchange tubes in the second row, and the seventh third heat exchange tube in the third row of the third heat exchange section c form a tenth group.
  • the two third heat exchange tubes at the lower end of the first row of the heat exchange part c form the eleventh group
  • the fifth to seventh fourth heat exchange tubes in the first row, the fourth to sixth fourth heat exchange tubes in the second row, the fifth and sixth fourth heat exchange tubes in the third row form the twelfth group
  • the four fourth heat exchange tubes at the lower end of the first row, the two fourth heat exchange tubes at the lower end of the second row and the two fourth heat exchange tubes at the lower end of the third row form the eleventh group
  • the multiple heat exchange tubes in each group are connected in sequence so that one end of each group is formed as a refrigerant inlet and the other end is formed as a refrigerant outlet.
  • the specific flow path is as follows: the refrigerant enters from the refrigerant inlet of the first group, flows out from the refrigerant outlet of the first group, flows in from the refrigerant inlet of the fourth group, flows out from the refrigerant outlet of the fourth group, and then flows into the refrigerant inlets of the second and third groups respectively in two ways.
  • the second group of refrigerant outlets intersects with the third group of refrigerant outlets, and the outflowing refrigerant is divided into three ways to flow into the fifth group of refrigerant inlets, the sixth group of refrigerant inlets and the seventh group of refrigerant inlets respectively.
  • the refrigerant at the fifth group of refrigerant outlets, the sixth group of refrigerant outlets and the seventh group of refrigerant outlets can be divided into six ways, flowing into the eighth group of refrigerant inlets to the thirteenth group of refrigerant inlets respectively.
  • the refrigerant flowing out from the eighth group of refrigerant outlets to the thirteenth group of refrigerant outlets can flow back to the compressor after merging.
  • Figure 4 is a second flow path arrangement
  • Figure 5 is a third flow path arrangement
  • Figure 6 is a fourth flow path arrangement.
  • the difference from the first flow path arrangement is that the grouping method of multiple heat exchange tubes is different, but all flow into the second heat exchange part b, and converge in the third heat exchange part c and the fourth heat exchange part d before being discharged.
  • the number of refrigerant sub-flow paths can be adjusted at the inlet stage, intermediate stage, and outlet stage.
  • Figure 3 corresponds to a refrigerant sub-flow path change trend of 1-2-3-6, and under the corresponding arrangement form, there is no cross-tube or jump-tube phenomenon, which is not further described in the present disclosure.
  • the dryness of the refrigerant is small, the mass of the liquid phase refrigerant is greater than the mass of the gas phase refrigerant, the refrigerant flow rate in the tube is low, the number of the first heat exchange tube and the second heat exchange tube is relatively small, and only one refrigerant sub-flow path is formed, which can increase the flow rate of the refrigerant at the inlet stage to improve the heat transfer coefficient;
  • the dryness of the refrigerant gradually increases, the mass of the gas phase refrigerant gradually exceeds the mass of the liquid phase refrigerant, the flow rate of the refrigerant in the tube gradually increases, and the refrigerant sub-flow routes change from two to three. While the heat exchange can be stable, the pressure drop can also be within a reasonable range.
  • the dryness of the refrigerant is relatively high, the mass of the gas phase refrigerant is much greater than the mass of the liquid phase refrigerant, and the refrigerant flow rate in the tube will be significantly increased, correspondingly forming six refrigerant sub-flow paths.
  • the number of flow paths is larger, and under the premise of ensuring heat exchange efficiency, excessive pressure drop of the refrigerant can be avoided.
  • the flow area of any first heat exchange channel 11 is greater than the flow area of any third heat exchange channel 212 and greater than the flow area of any fourth heat exchange channel 221
  • the flow area of any second heat exchange channel 211 is greater than the flow area of any third heat exchange channel 212 and greater than the flow area of any fourth heat exchange channel 221
  • 2.17 ⁇ A1/A2 ⁇ 5.67, 2.5 ⁇ A3/A2 ⁇ 3.33, 0.75 ⁇ A3/A4 ⁇ 2, 0.8 ⁇ (A1+A2)/(A3+A4) ⁇ 2.22 are satisfied.
  • the number of heat exchange tubes in each heat exchange part can be determined.
  • the number of heat exchange tubes is adapted to the dryness of the refrigerant. Fewer heat exchange tubes are set in areas with low dryness to reduce the number of sub-flow paths, and more heat exchange tubes are set in areas with high dryness to increase the number of sub-flow paths. This can take into account both heat exchange efficiency and pressure drop, ensuring that the pressure drop in each area of the heat exchange device 100 is not too large, and that the heat exchange efficiency is high and the heat exchange effect is good.
  • the heat exchange efficiency of the heat exchange device 100 is difficult to meet the use requirements.
  • a back pipe is further arranged on the air inlet side of the front heat exchanger 20 and the rear heat exchanger 10 to increase the heat dissipation through the back pipe.
  • the heat exchange efficiency of the heat exchange device 100 disclosed in the present invention is higher and can meet the use requirements without the need to arrange a back pipe.
  • the flow area of any first heat exchange channel 11 is the same as that of any second heat exchange channel 211 ; and/or the flow area of any third heat exchange channel 212 is the same as that of any fourth heat exchange channel 221 .
  • the flow area of any one of the multiple first heat exchange channels 11 is the same as the flow area of any one of the multiple second heat exchange channels 211; in other embodiments, the flow area of any one of the multiple third heat exchange channels 212 is the same as the flow area of any one of the multiple fourth heat exchange channels 221; preferably, the flow area of any one of the multiple first heat exchange channels 11 is the same as the flow area of any one of the multiple second heat exchange channels 211; the flow area of any one of the multiple third heat exchange channels 212 is the same as the flow area of any one of the multiple fourth heat exchange channels 221.
  • the first heat exchange tube forming the first heat exchange channel 11 and the second heat exchange tube forming the second heat exchange channel 211 can be selected from heat exchange tubes of the same specifications and sizes;
  • the third heat exchange tube forming the third heat exchange channel 212 and the fourth heat exchange tube forming the fourth heat exchange channel 221 can be selected from heat exchange tubes of the same specifications and sizes. Only two heat exchange tubes of the same specifications (for example, copper tubes) are required, which is conducive to standardized settings, and can also reduce assembly costs and improve assembly efficiency.
  • the heat exchange device 100 is a tube-fin heat exchanger with corresponding heat exchange channels defined by heat exchange tubes.
  • the specifications of multiple first heat exchange channels 11 are the same or different and the diameters are all 5mm-7mm
  • the specifications of multiple second heat exchange channels 211 are the same or different and the diameters are all 5mm-7mm
  • the specifications of multiple third heat exchange channels 212 are the same or different and the diameters are all 4mm-6.5mm
  • the specifications of multiple fourth heat exchange channels 221 are the same or different and the diameters are all 4mm-6.5mm.
  • the first heat exchange tube in the first heat exchange part a and the second heat exchange tube in the second heat exchange part b have corresponding diameters D1 and D2 respectively; the diameter of the first and second rows of heat exchange tubes on the air inlet side of the third heat exchange part c and the fourth heat exchange part d is D3; the diameter of the third row of heat exchange tubes on the air inlet side of the third heat exchange part c and the fourth heat exchange part d is D4.
  • the first heat exchange channel 11 and the second heat exchange channel 211 are at the entrance stage of the refrigerant flow path.
  • the dryness of the refrigerant in this stage is low and the flow rate is low.
  • the pressure drop changes significantly.
  • the pipe diameter can be increased.
  • reducing the number of heat exchange tubes will lead to insufficient heat exchange area in the tube, which is not conducive to heat exchange improvement. Therefore, the present invention adopts heat exchange tubes with larger diameters and increases the number of heat exchange tubes to increase the heat exchange area, while reducing the number of refrigerant sub-flow paths at the entrance stage to achieve heat exchange improvement.
  • FIG. 7 shows the influence of heat exchange tubes with different diameters on the heat exchange efficiency of the heat exchange device 100 at a dryness of 0.3.
  • the preferred value of D1 and D2 is 6.35 mm.
  • the third heat exchange flow channel 212 and the fourth heat exchange flow channel 221 are in the middle stage and the outlet stage of the refrigerant flow path, the dryness gradually increases, and the flow rate component increases. If a larger pipe diameter is used, the number of heat exchange pipes in the area is small, which will cause the pipes to be The internal heat exchange area is insufficient. In order to ensure the heat exchange stability in the area, it is necessary to use a smaller tube diameter and more heat exchange tubes to increase the heat exchange area. In addition, although the small tube diameter can increase the heat transfer coefficient, due to the large pressure drop, it is necessary to further increase the refrigerant sub-flow path to balance the pressure drop.
  • Fig. 8 shows the influence of heat exchange tubes with different diameters on the heat exchange efficiency of the heat exchange device 100 at a dryness of 0.6.
  • the preferred values of D3 and D4 are 5 mm. In this way, heat exchange tubes with corresponding diameters can be matched according to the corresponding refrigerant flow path stages of different heat exchange parts, so as to take into account both heat exchange efficiency and pressure drop issues.
  • the third heat exchange part c is smoothly connected to the fourth heat exchange part d by a curved line segment.
  • the length direction of the first heat exchange part a extends along a straight line with a length of L1
  • the length direction of the second heat exchange part b extends along a straight line with a length of L2
  • the length direction of the third heat exchange part c extends along a straight line with a length of L31 and a length along a curve with a length of L32
  • the length direction of the fourth heat exchange part d extends along a straight line with a length of L41 and a length along a curve with a length of L42, wherein 1.85 ⁇ L1/L2 ⁇ 3.56, 1.1 ⁇ (L31+L32)/L2 ⁇ 2.2, and 0.7 ⁇ (L31+L32)/(L41+L42) ⁇ 1.9.
  • the present disclosure further defines the proportional relationship between the length of the first heat exchange portion a and the length of the second heat exchange portion b, the proportional relationship between the length of the second heat exchange portion b and the length of the third heat exchange portion c, and the proportional relationship between the length of the third heat exchange portion c and the length of the fourth heat exchange portion d.
  • Table 5 is an energy efficiency table of the heat exchange device 100 at different L1/L2 values, under the premise that the value of (L31+L32)/L2 is 1.28 and the value of (L31+L32)/(L41+L42) is 1.08.
  • the value of L1/L2 is 2.8, the energy efficiency of the heat exchange device 100 is higher.
  • Table 6 is an energy efficiency table of the heat exchange device 100 at different (L31+L32)/L2 values, under the premise that the value of L1/L2 is 2.64 and the value of (L31+L32)/(L41+L42) is 1.08.
  • the energy efficiency of the heat exchange device 100 is higher.
  • Table 7 is an energy efficiency table of the heat exchange device 100 under different values of (L31+L32)/(L41+L42) under the premise that the value of L1/L2 is 2.64 and the value of (L31+L32)/L2 is 1.36.
  • the energy efficiency of the heat exchange device 100 is higher.
  • the width of the first heat exchange portion a is B1
  • the width of the second heat exchange portion b is B2
  • the width of the third heat exchange portion c is B3, 2.85 ⁇ L1/B1 ⁇ 5.14, 1.23 ⁇ L2/B2 ⁇ 1.94, 1.5 ⁇ L41/B3 ⁇ 2.44.
  • the present disclosure further defines the length-to-width ratio of the first heat exchange portion a, the length-to-width ratio of the second heat exchange portion b, and the length-to-width ratio of the third heat exchange portion c.
  • Table 8 is an energy efficiency table of the heat exchange device 100 under different L1/B1 values, under the premise that the L2/B2 value is 1.6 and the L41/B3 value is 2.08. Preferably, when the L1/B1 value is 4.4, the energy efficiency of the heat exchange device 100 is higher.
  • Table 9 is an energy efficiency table of the heat exchange device 100 at different L2/B2 values, under the premise that the L1/L2 value is 4.4 and the L41/B3 value is 2.08. Preferably, when the L2/B2 value is 1.6, the energy efficiency of the heat exchange device 100 is higher.
  • Table 10 is an energy efficiency table of the heat exchange device 100 under different values of (L31+L32)/(L41+L42) under the premise that the value of L1/L2 is 2.64 and the value of (L31+L32)/L2 is 1.36.
  • the energy efficiency of the heat exchange device 100 is higher.
  • the heat exchange device 100 is a tube-fin heat exchanger
  • the fins of the front upper heat exchange section 21 and the fins of the front lower heat exchange section 22 are different parts of the same fin
  • the fins of the rear heat exchanger 10 and the fins of the front heat exchanger 20 are two parts cut from one fin.
  • the fins of the front heat exchanger 20 are defined as the first segments, and the fins of the rear heat exchanger 10 are defined as the second segments.
  • the multiple first segments and the multiple second segments are constructed as an integral part. Through one-time cutting (cutting the excess part between the first segment and the second segment), multiple first parts with the same outer contour as the first segment and multiple second parts with the same outer contour as the second segment are obtained. The first part and the second part can be connected or disconnected. The multiple first parts are arranged in sequence, and the multiple second parts are arranged in sequence. After secondary cutting (separating adjacent first segments and separating adjacent second segments), multiple split or connected first segments and second segments are obtained. The first segment is then connected to the second segment through angle adjustment, overlapping and other connection methods. The multiple connected first segments and second segments are stacked in the stacking direction, and the heat exchange device 100 can be directly obtained.
  • the front heat exchanger 20 and the rear heat exchanger 10 are integrally formed.
  • a plurality of heat exchange fins including a first segment and a second segment can be obtained by trimming and cutting a large fin plate.
  • the plurality of heat exchange fins are stacked and penetrated with heat exchange tubes to obtain a heat exchange device 100, which can reduce processing difficulty and improve processing efficiency.
  • the widths of multiple heat exchange parts are the same, and the plane utilization rate is higher when cutting on a large fin plate, which can reduce the scrap rate and reduce material costs.
  • the heat exchange device 100 is a tube-fin heat exchanger, and the first heat exchange part a, the second heat exchange part b, the third heat exchange part c and the fourth heat exchange part d respectively have a plurality of rows of tube groups arranged along the width direction of the fin, each row of the tube group includes a plurality of heat exchange tubes arranged along the length direction of the fin, the heat exchange tubes define corresponding heat exchange flow channels, and a slit group e is provided between every two adjacent heat exchange tubes along the length direction of the fin.
  • the heat exchange area of the fin can be increased to improve the heat exchange efficiency, and the slit group e is arranged adjacent to the heat exchange tube, so that part of the airflow can be directed to the heat exchange tube, which can further improve the heat exchange efficiency.
  • Figure 9 shows a bridge-type slotted structure, specifically a slotted structure in which a bridge piece a1 is provided on the perforated area at both ends in the length direction and connected to the perforation b1, and the fins in other areas are spaced apart;
  • Figures 10 and 11 show a single-window slotted structure, specifically a slotted structure in which a bridge piece a1 is provided on the perforated area at one end connected to the perforation b1 and the other end is spaced apart from the perforation b1.
  • Figure 12 shows a bidirectional louver-type slit structure, specifically two sets of louvers are relatively arranged on the perforated area, and the baffles c1 (i.e., blades) of the two sets of louvers are relatively arranged, and the deformed structure of Figure 12 can be a one-way louver-type slit structure with only one set of louvers, which can effectively increase the heat exchange area of the fin.
  • the slit structure disclosed in the present invention is not limited to this, and slit structures such as protruding rectangular blocks can also be provided, and the present disclosure does not make specific restrictions.
  • FIG. 2 there are multiple heat exchange tube groups, which are stacked in sequence in the thickness direction of the front heat exchanger 20 and the thickness direction of the rear heat exchanger 10, and the airflow direction is from one side of the width of the front heat exchanger 20 to the other side, one side of the corresponding front heat exchanger 20 is the air inlet surface, and the other side is the air outlet surface, the upstream group refers to the heat exchange tube group adjacent to the air outlet surface, and the downstream group refers to the heat exchange tube group adjacent to the air outlet surface.
  • the number of slits included in at least one slit group e in the upstream group is not less than the number of slits included in any slit group e in the downstream group in the front heat exchanger 20
  • the width of at least one slit group e in the upstream group is not less than the width of any slit group e in the downstream group in the front heat exchanger 20.
  • the gas flow rate on the air inlet side is fast and the number of slits is greater, which can improve the heat exchange efficiency, while the gas flow rate on the air outlet side is low and the width of the downstream slit structure is larger, which can reduce wind resistance to increase airflow and also improve heat exchange efficiency.
  • the rear heat exchanger 10 includes a rear upper heat exchange section 12 and a rear lower heat exchange section 13.
  • the width of at least one slit group e in the rear upper heat exchange section 12 is greater than or equal to the width of at least one slit group e in the rear lower heat exchange section 13, which can also improve the heat exchange efficiency and heat exchange effect.
  • the number of slits in the slit group e on the rear upper heat exchange section 12 is 2-4, and the number of slits in the rear lower heat exchange section 13 is 2-3, and the slit widths of the two are H1 and H2 respectively, and satisfy the proportional relationship of 1 ⁇ H1/H2 ⁇ 1.2.
  • the virtual cuts between the slit groups e corresponding to each row of heat exchange tube groups can be increased to reduce the reverse heat conduction of the fins.
  • the upper end of the rear heat exchanger 10 has at least three slit groups e; and/or, the upper end of the front heat exchanger 20 has at least three slit groups e, wherein at least one parameter of the width, slit length, slit number, and slit direction of different slit groups e is different.
  • a variety of slit groups e as shown in Figures 9 to 12 can be set on the rear heat exchanger 10 and/or the front heat exchanger 20.
  • the widths, number of slits, slit lengths, slit directions, etc. of the various slit groups e are different, so that enhanced heat exchange can be achieved in different areas.
  • the uniformity of the airflow can be improved, and the slit structure with a guiding function can guide the airflow to the heat exchange tubes, so that the airflow in the area with a smaller number of heat exchange tubes can be guided to the area with a larger number of heat exchange tubes, thereby further enhancing the heat exchange and improving the heat exchange efficiency.
  • the number of heat exchange tubes in the area where the front heat exchanger 20 and the rear heat exchanger 10 are connected is relatively small, so a slit structure can be provided to increase the heat exchange area, and a slit group e with an airflow guiding function can be further provided to achieve enhanced heat dissipation.
  • a cross-flow air duct is suitable for being arranged between the rear heat exchanger 10 and the front heat exchanger 20.
  • a groove 14 is partially provided on the front side of the rear heat exchanger 10. At least part of the groove 14 is opposite to the rear volute tongue 210 of the cross-flow air duct.
  • the rear volute tongue 210 and the front volute tongue 220 define the air duct inlet of the cross-flow air duct.
  • the wind resistance can be effectively reduced, so as to increase the air intake volume of the rear heat exchanger 10, improve the heat exchange effect and heat exchange efficiency, and make the whole The air entering the body is more uniform and the wind speed distribution is more uniform.
  • the connection between the front upper heat exchange section 21 and the front lower heat exchange section 22 has a plurality of slit groups e, the plurality of slit groups e located on the air inlet side are outer groups, at least one outer group forms a set group, the set group includes one or a plurality of slit structures arranged along the airflow direction, and in any two adjacent slit structures of the set group, the slit length of the downstream slit structure is not less than the slit length of the upstream slit structure.
  • the connection between the front upper heat exchange section 21 and the front lower heat exchange section 22 has multiple slit groups e, and the multiple slit groups e located on the air inlet side of the fin 10 are outer groups. At least one outer group forms a setting group, and the setting group includes a plurality of slit structures arranged along the direction of airflow. In any two adjacent slit structures of the setting group, the slit length of the downstream slit structure is not less than the slit length of the upstream slit structure.
  • One end of the front upper heat exchange section 21 is connected to one end of the front lower heat exchange section 22.
  • the connected area i.e., the connection
  • a slit group e can be provided on the arc area to increase the heat exchange area of the connection through the slit group e, thereby improving the heat exchange effect.
  • the airflow flows from one side of the heat exchange device 100 to the other side of the heat exchange device 100, and a slit group e corresponding to the air inlet side can be set on the corresponding fin.
  • These slit groups e are defined as outer groups.
  • the structures of the slit structures of the multiple outer groups can be the same or different (for example, a bridge-type slit structure, a louver-type slit structure, etc. can be selected).
  • at least one is a setting group
  • the setting group corresponds to the slit structure
  • the slit structure domain is the same or different from the structure of other outer groups that are not defined as the setting group.
  • the setting group may include a plurality of slit structures arranged along the direction of airflow, for example: two, three or four slit structures, arranged sequentially in the direction from the air inlet side to the air outlet side, and among the plurality of slit structures, the slit structure relatively adjacent to the air inlet side is the upstream slit structure, and the slit structure relatively far from the air inlet side is the downstream slit structure, so that the slit length of the downstream slit structure is greater than or equal to the slit length of the upstream slit structure, so that in the airflow direction, as the gas flow rate decreases, the corresponding slit length increases, thereby reducing wind resistance, increasing airflow, and improving heat exchange efficiency.
  • the slit length of the downstream slit structure is not less than the slit length of the upstream slit structure, which means that the setting group may include two slit structures, and the slit length of the upstream slit structure is less than or equal to the slit length of the downstream slit structure; or the setting group may include three slit structures, the slit lengths of the two upstream slit structures are equal, and the slit length of one downstream slit structure is greater than the slit lengths of the two upstream slit structures; or the setting group may include three slit structures, the slit lengths of the two downstream slit structures are equal, and the slit length of one upstream slit structure is less than the slit lengths of the two downstream slit structures; or the setting group may include three slit structures, and the slit lengths of the three slit structures increase successively in the airflow direction.
  • the number of slit structures at the connection point can be reduced or the slit length of the slit structure can be increased in the airflow direction to improve the wind resistance at the connection point, increase the airflow rate, and improve the heat exchange effect.
  • an indoor unit 1000 of an air conditioner includes: a housing 300, an air supply device 200, and a heat exchange device 100.
  • the top of the housing 300 has an air inlet.
  • the air supply device 200 is disposed in the housing 300 and includes an air duct member and a crossflow fan wheel 230.
  • the crossflow fan wheel 230 is disposed at the air duct inlet of the air duct member.
  • the heat exchange device 100 It is disposed in the housing 300 and located between the air inlet and the air supply device 200 .
  • the air conditioner indoor unit 1000 of the disclosed embodiment is placed in a corner of a wall or hung on an indoor wall.
  • the direction close to the wall is the back, and the direction away from the wall is the front.
  • the top direction of the shell 300 is the top, and the bottom direction of the shell 300 is the bottom.
  • the wind wheel is a cross-flow wind wheel 230.
  • the heat exchange device 100 is arranged around the cross-flow wind wheel 230.
  • the cross-flow wind wheel 230 rotates to generate negative pressure, disturb the airflow, and suck the airflow into the shell 300.
  • the airflow flows through the heat exchange device 100, and after sufficient heat exchange with the heat exchange device 100, it is discharged through the air duct outlet to exchange heat for the indoor space (for example: cooling or heating).
  • the above-mentioned heat exchanger is adopted, and the wind resistance of the bending area where the heat exchanger surrounds the air supply device 200 is smaller, which can improve the heat exchange efficiency and heat exchange effect.
  • the overall heat exchange efficiency can be improved by 35%, which can improve the energy efficiency of the air-conditioning indoor unit 1000.
  • the diameter of the crossflow impeller 230 is D
  • the maximum width of the housing 300 in the front-to-back direction is W
  • 2.6 ⁇ W/D ⁇ 3.7 so that the crossflow impeller 230 has a better air induction effect, increases the air intake, and thus improves the heat exchange effect.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection, an electrical connection, or a communication
  • it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热装置以及空调室内机,第一换热部(a)上设有第一换热流道(11),第二换热部(b)上设有第二换热流道(211),第三换热部(c)上设有第三换热流道(212),第四换热部(d)上设有第四换热流道(221);任一第一换热流道(11)的过流面积均大于任一第三换热流道(212)的过流面积且大于任一第四换热流道(221)的过流面积,任一第二换热流道(211)的过流面积均大于任一第三换热流道(212)的过流面积且大于任一第四换热流道(221)的过流面积。

Description

换热装置以及空调室内机
相关申请的交叉引用
本公开要求邯郸美的制冷设备有限公司、广东美的制冷设备有限公司于2022年10月31日提交的、申请名称为“换热装置以及空调室内机”的、中国专利申请号“202211351383.8”、“202222887796.X”的优先权。
技术领域
本公开涉及空调器技术领域,尤其是涉及一种换热装置以及空调室内机。
背景技术
相关技术中,换热装置通过换热管内流动的制冷剂与周围环境进行换热,例如:与周围空气、周围液体等,制冷剂进入流路时的干度低,流速小,在流动过程中,干度逐渐提高,流速逐渐升高,会导致换热管内制冷剂的流速过快,导致换热管内压降大,难以兼顾换热效率与压降过大问题。
同时,制冷剂需要在循环布设的多根换热管内流动,会出现跨管现象,提高布置难度,加剧换热装置的空间占用。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开在于提出一种换热装置,所述换热装置内部无需跨管,空间占用合理,布置难度低,且可以兼顾换热效率与压降过大问题。
本公开还提出了一种采用上述换热装置的空调室内机。
根据本公开的换热装置,包括:前换热器和后换热器,所述后换热器自上向下倾斜向后延伸,所述后换热器为第一换热部,所述前换热器包括前上换热段和前下换热段,所述前上换热段自上向下倾斜向前延伸且所述前上换热段的上端与所述后换热器的上端衔接,所述前下换热段与所述前上换热段的下端相连且自上向下倾斜向后延伸,所述前上换热段分为第二换热部和位于所述第二换热部下方的第三换热部,所述前下换热段为第四换热部;其中所述第一换热部上设有多个第一换热流道,所述多个第一换热流道的过流面积之和为A1,所述第二换热部上设有多个第二换热流道,所述多个第二换热流道的过流面积之和为A2,所述第三换热部上设有多个第三换热流道,所述多个第三换热流道的过流面积之和为A3,所述第四换热部上设有多个第四换热流道,所述多个第四换热流道的过流面积之和为A4;其中,任一所述第一换热流道的过流面积均大于任一所述第三换热流道的过流面积且大于任一所述第四换热流道的过流面积,任一所述第二换热流道的过流面积均大于任一所述第三换热流道的过流面积且大于任一所述第 四换热流道的过流面积。
由此,使任一第一换热流道的过流面积均大于任一第三换热流道的过流面积且大于任一第四换热流道的过流面积,任一第二换热流道的过流面积均大于任一第三换热流道的过流面积且大于任一第四换热流道的过流面积,一方面,各个换热部内的换热管数量可以确定,对应具有多种流路解法,而每种流路接法下,均不会出现跨管现象;另一方面,换热管数量与制冷剂干度适配,干度小的区域少设置换热管,以减少子流路数量,干度大的区域多设置换热管,以增加子流路数量,可以兼顾换热效率与压降,确保换热装置各个区域压降均不会过大,且换热效率高,换热效果好。
在一些实施例中,2.17≤A1/A2≤5.67,2.5≤A3/A2≤3.33,0.75≤A3/A4≤2,0.8≤(A1+A2)/(A3+A4)≤2.22。
在一些实施例中,,任一所述第一换热流道与任一所述第二换热流道的过流面积相同;和/或,任一所述第三换热流道与任一所述第二换热流道的过流面积相同。
在一些实施例中,所述换热装置为管翅式换热器以由换热管限定出对应的换热流道,多个所述第一换热流道的规格相同或不同且直径取值均为5mm-7mm,多个所述第二换热流道的规格相同或不同且直径取值均为5mm-7mm,多个所述第三换热流道的规格相同或不同且直径取值均为4mm-6.5mm,多个所述第四换热流道的规格相同或不同且直径取值均为4mm-6.5mm。
在一些实施例中,所述第三换热部与所述第四换热部通过曲线段平滑连接,在所述换热装置的横截面上,所述第一换热部的长度方向沿直线延伸且长度为L1,所述第二换热部的长度方向沿直线延伸且长度为L2,所述第三换热部的长度方向沿直线延伸的长度为L31且沿曲线延伸的长度为L32,所述第四换热部的长度方向沿直线延伸的长度为L41且沿曲线延伸的长度为L42,其中,1.85≤L1/L2≤3.56,1.1≤(L31+L32)/L2≤2.2,0.7≤(L31+L32)/(L41+L42)≤1.9。
在一些实施例中,在所述换热装置的横截面上,所述第一换热部的宽度为B1,所述第二换热部的宽度为B2,所述第三换热部的宽度为B3,2.85≤L1/B1≤5.14,1.23≤L2/B2≤1.94,1.5≤L41/B3≤2.44。
在一些实施例中,B1=B2=B3。
在一些实施例中,所述换热装置为管翅式换热器,所述前上换热段的翅片与所述前下换热段的翅片为同一翅片的不同部分,所述后换热器的翅片与所述前换热器的翅片为一个翅片切分的两部分。
在一些实施例中,所述换热装置为管翅式换热器,所述第一换热部、所述第二换热部、所述第三换热部和所述第四换热部上分别具有为沿翅片的宽度方向排列多排管组,每排所述管组均包括沿翅片的长度方向排列的多个换热管,所述换热管限定出相应的换热流道,沿翅片的长度方向每相邻的两个所述换热管之间设有开缝组。
在一些实施例中,所述前换热器中相邻的两排所述换热管组中,上游组中至少一个所述开缝组所包括的开缝数量不小于所述前换热器中下游组中任一所述开缝组所包括 的开缝数量,且上游组中至少一个所述开缝组的宽度不小于所述前换热器中下游组中任一所述开缝组的宽度。
在一些实施例中,所述后换热器包括后上换热段和后下换热段,所述后上换热段中至少一个所述开缝组的宽度大于等于所述后下换热段中至少一个所述开缝组的宽度。
在一些实施例中,所述后换热器的上端具有至少三种开缝组;和/或,所述前换热器的上端具有至少三种开缝组,其中,不同种所述开缝组的宽度、开缝长度、开缝数量、开缝方向中的至少一个参数不同。
在一些实施例中,所述后换热器与所述前换热器之间适于设置贯流风道,所述后换热器的前侧局部设有凹槽,所述凹槽的至少部分与所述贯流风道的后蜗舌相对。
在一些实施例中,所述前上换热段与所述前下换热段的连接处具有多个开缝组,所述多个开缝组中位于进风侧的为外侧组,至少一个所述外侧组形成为设定组,所述设定组包括一个或者沿气流经过方向排列的多个开缝结构,所述设定组的任意相邻的两个所述开缝结构中,位于下游的所述开缝结构的开缝长度不小于位于上游的所述开缝结构的开缝长度。
根据本公开的空调室内机,包括:壳体、送风装置以及换热装置,所述壳体的顶部具有进风口,所述送风装置设于所述壳体内且包括风道件和贯流风轮,所述贯流风轮设于所述风道件的风道进口处,所述换热装置设于所述壳体内且位于所述进风口与所述送风装置之间。
在一些实施例中,所述贯流风轮的直径为D,所述壳体在前后方向上的最大宽度为W,2.6≤W/D≤3.7。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的空调室内机的示意图。
图2是根据本公开实施例的换热装置的示意图。
图3是根据本公开实施例的换热装置可行的第一流路布置方式的示意图。
图4是根据本公开实施例的换热装置可行的第二流路布置方式的示意图。
图5是根据本公开实施例的换热装置可行的第三流路布置方式的示意图。
图6是根据本公开实施例的换热装置可行的第四流路布置方式的示意图。
图7是根据本公开实施例的换热装置的不同直径的第一换热管和第二换热管的能效图。
图8是根据本公开实施例的换热装置的不同直径的第三换热管和第四换热管的能效图。
图9是根据本公开实施例的一种开缝结构的示意图。
图10是根据本公开实施例的另一种开缝结构的一个角度的示意图。
图11是根据本公开实施例的另一种开缝结构的另一个角度的示意图。
图12是根据本公开实施例的又一种开缝结构的示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面,参照附图,描述根据本公开实施例的换热装置100以及空调室内机1000。
如图1和图2所示,根据本公开第一方面实施例的换热装置100,包括:前换热器20和后换热器10。
后换热器10自上向下倾斜向后延伸,后换热器10为第一换热部a,前换热器20包括前上换热段21和前下换热段22,前上换热段21自上向下倾斜向前延伸且前上换热段21的上端与后换热器10的上端衔接,前下换热段22与前上换热段21的下端相连且自上向下倾斜向后延伸,前上换热段21分为第二换热部b和位于第二换热部b下方的第三换热部c,前下换热段22为第四换热部d。
前换热器20限定出第二换热部b、第三换热部c以及第四换热部d,后换热器10限定出第一换热部a,第一换热部a与第二换热部b(即前上换热段21)在前后方向上的上端衔接(本公开实施例中所涉及的衔接可以是分体件之间的拼接,也可以是一体件的弯折),第三换热部c位于第二换热部b的下方并倾斜向前延伸,第四换热部d位于第三换热部c的下方并倾斜向后延伸,以通过第一换热部a、第二换热部b、第三换热部c以及第四换热部d形成包绕结构,用于包绕送风装置200。
在一些实施例中,第二换热部b中的第二换热流道211的管径均相同且均大于第三换热部c中的第三换热流道212的管径。第三换热部c和第四换热部d相连接并两者的延伸方向呈夹角。
在一些实施例中,如图2所示,前换热器20的迎风侧的第一排换热管中的第一个 至第四个换热管所在管段定义为第二换热部b,第五个换热管至第十二个换热管所在管段定义为第三换热部c,第十三个换热管至最下端最后一个换热管所在管段定义为第四换热部,而第二换热部b,第三换热部c以及第四换热部d可以基于延伸方向以及换热管数量进行具体限定。
第一换热部a上设有多个第一换热流道11,多个第一换热流道11的过流面积之和为A1,第二换热部b上设有多个第二换热流道211,多个第二换热流道211的过流面积之和为A2,第三换热部c上设有多个第三换热流道212,多个第三换热流道212的过流面积之和为A3,第四换热部d上设有多个第四换热流道221,多个第四换热流道221的过流面积之和为A4,任一第一换热流道11的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道221的过流面积(即第一换热流道11>第三换热流道212、第一换热流道11>第四换热流道221),任一第二换热流道211的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道221的过流面积(即第二换热流道211>第三换热流道212、第二换热流道211>第四换热流道221)。
例如:可以在第一换热部a上设置第一换热管,多个第一换热管限定出第一换热流道11、第二换热部b上设置第二换热管,多个第二换热管限定出第二换热流道211、第三换热部c上设置第三换热管,多个第三换热管限定出第三换热流道212、第四换热部d上设置第四换热管,多个第四换热管限定出第四换热流道221,在换热装置100的横截面上(是指在垂直于送风装置200的贯流风轮230轴线的平面上横截换热装置100所得到的截面),多个第一换热管的截面积之和对应为第一换热流道11的过流面积之和A1,多个第二换热管的截面积之和对应为第二换热流道211的过流面积之和A2,多个第三换热管的截面积之和对应为第三换热流道212的过流面积之和A3,多个第四换热管的截面积之和对应为第四换热流道221的过流面积之和A4。
在流路的入口阶段,制冷剂的干度小,液相制冷剂质量大于气相制冷剂质量,任意第二换热流道211的过流面积均大于第三换热流道212和第四换热流道221的过流面积,管内制冷剂流速较低,可以提高制冷剂在入口阶段的流速,以提高换热系数;
当制冷剂流动至中间阶段时,制冷剂的干度逐渐增大,气相制冷剂质量逐渐大于液相制冷剂质量,管内制冷剂的流速逐渐升高,而任一第一换热流道11的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道221的过流面积,在可以稳定换热的同时,压降也可以处于合理范围内;
在制冷剂流动至出口阶段时,制冷剂的干度较大,气相制冷剂的质量远大于液相制冷剂的质量,而第三换热流道212和第四换热流道221的过流面积下降,管内制冷剂流速会显著提高,对应形成更多的制冷剂子流路,流路数量更多,在确保换热效率的前提下,可以避免制冷剂的压降过大。
根据本公开实施例的换热装置100,使任一第一换热流道11的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道221的过流面积,任一第二换热流道211的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道 221的过流面积,一方面,各个换热部内的换热管数量可以确定,对应具有多种流路接法,而每种流路接法下,均不会出现跨管现象;另一方面,换热管数量与制冷剂干度适配,干度小的区域少设置换热管,以减少子流路数量,干度大的区域多设置换热管,以增加子流路数量,可以兼顾换热效率与压降,确保换热装置100各个区域压降均不会过大,且换热效率高,换热效果好。
根据本公开的一些实施例,进而使A1、A2、A3、A4满足:2.17≤A1/A2≤5.67,2.5≤A3/A2≤3.33,0.75≤A3/A4≤2,0.8≤(A1+A2)/(A3+A4)≤2.22。
参见表1-表4,通过第一实验表至第四实验表,可以得出制冷剂流路的不同阶段,换热管数量的匹配性设置,可以提高换热性能。
表1:第一实验表
表1为A3/A2的数值为2.8,A3/A4的数值为1.5前提下,不同A1/A2数值下的,换热装置100能效表,优选地,A1/A2数值为2.5时,换热装置100的能效更高。
表2:第二实验表
表2为A1/A2的数值为2.5,A3/A4的数值为1.5前提下,不同A3/A2数值下的,换热装置100能效表,优选地,A3/A2的数值为2.9时,换热装置100的能效更高。
表3:第三实验表
表3为A1/A2数值为2.5,A3/A2的数值为2.9前提下,不同A3/A4数值下,换热装置100能效表,优选地,A3/A4的数值为1.4时,换热装置100的能效更高。
表4:第四实验表

表4为不同(A1+A2)/(A3+A4)数值下,换热装置100能效表,优选地,(A1+A2)/(A3+A4)为1.5时,换热装置100的能效更高。
由表1-表4可知,各个换热部内换热管的过流面积会影响换热装置100的换热性能,而基于本公开上述比值关系的限定,可以使制冷剂流路的入口阶段、中间阶段以及出口阶段的换热管数量更加合理,低干度区域,流速低,对应减少换热管数量,在高干度区域,流速高,压降大,对应增加换热管数量,可以有效提高换热装置100能效,提高换热效率,最高可以提升35%。
使每一个第一换热流道11的过流面积大于第三换热流道212和第四换热流道221的过流面积,第二换热流道211的过流面积大于第三换热流道212和第四换热流道221的过流面积,第一换热流道11和第二换热流道211的过流面积相对更大,且满足2.17≤A1/A2≤5.67,2.5≤A3/A2≤3.33,2.5≤A3/A2≤3.33、0.75≤A3/A4≤2,0.8≤(A1+A2)/(A3+A4)≤2.22,第一换热管、第二换热管、第三换热管以及第四换热管的数量以及排布形式被基本限定。
参见图3-图6所示,本公开限定多个第一换热流道11、多个第二换热流道211、多个第三换热流道212以及多个第四换热流道221中的任一个换热流道之间的过流面积大小关系,并进一步限定第一换热流道11与第二换热流道211的总过流面积的比值关系、第二换热流道211与第三换热流道212的总过流面积的比值关系、第三换热流道与第四换热流道221的总过流面积比值关系、第一换热流道11与第二换热流道211的总过流面积之和,与第三换热流道212与第四换热流道221的总过流面积之和的比例关系,可以实现对第一换热部a、第二换热部b、第三换热部c以及第四换热部d内换热管的数量进行限制,各个换热部内的换热管数量确定后,可以对应形成多种换热管接法,每种接法对应的布置方式均可以保证不存在跨管、跳管现象。
参见图3,为本公开可行的第一流路布置方式。
第二换热部b的进风侧第一排第二换热管组成第一组,第二排和第三排上端两个第二换热管组成第二组,第二排和第三排下端两个第二换热管组成第三组;
第一换热部a的进风侧第一排上端六个第一换热管组成第四组,进风侧第一排下端四个以及第二排和第三排的下端两个第一换热管组成第五组,第二排上端两个以及第三排上端六个第一换热管组成第六组,第二排中间六个以及第三排中间两个组成第七组;
第三换热部c的进风侧第一排上端两个、第二排上端三个以及第三排上端三个第三换热管组成第八组,第一排第三个、第四个、第二排第四个、第五个、第三排第三个至第六个第三换热管组成第九组;
第四换热部d的进风侧第三排上端前三个第四换热管与第三换热部c第一排第五个、第六个、第二排第六个至第七个,第三排第七个第三换热管组成第十组,第四换热部d的进风侧第一排的上端前两个、第二排前三个、第三排第四个第四换热管以及第三 换热部c第一排下端两个第三换热管组成第十一组,第四换热部d第一排第五个至第七个、第二排第四个至第六个、第三排第五个和第六个第四换热管组成第十二组,第一排下端四个、第二排下端两个以及第三排下端两个第四换热管组成第十一组,每组内的多个换热管依次相连,以使每组的一端形成为制冷剂进入口,一端形成为制冷剂流出口。
具体流路如下:制冷剂由第一组的制冷剂入口进入,并由第一组的制冷剂出口流出,从第四组的制冷剂进口流入,第四组的制冷剂出口流出后,分两路分别流入第二组和第三组的制冷剂进口,第二组制冷剂出口与第三组制冷剂出口交汇,且流出的制冷剂分三路分别流入第五组制冷剂入口、第六组制冷剂入口和第七组制冷剂入口,第五组制冷剂出口、第六组制冷剂出口、第七制冷剂出口汇流的制冷剂可以分六路,分别流入第八组制冷剂入口至第十三组制冷剂入口,第八组制冷剂出口至第十三组制冷剂出口流出的制冷剂汇流后可以回流至压缩机。
由此,第一换热部a至第四换热部d内的换热管数量、排布方式圈定后,可以实现流路的合理布置,制冷剂依次流通,无需跨管流通。
参见图4-图6所示,图4为第二流路布置方式,图5为第三流路布置方式,图6为第四流路布置方式,与第一流路布置方式的区别在于,多个换热管的分组方式不同,但均由第二换热部b流入,第三换热部c和第四换热部d内实现汇流后排出,可以实现在入口阶段、中间阶段和出口阶段,实现制冷剂子流路的数量调整,例如:图3对应为1-2-3-6的制冷剂子流路变化趋势,且相应布置形式下,不存在跨管、跳管现象,本公开不进一步进行描述。
在流路的入口阶段(对应制冷剂处于第一组、第四组阶段),制冷剂的干度小,液相制冷剂质量大于气相制冷剂质量,管内制冷剂流速较低,第一换热管和第二换热管的数量相对更少,仅形成一条制冷剂子流路,可以提高制冷剂在入口阶段的流速,以提高换热系数;
当制冷剂流动至中间阶段(对应制冷剂处于第二组、第三组、第五组、第六组和第七组阶段)时,制冷剂的干度逐渐增大,气相制冷剂质量逐渐大于液相制冷剂质量,管内制冷剂的流速逐渐升高,制冷剂子流路由两条变成三条,在可以稳定换热的同时,压降也可以处于合理范围内;
在制冷剂流动至出口阶段(对应制冷剂处于第八组至第十三组阶段)时,制冷剂的干度较大,气相制冷剂的质量远大于液相制冷剂的质量,管内制冷剂流速会显著提高,对应形成六条制冷剂子流路,流路数量更多,在确保换热效率的前提下,可以避免制冷剂的压降过大。
根据本公开实施例的换热装置100,使任一第一换热流道11的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道221的过流面积,任一第二换热流道211的过流面积均大于任一第三换热流道212的过流面积且大于任一第四换热流道221的过流面积,且满足2.17≤A1/A2≤5.67,2.5≤A3/A2≤3.33,0.75≤A3/A4≤2,0.8≤(A1+A2)/(A3+A4)≤2.22,一方面,各个换热部内的换热管数量可以确定, 对应具有多种流路接法,而每种流路接法下,均不会出现跨管现象;另一方面,换热管数量与制冷剂干度适配,干度小的区域少设置换热管,以减少子流路数量,干度大的区域多设置换热管,以增加子流路数量,可以兼顾换热效率与压降,确保换热装置100各个区域压降均不会过大,且换热效率高,换热效果好。
现有技术中,换热装置100的换热效率难以满足使用需求,一般会在前换热器20和后换热器10的进风侧进一步设置背管,通过背管增加散热,而本公开的换热装置100的换热效率更高,无需设置背管,即可满足使用需求。
根据本公开的一些实施例,任一第一换热流道11与任一第二换热流道211的过流面积相同;和/或,任一第三换热流道212与任一第四换热流道221的过流面积相同。
在一些实施例中,多个第一换热流道11中任一个的过流面积,与多个第二换热流道211中任一个的过流面积相同;在另一些实施例中,多个第三换热流道212中任一个的过流面积,与多个第四换热流道221中任一个的过流面积相同;优选地,多个第一换热流道11中任一个的过流面积,与多个第二换热流道211中任一个的过流面积相同;多个第三换热流道212中任一个的过流面积,与多个第四换热流道221中任一个的过流面积相同。
由此,形成第一换热流道11的第一换热管、形成第二换热流道211的第二换热管可以选用相同规格尺寸的换热管,形成第三换热流道212的第三换热管、形成第四换热流道221的第四换热管可以选用相同规格尺寸的换热管,只需要两种相同规格的换热管(例如:铜管),利于标准化设置,也可以降低装配成本,提高装配效率。
如图2所示,在一些实施例中,换热装置100为管翅式换热器以由换热管限定出对应的换热流道,多个第一换热流道11的规格相同或不同且直径取值均为5mm-7mm,多个第二换热流道211的规格相同或不同且直径取值均为5mm-7mm,多个第三换热流道212的规格相同或不同且直径取值均为4mm-6.5mm,多个第四换热流道221的规格相同或不同且直径取值均为4mm-6.5mm。
第一换热部a内的第一换热管、第二换热部b内的第二换热管分别对应的直径D1和直径D2,第三换热部c和第四换热部d的进风侧第一排、第二排换热管的直径为D3,第三换热部c和第四换热部d的进风侧第三排换热管的直径为D4。
第一换热流道11、第二换热流道211处于制冷剂流路的入口阶段,该阶段制冷剂的干度较低,流速低,如果采用较小管径,压降变化明显,为了平衡压降可以增大管径,但减少换热管数量,又会导致管内换热面积不足,不利于换热提升,因此,本公开采用管径较大的换热管,并提升换热管数量,以增加换热面积,同时降低入口阶段的制冷剂子流路数量,实现换热提升。
参见图7,图7示出了在0.3干度下不同管径换热管对换热装置100的换热能效的影响,由图7可知,D1和D2的优选值为6.35mm。
第三换热流道212和第四换热流道221处于制冷剂流路的中间阶段以及出口阶段,干度逐渐增大,流速组件增高,如果采用较大管径,则区域内换热管数较小,会导致管 内换热面积不足,为了保证区域内换热稳定性,需要采用较小的管径,更多的换热管数量,实现换热面积的提升,另外小管径虽然可以提升换热系数,由于压降较大,需要进一步增加制冷剂子流路来平衡压降。
参见图8,图8示出了在0.6干度下不同管径换热管对换热装置100的换热能效的影响,由图8可知,D3和D4的优选值为5mm。这样,可以根据不同换热部对应制冷剂流路阶段,匹配相应管径的换热管,可以兼顾换热效率以及压降问题。
如图2所示,根据本公开的一些实施例,第三换热部c与第四换热部d通过曲线段平滑连接,在换热装置100的横截面上,第一换热部a的长度方向沿直线延伸且长度为L1,第二换热部b的长度方向沿直线延伸且长度为L2,第三换热部c的长度方向沿直线延伸的长度为L31且沿曲线延伸的长度为L32,第四换热部d的长度方向沿直线延伸的长度为L41且沿曲线延伸的长度为L42,其中,1.85≤L1/L2≤3.56,1.1≤(L31+L32)/L2≤2.2,0.7≤(L31+L32)/(L41+L42)≤1.9。
本公开进一步限定第一换热部a长度与第二换热部b长度的比例关系,第二换热部b长度与第三换热部c长度的比例关系,第三换热部c长度与第四换热部d长度的比例关系。
参见表5-表7,通过第五实验表至第七实验表,可以得出各个换热部的不同长度匹配制冷剂流路的不同阶段,换热管数量的匹配设置,可以提高换热性能。
表5:第五实验表
表5为(L31+L32)/L2的数值为1.28,(L31+L32)/(L41+L42)的数值为1.08前提下,不同L1/L2数值下的,换热装置100能效表,优选地,L1/L2的数值为2.8时,换热装置100的能效更高。
表6:第六实验表
表6为L1/L2的数值为2.64,(L31+L32)/(L41+L42)的数值为1.08前提下,不同(L31+L32)/L2数值下的,换热装置100能效表,优选地,(L31+L32)/L2的数值为1.7时,换热装置100的能效更高。
表7:第七实验表

表7为L1/L2的数值为2.64,(L31+L32)/L2的数值为1.36前提下,不同(L31+L32)/(L41+L42)数值下的,换热装置100能效表,优选地,(L31+L32)/(L41+L42)的数值为1.1时,换热装置100的能效更高。
由表5-表7可知,通过合理限定第一换热部a、第二换热部b、第三换热部c以及第四换热部d的长度,可以改善换热装置100的气流分布,气流分布更加均匀,流速均一性更好,也可以进一步提高换热效率和换热效果。
在图2所示的实施例中,在换热装置100的横截面上,第一换热部a的宽度为B1,第二换热部b的宽度为B2,第三换热部c的宽度为B3,2.85≤L1/B1≤5.14,1.23≤L2/B2≤1.94,1.5≤L41/B3≤2.44。
本公开进一步限定第一换热部a的长宽比,第二换热部b的长宽比以及第三换热部c的长宽比。
参见表8-表10,通过第八实验表至第十实验表,可以得出各个换热部的长宽比的合理配比,可以平稳风量,改善风速分布。
表8:第八实验表
表8为L2/B2的数值为1.6,L41/B3的数值为2.08前提下,不同L1/B1数值下的,换热装置100能效表,优选地,L1/B1的数值为4.4时,换热装置100的能效更高。
表9:第九实验表
表9为L1/L2的数值为4.4,L41/B3的数值为2.08前提下,不同L2/B2数值下的,换热装置100能效表,优选地,L2/B2的数值为1.6时,换热装置100的能效更高。
表10:第十实验表

表10为L1/L2的数值为2.64,(L31+L32)/L2的数值为1.36前提下,不同(L31+L32)/(L41+L42)数值下的,换热装置100能效表,优选地,(L31+L32)/(L41+L42)的数值为1.1时,换热装置100的能效更高。
由表8-表10可知,通过合理限定第一换热部a、第二换热部b、第三换热部c以及第四换热部d的长宽比,可以改善换热装置100的气流分布,平稳风量,风速分布,并可以实现整机结构进行优化,可以进一步提高换热效率和换热效果。
在一些实施例中,B1=B2=B3,即第一换热部a、第二换热部b、第三换热部c以及第四换热部d的宽度相同,便于前换热器20和后换热器10的衔接。
如图2所示,根据本公开的一些实施例,换热装置100为管翅式换热器,前上换热段21的翅片与前下换热段22的翅片为同一翅片的不同部分,后换热器10的翅片与前换热器20的翅片为一个翅片切分的两部分。
定义前换热器20的翅片为第一片段,后换热器10的翅片为第二片段,多个第一片段和多个第二片段构造为一体件,通过一次剪裁(裁剪第一片段与第二片段之间的多余部分),得到多个与第一片段的外形轮廓相同的第一部分,多个与第二片段外形轮廓相同的第二部分,第一部分与第二部分可以相连或断开,多个第一部分依次排列,多个第二部分依次排列,再经过二次剪裁(将相邻的第一片段分离、将相邻的第二片段分离),得到多个分体或相连的第一片段和第二片段,再通过角度调整,搭接等衔接方式,将第一片段与第二片段相连,而多个相连的第一片段、第二片段按照叠置方向进行叠置,可以直接得到换热装置100。
前换热器20和后换热器10一体成型,通过在一大张翅片板材上裁剪、切割,即可得到多个包括第一片段和第二片段的换热翅片,多个换热翅片叠置并穿设换热管,即可得到换热装置100,可以降低加工难度,提高加工效率。
同时,多个换热部的宽度相同,在一大张翅片板材上裁切时的平面利用率更高,可以降低废料率,降低物料成本。
如图2所示,在一些实施例中,换热装置100为管翅式换热器,第一换热部a、第二换热部b、第三换热部c和第四换热部d上分别具有为沿翅片的宽度方向排列多排管组,每排管组均包括沿翅片的长度方向排列的多个换热管,换热管限定出相应的换热流道,沿翅片的长度方向每相邻的两个换热管之间设有开缝组e。
由此,通过在翅片上设置开缝组e,可以增加翅片的换热面积,以提高换热效率,且开缝组e邻近换热管设置,可以将部分气流导向至换热管,也可以进一步提高换热效率。
参见9-图12所示,图9示出了一种桥式开缝结构,具体为穿孔区域上设置在长度方向两端与穿孔b1相连的桥片a1,而其他区域翅片间隔开的开缝结构;图10和图11示出了一种单窗式开缝结构,具体为穿孔区域上设置一端与穿孔b1相连,另一端远离 穿孔b1延伸的挡片c1的单窗开缝结构,图12示出了一种双向百叶窗式开缝结构,具体为穿孔区域上设置相对设置的两组百叶窗,两组百叶窗的挡片c1(即叶片)相对设置,而图12的变形结构可以为,仅设置一组百叶窗的单向百叶窗式开缝结构,均可以有效增加翅片的换热面积,当然本公开开缝结构不限于此,还可以设置凸出的矩形块等开缝结构,本公开不做具体限制。
如图2所示,换热管组为多组,多组换热管组在前换热器20的厚度方向以及后换热器10的厚度方向上依次叠置,而气流方向为由前换热器20的宽度一侧流向另一侧,对应前换热器20的一侧为进风面,另一侧为出风面,上游组指邻近出风面的换热管组,下游组指邻近出风面的换热管组。
使前换热器20中相邻的两排换热管组中,上游组中至少一个开缝组e所包括的开缝数量不小于前换热器20中下游组中任一开缝组e所包括的开缝数量,且上游组中至少一个开缝组e的宽度不小于前换热器20中下游组中任一开缝组e的宽度,在气流方向上,进风侧气体流速快,开缝数量更多,可以提高换热效率,而出风侧气体流速低,下游的开缝结构的宽度更大,可以降低风阻,以提高气流量,也可以提高换热效率。
同理,后换热器10包括后上换热段12和后下换热段13,后上换热段12中至少一个开缝组e的宽度大于等于后下换热段13中至少一个开缝组e的宽度,也可以提高换热效率以及换热效果。
例如:后上换热段12上的开缝组e的开缝数量为2-4个,后下换热段13的开缝数量为2-3个,两者的开缝宽度分别为H1和H2,并满足,1≤H1/H2≤1.2的比例关系,如此设置,可以增加各排换热管组对应的开缝组e之间的虚切,以降低翅片的逆向导热。
如图2所示,在一些实施例中,后换热器10的上端具有至少三种开缝组e;和/或,前换热器20的上端具有至少三种开缝组e,其中,不同种开缝组e的宽度、开缝长度、开缝数量、开缝方向中的至少一个参数不同。
具体地,可以在后换热器10和/或前换热器20上设置如图9-图12所示的多种开缝组e,多种开缝组e的宽度、开缝数量、开缝长度、开缝方向等不同,可以实现在不同区域上进行强化换热,同时可以提高气流均匀性,且具有导向作用的开缝结构,可以将气流向换热管导向,以使换热管数量较少的区域的气流可以被导向至换热管较多的区域,实现进一步地强化换热,提高换热效率。
需要指出的是,前换热器20与后换热器10衔接的区域的换热管数量较少,因此可以设置开缝结构提高换热面积的同时,进一步设置具有气流导向作用的开缝组e,以实现强化散热。
后换热器10与前换热器20之间适于设置贯流风道,后换热器10的前侧局部设有凹槽14,凹槽14的至少部分与贯流风道的后蜗舌210相对,后蜗舌210与前蜗舌220限定出贯流风道的风道进口。
由此,通过在后换热器10上设置凹槽14,并使凹槽14与后蜗舌210至少部分相对,可以有效降低风阻,以增加后换热器10的进气量,提高换热效果和换热效率,并使整 体进风更加均匀,风速分布均匀性更高。
根据本公开的一些实施例,前上换热段21与前下换热段22的连接处具有多个开缝组e,多个开缝组e中位于进风侧的为外侧组,至少一个外侧组形成为设定组,设定组包括一个或者沿气流经过方向排列的多个开缝结构,设定组的任意相邻的两个开缝结构中,位于下游的开缝结构的开缝长度不小于位于上游的开缝结构的开缝长度。
前上换热段21和前下换热段22的连接处具有多个开缝组e,多个开缝组e中位于翅片10的进风侧的为外侧组,至少一个外侧组形成为设定组,设定组包括一个沿气流经过方向排列的多个开缝结构,设定组的任意相邻的两个开缝结构中,位于下游的开缝结构的开缝长度不小于位于上游的开缝结构的开缝长度。
上换热段与下换热段之间呈锐角,前上换热段21的一端与前下换热段22的一端相连,相连的区域(即连接处)形成为弧形,弧形区域上可以设置开缝组e,以通过开缝组e增加连接处的换热面积,提高换热效果。
气流由换热装置100的一侧流动至换热装置100的另一侧,对应翅片上可以设置对应进风侧的开缝组e,这些开缝组e定义为外侧组,外侧组可以为多个,每个外侧组均可以包括多个开缝结构,多个外侧组的开缝结构的结构可以相同或不同(例如:可以选择桥式开缝结构、百叶窗式开缝结构等),而多个外侧组中,至少一个为设定组,设定组对应采用开缝结构,开缝结构域未定义为设定组的其他外侧组的结构相同或不同。
设定组可以包括一个沿气流经过方向排列的多个开缝结构,例如:两个、三个或四个开缝结构,在进风侧至出风侧的方向上依次排列,而多个开缝结构中,相对邻近进风侧的开缝结构为上游的开缝结构,相对远离进风侧的开缝结构为下游的开缝结构,使下游的开缝结构的开缝长度大于或等于上游的开缝结构的开缝长度,以在气流方向上,随着气体流速的下降,对应开缝长度上升,从而降低风阻,提高气流量,以提高换热效率。
任意相邻的两个开缝结构中,位于下游的开缝结构的开缝长度不小于位于上游的开缝结构的开缝长度是指,设定组可以包括两个开缝结构,上游的开缝结构的开缝长度小于等于下游的开缝结构的开缝长度;或者设定组可以包括三个开缝结构,上游的两个开缝结构的开缝长度相等,而下游的一个开缝结构的开缝长度大于上游的两个开缝结构的开缝长度;或者设定组可以包括三个开缝结构,下游的两个开缝结构的开缝长度相等,而上游的一个开缝结构的开缝长度小于下游的两个开缝结构的开缝长度;或者设定组可以包括三个开缝结构,三个开缝结构的开缝长度,在气流方向上依次增大。
由此,通过设置设定组,并使设定组内相邻的两个开缝结构中,位于下游的开缝结构的开缝长度大于等于位于上游的开缝结构的开缝长度,以在气流方向上,使连接处的开缝结构的数量更少或开缝结构的开缝长度增大,以改善连接处的风阻,增大气流量,提高换热效果。
如图1所示,根据本公开第二方面实施例的空调室内机1000,包括:壳体300、送风装置200以及换热装置100,壳体300的顶部具有进风口,送风装置200设于壳体300内且包括风道件和贯流风轮230,贯流风轮230设于风道件的风道进口处,换热装置100 设于壳体300内且位于进风口与送风装置200之间。
本公开实施例的空调室内机1000放置在墙体角落或挂设在室内墙壁上,在水平方向上,靠近墙壁的方向为后,远离墙壁的方向为前,在竖直方向上,壳体300的顶部方向为上,壳体300的底部方向为下,风轮构造为贯流风轮230,换热装置100环绕贯流风轮230设置,贯流风轮230转动产生负压,扰动气流,并将气流吸入壳体300内,气流流经换热装置100,并与换热装置100充分换热后,通过风道出口排出,以对室内空间进行换热(例如:制冷或制热)。
根据本公开实施例的空调室内机1000,采用上述换热器,换热器包绕送风装置200的弯折区域风阻更小,可以提高换热效率以及换热效果,换热效率综合可以提升35%,可以提高空调室内机1000的能效。
贯流风轮230的直径为D,壳体300在前后方向上的最大宽度为W,2.6≤W/D≤3.7,以使贯流风轮230的引风效果更好,增加进气量,从而提高换热效果。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的 示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种换热装置,其中,包括:
    后换热器,所述后换热器自上向下倾斜向后延伸,所述后换热器为第一换热部;
    前换热器,所述前换热器包括前上换热段和前下换热段,所述前上换热段自上向下倾斜向前延伸且所述前上换热段的上端与所述后换热器的上端衔接,所述前下换热段与所述前上换热段的下端相连且自上向下倾斜向后延伸,所述前上换热段分为第二换热部和位于所述第二换热部下方的第三换热部,所述前下换热段为第四换热部;
    所述第一换热部上设有多个第一换热流道,所述多个第一换热流道的过流面积之和为A1,所述第二换热部上设有多个第二换热流道,所述多个第二换热流道的过流面积之和为A2,所述第三换热部上设有多个第三换热流道,所述多个第三换热流道的过流面积之和为A3,所述第四换热部上设有多个第四换热流道,所述多个第四换热流道的过流面积之和为A4;其中,任一所述第一换热流道的过流面积均大于任一所述第三换热流道的过流面积且大于任一所述第四换热流道的过流面积,任一所述第二换热流道的过流面积均大于任一所述第三换热流道的过流面积且大于任一所述第四换热流道的过流面积。
  2. 根据权利要求1所述的换热装置,其中,2.17≤A1/A2≤5.67,2.5≤A3/A2≤3.33,0.75≤A3/A4≤2,0.8≤(A1+A2)/(A3+A4)/≤2.22。
  3. 根据权利要求1-2中任一项所述的换热装置,其中,任一所述第一换热流道与任一所述第二换热流道的过流面积相同;和/或,任一所述第三换热流道与任一所述第四换热流道的过流面积相同。
  4. 根据权利要求1-3中任一项所述的换热装置,其中,所述换热装置为管翅式换热器以由换热管限定出对应的换热流道,多个所述第一换热流道的规格相同或不同且直径取值均为5mm-7mm,多个所述第二换热流道的规格相同或不同且直径取值均为5mm-7mm,多个所述第三换热流道的规格相同或不同且直径取值均为4mm-6.5mm,多个所述第四换热流道的规格相同或不同且直径取值均为4mm-6.5mm。
  5. 根据权利要求1-4中任一项所述的换热装置,其中,所述第三换热部与所述第四换热部通过曲线段平滑连接,在所述换热装置的横截面上,所述第一换热部的长度方向沿直线延伸且长度为L1,所述第二换热部的长度方向沿直线延伸且长度为L2,所述第三换热部的长度方向沿直线延伸的长度为L31且沿曲线延伸的长度为L32,所述第四换热部的长度方向沿直线延伸的长度为L41且沿曲线延伸的长度为L42,其中,1.85≤L1/L2≤3.56,1.1≤(L31+L32)/L2≤2.2,0.7≤(L31+L32)/(L41+L42)≤1.9。
  6. 根据权利要求5所述的换热装置,其中,在所述换热装置的横截面上,所述第一换热部的宽度为B1,所述第二换热部的宽度为B2,所述第三换热部的宽度为B3,2.85≤L1/B1≤5.14,1.23≤L2/B2≤1.94,1.5≤L41/B3≤2.44。
  7. 根据权利要求6所述的换热装置,其中,B1=B2=B3。
  8. 根据权利要求1-7中任一项所述的换热装置,其中,所述换热装置为管翅式换热器,所述前上换热段的翅片与所述前下换热段的翅片为同一翅片的不同部分,所述后换热器的翅片与所述前换热器的翅片为一个翅片切分的两部分。
  9. 根据权利要求1-8中任一项所述的换热装置,其中,所述换热装置为管翅式换热器,所述第一换热部、所述第二换热部、所述第三换热部和所述第四换热部上分别具有为沿翅片的宽度方向排列多排管组,每排所述管组均包括沿翅片的长度方向排列的多个换热管,所述换热管限定出相应的换热流道,沿翅片的长度方向每相邻的两个所述换热管之间设有开缝组。
  10. 根据权利要求9所述的换热装置,其中,所述前换热器中相邻的两排所述换热管组中,上游组中至少一个所述开缝组所包括的开缝数量不小于所述前换热器中下游组中任一所述开缝组所包括的开缝数量,且上游组中至少一个所述开缝组的宽度不小于所述前换热器中下游组中任一所述开缝组的宽度。
  11. 根据权利要求9所述的换热装置,其中,所述后换热器包括后上换热段和后下换热段,所述后上换热段中至少一个所述开缝组的宽度大于等于所述后下换热段中至少一个所述开缝组的宽度。
  12. 根据权利要求1-11中任一项所述的换热装置,其中,所述后换热器的上端具有至少三种开缝组;和/或,所述前换热器的上端具有至少三种开缝组,其中,不同种所述开缝组的宽度、开缝长度、开缝数量、开缝方向中的至少一个参数不同。
  13. 根据权利要求1-11中任一项所述的换热装置,其中,所述后换热器与所述前换热器之间适于设置贯流风道,所述后换热器的前侧局部设有凹槽,所述凹槽的至少部分与所述贯流风道的后蜗舌相对。
  14. 根据权利要求1-11中任一项所述的换热装置,其中,所述前上换热段与所述前下换热段的连接处具有多个开缝组,所述多个开缝组中位于进风侧的为外侧组,至少一个所述外侧组形成为设定组,所述设定组包括一个沿气流经过方向排列的多个开缝结构,所述设定组的任意相邻的两个所述开缝结构中,位于下游的所述开缝结构的开缝长度不小于位于上游的所述开缝结构的开缝长度。
  15. 一种空调室内机,其中,包括:
    壳体,所述壳体的顶部具有进风口;
    送风装置,所述送风装置设于所述壳体内且包括风道件和贯流风轮,所述贯流风轮设于所述风道件的风道进口处;和
    换热装置,所述换热装置设于所述壳体内且位于所述进风口与所述送风装置之间,所述换热装置为根据权利要求1-14中任一项所述的换热装置。
  16. 根据权利要求15所述的空调室内机,其中,所述贯流风轮的直径为D,所述壳体在前后方向上的最大宽度为W,2.6≤W/D≤3.7。
PCT/CN2023/090962 2022-10-31 2023-04-26 换热装置以及空调室内机 WO2024093167A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211351383.8 2022-10-31
CN202222887796.X 2022-10-31
CN202211351383.8A CN117989602A (zh) 2022-10-31 2022-10-31 换热装置以及空调室内机
CN202222887796.XU CN218672400U (zh) 2022-10-31 2022-10-31 换热装置以及空调室内机

Publications (1)

Publication Number Publication Date
WO2024093167A1 true WO2024093167A1 (zh) 2024-05-10

Family

ID=90929551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090962 WO2024093167A1 (zh) 2022-10-31 2023-04-26 换热装置以及空调室内机

Country Status (1)

Country Link
WO (1) WO2024093167A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162183A (ja) * 2004-12-09 2006-06-22 Matsushita Electric Ind Co Ltd フィン付き熱交換器
CN106403394A (zh) * 2016-11-29 2017-02-15 美的集团武汉制冷设备有限公司 蒸发器的管路、蒸发器及空调器
CN206247712U (zh) * 2016-11-29 2017-06-13 美的集团武汉制冷设备有限公司 多折式换热器、室内机及空调器
CN107830658A (zh) * 2017-11-22 2018-03-23 广东美的制冷设备有限公司 换热器、室内机及空调器
CN107860116A (zh) * 2017-11-22 2018-03-30 广东美的制冷设备有限公司 室内换热器、空调室内机及空调器
CN210861410U (zh) * 2019-11-28 2020-06-26 广东美的制冷设备有限公司 换热器组件和具有其的空调室内机
CN218672400U (zh) * 2022-10-31 2023-03-21 邯郸美的制冷设备有限公司 换热装置以及空调室内机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162183A (ja) * 2004-12-09 2006-06-22 Matsushita Electric Ind Co Ltd フィン付き熱交換器
CN106403394A (zh) * 2016-11-29 2017-02-15 美的集团武汉制冷设备有限公司 蒸发器的管路、蒸发器及空调器
CN206247712U (zh) * 2016-11-29 2017-06-13 美的集团武汉制冷设备有限公司 多折式换热器、室内机及空调器
CN107830658A (zh) * 2017-11-22 2018-03-23 广东美的制冷设备有限公司 换热器、室内机及空调器
CN107860116A (zh) * 2017-11-22 2018-03-30 广东美的制冷设备有限公司 室内换热器、空调室内机及空调器
CN210861410U (zh) * 2019-11-28 2020-06-26 广东美的制冷设备有限公司 换热器组件和具有其的空调室内机
CN218672400U (zh) * 2022-10-31 2023-03-21 邯郸美的制冷设备有限公司 换热装置以及空调室内机

Similar Documents

Publication Publication Date Title
JP2010164222A (ja) フィン付き熱交換器
US9618269B2 (en) Heat exchanger with tube arrangement for air conditioner
US20130248150A1 (en) Fin and heat exchanger using the same
CN218672400U (zh) 换热装置以及空调室内机
JP2010216718A (ja) フィン付き熱交換器
WO2024093167A1 (zh) 换热装置以及空调室内机
WO2021103827A1 (zh) 换热器组件和具有其的空调室内机
JP3284904B2 (ja) 熱交換器
CN103765149B (zh) 带翅片的热交换器
JP2007255812A (ja) フィン付き熱交換器及び空気調和機
JP7221428B1 (ja) 熱交換器アセンブリ及びそれを備えた空気調和機の室内機
JP2024522125A (ja) エアダクトアセンブリ及びそれを備える空調設備
CN110892211B (zh) 热交换器、空调装置的室内机以及空调装置
CN117989602A (zh) 换热装置以及空调室内机
CN211177506U (zh) 一种采用帕尔贴效应的导风器
JP2006097953A (ja) フィン付き熱交換器
CN112856588A (zh) 空调室内机和空调器
CN206585432U (zh) 具有高效换热功能的m型管壳式空空冷却器
JP3440796B2 (ja) 熱交換器
CN214536944U (zh) 节流部件、节流分液组件和空调室内机
CN218296879U (zh) 换热器分液组件、换热器及空调器
CN218672404U (zh) 翅片、换热器以及空调室内机
CN212179014U (zh) 风管式空调机
CN112856866B (zh) 节流元件、节流分液组件和空调室内机
CN211345559U (zh) 换热器以及具有其的空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884109

Country of ref document: EP

Kind code of ref document: A1