WO2024090937A1 - 내화 버스바 캡 및 이를 구비한 배터리 팩 - Google Patents

내화 버스바 캡 및 이를 구비한 배터리 팩 Download PDF

Info

Publication number
WO2024090937A1
WO2024090937A1 PCT/KR2023/016518 KR2023016518W WO2024090937A1 WO 2024090937 A1 WO2024090937 A1 WO 2024090937A1 KR 2023016518 W KR2023016518 W KR 2023016518W WO 2024090937 A1 WO2024090937 A1 WO 2024090937A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
cap
fireproof
silicon
busbar
Prior art date
Application number
PCT/KR2023/016518
Other languages
English (en)
French (fr)
Inventor
윤선우
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024090937A1 publication Critical patent/WO2024090937A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a fire-resistant busbar cap and a battery pack equipped therewith.
  • the cap body is made of fire-resistant silicon that becomes ceramic at high temperature, and a protective layer is provided to cover the cap body, so that the battery pack can maintain insulation and airtight properties even at high temperatures where ignition occurs inside the battery pack. It relates to a busbar cap and a battery pack equipped with the same.
  • Battery packs applied to electric vehicles, etc. have a structure in which multiple battery modules including a plurality of secondary batteries are connected in series or parallel to obtain high output.
  • the secondary battery is capable of repeated charging and discharging through electrochemical reactions between components, including positive and negative electrode current collectors, separators, active materials, and electrolyte solutions.
  • a bus bar is used to electrically connect terminal portions of adjacent battery modules or to connect battery modules to external electrical devices.
  • Figure 1 is a schematic diagram showing the assembly structure of a conventional bus bar and cap.
  • the conventional bus bar 10 consists of a bus bar conductor portion 11 and a covering layer 12 surrounding the bus bar conductor portion.
  • the busbar conductor portion is, for example, a high-purity copper conductor portion such as C1100 or a metal conductor portion such as aluminum.
  • the coating layer is made of a material such as common silicone rubber or epoxy.
  • the cap 20 was attached to the covering layer 12 of the bus bar 10 using an abrasion-resistant tape 30 or the like. When fastening members are fastened to the fastening holes 11a at both ends of the bus bar 10 to couple the bus bar 10 and other electrical connections, the cap is formed as a separate body so that it can be opened and closed freely.
  • the cap 20 is made of a soft rubber cap, so it has poor insulation properties and is vulnerable to shock.
  • the temperature of the flame is very high (500 to 800°C, or more than 800°C, and in extreme cases, more than 1000°C). ), all of the rubber caps melt and the bus bar and electrical connection part are exposed to the outside. In this case, the exposed bus bar conductor part electrically contacts other metal parts in the pack, causing a short circuit, and the flame spreads further due to heat generation from the electric short circuit.
  • the present invention is to provide a fire-resistant busbar cap that can maintain thermal and electrical insulation for as long as possible even when a flame occurs inside a battery pack.
  • the present invention is to provide a battery pack equipped with the fire-resistant busbar cap.
  • the fireproof bus bar cap of the present invention for solving the above problem is a bus bar cap that covers a bus bar and an electrical connection part coupled to the bus bar, and the insertion space of the fastening member for fastening the bus bar and the electrical connection part is located on the inside.
  • a refractory silicon cap body is provided and ceramicized at a high temperature; and a protective layer covering the fireproof silicone cap body.
  • the refractory silicon can be ceramicized at a temperature of 500 to 1700°C.
  • the fire-resistant silicone includes a silicone resin containing a silicone compound represented by the following formula (1); It can be ceramicized by sintering a metal oxide containing silicon oxide.
  • n and n are each integers of 10 to 30.
  • the silicone resin and metal oxide may be included in a weight ratio of 1:0.5 to 1.5.
  • the metal oxide containing silicon oxide may include one or more of pure silicon dioxide, silica, quartz, silica, tridymite, and keatite.
  • the protective layer may be a glass fiber layer or a mica layer.
  • the protective layer may be provided on the inner peripheral surface of the fastening member insertion space of the fireproof silicon cap body.
  • the fireproof silicon cap body includes a base portion that covers the side of the bus bar or the side of the bus bar and the electrical connection portion, extends upward from the base portion and has an insertion space for the fastening member on the inside, and includes the bus bar and the electrical connection portion. It may include a fastening member insertion portion that covers the upper surface of the electrical connection portion.
  • a screw groove corresponding to the thread of the fastening member may be provided along the inner peripheral surface of the fireproof silicon cap body having an insertion space for the fastening member.
  • a screw coupling member coupled to the fastening member may be coupled to the insertion space of the fastening member.
  • the screw coupling member may be integrally coupled with the fireproof bus bar cap by inserting the screw coupling member into a mold and insert injection molding the fireproof silicon.
  • a battery pack as another aspect of the present invention includes a plurality of battery modules; A flame prevention partition installed between the battery modules; a bus bar electrically connecting the battery module; It includes a fire-resistant bus bar cap according to any one of claims 1 to 10 that covers the electrical connection portion of the battery module and the bus bar, and a pack housing that accommodates the battery module and a flame prevention partition.
  • the flame prevention partition is provided with a bus bar installation through hole or a bus bar installation groove, and the bus bar is seated in the bus bar installation through hole or the bus bar installation groove,
  • Both ends of the bus bar are electrically coupled to terminal parts of the battery module located on both sides of the flame prevention partition, and the fire-resistant bus bar cap can cover the electrical connection parts of the both ends and the terminal part.
  • the fire-resistant bus bar cap of the present invention is not a rubber cap that burns out in flames when a flame occurs inside the pack, but is equipped with a fire-resistant silicon cap body that is made of ceramic and can reliably cover the bus bar and electrical connections, even at high temperatures. It can maintain insulating and airtight properties.
  • the fire-resistant busbar cap of the present invention is provided with a protective layer that covers the fire-resistant silicon cap body, so that the protective layer primarily serves as a fire-resistant wall and at the same time prevents the fire-resistant silicon cap body from being directly exposed to flame. By doing so, the overall shape and dimensions can be maintained.
  • Figure 1 is a schematic diagram showing the assembly structure of a conventional bus bar and cap.
  • Figure 2 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to an embodiment of the present invention.
  • Figure 3 is a photograph of the glass fiber layer included in the cap-integrated fire-resistant bus bar of the present invention.
  • Figure 4 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • Figure 5 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • Figure 6 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • Figure 7 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • Figure 8 is a schematic diagram showing the forming process of the refractory bus bar cap of Figure 7.
  • Figure 9 is a schematic diagram showing the coupling relationship between the fire-resistant bus bar cap and the bus bar covering of Figure 7.
  • Figure 10 is a schematic diagram showing an example of a battery pack structure in which the cap-integrated fire-resistant bus bar of the present invention is installed.
  • Figure 11 is a schematic diagram showing another example of a battery pack structure in which the cap-integrated fire-resistant bus bar of the present invention is installed.
  • Figure 12 is a side cross-sectional view showing the cap-integrated fire-resistant bus bar of the present invention installed in a battery pack.
  • the fireproof bus bar cap of the present invention is a bus bar cap that covers a bus bar and an electrical connection part coupled to the bus bar, and has an insertion space for a fastening member for fastening the bus bar and the electrical connection part on the inside, and is made of ceramic at high temperature.
  • the bus bar may include a bus bar body that is a metal conductor and a covering portion that covers the bus bar.
  • the metal conductor part can be made of 99.9% or higher purity tough pitch copper material such as C1100, or can also be made of aluminum material. Both ends of the metal conductor portion are electrically connected to corresponding electrical connection portions.
  • the electrical connection part may be another bus bar connected to one bus bar. Alternatively, it may be a terminal portion of a battery module that is fastened to the bus bar.
  • the corresponding electrical connection part is not limited to this, and the electrical connection part of other parts or parts can also be applied as long as it is a corresponding electrical connection part that is electrically connected to the bus bar.
  • the fire-resistant bus bar cap of the present invention includes a fire-resistant silicon cap body that is ceramicized at high temperature and a protective layer that covers the fire-resistant silicon cap body.
  • the refractory silicon is ceramicized at high temperature.
  • the refractory silicon can be ceramicized at a temperature of 500 to 1700°C.
  • the fire-resistant silicon of the present invention is distinguished from heat-resistant silicon with a heat-resistant temperature of less than 300° C. in that it has a fire-resistant temperature of 500° C. or higher.
  • Heat-resistant silicone is a silicone resin or rubber composition that has flexibility and flexibility due to the characteristics of silicone, but is a material that burns away or turns into ash at high temperatures above 500°C. Therefore, there is a limit to its application in preventing short-circuiting or heat propagation of a battery pack in a heat propagation situation.
  • the fire-resistant silicon cap body has 'fire-resistant' performance by being ceramicized at a high temperature of 500°C or higher, it can maintain insulating and airtight properties within the battery pack even when a flame occurs.
  • the fire-resistant bus bar cap according to the present invention can achieve high fire-resistant performance by including fire-resistant silicon.
  • the fireproof silicone is a composition containing silicone resin and metal oxide as main ingredients, and has flexibility and flexibility due to the characteristics of silicone at room temperature. In addition, it has a certain elasticity and exhibits high impact resistance and insulation, and when exposed to high temperatures, a silicon sintered body with a complex ceramic structure can be formed by sintering silicon resin and metal oxide.
  • the silicone resin contained in fireproof silicon generates silica in powder form when burned at high temperature.
  • the silica produced in this way reacts with the metal oxide of the refractory silicon to form a "eutectic mixture" on the edge of the metal oxide, thereby performing a bridging role between the silica and the metal oxide, so it hardens at the ignition temperature.
  • This ceramic body prevents short-circuiting or disconnection between conductors due to damage to the fire-resistant silicon cap body even when external mechanical shock is applied or moisture penetrates in the event of a fire, and the bus bar itself can exercise its electrical function.
  • the refractory silicone according to the present invention contains a silicone resin and a metal oxide.
  • the silicone resin is not particularly limited as long as it contains silicon (Si) in the molecule, but preferably may include a silicone compound represented by the following formula (1) (hereinafter referred to as “the silicone compound of formula 1”):
  • n and n are each integers of 10 to 30.
  • the silicone compound of Formula 1 includes a methylsiloxane repeating unit, and includes vinyl groups inside and at the ends of the methylsiloxane repeating unit, respectively.
  • the vinyl group is present not only at the ends of the silicone compound of Formula 1 but also inside the repeating unit, and plays a role in increasing the degree of polymerization of the silicone resin when exposed to high temperatures. Through this, it can realize better fire resistance properties compared to silicone compounds that do not contain a vinyl group. You can.
  • the weight average molecular weight of the silicone compound of Formula 1 may be adjusted to a specific range.
  • the silicone compound of Formula 1 is a compound that forms the base of a silicone resin, and depending on the weight average molecular weight of the silicone compound of Formula 1, it can affect the physical properties of fireproof silicon at room temperature and high temperatures. For example, if the weight average molecular weight of the silicone compound of Formula 1 is excessively high, the viscosity of the silicone resin may increase and reactivity may decrease during high temperature sintering, and if the weight average molecular weight is significantly low, the room temperature elasticity and flexibility of the silicone resin may decrease. As a result, the manufacturing process of the fire-resistant bus bar cap is lowered, while impact resistance, etc., is lowered.
  • the silicone compound of Formula 1 according to the present invention may have a weight average molecular weight adjusted to 1,000 to 9,000 g/mol, specifically 3,000 to 8,000 g/mol; Alternatively, it may have an adjusted value of 5,000 to 7,000 g/mol.
  • the metal oxide is a composition containing silicon oxide, and can act as a crystal nucleus when exposed to high temperatures to form a high-density ceramic body together with the above-described silicone resin.
  • These metal oxides may include one or more of silicon dioxide, silica, quartz, silica, tridymite, and keatite.
  • the metal oxide contains pure silicon dioxide (SiO 2 ) as well as minerals such as quartz containing silicon dioxide (SiO 2 ) as a main component, so it is not only highly economical, but also has a high melting point (high refractoriness) and high sintering. degree) and can exhibit excellent electrical insulation performance.
  • silicon dioxide, silica, quartz, etc. can improve various performances during the sintering process, induce easy dissolution and molding of resistant silicon, and reduce defects that may occur in ceramic bodies.
  • the metal oxide can be sintered with a silicone resin to have a crystal structure that increases fire resistance, insulation, and mechanical strength.
  • This metal oxide is in the form of a powder, but is not particularly limited, and has a size of 200 ⁇ m or less, for example, 0.1 ⁇ m to 200 ⁇ m; Alternatively, those having a size of 0.1 ⁇ m ⁇ 100 ⁇ m can be used.
  • the silicone resin may further include a silicon compound represented by the following Chemical Formula 2 (hereinafter referred to as “the silicone compound of Chemical Formula 2”), and the silicone compound of Chemical Formula 2, together with the silicon compound of Chemical Formula 1, acts as a metal at high temperature. Participates in sintering of the oxide to form a silicon sintered body:
  • p is an integer of 10 to 30.
  • the silicone compound of Formula 2 increases the flexibility of the refractory silicon at room temperature, and can play a role in inducing the completion of sintering of the silicone resin through dehydration condensation with the silicone compound of Formula 1 during sintering, through which The ceramic body formation reaction can be terminated.
  • the silicone compound of Formula 2 may be used in an amount of less than 10 parts by weight, specifically 0.5 to 9 parts by weight, based on the total weight of the fireproof silicon; 1 to 6 parts by weight; Alternatively, it may be used in an amount of 2 to 5 parts by weight.
  • fireproof silicon may contain silicone resin and metal oxide in a certain ratio in order to realize high elasticity at room temperature and to quickly form a ceramic body when exposed to high temperatures.
  • the fireproof silicone may have a weight ratio of silicone resin and metal oxide of 1:0.5 to 1.5, specifically 1:0.8 to 1.2. If the weight ratio of the metal oxide is low (less than 0.5), it is difficult to have a ceramic structure with a high density crystal structure at high temperature, so there is a problem of insufficient fire resistance and mechanical strength. Additionally, if the weight ratio of the metal oxide exceeds 1.5, the flexibility of the refractory silicon is reduced at room temperature, resulting in poor handleability.
  • the fire-resistant silicone of the present invention contains 35 to 50% by weight of the silicone compound of Formula 1; Quartz 16-32% by weight; 10-27% by weight of silicon dioxide; and a second silicone compound of Formula 2 in an amount of 1 to 6% by weight, and in some cases, a predetermined solvent may be additionally included to increase fairness during manufacturing.
  • the refractory silicon according to the present invention is hardened by sintering a silicone resin and a metal oxide at 500° C. or higher to become ceramic.
  • it is ceramicized up to 1700°C, and theoretically, it can partially maintain ceramicization even at temperatures above 1700°C. However, if the temperature exceeds 1700°C, the ceramicization retention time becomes shorter and the fire resistance required for the battery pack may not be maintained.
  • the refractory silicone Before being ceramicized, the refractory silicone has rubber-like properties such as flexibility, flexibility, and elasticity, as described above. Therefore, it is easy to injection mold the fireproof silicone cap body as described later.
  • the fireproof silicon cap body Since the fireproof silicon cap body has flexibility before being ceramicized, it can be flexibly fitted along the shape of the bus bar and the electrical connection part. Therefore, when installing the fire-resistant bus bar cap of the present invention in a battery pack, even if there is a slight assembly tolerance, it can be easily accommodated, thereby improving assembly efficiency.
  • a protective layer covering the fire-resistant silicon cap body is provided to structurally improve the rigidity of the fire-resistant silicon cap body.
  • the protective layer is a layer that covers the outside of the fire-resistant silicon cap body and protects the fire-resistant silicon cap body from being directly exposed to flame.
  • the protective layer primarily functions as a fireproof wall. Additionally, when the fireproof silicon cap body is ceramicized, the overall shape and dimensions of the cap body can be maintained by wrapping the ceramicized cap body. In addition, it protects the inside of the fire-resistant bus bar cap from physical contact with the surroundings and prevents short circuit.
  • the protective layer for example, a material such as glass fiber or mica material, which has both insulating properties and heat resistance, can be used.
  • glass fiber tape or mica tape can be wrapped around the outside of the fireproof silicone cap body to prevent the fireproof silicone cap body from being exposed to the outside.
  • the protective layer is not limited to this, and it is also possible to construct the protective layer from other materials with excellent insulation or heat resistance.
  • Figure 2 is a side cross-sectional view showing the coupling relationship between the fire-resistant bus bar cap and the bus bar according to an embodiment of the present invention
  • Figure 3 is a photograph of the glass fiber layer included in the cap-integrated fire-resistant bus bar of the present invention.
  • bus bars B1 and B2 are electrically connected, and the electrical connection portion is covered with a fireproof bus bar cap 100. That is, in this embodiment, the electrical connection part coupled to the bus bar (B1) is another bus bar (B2).
  • the two bus bars (B1, B2) have fastening holes (H1, H2) at both ends, and the fastening member (F) is inserted and coupled to the fastening holes (H1, H2), thereby forming two buses. Bars B1 and B2 are electrically coupled.
  • the fire-resistant bus bar cap 100 includes a fire-resistant silicon cap body 110.
  • the fireproof silicon cap body 110 covers at least the electrical connection portions of the bus bars B1 and B2.
  • An insertion space (S) for a fastening member (F) is provided inside the fireproof silicon cap body 110. That is, as shown in Figure 2, when the fastening member (F) is fastened to the bus bars (B1, B2), the exposed end of the fastening member (F) is inserted into the insertion space (S) inside the cap body 110. ) is inserted into. As a result, the fastening member F is protected by the cap body 120 to prevent short circuit due to contact with other external parts.
  • the insertion space (S) may have sufficient space to accommodate the fastening member (F). If necessary, a coupling member (eg, nut: described later) corresponding to the fastening member (F) may be installed in the insertion space (S). Alternatively, if necessary, the size of the insertion space (S) may be reduced so that the end of the fastening member (F) is tightly fitted into the insertion space.
  • a coupling member eg, nut: described later
  • the fireproof silicon cap body 110 covers the upper surface of the electrical connection part of the bus bars B1 and B2, but the shape of the cap body 110 can be modified to cover the side surface of the electrical connection part as needed. That is, the horizontal width of the cap body 110 is increased so that the cap body 110 covers the side surfaces of the electrical connection portions of the bus bars B1 and B2, or the lower end of the cap body 110 is extended downward. Alternatively, as will be described later, a wide flange portion (base portion) may be provided at the lower portion of the cap body 110. As a result, both the top and side surfaces of the bus bars B1 and B2 and the electrical connection portion thereof are covered, and the insulation of the electrical connection portion can be further improved.
  • the fireproof silicone cap body 110 may be manufactured by a known molding method, such as injection molding.
  • the fire-resistant silicon cap body 110 can be molded by injecting fire-resistant silicon into a mold having the shape of the fire-resistant silicon cap body 110.
  • refractory silicone is, for example, a mixture of a silicone resin and a metal oxide, and can be contained in a predetermined solvent in the form of a fluid coating liquid or slurry.
  • the fireproof silicone cap body 110 can be molded by injecting this fireproof silicon coating liquid or slurry into a mold. After a predetermined drying and curing process, the mold is removed, and the fireproof silicone cap body 110 according to the present invention can be obtained.
  • the fireproof bus bar cap 100 of the present invention includes a protective layer 120 that covers the fireproof silicon cap body 110.
  • the shape of the protective layer 120 follows the external shape of the cap body 110 to cover the entire exterior of the cap body 110.
  • the fireproof busbar cap 100 of the present invention can be obtained by wrapping a tape of the protective layer 120, such as glass fiber tape or mica tape, on the fireproof silicon cap body 110.
  • a tape of the protective layer 120 such as glass fiber tape or mica tape
  • the protective layer 120 for example, a material such as glass fiber or mica material, which has both insulating properties and heat resistance, can be used. That is, glass fiber tape or mica tape can be wrapped around the outside of the fireproof silicon cap body 110 to prevent the fireproof silicon cap body 110 from being exposed to the outside.
  • Figure 3 shows a photograph of the glass fiber layer.
  • Glass fiber is an inorganic fibrous material mainly composed of silicates. These glass fibers can be made into a glass fiber fabric (see Figure 3(a)) or a non-woven fabric (see Figure 5(b)) by weaving yarn obtained by twisting glass fiber strands. .
  • the fireproof busbar cap 100 of the present invention can be made by applying a predetermined adhesive to such a glass fiber fabric or nonwoven fabric and attaching it to the fireproof silicon cap body 110 described above. Glass fiber has the advantage of being non-flammable and having high electrical insulation properties.
  • Mica is one of the silicate minerals. It has a layered structure and is usually in the form of a hexagonal plate-shaped crystal. It is used as an electrical insulating material or heat insulating material. Mica has better fire resistance than the glass fiber. Therefore, mica is more preferable as the protective layer 120 that protects the fireproof silicon cap body 110.
  • the protective layer is not limited to this, and it is also possible to construct the protective layer from other materials with excellent insulation or heat resistance.
  • the tape of the protective layer 120 processed into a tape form may be wound on the fireproof silicon cap body 110 to form a protective layer.
  • the method of forming the protective layer 120 is not limited to this.
  • the protective layer 120 can be formed on the cap body by coating, applying, spraying, or other known methods.
  • Figure 4 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • the fire-resistant bus bar cap 101 of the present embodiment is provided with the protective layer 120' not only on the outside of the fire-resistant silicon cap body but also on the inner peripheral surface of the fastening member insertion space S.
  • a cap protective layer such as, for example, glass fiber tape or mica tape was also applied to the inner peripheral surface of the cap body 110 ( 120') is provided.
  • cap protective layers 120 and 120' cover both the inner and outer peripheral surfaces of the cap body 110, the following advantages exist.
  • the protective layers 120 and 120' on the inner and outer peripheral surfaces of the cap clearly serve as a primary fireproof wall to prevent the fireproof silicon of the cap body 110 from being exposed to flame.
  • cap protection layers 120 and 120' on the inner and outer peripheral surfaces completely surround the fireproof silicon cap body 110 placed between them, if the cap body 110 is ceramicized at a high temperature and its strength is somewhat reduced, the cap is protected.
  • the layers 120 and 120' support the cap body so that the shape and dimensions of the cap body can be maintained more stably.
  • Figure 5 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • the fireproof silicon cap body 110 includes a base portion 110A and a fastening member insertion portion 110B.
  • the base portion 110A may cover the side of the bus bar (B1) or the side of the bus bar (B1) and the corresponding electrical connection portion (B2). To this end, the base portion 110A may have a shape such as a flange portion with a larger width than the fastening member insertion portion 110B. Since the base portion 110A covers the side of the bus bar B1 or the bus bar B1 and the corresponding electrical connection portion B2, the insulation of the bus bar and the electrical connection portion B2 can be more secure.
  • the base portion 110A may extend downward only on the exposed side so as to cover only the exposed side of the bus bar and the electrical connection portion.
  • the shape of the base part is not limited to this, and other shapes of the base part are possible as long as they can cover the side of the bus bar or the side of the bus bar and the electrical connection part connected thereto.
  • the fastening member insertion portion 110B extends upward from the base portion 110A and has an insertion space S for the fastening member inside.
  • the fastening member insertion portion 110B covers the upper surfaces of the bus bar B1 and the electrical connection portion B2.
  • a protective layer covering the cap body 110 is provided in accordance with the shape of the fireproof silicon cap body 110. Accordingly, the protective layer 120 also includes a base portion protective layer 120A covering the base portion 110A and an insertion portion protective layer 120B covering the fastening member insertion portion 110B.
  • a separate protective layer 120' may also be included on the inner peripheral surface of the fastening member insertion portion 110B.
  • Figure 6 is a side cross-sectional view showing the coupling relationship between a fire-resistant bus bar cap and a bus bar according to another embodiment of the present invention.
  • the fireproof bus bar cap 103 of the present embodiment has a screw groove (S1) corresponding to the thread of the fastening member (F) along the inner peripheral surface of the fireproof silicon cap body 110 provided with the insertion space (S) of the fastening member. ) is provided.
  • the fastening member insertion space S is relatively large compared to the fastening member F. Accordingly, the cap body 110 can move with respect to the fastening member (F).
  • a screw groove (S1) is machined on the inner peripheral surface of the cap body 110 to enable direct coupling with the screw thread of the fastening member (F). That is, by rotating the cap body 110 in the screw rotation direction, the fastening member (F) can be easily coupled to the screw groove (S1). As a result, the fire-resistant bus bar cap 103 can be reliably coupled to the fastening member F, the bus bar, and the electrical connection portion, so that the insulation strength can be further improved.
  • Figure 7 is a side cross-sectional view showing the coupling relationship between the fire-resistant bus bar cap and the bus bar according to another embodiment of the present invention
  • Figure 8 is a schematic diagram showing the forming process of the fire-resistant bus bar cap of Figure 7.
  • a screw coupling member (N) coupled to the fastening member (F) is coupled to the insertion space (S) of the fastening member.
  • a screw coupling member (N) such as a nut is coupled to the insertion space (S) of the cap body (110). Therefore, in FIG. 7, after coupling the fastening member (F) to the fastening hole of the two bus bars (B1, B2), the fireproof bus bar cap 104 is connected to the screw joint of the protruding fastening member (F). When it rotates itself, the screw coupling member (N) inside the fireproof bus bar cap 104 is screwed to the fastening member (F).
  • the fire-resistant bus bar cap 104 not only covers the bus bars (B1, B2), but also the fire-resistant bus bar cap 104 is closer to the bus bars (B1, B2) and the fastening member (F). Can be strongly combined. Therefore, the insulation performance of the fire-resistant bus bar cap 104 of this embodiment is further improved.
  • the refractory busbar cap 104 of this embodiment can be manufactured by so-called insert injection molding. As shown in FIG. 8, the screw coupling member N is inserted into the mold between the upper and lower molds 1 and 2 in which the outline shape 111 of the fireproof bus bar cap 104 is formed, and the fireproof silicon is inserted into the mold.
  • the cap body 110 of the refractory bus bar cap 104 of this embodiment can be manufactured by insert injection molding into the space of the outline shape 111. By this insert injection molding method, the screw coupling member (N) can be easily and integrally coupled with the refractory bus bar cap body 110.
  • the fire-resistant bus bar cap 104 of the present embodiment can be obtained by coating a protective layer on the outside of the cap body 110. there is.
  • the fire-resistant bus bar caps 100, 101, 102, 103, and 104 according to the present invention can be attached to the covering layer 12 of the bus bar B1.
  • the bus bar and the fire-resistant bus bar cap are connected, for example, by connecting the end of the coating layer 12 and the lower end (base portion) of the fire-resistant bus bar cap with abrasion-resistant tape 30. You can.
  • Figure 10 is a schematic diagram showing an example of a battery pack structure in which the cap-integrated fire-resistant bus bar of the present invention is installed
  • Figure 11 is a schematic diagram showing another example of a battery pack structure in which the cap-integrated fire-resistant bus bar of the present invention is installed
  • Figure 12 is a This is a side cross-sectional view showing the cap-integrated fire-resistant bus bar of the present invention installed in a battery pack.
  • the fire-resistant bus bar caps (100, 101, 102, 103, 104) of the present invention described above include a fire-resistant silicon cap body 110 that is ceramicized at a high temperature, and a protective layer 120 that surrounds the fire-resistant silicon cap body 120 and maintains its shape. It is available. Therefore, when applied to a battery pack where internal combustion may occur, the safety of the battery pack can be greatly improved.
  • the high-voltage terminals of the battery module generate relatively high heat due to high current. Accordingly, when a flame occurs inside the pack, higher heat may be concentrated in the high voltage terminal. Therefore, the fire-resistant bus bar caps 100, 101, 102, 103, and 104 of the present invention are suitable for application as an insulating cap that covers the electrical connection portions of the high voltage terminal portions of a plurality of battery modules.
  • the battery pack 1000 of the present invention includes a plurality of battery modules 200; A flame prevention partition 300 installed between the battery modules; Bus bars (B1, B2) electrically connecting the battery modules; It may include the fire-resistant bus bar caps 100, 101, 102, 103, and 104 that cover the electrical connection portions of the battery module and the bus bar, and a pack housing 400 that accommodates the battery module and a flame prevention partition.
  • the battery module 200 includes a cell stack (not shown) in which a plurality of battery cells are stacked, and cell leads of different polarities are derived from the battery cells of the cell stack.
  • the cell leads are electrically connected to a bus bar such as a terminal bus bar or an interbus bar.
  • a cap-integrated fire-resistant bus bar according to the present invention may be applied.
  • Figures 10 and 11 show a typical battery module 200 in which the module housing completely surrounds the top, bottom, left, and right sides of the battery cell stack.
  • a battery module having a module housing of a modular structure configured to open at least one of the top, bottom, left, and right sides of the cell stack, or a battery module in which the entire top, bottom, left, and right sides of the cell stack are open.
  • the fireproof bus bar cap of the present invention can also be applied to battery cell blocks. In this way, cell blocks or battery modules with all or part of the module housing omitted can be installed in the battery pack to form a battery pack with a so-called cell-to-pack structure.
  • the fire-resistant bus bar caps 100, 101, 102, 103, and 104 of the present invention can be used for electrical connection of cell blocks or moduleless battery modules installed in a cell-to-pack battery pack.
  • the battery pack 1000 may include a flame prevention partition 300 installed between battery modules.
  • the flame prevention partition 300 may be made of metal to ensure rigidity.
  • the flame prevention partition 300 functions to prevent the flame from spreading to adjacent modules when a fire occurs in one module.
  • the flame prevention partition 300 may be provided with a bus bar installation through hole 310 or a bus bar installation groove 320.
  • Figure 10 shows that the flame prevention partition 300 is provided with a bus bar installation through hole 310
  • Figure 11 shows that the flame prevention partition 300 is provided with a bus bar installation groove 320.
  • a partition wall provided with a bus bar installation through hole 310 as shown in FIG. 10 is advantageous. Since the top of the bus bar installation groove 320 in FIG. 11 is open, it is advantageous to install the bus bar and perform electrical connection work on the bus bar.
  • the bus bar (B1) may be seated in the bus bar installation through hole 310 or the bus bar installation groove 320. At this time, both ends of the bus bar may be electrically coupled to the terminal portions 210 and 220 of the battery module 200 located on both sides of the flame prevention partition 300.
  • FIGS. 10 and 11 show the bus bar electrically connecting the battery module 200 within the battery pack 1000.
  • a flame-prevention partition wall 300 is located between neighboring battery modules 200, and the flame-prevention partition wall is provided with a bus bar installation through hole 310.
  • a bus bar is seated on the bus bar installation through hole 310.
  • the fireproof bus bar caps 100, 101, 102, 103, and 104 cover the joint portions of both ends of the bus bar and the terminal portions 210 and 220.
  • the cap body 110 of the refractory bus bar caps 100, 101, 102, 103, and 104 of the present invention is ceramicized to form a dense sintered body. In other words, it does not burn out or turn to ash at high temperatures of 500°C or higher like conventional heat-resistant silicon, but becomes ceramic and maintains its shape. Accordingly, the fire-resistant bus bar caps 100, 101, 102, 103, and 104 can stably cover the coupling portion and maintain insulation of the coupling portion.
  • the protective layer 120 prevents the refractory silicon cap body 110 from coming into direct contact with a flame, thereby preventing deformation of the refractory silicon and further enhancing insulation and fire resistance.
  • Example 2 The specimen of Example 2 was manufactured by attaching 0.18 mm thick mica tape (product name: SA765) from SWECO to the fire-resistant silicon specimen.
  • Comparative Examples 1 and 2 of the same size and thickness as those of Examples 1 and 2 were manufactured by laminating multiple sheets of AGT6WO glass fiber tape and SA765 mica tape alternately.
  • Examples 1 and 2 which were equipped with a fireproof silicon specimen and a protective layer applied to the fireproof busbar cap of the present invention, had a lower temperature increase rate on the back side of the specimen than Comparative Examples 1 and 2.
  • Example 2 the insulation performance of Example 2 using mica tape as a protective layer was superior compared to the example using glass fiber tape as a protective layer.
  • Fireproof silicon specimens with the composition shown in Table 2 below were prepared by varying the weight ratio of the silicon compound of Formula 1 and the weight ratio of the metal oxide.
  • Specimens of Examples 1-1 to 1-5 were prepared by attaching 0.18 mm thick mica tape (product name: SA765) from SWECO to the fire-resistant silicon specimen with the composition in Table 2.
  • Example 1-1 Silicone compound 50% by weight: Metal oxide 50% by weight (Quartz: 20% by weight, pure silicon dioxide: 30% by weight) 350°C
  • Example 1-2 Silicone compound 50% by weight: Metal oxide 25% by weight (Quartz: 10% by weight, pure silicon dioxide: 15% by weight) 380°C
  • Example 1-3 Silicone compound 50% by weight: Metal oxide 75% by weight (Quartz: 30% by weight, pure silicon dioxide: 45% by weight) 330°C
  • Example 1-4 Silicone compound 50% by weight: Metal oxide 20% by weight (Quartz: 10% by weight, pure silicon dioxide: 10% by weight) 390°C
  • Examples 1-5 Silicone compound 50% by weight: Metal oxide 80% by weight (Quartz: 35% by weight, pure silicon dioxide: 45% by weight) 321°C
  • the weight ratio of the silicon compound and the metal oxide was 1:1, 1:0.5, 1:1.5, 1:0.4, and 1:1.6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 내화 버스바 캡은, 버스바와, 상기 버스바에 결합되는 전기접속부를 커버하는 버스바 캡으로서, 상기 버스바와 상기 전기접속부를 체결하는 체결부재의 삽입공간이 내측에 구비되고, 고온에서 세라믹화하는 내화실리콘 캡 몸체; 및 상기 내화실리콘 캡 몸체를 커버하는 보호층을 포함한다 또한, 본 발명의 배터리 팩은 상기 내화 버스바 캡을 포함한다.

Description

내화 버스바 캡 및 이를 구비한 배터리 팩
본 발명은 내화 버스바 캡 및 이를 구비한 배터리 팩에 관한 것이다.
보다 상세하게는, 고온에서 세라믹화하는 내화실리콘으로 캡 몸체를 구성하고, 상기 캡 몸체를 커버하는 보호층을 구비함으로써, 배터리 팩 내부에 발화가 발생하는 고온에서도 절연 및 기밀 특성을 유지할 수 있는 내화 버스바 캡 및 이를 구비한 배터리 팩에 관한 것이다.
본 출원은 2022. 10.26자 한국 특허 출원 제10-2022-0139407호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
전기 차량 등에 적용되는 배터리 팩은 고출력을 얻기 위해 복수의 이차전지를 포함하는 다수의 배터리 모듈을 직렬 또는 병렬로 연결한 구조를 가지고 있다. 그리고, 상기 이차전지는 양극 및 음극 집전체, 세퍼레이터, 활물질, 전해액 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 반복적인 충방전이 가능하다.
상기 배터리 모듈을 전기적으로 연결하기 위하여, 버스바가 사용된다. 상기 버스바는 인접하는 배터리 모듈의 단자부들을 전기적으로 연결하거나, 배터리 모듈들을 외부의 전기 디바이스와 연결하기 위하여 사용된다.
도 1은 종래의 버스바와 캡의 조립구조를 나타내는 개략도이다.
도시된 바와 같이, 종래의 버스바(10)는 버스바 도체부(11)와 상기 버스바 도체부를 둘러싸는 피복층(12)으로 구성된다. 상기 버스바 도체부는 예컨대 C1100과 같은 고순도 구리 도체부 또는 알루미늄과 같은 금속 도체부이다. 상기 피복층은 통상의 실리콘 고무 또는 에폭시와 같은 재질로 이루어져 있다. 또한, 종래에는 상기 버스바(10)의 피복층(12)에 내마모 테이프(30) 등을 이용하여 캡(20)을 부착하였다. 버스바(10) 양단의 체결공(11a)에 체결부재를 체결하여 버스바(10)와 다른 전기연결부를 결합할 때, 자유롭게 열고 닫을 수 있도록 상기 캡은 별체로 형성된다.
그런데, 상기 캡(20)은 연질의 러버캡으로 이루어져서 절연성이 떨어지고 충격에 취약한 문제가 있다. 특히, 배터리 팩 내에서 상기 종래의 버스바로 팩 내부 부품을 전기적으로 연결할 경우, 배터리 팩 내부 화염 발생시에는 그 화염의 온도가 매우 높으므로(500~800℃, 혹은 800℃ 이상, 심한 경우 1000℃ 이상), 상기 러버캡이 모두 녹아버려 상기 버스바와 전기연결부가 외부로 노출되어 버린다. 이렇게 되면, 노출된 버스바 도체부가 팩 내의 다른 금속 부분과 전기적으로 접촉하여 쇼트가 발생하고, 전기 쇼트에 의한 발열로 화염이 더욱 확산되게 된다.
이와 같이, 최근의 배터리 팩에서는 내화 발화시 팩 외부로 화염이 새어나오지 않도록 설계하는 것이 필수적으로 요구된다.
또한, 배터리 팩 내부에 화염 발생시의 고온에서도 버스바 도체부 및 이와 연결되는 전기연결부를 주변과 열적으로 그리고 전기적으로 절연시킬 수 있는 설계가 필요하다.
이상으로부터 고온에서의 내화성을 구비함으로써 전기절연특성을 유지하면서도, 절연 강도 및 조립성을 개선할 수 있는 기술의 개발이 요망된다 하겠다.
[선행기술문헌]
[특허문헌]
한국 공개특허공보 제2022-0001228호
본 발명은 배터리 팩 내부의 화염 발생 시에도 가능한 오래 열적 및 전기적인 절연을 유지할 수 있는 내화 버스바 캡을 제공하기 위한 것이다.
또한, 본 발명은 상기 내화 버스바 캡을 구비한 배터리 팩을 제공하기 위한 것이다.
상기 과제를 해결하기 위한 본 발명의 내화 버스바 캡은, 버스바와, 상기 버스바에 결합되는 전기접속부를 커버하는 버스바 캡으로서, 상기 버스바와 상기 전기접속부를 체결하는 체결부재의 삽입공간이 내측에 구비되고, 고온에서 세라믹화하는 내화실리콘 캡 몸체; 및 상기 내화실리콘 캡 몸체를 커버하는 보호층을 포함한다.
상기 내화실리콘은 500~1700℃의 온도에서 세라믹화할 수 있다.
상기 내화실리콘은 하기 화학식 1로 나타내는 실리콘 화합물을 포함하는 실리콘 수지와; 산화규소를 함유하는 금속 산화물의 소결에 의해 세라믹화될 수 있다.
[화학식 1]
Figure PCTKR2023016518-appb-img-000001
상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
상기 실리콘 수지와 금속산화물은 1: 0.5~1.5의 중량 비율로 포함될 수 있다.
산화규소를 함유하는 금속산화물은 순수 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함할 수 있다.
상기 보호층은 유리섬유층 또는 마이카층일 수 있다.
상기 내화실리콘 캡 몸체의 체결부재 삽입공간의 내주면에 상기 보호층이 구비될 수 있다.
상기 내화실리콘 캡 몸체는, 상기 버스바의 측면 또는, 버스바 및 전기접속부의 측면을 커버하는 베이스부와, 상기 베이스부로부터 상향 연장되고 상기 체결부재의 삽입공간을 내측에 구비하며 상기 버스바 및 전기접속부의 상면을 커버하는 체결부재 삽입부를 포함할 수 있다.
상기 체결부재의 삽입공간을 구비한 내화실리콘 캡 몸체 내주면을 따라 상기 체결부재의 나사산에 대응되는 나사홈이 구비될 수 있다.
상기 체결부재의 삽입공간에 상기 체결부재에 결합되는 나사결합부재가 결합될 수 있다.
상기 나사결합부재를 금형에 삽입하고, 상기 내화실리콘을 사출성형하는 인서트 사출 성형에 의하여 상기 나사결합부재가 상기 내화버스바 캡과 일체로 결합될 수 있다.
본 발명의 다른 측면으로서의 배터리 팩은, 복수개의 배터리 모듈; 상기 배터리 모듈 사이에 설치되는 화염방지용 격벽; 상기 배터리 모듈을 전기적으로 접속하는 버스바; 상기 배터리 모듈과 상기 버스바의 전기접속부를 커버하는 제1항 내지 제10항 중 어느 한 항의 내화 버스바 캡 및 상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징을 포함한다.
상기 화염방지용 격벽은, 버스바 설치 관통홀 또는 버스바 설치홈을 구비하고, 상기 버스바는 상기 버스바 설치 관통홀 또는 버스바 설치홈에 안착되고,
상기 버스바의 양단부는 상기 화염방지용 격벽의 양측에 위치한 배터리 모듈의 단자부에 전기적으로 결합되며, 상기 내화 버스바 캡이 상기 양단부와 단자부의 전기접속부를 커버할 수 있다.
본 발명의 내화 버스바 캡은, 팩 내부에서의 화염 발생시 화염에 타서 없어지는 러버캡이 아니라, 세라믹화되어 버스바 및 전기연결부를 확실하게 커버할 수 있는 내화실리콘 캡 몸체를 구비하여, 고온에서도 절연 및 기밀 특성을 유지할 수 있다.
또한, 본 발명의 내화 버스바 캡은 상기 내화실리콘 캡 몸체를 커버하는 보호층을 구비하여, 상기 보호층이 1차적으로 내화벽으로서 역할을 함과 동시에 내화실리콘 캡 몸체가 화염에 직접 노출되지 않도록 함으로써, 전체적인 형상 및 치수를 유지할 수 있다.
도 1은 종래의 버스바와 캡의 조립구조를 나타내는 개략도.
도 2는 본 발명의 일 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도.
도 3은 본 발명의 캡 일체형 내화버스바에 포함되는 유리섬유층의 사진.
도 4는 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도.
도 5는 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도.
도 6은 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도.
도 7은 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도.
도 8은 도 7의 내화 버스바 캡의 성형과정을 나타내는 개략도.
도 9는 도 7의 내화 버스바 캡과 버스바 피복부와의 결합관계를 나타내는 개략도.
도 10은 본 발명의 캡 일체형 내화버스바가 설치되는 배터리 팩 구조의 일례를 나타낸 개략도.
도 11은 본 발명의 캡 일체형 내화버스바가 설치되는 배터리 팩 구조의 다른 예를 나타낸 개략도.
도 12는 본 발명의 캡 일체형 내화버스바가 배터리 팩에 설치된 상태를 나타낸 측단면도.
이하, 첨부한 도면과 여러 실시예에 의하여 본 발명의 세부 구성을 상세하게 설명한다. 이하에서 설명되는 실시예는 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 또한 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니며 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
[내화 버스바 캡]
본 발명의 내화 버스바 캡은, 버스바와, 상기 버스바에 결합되는 전기접속부를 커버하는 버스바 캡으로서, 상기 버스바와 상기 전기접속부를 체결하는 체결부재의 삽입공간이 내측에 구비되고, 고온에서 세라믹화하는 내화실리콘 캡 몸체; 및 상기 내화실리콘 캡 몸체를 커버하는 보호층을 포함한다.
상기 버스바는 금속도체부인 버스바 본체와 버스바를 피복하는 피복부를 구비할 수 있다. 금속도체부는, C1100과 같은 99.9% 이상의 고순도 터프피치 구리소재로 만들어지거나, 알루미늄 재질로도 제조될 수 있다. 상기 금속도체부의 양단부는 대응되는 전기접속부와 전기적으로 연결된다.
상기 전기접속부는 하나의 버스바에 체결되는 다른 버스바일 수 있다. 혹은, 상기 버스바에 체결되는 배터리 모듈의 단자부일 수 있다. 그러나, 대응되는 전기접속부는 이에 한정되지 않으며, 버스바에 전기적으로 연결되는 대응되는 전기접속부라면 다른 부위나 부품의 전기접속부도 적용 가능하다.
본 발명의 내화버스바 캡은 고온에서 세라믹화하는 내화실리콘 캡 몸체와 상기 내화실리콘 캡 몸체를 커버하는 보호층을 포함한다.
상기 내화실리콘은, 고온에서 세라믹화한다. 상기 내화실리콘은 500~1700℃의 온도에서 세라믹화될 수 있다. 본 발명의 내화실리콘은 내화온도가 500℃ 이상이라는 점에서 내열온도가 300℃ 미만인 내열실리콘과 구별된다. 내열실리콘은 실리콘의 특성상 유연성과 가요성을 가지는 실리콘 수지 또는 고무 조성물이지만, 500℃ 이상의 고온에서는 타서 없어지거나 재(ash)가 되어 버리는 소재이다. 따라서, 열 전파 상황시의 배터리 팩의 단락 방지 혹은 열 전파 방지에 적용하는데 한계가 있다.
상기 내화실리콘 캡 몸체는 500℃ 이상의 고온에서 세라믹화되는 '내화'성능을 가지므로, 화염발생시에도 배터리 팩 내에서 절연 특성과 기밀 특성을 유지할 수 있다.
이와 같이, 본 발명에 따른 내화 버스바 캡은 내화실리콘을 구비함으로써 고내화 성능을 구현할 수 있다.
상기 내화실리콘은 실리콘 수지와 금속 산화물을 주성분으로 하는 조성물로서, 상온에서는 실리콘의 특성상 유연성과 가요성을 가진다. 또한, 소정의 탄성력을 가져 높은 내충격성과 절연성을 나타내고, 고온 노출 시에는 실리콘 수지와 금속 산화물의 소결에 의해 복잡한 세라믹 구조의 실리콘 소결체를 이룰 수 있다.
구체적으로, 내화실리콘에 함유된 실리콘 수지는 고온에서 연소 시 분말 형태의 실리카를 생성한다. 이렇게 생성된 실리카는 내화실리콘의 금속 산화물과 반응하여 상기 금속 산화물의 테두리에 "공융 혼합물(eutectic mixture)"을 형성함으로써 실리카와 금속 산화물 사이에서 브리징 작용(bridging role)을 수행하므로 발화온도에서 경화되고, 냉각될 때에는 응축된 세라믹화 생성물을 형성하게 된다. 이러한 세라믹체는 화재 시 외부의 기계적 충격이 가해지거나 수분이 침투할 때에도 내화실리콘 캡 몸체의 훼손으로 인한 도체 간의 단락이나 단선이 방지되어 버스바 자체의 전기적인 기능을 발휘할 수 있다.
이를 위하여, 본 발명에 따른 내화실리콘은 실리콘 수지와 금속 산화물을 포함한다.
상기 실리콘 수지는 분자 내에 실리콘(Si)을 포함하는 수지라면 특별히 제한되는 것은 아니나, 바람직하게는 하기 화학식 1로 나타내는 실리콘 화합물(이하, "화학식 1의 실리콘 화합물"이라 함)을 포함할 수 있다:
[화학식 1]
Figure PCTKR2023016518-appb-img-000002
상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
상기 화학식 1의 실리콘 화합물은 메틸실록산 반복 단위를 포함하고, 상기 메틸실록산 반복 단위의 내부 및 말단에 각각 비닐기(vinyl group)를 포함한다. 상기 비닐기는 화학식 1의 실리콘 화합물의 말단은 물론 반복 단위 내부에도 존재하여 고온 노출 시 실리콘 수지의 중합도를 높이는 역할을 수행하며, 이를 통해 비닐기를 포함하지 않는 실리콘 화합물과 대비하여 보다 우수한 내화 특성을 구현할 수 있다.
또한, 상기 화학식 1의 실리콘 화합물은 중량평균분자량이 특정 범위로 조절될 수 있다. 화학식 1의 실리콘 화합물은 실리콘 수지의 베이스를 이루는 화합물로서 화학식 1의 실리콘 화합물의 중량평균분자량에 따라 내화실리콘의 상온 및 고온에서의 물성에 영향을 미칠 수 있다. 예컨대, 상기 화학식 1의 실리콘 화합물의 중량평균분자량이 과도하게 높은 경우 실리콘 수지의 점도가 증가하여 고온 소결 시 반응성이 저하될 수 있으며, 중량평균분자량이 현저히 낮은 경우 실리콘 수지의 상온 탄성력 및 유연성이 저감되어 내화 버스바 캡의 제조 공정성이 저하되는 한편 내충격성 등이 낮아지는 한계가 있다. 따라서, 본 발명에 따른 화학식 1의 실리콘 화합물은 중량평균분자량이 1,000~9,000 g/mol으로 조절된 값을 가질 수 있으며, 구체적으로는 3,000~8,000 g/mol; 또는 5,000~7,000 g/mol으로 조절된 값을 가질 수 있다.
아울러, 상기 금속산화물은 산화규소를 함유하는 조성물로서, 고온 노출 시 결정핵으로 작용하여 상술된 실리콘 수지와 함께 고밀도의 세라믹체를 형성하는 역할을 할 수 있다.
이러한 금속산화물로는 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함할 수 있다. 상기 금속 산화물은 순수 이산화규소(SiO2)와 함께 이산화규소(SiO2)를 주성분으로 포함하는 석영 등의 광물을 포함하여 경제성이 높을 뿐만 아니라, 높은 융점(고내화성) 및 높은 소결도(high sintering degree)를 가지며, 우수한 전기 절연 성능을 나타낼 수 있다. 특히, 이산화규소, 실리카, 석영 등은 소결 과정에서의 각종 성능을 개선하고, 내 실리콘의 용이한 용해와 성형을 유도하며, 세라믹체에서 발생될 수 있는 결함을 저감시킬 수 있다.
또한, 상기 금속산화물은 실리콘 수지와 소결을 통해 내화성, 절연성 및 기계적 강도 등을 증가시키는 결정 구조를 갖게 할 수 있으면 좋다. 이러한 금속 산화물은 분말 상으로서, 특별히 한정하는 것은 아니지만 200㎛ 이하의 크기, 구체적인 예를 들어 0.1㎛ ~ 200㎛; 또는 0.1㎛ ~ 100㎛의 크기를 가지는 것을 사용할 수 있다.
아울러, 상기 실리콘 수지는 하기 화학식 2로 나타내는 실리콘 화합물(이하, "화학식 2의 실리콘 화합물"이라 함)을 더 포함할 수 있으며, 상기 화학식 2의 실리콘 화합물은 화학식 1의 실리콘 화합물과 함께 고온에서 금속산화물의 소결에 참여하여 실리콘 소결체를 형성하게 된다:
[화학식 2]
Figure PCTKR2023016518-appb-img-000003
상기 화학식 2에 있어서, p는 10 내지 30의 정수이다.
상기 화학식 2의 실리콘 화합물은 상온에서 내화실리콘의 유연성을 높이는 한편, 소결 시 화학식 1의 실리콘 화합물과 탈수 축합(dehydration condensation)을 통해 실리콘 수지의 소결 종결을 유도하는 역할을 수행할 수 있으며, 이를 통하여 세라믹체 형성 반응을 종결시킬 수 있다.
이를 위하여, 상기 화학식 2의 실리콘 화합물은 내화실리콘 전체 중량에 대하여 10 중량부 미만으로 사용될 수 있으며, 구체적으로는 0.5 내지 9 중량부; 1 내지 6 중량부; 또는 2 내지 5 중량부로 사용될 수 있다.
또한, 내화실리콘은 상온에서의 높은 탄성력 구현과 고온 노출 시 빠른 세라믹체 형성을 위하여 실리콘 수지와 금속산화물을 일정한 비율로 포함할 수 있다.
구체적으로, 상기 내화실리콘은 실리콘 수지와 금속산화물의 중량 비율이 1: 0.5~1.5일 수 있으며, 구체적으로는 1: 0.8~1.2일 수 있다. 금속산화물의 중량 비율이 0.5 미만으로 낮으면 고온에서 고밀도의 결정구조를 갖는 세라믹 구조를 갖기 어려우므로 내화성 및 기계적 강도가 충분히 구현되지 않은 문제가 있다. 또한, 금속산화물의 중량 비율이 1.5를 초과하면 상온 상태에서 내화 실리콘의 유연성이 저감되어 취급성이 양호하지 않은 한계가 있다.
하나의 예로서, 본 발명의 내화실리콘은 화학식 1의 실리콘 화합물 35~50 중량%; 석영 16~32 중량%; 이산화규소 10~27 중량%; 및 화학식 2의 제2 실리콘 화합물 1~6 중량%로 포함할 수 있으며, 경우에 따라서는 제조 시 공정성을 높이기 위하여 소정의 용매를 추가적으로 더 포함할 수 있다.
이상과 같이, 본 발명에 따른 내화실리콘은 500℃ 이상에서 실리콘 수지와 금속산화물의 소결에 의해 경화되어 세라믹화된다. 또한, 1700℃까지도 세라믹화되며, 이론적으로는 1700℃ 이상의 온도에서도 부분적으로 세라믹화를 유지할 수 있다. 다만, 1700℃를 초과하면, 세라믹화 유지시간이 짧아져서 배터리 팩 내에서 요구하는 내화성능을 유지하지 못할 수 있다.
상기 내화실리콘은 세라믹화되기 전에는 상술한 바와 같이, 가요성과 유연성, 그리고 탄성을 가지는 고무와 같은 성질을 가진다. 따라서, 내화실리콘 캡 몸체를 후술하는 바와 같이 사출성형하기 용이하다.
상기 내화실리콘 캡 몸체는 세라믹화되기 전에는 유연성을 가지므로, 버스바와 전기접속부의 형상을 따라 유연하게 끼워질 수 있다. 따라서, 본 발명의 내화 버스바 캡을 배터리 팩 내에 설치할 경우 약간의 조립공차가 있더라도, 이에 용이하게 대응할 수 있으므로 조립성이 개선된다.
한편, 상기 내화실리콘이 고온에서 세라믹화되면 열적으로 그리고 전기적으로 절연은 유지되지만, 기계적인 강도가 다소 약해져서 외력에 의해서 부서질 위험이 있다. 본 발명에서는 이러한 내화실리콘 캡 몸체의 강성을 구조적으로 개선하기 위하여 상기 내화실리콘 캡 몸체를 커버하는 보호층을 구비하고 있다.
상기 보호층은, 상기 내화실리콘 캡 몸체의 외부를 커버하여 내화실리콘 캡 몸체가 화염에 직접 노출되지 않도록 보호하는 층이다. 즉, 상기 보호층은 1차적으로 내화벽의 역할을 수행한다. 또한, 내화실리콘 캡 몸체가 세라믹화될 경우, 세라믹화된 캡 몸체를 감싸서 상기 캡 몸체의 전체적인 형상과 치수를 유지할 수 있도록 해 준다. 또한, 주변과의 물리적 접촉으로부터 내화 버스바 캡의 내부를 보호하여 단락을 방지한다.
보호층으로서는 예컨대, 절연성과 내열성을 겸비한 유리섬유나 마이카재질의 재료를 채용할 수 있다. 예를 들어, 유리섬유 테이프나 마이카테이프를 상기 내화실리콘 캡 몸체의 외부에 감아서 내화실리콘 캡 몸체가 외부에 노출되지 않도록 할 수 있다. 다만, 보호층이 이에 한정되는 것은 아니며, 절연성 또는 내열성이 우수한 다른 재질로 보호층을 구성하는 것도 가능하다.
구체적인 내화 버스바 캡의 형태에 관해서는 이하의 실시형태에서 자세히 설명하기로 한다.
(제1 실시형태)
도 2는 본 발명의 일 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도이고, 도 3은 본 발명의 캡 일체형 내화버스바에 포함되는 유리섬유층의 사진이다.
본 실시형태에서는, 2개의 버스바(B1,B2)가 전기적으로 접속되고, 그 전기접속부를 내화 버스바 캡(100)으로 커버하는 것이 도시되어 있다. 즉, 본 실시형태에서 버스바(B1)에 결합되는 전기접속부는 다른 버스바(B2)이다. 상기 2개의 버스바(B1,B2)는 양단부에 각각 체결공(H1,H2)을 구비하며, 상기 체결공(H1,H2)에 체결부재(F)가 삽입 및 결합하는 것에 의하여, 2개의 버스바(B1,B2)가 전기적으로 결합된다.
도시된 바와 같이, 상기 내화 버스바 캡(100)은 내화실리콘 캡 몸체(110)를 구비한다. 상기 내화실리콘 캡 몸체(110)는 적어도 상기 버스바(B1,B2)의 전기접속부를 커버한다. 상기 내화실리콘 캡 몸체(110)의 내측에는 체결부재(F)의 삽입공간(S)이 구비된다. 즉, 도 2와 같이, 체결부재(F)가 상기 버스바(B1,B2)에 체결될 때, 상기 체결부재(F)의 노출된 단부는, 상기 캡 몸체(110) 내측의 삽입공간(S)에 삽입된다. 이에 의하여, 상기 체결부재(F)가 캡 몸체(120)에 의하여 보호되어 다른 외부 부품과의 접촉에 의한 단락을 방지할 수 있다. 도면과 같이, 상기 삽입공간(S)은 상기 체결부재(F)를 수용할 수 있도록 충분한 공간을 가질 수 있다. 필요에 따라, 상기 삽입공간(S) 내에 상기 체결부재(F)에 대응되는 결합부재(예컨대, 너트:후술함)를 설치할 수 있다. 혹은, 필요에 따라, 상기 삽입공간(S)의 크기를 줄여서, 상기 체결부재(F)의 단부가 상기 삽입공간에 꽉 끼워지도록 할 수 있다.
상기 내화실리콘 캡 몸체(110)는 상기 버스바(B1,B2)의 전기접속부의 상면을 커버하지만, 필요에 따라 상기 전기접속부의 측면까지 커버하도록 캡 몸체(110)의 형상을 변형시킬 수 있다. 즉, 상기 캡 몸체(110)가 버스바(B1,B2)의 전기접속부의 측면까지 커버하도록, 캡 몸체(110)의 가로폭을 크게 하거나, 캡 몸체(110)의 하단부를 하향으로 길게 연장시키거나, 후술하는 바와 같이, 캡 몸체(110) 하부에 폭인 큰 플랜지부(베이스부)를 구비할 수 있다. 이에 의하여, 버스바(B1,B2) 및 그 전기접속부의 상면 및 측면이 모두 커버되므로, 전기접속부의 절연성을 더욱 개선할 수 있다.
상기 내화실리콘 캡 몸체(110)는 공지된 성형방법, 예컨대 사출성형에 의하여 제조될 수 있다. 예컨대, 상기 내화실리콘 캡 몸체(110)의 형상을 구비한 금형 내로 내화실리콘을 주입하여 상기 내화실리콘 캡 몸체(110)을 성형할 수 있다. 내화실리콘은 상술한 바와 같이, 예컨대 실리콘 수지와 금속산화물의 혼합물로서, 소정의 용매에 포함되어 유동성을 가지는 코팅액 또는 슬러리의 상태로 할 수 있다. 이러한 내화실리콘 코팅액 또는 슬러리를 금형에 주입하여 내화실리콘 캡 몸체(110)를 성형할 수 있다. 소정의 건조 및 경화과정 후, 금형을 제거하면, 본 발명에 따른 내화실리콘 캡 몸체(110)를 얻을 수 있다
본 발명의 내화 버스바 캡(100)은, 상기 내화실리콘 캡 몸체(110)를 커버하는 보호층(120)을 포함한다. 상기 보호층(120)의 형상은 상기 캡 몸체(110)의 외형 형상에 추종하여 상기 캡 몸체(110)의 외부를 모두 커버할 수 있도록 한다.
예컨대, 상기 내화실리콘 캡 몸체(110) 상에 유리섬유테이프 또는 마이카테이프와 같은 보호층(120)의 테이프를 감아서, 본 발명의 내화 버스바 캡(100)을 얻을 수 있다.
보호층(120)으로서는 예컨대, 절연성과 내열성을 겸비한 유리섬유나 마이카재질의 재료를 채용할 수 있다. 즉, 유리섬유 테이프나 마이카테이프를 상기 내화실리콘 캡 몸체(110)의 외부에 감아서 내화실리콘 캡 몸체(110)가 외부에 노출되지 않도록 할 수 있다.
도 3에는 유리섬유층의 사진이 도시되어 있다.
유리섬유는 주로 규산염으로 이루어진 무기물계열의 섬유상 물질이다. 이러한 유리섬유는, 유리섬유 스트랜드를 꼬아서 권취한 얀(yarn)을 직조하여 유리섬유 직물 형태로 하거나(도 3(a) 참조), 혹은 부직포 형태(도 5(b) 참조)로 할 수 있다. 이러한 유리섬유 직물이나 부직포에 소정의 접착제를 도포하여 상술한 내화실리콘 캡 몸체(110) 상에 부착하여 본 발명의 내화 버스바 캡(100)를 만들 수 있다. 유리섬유는 불에 타지 않는 성질이 있으며 전기 절연성이 크다는 장점이 있다.
마이카는 규산염광물의 하나로서, 층상구조를 가지며 보통 육각판상의 결정형을 이루며, 전기절연재나 단열재료로 사용된다. 마이카는 상기 유리섬유에 비하여 보다 우수한 내화성을 가진다. 따라서, 내화실리콘 캡 몸체(110)를 보호하는 보호층(120)으로서는 마이카가 보다 바람직하다. 다만, 보호층이 이에 한정되는 것은 아니며, 절연성 또는 내열성이 우수한 다른 재질로 보호층을 구성하는 것도 가능하다.
예컨대, 테이프 형태로 가공된 보호층(120)의 테이프를 상기 내화실리콘 캡 몸체(110) 상에 감아서 보호층을 형성할 수 있다. 그러나, 보호층(120) 형성방법은 이에 한정되는 것은 아니다. 예컨대, 상기 캡 몸체 상에 코팅, 도포, 분무 기타 공지된 여러 다른 방법에 의하여 상기 보호층(120)을 형성할 수 있다.
(제2 실시형태)
도 4는 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도이다.
본 실시형태의 내화 버스바 캡(101)은, 상기 내화실리콘 캡 몸체의 외부만이 아니라, 체결부재 삽입공간(S)의 내주면에도 상기 보호층(120')을 구비하고 있다.
즉, 도 2의 실시형태에서는, 외부로 노출되지 않은 캡 몸체의 내주면에 보호층이 없었는데 반하여, 본 예에서는 캡 몸체(110)의 내주면에도 예컨대, 유리섬유테이프나 마이카테이프와 같은 캡 보호층(120')이 구비되어 있다.
제2 실시형태와 같이, 캡 몸체(110)의 내주면과 외주면을 모두 캡 보호층(120,120')이 감싸게 될 경우에는 다음과 같은 장점이 있다.
캡부 내외주면의 보호층(120,120')이 확실하게 1차적으로 내화벽의 역할을 하여 캡 몸체(110)의 내화실리콘이 화염에 노출되지 않도록 한다.
또한, 내외주면의 캡 보호층(120,120')이 그 사이에 놓여진 내화실리콘 캡 몸체(110)를 완전하게 감싸므로, 캡 몸체(110)가 고온에서 세라믹화되어 강도가 다소 떨어질 경우, 상기 캡 보호층(120,120')이 캡 몸체를 지지하여 상기 캡 몸체의 형상과 치수를 보다 안정적으로 유지할 수 있다.
(제3 실시형태)
도 5는 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도이다.
본 실시형태의 내화 버스바 캡(102)은, 상기 내화실리콘 캡 몸체(110)가 베이스부(110A)와 체결부재 삽입부(110B)를 포함하고 있다.
상기 베이스부(110A)는 상기 버스바(B1)의 측면 또는, 버스바(B1) 및 대응되는 전기접속부(B2)의 측면을 커버할 수 있다. 이를 위하여, 상기 베이스부(110A)는 체결부재 삽입부(110B)보다 큰 폭의 플랜지부와 같은 형태를 가질 수 있다. 베이스부(110A)가 버스바(B1)의 측면 또는 버스바(B1) 및 대응되는 전기접속부(B2)까지 커버하는 것에 의하여 버스바 및 전기접속부의 절연을 보다 확실하게 할 수 있다. 상기 베이스부(110A)는 버스바 및 전기접속부의 노출되는 측면만을 커버하도록, 상기 노출된 측면 측의 베이스부(110A)만 길게 하향 연장시킬 수 있다. 그러나, 베이스부의 형상은 이에 한정되지 않고, 버스바 측면 또는 버스바 및 이에 연결되는 전기접속부의 측면을 커버할 수 있는 형태라면 다른 형태의 베이스부도 가능하다.
또한, 상기 체결부재 삽입부(110B)는, 상기 베이스부(110A)로부터 상향 연장되며 상기 체결부재의 삽입공간(S)을 내측에 구비하고 있다. 상기 체결부재 삽입부(110B)는 상기 버스바(B1) 및 전기접속부(B2)의 상면을 커버한다.
상기 내화실리콘 캡 몸체(110)의 형상에 추종하여 상기 캡 몸체(110)를 커버하는 보호층이 구비된다. 따라서, 상기 보호층(120)도 베이스부(110A)를 커버하는 베이스부 보호층(120A)과 체결부재 삽입부(110B)를 커버하는 삽입부 보호층(120B)을 구비한다.
한편, 도 5와 같이, 상기 체결부재 삽입부(110B)의 내주면에도 별도의 보호층(120')을 포함할 수 있다.
(제4 실시형태)
도 6은 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도이다.
본 실시형태의 내화 버스바 캡(103)은, 상기 체결부재의 삽입공간(S)을 구비한 내화실리콘 캡 몸체(110) 내주면을 따라 상기 체결부재(F)의 나사산에 대응되는 나사홈(S1)이 구비되어 있다.
제1 내지 제3 실시형태에서는, 체결부재 삽입공간(S)이 체결부재(F)에 비하여 비교적 크게 되어 있다. 따라서, 상기 캡 몸체(110)가 상기 체결부재(F)에 대하여 유동될 수 있다.
본 실시형태에서는, 캡 몸체(110)의 내주면에 나사홈(S1)을 가공하여, 상기 체결부재(F)의 나사산과 직접 결합할 수 있도록 하였다. 즉, 캡 몸체(110)를 나사회전방향으로 회전시키는 것이 의하여, 상기 나사홈(S1)에 체결부재(F)를 용이하게 결합할 수 있다. 이에 의하여, 내화 버스바 캡(103)을 확실하게 체결부재(F) 및 버스바, 전기접속부에 결합할 수 있기 때문에, 절연강도를 보다 개선시킬 수 있다.
(제5 실시형태)
도 7은 본 발명의 다른 실시예에 따른 내화 버스바 캡과 버스바의 결합관계를 나타내는 측단면도이고, 도 8은 도 7의 내화 버스바 캡의 성형과정을 나타내는 개략도이다.
본 실시형태의 내화 버스바 캡(104)은, 상기 체결부재의 삽입공간(S)에 상기 체결부재(F)에 결합되는 나사결합부재(N)가 결합되어 있다. 예컨대, 너트와 같은 나사결합부재(N)가 캡 몸체(110)의 삽입공간(S)에 결합되어 있다. 따라서, 도 7에서 상기 체결부재(F)를 2개의 버스바(B1,B2)의 체결공에 결합한 뒤, 돌출된 체결부재(F)의 나사결합부에 대하여, 상기 내화 버스바 캡(104) 자체를 나사회전시키면, 상기 내화 버스바 캡(104) 내부의 나사결합부재(N)가 상기 체결부재(F)에 나사결합된다. 이에 의하여, 상기 내화 버스바 캡(104)이 상기 버스바(B1,B2)룰 커버할 뿐 아니라, 내화 버스바 캡(104)이 상기 버스바(B1,B2) 및 체결부재(F)에 보다 강고하게 결합될 수 있다. 따라서, 본 실시형태의 내화 버스바 캡(104)은 그 절연성능이 보다 향상된다.
본 실시형태의 내화 버스바 캡(104)은 이른바 인서트 사출성형에 의하여 제조할 수 있다. 도 8에 도시된 바와 같이, 내화 버스바 캡(104)의 윤곽 형상(111)이 형성된 상하 금형(1,2) 사이에 상기 나사결합부재(N)를 금형에 삽입하고, 상기 내화실리콘을 상기 윤곽 형상(111)의 공간 내로 사출성형하는 인서트 사출 성형에 의하여 본 실시형태의 내화 버스바 캡(104)의 캡 몸체(110)를 제조할 수 있다. 이러한 인서트 사출성형방식에 의하여 상기 나사결합부재(N)가 상기 내화 버스바 캡 몸체(110)와 용이하게 일체로 결합될 수 있다.
상기 캡 몸체(110)를 이루는 내화실리콘의 건조 및 소정의 경화과정을 거친 과 후, 상기 캡 몸체(110) 외부에 보호층을 코팅함으로써, 본 실시형태의 내화 버스바 캡(104)을 얻을 수 있다.
한편, 본 발명에 따른 내화 버스바 캡(100,101,102,103,104)은 버스바(B1)의 피복층(12)에 부착할 수 있다. 도 9에 도시된 바와 같이, 예컨대 내마모 테이프(30)로, 상기 피복층(12)의 단부와 상기 내화 버스바 캡의 하단부(베이스부)를 연결하는 것에 의하여, 버스바와 내화 버스바 캡을 연결할 수 있다.
[배터리 팩]
도 10은 본 발명의 캡 일체형 내화버스바가 설치되는 배터리 팩 구조의 일례를 나타낸 개략도이고, 도 11은 본 발명의 캡 일체형 내화버스바가 설치되는 배터리 팩 구조의 다른 예를 나타낸 개략도이고, 도 12는 본 발명의 캡 일체형 내화버스바가 배터리 팩에 설치된 상태를 나타낸 측단면도이다.
상술한 본 발명의 내화 버스바 캡(100,101,102,103,104)은, 고온에서 세라믹화되는 내화실리콘 캡 몸체(110)를 구비하고, 상기 내화실리콘 캡 몸체(120)를 감싸서 형상을 유지하는 보호층(120)을 구비하고 있다. 따라서, 내부 발화가 발생할 수 있는 배터리 팩에 적용할 경우, 배터리 팩의 안전성을 크게 향상시킬 수 있다.
특히, 배터리 모듈의 고전압 단자부들은 높은 전류로 인하여 비교적 높은 열이 발생한다. 이에 따라, 팩 내부 화염 발생시 상기 고전압 단자부에 보다 높은 열이 집중될 수 있다. 따라서, 본 발명의 내화 버스바 캡(100,101,102,103,104)은 복수개의 배터리 모듈의 고전압 단자부들의 전기접속부를 커버하는 절연 캡으로 적용하기 적합하다.
본 발명의 배터리 팩(1000)은, 복수개의 배터리 모듈(200); 상기 배터리 모듈 사이에 설치되는 화염방지용 격벽(300); 상기 배터리 모듈을 전기적으로 연결하는 버스바(B1,B2); 상기 배터리 모듈과 상기 버스바의 전기접속부를 커버하는 상기 내화 버스바 캡(100,101,102,103,104) 및 상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징(400)을 포함할 수 있다.
도 10을 참조하면, 복수개의 배터리 모듈(200)이 팩 하우징(400)에 수용되는 것이 도시되어 있다. 상기 배터리 모듈(200)은 복수개의 배터리 셀이 적층된 셀 적층체(도시하지 않음)를 구비하고 있으며, 상기 셀 적층체의 전지셀들로부터 각기 다른 극성의 셀 리드가 도출된다. 상기 셀 리드들은 터미널 버스바나 인터버스바 등의 버스바, 혹은 버스바와 전기적으로 연결된다. 상기 복수개의 배터리 모듈을 전기적으로 연결하기 위하여 본 발명에 따른 캡 일체형 내화버스바가 적용될 수 있다.
한편, 도 10 및 도 11에는, 모듈 하우징이 배터리 셀 적층체의 상하좌우면을 완전히 감싸는 통상의 배터리 모듈(200)이 개시되어 있다. 그러나, 이에 한하지 않고, 예컨대 셀 적층체의 상하좌우면 중 적어도 하나의 면이 개방되도록 구성된 모듈리스 구조의 모듈 하우징을 가지는 배터리 모듈이나, 혹은 셀 적층체의 상하좌우면 전체가 개방된 형태의 전지셀 블록에 대해서도 본 발명의 내화 버스바 캡을 적용할 수 있다. 이와 같이, 모듈 하우징의 전부 또는 일부가 생략된 셀 블록 또는 배터리 모듈들을 배터리 팩에 설치하여 이른바 셀투팩 구조의 배터리 팩을 구성할 수 있다. 본 발명의 내화 버스바 캡(100,101,102,103,104)은 이러한 셀투팩 구조의 배터리 팩 내에 설치된 셀 블록 또는 모듈리스 구조의 배터리 모듈의 전기적 연결을 위해서 사용될 수 있다.
인접하는 모듈 간의 화염전파를 방지하기 위하여, 상기 배터리 팩(1000)은 배터리 모듈 사이에 설치되는 화염방지용 격벽(300)을 포함할 수 있다. 화염방지용 격벽(300)은 강성 확보를 위하여 금속제의 재질일 수 있다. 상기 화염방지용 격벽(300)은 하나의 모듈에서 화재가 발생할 경우 인접하는 모듈로 화염이 전파되는 것을 방지하는 기능을 한다. 이 경우, 상기 화염방지용 격벽(300)에는, 버스바 설치 관통홀(310) 또는 버스바 설치홈(320)을 구비될 수 있다. 도 10은 화염방지용 격벽(300)에 버스바 설치 관통홀(310)이 구비된 것을 도시하고, 도 11은 화염방지용 격벽(300)이 버스바 설치홈(320)을 구비한 것을 도시한다. 화염방지 및 기밀성의 측면에서는 도 10과 같이 버스바 설치 관통홀(310)이 구비된 격벽이 유리하다. 도 11의 버스바 설치홈(320)은 상부가 개방되어 있으므로, 버스바 설치 및 버스바의 전기연결작업을 행하기 유리하다.
상기 버스바(B1)는 상기 버스바 설치 관통홀(310) 또는 버스바 설치홈(320)에 안착될 수 있다. 이때, 상기 버스바의 양단부는 상기 화염방지용 격벽(300)의 양측에 위치한 배터리 모듈(200)의 단자부(210,220)에 전기적으로 결합될 수 있다.
도 10 및 도 11에는 상기 버스바가 배터리 팩(1000) 내에서 배터리 모듈(200)을 전기적으로 연결하는 모습이 도시되어 있다. 이웃하는 배터리 모듈(200) 사이에는 화염방지용 격벽(300)이 위치하며, 상기 화염방지용 격벽에는 버스바 설치 관통홀(310)이 구비되어 있다. 상기 버스바 설치 관통홀(310) 상에 버스바를 안착시킨다. 상기 내화 버스바 캡(100,101,102,103,104)은 상기 버스바 양단부와 단자부(210,220)의 결합부를 커버한다.
한편, 배터리 팩(1000) 내에서 화염이 발생할 경우, 본 발명의 내화 버스바 캡(100,101,102,103,104)은 캡 몸체(110)가 세라믹화되어 치밀한 소결체를 형성한다. 즉, 종래의 내열실리콘과 같이 500℃ 이상의 고온에서 타서 없어지거나 재가 되는 것이 아니라, 세라믹화되어 그 형상을 유지한다. 이에 따라, 상기 내화 버스바 캡(100,101,102,103,104)은 상기 결합부를 안정적으로 커버하여 결합부의 절연을 유지할 수 있다. 상기 보호층(120)은 내화실리콘 캡 몸체(110)가 화염과 직접 접촉하는 것을 방지하여 내화실리콘의 변형을 방지하고 절연성 및 내화성을 한층 더 강화시킨다.
[실험예]
(실험예 1)
상기 화학식 1의 실리콘 화합물 50중량%, 석영 20중량%, 순수 이산화규소 30중량%로 이루어진 105×105×1mm 크기의 내화실리콘 시편에 스웨코(SWECO)사의 0.18mm 두께의 유리섬유테이프(품명:AGT6WO)를 부착하여 실시예 1의 시편을 제조하였다.
상기 내화실리콘 시편에 스웨코(SWECO)사의 0.18mm 두께의 마이카테이프(품명: SA765)를 부착하여 실시예 2의 시편을 제조하였다.
AGT6WO 유리섬유테이프와 SA765 마이카테이프를 교대로 복수매 적층하여 실시예 1 및 2의 시편과 동일한 크기 및 두께의 비교예 1 및 비교예 2의 시편을 제조하였다.
상기 실시예 1,2 및 비교예 1의 시편을 화염온도 1100~1150℃의 대형토치로 전체 표면을 균일하게 3분간 가열한 후 시편 뒷면의 온도를 측정하였으며, 그 측정결과는 하기 표 1과 같다.
실험예 1 시편 구성 시편 뒷면 온도
비교예 1 마이카테이프 2장+유리섬유테이프 4장 560℃
비교예 2 마이카테이프 4장+유리섬유테이프 2장 440℃
실시예 1 내화실리콘+유리섬유테이프 405℃
실시예 1 내화실리콘+마이카테이프 350℃
상기 표 1에 도시된 바와 같이, 본 발명의 내화 버스바 캡에 적용되는 내화실리콘 시편 및 보호층을 구비한 실시예 1,2가 비교예 1 및 비교예 2보다 시편 뒷면 온도 상승률이 낮았다.
따라서, 상기한 내화실리콘 캡 몸체와 보호층을 구비한 본 발명의 내화 버스바 캡의 절연특성 및 단열특성이 매우 우수하다는 것을 알 수 있다. 특히, 실시예 2와 같이, 유리섬유테이프를 보호층으로 사용한 예에 비하여 마이카테이프를 보호층으로 사용한 실시예 2가 절연성능이 보다 우수하였다.
(실험예 2)
상기 화학식 1의 실리콘 화합물의 중량과 금속산화물의 중량 비율을 달리하여 하기 표 2에 도시된 조성의 내화실리콘 시편을 준비하였다.
표 2 조성의 내화실리콘 시편에 스웨코(SWECO)사의 0.18mm 두께의 마이카테이프(품명: SA765)를 부착하여 실시예 1-1~1-5의 시편을 제조하였다.
실시예 1-1~1-5의 시편을 화염온도 1100~1150℃의 대형토치로 전체 표면을 균일하게 3분간 가열한 후 시편 뒷면의 온도를 측정하였으며, 그 측정결과는 하기 표 2와 같다.
실험예 2 내화실리콘 조성 시편 뒷면 온도
실시예 1-1 실리콘 화합물 50중량%: 금속산화물 50중량%
(석영: 20중량%, 순수이산화규소:30중량%)
350℃
실시예 1-2 실리콘 화합물 50중량%: 금속산화물 25중량%
(석영: 10중량%, 순수이산화규소:15중량%)
380℃
실시예 1-3 실리콘 화합물 50중량%: 금속산화물 75중량%
(석영: 30중량%, 순수이산화규소:45중량%)
330℃
실시예 1-4 실리콘 화합물 50중량%: 금속산화물 20중량%
(석영: 10중량%, 순수이산화규소:10중량%)
390℃
실시예 1-5 실리콘 화합물 50중량%: 금속산화물 80중량%
(석영: 35중량%, 순수이산화규소:45중량%)
321℃
상기 실시예 1-1~1-5에서, 실리콘 화합물과 금속산화물의 중량 비율은, 1: 1, 1:0.5, 1:1.5, 1:0.4, 1:1.6이었다.
모든 실시예가 상기 비교예 1 및 2보다 시편 뒷면 온도가 낮았다. 다만, 중량 비율이 0.5 미만인 실시예 1-4의 경우 시편 뒷면 온도가 다소 높았는데, 이는 금속산화물이 충분하지 않아 고온에서 고밀도의 결정구조를 가지는 세라믹 구조의 생성이 다소 부족하였기 때문으로 판단된다.
또한, 중량 비율이 1.6인 실시예 1-5의 경우 시편 뒷면 온도가 충분히 낮았지만, 금속산화물이 과다하여 상온상태에서 내화실리콘의 유연성이 저하되어, 내화 버스바 캡의 성형성이 나빠진다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
(부호의 설명)
100,101,102,103,104: 내화 버스바 캡
110: 내화실리콘 캡 몸체
110A: 베이스부
110B: 체결부재 삽입부
120,120': 보호층
120A: 베이스부 보호층
120B: 삽입부 보호층
S: 체결부재 삽입공간
H1,H2: 체결공
B1,B2: 버스바
S1: 나사홈
N: 나사결합부재
200: 배터리 모듈
210,220: 단자부
300: 화염방지용 격벽
310: 버스바 설치 관통홀
320: 버스바 설치홈
400: 팩 하우징
1000: 배터리 팩

Claims (13)

  1. 버스바와, 상기 버스바에 결합되는 전기접속부를 커버하는 버스바 캡으로서,
    상기 버스바와 상기 전기접속부를 체결하는 체결부재의 삽입공간이 내측에 구비되고, 고온에서 세라믹화하는 내화실리콘 캡 몸체; 및
    상기 내화실리콘 캡 몸체를 커버하는 보호층을 포함하는 내화 버스바 캡.
  2. 제1항에 있어서,
    상기 내화실리콘은 500~1700℃의 온도에서 세라믹화하는 내화 버스바 캡.
  3. 제1항에 있어서,
    상기 내화실리콘은 하기 화학식 1로 나타내는 실리콘 화합물을 포함하는 실리콘 수지와; 산화규소를 함유하는 금속 산화물의 소결에 의해 세라믹화되는 것을 특징으로 하는 내화 버스바 캡:
    [화학식 1]
    Figure PCTKR2023016518-appb-img-000004
    상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
  4. 제3항에 있어서,
    상기 실리콘 수지와 금속산화물은 1: 0.5~1.5의 중량 비율로 포함되는 내화 버스바 캡.
  5. 제3항에 있어서,
    산화규소를 함유하는 금속산화물은 순수 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함하는 캡 일체형 내화 버스바 캡.
  6. 제1항에 있어서,
    상기 보호층은 유리섬유층 또는 마이카층인 캡 일체형 내화 버스바 캡.
  7. 제1항에 있어서,
    상기 내화실리콘 캡 몸체의 체결부재 삽입공간의 내주면에 상기 보호층이 구비된 캡 일체형 내화염 버스바.
  8. 제1항에 있어서,
    상기 캡 몸체는, 상기 버스바의 측면 또는, 버스바 및 전기접속부의 측면을 커버하는 베이스부와, 상기 베이스부로부터 상향 연장되고 상기 체결부재의 삽입공간을 내측에 구비하며 상기 버스바 및 전기접속부의 상면을 커버하는 체결부재 삽입부를 포함하는 내화 버스바 캡.
  9. 제1항에 있어서,
    상기 체결부재의 삽입공간을 구비한 내화실리콘 캡 몸체 내주면을 따라 상기 체결부재의 나사산에 대응되는 나사홈이 구비된 내화 버스바 캡.
  10. 제1항에 있어서,
    상기 체결부재의 삽입공간에 상기 체결부재에 결합되는 나사결합부재가 결합되는 내화 버스바 캡.
  11. 제10항에 있어서,
    상기 나사결합부재를 금형에 삽입하고, 상기 내화실리콘을 사출성형하는 인서트 사출 성형에 의하여 상기 나사결합부재가 상기 내화버스바 캡과 일체로 결합되는 내화 버스바 캡.
  12. 복수개의 배터리 모듈;
    상기 배터리 모듈 사이에 설치되는 화염방지용 격벽;
    상기 배터리 모듈을 전기적으로 접속하는 버스바;
    상기 배터리 모듈과 상기 버스바의 전기접속부를 커버하는 제1항 내지 제11항 중 어느 한 항의 내화 버스바 캡
    상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징을 포함하는 배터리 팩.
  13. 제12항에 있어서,
    상기 화염방지용 격벽은, 버스바 설치 관통홀 또는 버스바 설치홈을 구비하고,
    상기 버스바는 상기 버스바 설치 관통홀 또는 버스바 설치홈에 안착되고,
    상기 버스바의 양단부는 상기 화염방지용 격벽의 양측에 위치한 배터리 모듈의 단자부에 전기적으로 결합되며,
    상기 내화 버스바 캡이 상기 양단부와 단자부의 전기접속부를 커버하는 배터리 팩.
PCT/KR2023/016518 2022-10-26 2023-10-24 내화 버스바 캡 및 이를 구비한 배터리 팩 WO2024090937A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220139407A KR20240058550A (ko) 2022-10-26 2022-10-26 내화 버스바 캡 및 이를 구비한 배터리 팩
KR10-2022-0139407 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024090937A1 true WO2024090937A1 (ko) 2024-05-02

Family

ID=90831376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016518 WO2024090937A1 (ko) 2022-10-26 2023-10-24 내화 버스바 캡 및 이를 구비한 배터리 팩

Country Status (2)

Country Link
KR (1) KR20240058550A (ko)
WO (1) WO2024090937A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140136246A (ko) * 2013-05-20 2014-11-28 주식회사 엘지화학 이차전지용 커넥팅 부품 및 이를 포함하는 이차전지
KR20200054715A (ko) * 2018-11-12 2020-05-20 주식회사 엘지화학 버스바 보호 어셈블리, 버스바 보호 어셈블리 결합 방법, 및 이를 포함하는 전지팩
KR102270734B1 (ko) * 2019-12-17 2021-06-29 주식회사 유라코퍼레이션 버스바 및 러버캡 고정구조
KR20210088170A (ko) * 2020-01-06 2021-07-14 주식회사 엘지에너지솔루션 안전성이 향상된 배터리 팩 및 이를 포함하는 이차전지
KR20220118636A (ko) * 2021-02-19 2022-08-26 에스케이온 주식회사 배터리 팩

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220001228A (ko) 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 화재 억제를 위한 격벽과 단열층이 구비된 전지 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140136246A (ko) * 2013-05-20 2014-11-28 주식회사 엘지화학 이차전지용 커넥팅 부품 및 이를 포함하는 이차전지
KR20200054715A (ko) * 2018-11-12 2020-05-20 주식회사 엘지화학 버스바 보호 어셈블리, 버스바 보호 어셈블리 결합 방법, 및 이를 포함하는 전지팩
KR102270734B1 (ko) * 2019-12-17 2021-06-29 주식회사 유라코퍼레이션 버스바 및 러버캡 고정구조
KR20210088170A (ko) * 2020-01-06 2021-07-14 주식회사 엘지에너지솔루션 안전성이 향상된 배터리 팩 및 이를 포함하는 이차전지
KR20220118636A (ko) * 2021-02-19 2022-08-26 에스케이온 주식회사 배터리 팩

Also Published As

Publication number Publication date
KR20240058550A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2016137303A1 (ko) 배터리 모듈
WO2016200231A1 (ko) 배터리 모듈
WO2017171509A1 (ko) 배터리 모듈
WO2019054817A1 (ko) 배터리 모듈
WO2021141345A1 (ko) 안전성이 향상된 배터리 팩
WO2017217625A1 (ko) 리튬 이차전지 활물질 소성용 내화갑 및 이를 이용한 활물질 제조방법
WO2022139451A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2024090937A1 (ko) 내화 버스바 캡 및 이를 구비한 배터리 팩
WO2024090909A1 (ko) 캡 일체형 내화버스바 및 이를 구비한 배터리 팩
WO2024090907A1 (ko) 내화케이블 및 이를 구비한 배터리 팩
WO2024090936A1 (ko) 내화버스바 및 이를 구비한 배터리 팩
WO2023106664A1 (en) All soilid-state battery
WO2023033553A1 (ko) 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2019146927A1 (ko) 이차 전지용 절연판 및 그의 제조 방법
WO2021085917A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2024054098A1 (ko) 내화염성이 향상된 버스바 및 이를 포함하는 전지팩
WO2023121415A1 (ko) 안전성이 강화된 배터리 모듈
WO2023113306A1 (ko) 압전 및 유전 특성이 우수한 코어쉘 구조의 무연 압전 세라믹 및 그 제조 방법
WO2019146926A1 (ko) 이차 전지 및 이차 전지용 절연판
WO2024034899A1 (ko) 배터리 모듈 및 그 제조 방법, 배터리 팩
WO2018139805A1 (ko) 분리막의 제조방법, 이로부터 제조된 분리막 및 이를 포함하는 전기화학소자
WO2023149694A1 (ko) 발화억제 구조의 리튬이차전지
WO2022050555A1 (ko) 전지 셀의 적층 방식이 개선된 전지 모듈 및 이를 포함하는 전지 팩
WO2018143596A1 (ko) 전지 모듈용 집전시스템, 전지 모듈 및 자동차
WO2024117878A1 (ko) 셀 조립체 및 이를 포함하는 배터리 팩