WO2024090907A1 - 내화케이블 및 이를 구비한 배터리 팩 - Google Patents
내화케이블 및 이를 구비한 배터리 팩 Download PDFInfo
- Publication number
- WO2024090907A1 WO2024090907A1 PCT/KR2023/016354 KR2023016354W WO2024090907A1 WO 2024090907 A1 WO2024090907 A1 WO 2024090907A1 KR 2023016354 W KR2023016354 W KR 2023016354W WO 2024090907 A1 WO2024090907 A1 WO 2024090907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cable
- fire
- resistant
- core wire
- metal case
- Prior art date
Links
- 230000009970 fire resistant effect Effects 0.000 title claims abstract description 131
- 229910052751 metal Inorganic materials 0.000 claims abstract description 100
- 239000002184 metal Substances 0.000 claims abstract description 100
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 80
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 80
- 239000010703 silicon Substances 0.000 claims abstract description 80
- 239000011247 coating layer Substances 0.000 claims abstract description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 60
- 229920001296 polysiloxane Polymers 0.000 claims description 37
- 239000010410 layer Substances 0.000 claims description 35
- 229910044991 metal oxide Inorganic materials 0.000 claims description 32
- 150000004706 metal oxides Chemical class 0.000 claims description 32
- 238000009434 installation Methods 0.000 claims description 28
- 239000004447 silicone coating Substances 0.000 claims description 28
- 235000012239 silicon dioxide Nutrition 0.000 claims description 25
- 238000005192 partition Methods 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 20
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 229920002050 silicone resin Polymers 0.000 claims description 20
- 230000002265 prevention Effects 0.000 claims description 19
- 239000000919 ceramic Substances 0.000 claims description 15
- 230000008878 coupling Effects 0.000 claims description 12
- 238000010168 coupling process Methods 0.000 claims description 12
- 238000005859 coupling reaction Methods 0.000 claims description 12
- 239000010453 quartz Substances 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 229910021495 keatite Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000007743 anodising Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 239000003365 glass fiber Substances 0.000 description 6
- 239000010445 mica Substances 0.000 description 6
- 229910052618 mica group Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- MPDDTAJMJCESGV-CTUHWIOQSA-M (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoate Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC([O-])=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-M 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000003377 silicon compounds Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000088 plastic resin Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000784732 Lycaena phlaeas Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229940021013 electrolyte solution Drugs 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005060 molding of refractory Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052628 phlogopite Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/42—Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/46—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/658—Means for temperature control structurally associated with the cells by thermal insulation or shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a fire-resistant cable and a battery pack equipped with the same.
- a fire-resistant cable and battery pack that has a fire-resistant silicon coating layer that becomes ceramic at high temperature and a metal case surrounding this coating layer, and can maintain insulation and airtight properties even at high temperatures where ignition occurs inside the battery pack.
- Battery packs applied to electric vehicles, etc. have a structure in which multiple battery modules including a plurality of secondary batteries are connected in series or parallel to obtain high output.
- the secondary battery is capable of repeated charging and discharging through electrochemical reactions between components, including positive and negative electrode current collectors, separators, active materials, and electrolyte solutions.
- the cable is used to electrically connect the terminals of adjacent battery modules, or to electrically connect each battery cell provided in the BMS unit and the battery module or the BMS unit and the battery module, or to connect the battery modules to an external electrical device. It is used.
- 1 is a schematic diagram showing a conventional cable structure.
- a conventional cable 1 consists of a cable core wire 10 and a covering layer 20 surrounding the core wire.
- the core wire is a common copper wire core wire.
- the coating layer is made of plastic resin such as polyethylene (PE) or polyvinyl chloride (PVC).
- the temperature of the flame is very high (500 to 800 °C, or over 800 °C, and in extreme cases, over 1000 °C), so all the plastic resin coating layers melt and the cable core wire is exposed to the outside. It will happen. In this case, the exposed cable core wire comes into electrical contact with other metal parts in the pack, causing a short circuit, and the flame spreads further due to the heat generated by the electric short circuit.
- a cable using mica sheet, glass fiber, or heat-resistant silicone (rubber), etc. may be considered as the covering layer.
- the covering layer of the cable may be damaged by the sharp edge of the partition, which may damage the insulation of the core wire or damage its airtightness.
- the purpose of the present invention is to provide a fire-resistant cable that can maintain thermal and electrical insulation for as long as possible even when a flame occurs inside a battery pack.
- the present invention is to provide a battery pack equipped with the fire-resistant cable.
- the fire-resistant cable of the present invention for solving the above problems includes a cable core wire; A fireproof silicon coating layer that surrounds the cable core wire except for both ends and is ceramicized at a high temperature to support the cable core wire; and a metal case that accommodates the cable core wire and the fire-resistant silicone coating layer and has openings on both sides through which both ends of the cable core wire are exposed to the outside.
- the refractory silicon can be ceramicized at a temperature of 500 to 1700°C.
- the fire-resistant silicone includes a silicone resin containing a silicone compound represented by the following formula (1); It can be ceramicized by sintering a metal oxide containing silicon oxide.
- n and n are each integers of 10 to 30.
- the silicone resin and metal oxide may be included in a weight ratio of 1:0.5 to 1.5.
- the metal oxide containing silicon oxide may include one or more of pure silicon dioxide, silica, quartz, silica, tridymite, and keatite.
- the metal case includes an upper case and a lower case, and the upper and lower cases can be coupled by hook coupling.
- At least one of the inner and outer surfaces of the metal case may be anodized.
- the metal case may be made of aluminum, steel, or stainless steel.
- the cable core wire has a bent portion
- the metal case may have a curved portion corresponding to the shape of the curved portion.
- the fire-resistant cable may be a high-voltage cable that electrically connects high-voltage terminals of a plurality of battery modules.
- a battery pack as another aspect of the present invention includes a plurality of battery modules; A flame prevention partition installed between the battery modules; The fire-resistant cable described above electrically connecting the battery module; And it may include a pack housing accommodating the battery module and the flame prevention partition.
- the flame prevention partition is provided with a cable installation through hole or a cable installation groove, and the metal case of the fire-resistant cable is seated in the cable installation through hole or cable installation groove, and the cable core wire extending from the opening of the metal case is provided. Both ends may be electrically coupled to terminal portions of the battery module located on both sides of the flame prevention partition.
- the metal case of the fire-resistant cable may be formed to correspond to the shape of the cable installation through hole or cable installation groove.
- the fire-resistant cable of the present invention has a fire-resistant silicon coating layer that is ceramicized and supports the cable core wire instead of a coating layer that burns away when a flame occurs inside the pack, so it can maintain insulation and airtight properties even at high temperatures.
- the fire-resistant cable of the present invention has a metal case surrounding the fire-resistant silicone coating layer.
- the metal case maintains the shape of the cable core and wraps the refractory silicon to prevent the refractory silicon from being directly exposed to flame, thereby preventing deformation of the refractory silicon and further strengthening its insulation and airtight properties.
- the metal case protects the fireproof silicon and core wire, preventing insulation damage from sharp edges, and improving airtightness with the battery pack partition.
- the core wire can first be formed and installed in the battery pack, and then the core wire can be combined with a metal case provided with a fire-resistant coating layer. Therefore, even thick core wires can be molded with a small radius of curvature (R value), making them suitable for large-capacity batteries.
- 1 is a schematic diagram showing a conventional cable structure.
- Figure 2 is a perspective view of a fire-resistant cable according to an embodiment of the present invention.
- Figure 3 is a perspective view showing a state before assembly of the metal case of the fire-resistant cable of Figure 2.
- Figure 4 is a side view and a top view of the fire resistant cable of the embodiment of Figure 2.
- Figure 5 is a cross-sectional view of the fire resistant cable of the embodiment of Figure 2;
- Figure 6 is a cross-sectional view of a fire-resistant cable according to another embodiment of the present invention.
- Figure 7 is a plan view of a fire-resistant cable according to another embodiment of the present invention.
- Figure 8 is a schematic diagram showing an example of a battery pack structure in which the fire-resistant cable of the present invention is installed.
- Figure 9 is a schematic diagram showing another example of a battery pack structure in which the fire-resistant cable of the present invention is installed.
- Figure 10 is a side cross-sectional view showing the fire-resistant cable of the present invention installed in a battery pack.
- the fire resistant cable of the present invention includes a cable core wire; A fireproof silicon coating layer that surrounds the cable core wire except for both ends and is ceramicized at a high temperature to support the cable core wire; and a metal case that accommodates the cable core wire and the fire-resistant silicone coating layer and has openings on both sides through which both ends of the cable core wire are exposed to the outside.
- the cable core wire may be a regular copper core wire.
- the core wire may be a wire core wire formed by twisting a plurality of copper wires. Both ends of the core wire are electrically connected to corresponding coupling portions.
- the fire-resistant silicone coating layer is a layer that covers the core wire of the cable while surrounding the portion excluding both ends of the cable core wire. That is, as shown in FIGS. 2 to 5, a fireproof silicon coating layer is covered around the central portion of the core wire excluding both ends.
- the refractory silicon coating layer is ceramicized at a high temperature to support the cable core wire.
- the refractory silicon can be ceramicized at a temperature of 500 to 1700°C.
- the fire-resistant silicon of the present invention is distinguished from heat-resistant silicon with a heat-resistant temperature of less than 300° C. in that it has a fire-resistant temperature of 500° C. or higher.
- Heat-resistant silicone is a silicone resin or rubber composition that has flexibility and flexibility due to the characteristics of silicone, but it is a material that does not become ceramic and burns out or turns into ash at high temperatures above 500°C. Therefore, there is a limit to its application in preventing short-circuiting or heat propagation of a battery pack in a heat propagation situation.
- the fire-resistant silicone coating layer has 'fire-resistant' properties that make it ceramic at a high temperature of 500°C or higher, it can maintain insulating and airtight properties within the battery pack even when a flame occurs.
- the fire-resistant cable according to the present invention can achieve high fire-resistant performance by providing fire-resistant silicon inside along with structural improvement of the cable.
- the fireproof silicone is a composition containing silicone resin and metal oxide as main ingredients, and has flexibility and flexibility due to the characteristics of silicone at room temperature. In addition, it has a certain elasticity and exhibits high impact resistance and insulation, and when exposed to high temperatures, a silicon sintered body with a complex ceramic structure can be formed by sintering silicon resin and metal oxide.
- the silicone resin contained in fireproof silicon generates silica in powder form when burned at high temperature.
- the silica produced in this way reacts with the metal oxide of the refractory silicon to form a "eutectic mixture" on the edge of the metal oxide, thereby performing a bridging role between the silica and the metal oxide, so it hardens at the ignition temperature.
- This ceramic body prevents short-circuiting or disconnection between conductors due to damage to the fire-resistant silicon coating layer even when external mechanical shock is applied or moisture penetrates in the event of a fire, allowing the cable to exercise its own electrical function.
- the refractory silicone according to the present invention contains a silicone resin and a metal oxide.
- the silicone resin is not particularly limited as long as it contains silicon (Si) in the molecule, but preferably may include a silicone compound represented by the following formula (1) (hereinafter referred to as “the silicone compound of formula 1”):
- n and n are each integers of 10 to 30.
- the silicone compound of Formula 1 includes a methylsiloxane repeating unit, and includes vinyl groups inside and at the ends of the methylsiloxane repeating unit, respectively.
- the vinyl group is present not only at the ends of the silicone compound of Formula 1 but also inside the repeating unit, and plays a role in increasing the degree of polymerization of the silicone resin when exposed to high temperatures. Through this, it can realize better fire resistance properties compared to silicone compounds that do not contain a vinyl group. You can.
- the weight average molecular weight of the silicone compound of Formula 1 may be adjusted to a specific range.
- the silicone compound of Formula 1 is a compound that forms the base of a silicone resin, and depending on the weight average molecular weight of the silicone compound of Formula 1, it can affect the physical properties of fireproof silicon at room temperature and high temperatures. For example, if the weight average molecular weight of the silicone compound of Formula 1 is excessively high, the viscosity of the silicone resin may increase and reactivity may decrease during high temperature sintering, and if the weight average molecular weight is significantly low, the room temperature elasticity and flexibility of the silicone resin may decrease. As a result, the manufacturing process of fire-resistant cables is lowered, while impact resistance, etc., is lowered.
- the silicone compound of Formula 1 according to the present invention may have a weight average molecular weight adjusted to 1,000 to 9,000 g/mol, specifically 3,000 to 8,000 g/mol; Alternatively, it may have an adjusted value of 5,000 to 7,000 g/mol.
- the metal oxide is a composition containing silicon oxide, and can act as a crystal nucleus when exposed to high temperature to form a high-density ceramic body together with the above-described silicone resin.
- These metal oxides may include one or more of silicon dioxide, silica, quartz, silica, tridymite, and keatite.
- the metal oxide contains pure silicon dioxide (SiO 2 ) as well as minerals such as quartz containing silicon dioxide (SiO 2 ) as a main component, so it is not only highly economical, but also has a high melting point (high refractoriness) and high sintering. degree) and can exhibit excellent electrical insulation performance.
- silicon dioxide, silica, quartz, etc. can improve various performances during the sintering process, induce easy dissolution and molding of refractory silicon, and reduce defects that may occur in ceramic bodies.
- the metal oxide can be sintered with a silicone resin to have a crystal structure that increases fire resistance, insulation, and mechanical strength.
- This metal oxide is in the form of a powder, but is not particularly limited, and has a size of 200 ⁇ m or less, for example, 0.1 ⁇ m to 200 ⁇ m; Alternatively, those having a size of 0.1 ⁇ m ⁇ 100 ⁇ m can be used.
- the silicone resin may further include a silicon compound represented by the following Chemical Formula 2 (hereinafter referred to as “the silicone compound of Chemical Formula 2”), and the silicone compound of Chemical Formula 2, together with the silicon compound of Chemical Formula 1, acts as a metal at high temperature. Participates in sintering of the oxide to form a silicon sintered body:
- p is an integer of 10 to 30.
- the silicone compound of Formula 2 increases the flexibility of the refractory silicon at room temperature, and can play a role in inducing the completion of sintering of the silicone resin through dehydration condensation with the silicone compound of Formula 1 during sintering, through which The ceramic body formation reaction can be terminated.
- the silicone compound of Formula 2 may be used in an amount of less than 10 parts by weight, specifically 0.5 to 9 parts by weight, based on the total weight of the fireproof silicon; 1 to 6 parts by weight; Alternatively, it may be used in an amount of 2 to 5 parts by weight.
- fireproof silicon may contain silicone resin and metal oxide in a certain ratio in order to realize high elasticity at room temperature and to quickly form a ceramic body when exposed to high temperatures.
- the refractory silicon may have a weight ratio of silicone resin and metal oxide of 1:0.5 to 1.5, and specifically, 1:0.8 to 1.2. If the weight ratio of the metal oxide is low (less than 0.5), it is difficult to have a ceramic structure with a high density crystal structure at high temperature, so there is a problem of insufficient fire resistance and mechanical strength. Additionally, if the weight ratio of the metal oxide exceeds 1.5, the flexibility of the refractory silicon is reduced at room temperature, resulting in poor handleability.
- the refractory silicone of the present invention contains 35 to 50% by weight of the silicone compound of Formula 1; Quartz 16-32% by weight; 10-27% by weight of silicon dioxide; and a second silicone compound of Formula 2 in an amount of 1 to 6% by weight, and in some cases, a predetermined solvent may be additionally included to increase fairness during manufacturing.
- the refractory silicon of the present invention is hardened by sintering a silicone resin and a metal oxide at 500° C. or higher to become ceramic.
- it is ceramicized up to 1700°C, and theoretically, it can partially maintain ceramicization even at temperatures above 1700°C. However, if the temperature exceeds 1700°C, the ceramicization retention time becomes shorter and the fire resistance required for the battery pack may not be maintained.
- the refractory silicone Before being ceramicized, the refractory silicone has rubber-like properties such as flexibility, flexibility, and elasticity, as described above. Therefore, it is easy to inject the fireproof silicone coating layer into a metal case, which will be described later, and injection mold it or apply it inside the metal case. Additionally, when the cable core wire is inserted into the fire-resistant silicon coating layer provided in the metal case, the flexible fire-resistant silicon surrounds the cable core wire while pressing it. Accordingly, the flexible fire-resistant silicon can follow the shape of the cable core wire and cover the core wire without any gaps.
- the fireproof silicon coating layer has flexibility before being ceramicized, it can flexibly follow the deformation of the cable core wire. Therefore, when installing the fire-resistant cable of the present invention in a battery pack, even if there is a slight assembly tolerance, it can flexibly respond to this. For example, when a battery module is fastened to a battery pack by bolting, if the cable core wire connected to the battery module moves or is slightly twisted, the fire-resistant silicone coating layer can absorb such flow or twist. Additionally, even when the battery pack vibrates due to the vibration of the electric vehicle, the fireproof silicon coating layer can naturally absorb the vibration.
- ceramicized refractory silicon directly surrounds and supports the core wire and can maintain the shape of the core wire.
- the fire-resistant cable of the present invention also includes a metal case in which the cable core wire and the fire-resistant silicone coating layer are accommodated.
- the metal case may include openings on both sides through which both ends of the cable core wire are exposed to the outside. Both ends of the cable core wire may be exposed to the outside through the openings on both sides. Additionally, both ends of the core wire may be coupled to corresponding electrical connection parts.
- the metal case maintains the shape of the formed cable core wire.
- the fire-resistant silicon coating layer is wrapped to prevent the fire-resistant silicon coating layer from being directly exposed to flame when the inside of the battery pack ignites. Accordingly, the fireproof silicone coating layer can be prevented from being deformed and the insulating and airtight properties can be strengthened.
- the metal case holds the outer shape of the fireproof silicon tightly so that it does not collapse when the battery pack ignites internally, making it possible to maintain insulation and airtightness for a long time.
- the metal case when installed, for example, in a battery pack, it can maintain airtightness by adhering to the assembly space within the battery pack. Because the metal case has a hard surface, it can prevent damage to the insulation or cable cores in the fire-resistant cable, even if there are sharp edges in the assembly space within the battery pack.
- the metal case may be made of aluminum, steel, or stainless steel. However, it is not limited to this, and the metal case can be manufactured from other metal materials as long as it has the strength to protect the cable core wire and the fireproof silicone coating layer and is easy to form or process.
- Surface treatment may be performed on the surface of the metal case to reinforce insulation.
- anodizing may be performed on the inner or outer surface or both the inner and outer surfaces of the metal case.
- Anodizing is one of the metal surface treatment technologies belonging to chemical conversion coating treatment along with phosphate coating treatment and chromate treatment, and is a technology applied to improve corrosion resistance and wear resistance of non-ferrous metal products such as aluminum, titanium, copper, and magnesium.
- an oxide film is formed by oxygen generated from the anode.
- alumina Al 2 O 3
- this oxide film is an insulator, a metal case made of anodized metal (e.g., aluminum) becomes a surface insulator.
- the fire-resistant cable of the present invention having an anodized metal case is provided with two electrical insulators. That is, a fireproof silicon coating layer is provided as a first insulator, and an oxide film on the surface of the metal case is provided as a second insulator. Therefore, the insulation of the fire-resistant cable is further improved by anodizing treatment.
- the metal case can be applied as a case that is integrally formed as long as it accommodates the cable core wire and the fire-resistant silicone coating layer surrounding the core wire, or in the form of a case in which separate case parts are combined together to form a single case.
- Figure 2 is a perspective view of a fire-resistant cable according to an embodiment of the present invention
- Figure 3 is a perspective view showing a state before assembly of the metal case of the fire-resistant cable of Figure 2
- Figure 4 is a side view of the fire-resistant cable of the embodiment of Figure 2 and It is a plan view
- FIG. 5 is a cross-sectional view of the fire-resistant cable of the embodiment of FIG. 2.
- the metal case 130 according to the fire resistant cable 100 of this embodiment includes an upper case 130A and a lower case 130B. That is, in this embodiment, the metal case 130 is not formed as one piece, but is composed of two parts.
- the upper case 130A and the lower case 130B can be easily coupled by providing a hook coupling portion 132. That is, the lower case 130B has a protrusion 132B on the upper front side, and the upper case 130A has a hook portion 132A into which the protrusion is inserted on the lower front side.
- the hook portion 132A and the protrusion 132B constitute the hook coupling portion 132. As shown in FIG.
- the side surfaces of the upper case 130A and the lower case 130B on which the hook coupling portion 132 is not formed are connected to each other by a hinge coupling. Accordingly, one of the upper and lower cases can be moved (rotated) relative to the other by rotating the hinge. In the state of FIG. 3, one of the upper and lower cases is rotated relative to the other to approach each other, and the protruding portion 132B is inserted into the hook portion 132A to couple the upper and lower cases to form the metal case 130 of the present invention. is achieved.
- opening grooves 131A and 131B are provided on both sides of the upper case 130A and the lower case 130A, respectively. Accordingly, when the upper and lower cases are combined, the opening groove 131A of the upper case and the opening groove 131B of the lower case are engaged with each other to form the opening 131. Both ends of the cable core wire 110 may be exposed to the outside through the opening 131.
- the size or shape of the opening grooves 131A and 131B provided in the upper and lower cases do not necessarily need to be the same. If the two open grooves 131A and 131B can be engaged to form an opening that matches the shape of the core wire, for example, one of the two open grooves may be smaller than the other.
- the two open grooves 131A and 131B are engaged to form the opening 131, but the present invention is not limited thereto.
- openings may be formed on both sides of one of the upper case 130A or lower case 130B, and the other case may be closed without openings.
- the core wire 110 is placed between the upper and lower cases, and the upper and lower cases are combined to form a fire-resistant cable. It is convenient to assemble.
- the cable core wire 110 can be more easily fixedly coupled to the metal case 130 by hook coupling.
- the inside of the upper case 130A is filled with the upper fire-resistant silicon coating layer 120A
- the inside of the lower case 130B is filled with the lower fire-resistant silicon coating layer 120B.
- the assembly process of the cable core wire 110 and the metal case 130 will be described with reference to FIGS. 2 and 3.
- the cable core wire 110 is positioned on one of the upper and lower refractory silicon coating layers 120A and 120B, for example, the lower refractory silicon coating layer 120B.
- the lower portions of both ends of the cable core wire 110 are placed on the open grooves 131B provided on both sides of the lower case 130B, and the both ends are extended outside the open grooves 131B by a certain length.
- the upper case 130A is hooked to the lower case 130B while the open groove 131A of the upper case 130A covers the upper portions of both ends of the cable core wire 110.
- the cable core wire 110 is pressed by the fireproof silicon coating layers 120A and 120B of the upper and lower parts by the hook coupling force and is fixed within the metal case 130.
- the fire-resistant silicone coating layer 120 has elasticity and flexibility, the cable core wire 110 is pressed and buried in the upper and lower fire-resistant silicon by the hook bonding force. Accordingly, the cable core wire 110 is covered with the fire-resistant silicone coating layer 120 in the form shown in FIG. 5 and is fixed within the metal case 130.
- both ends of the cable core wire 110 are extended to the outside by a certain length.
- the outer circumference of the core wire 110 is regulated by the inner peripheral surface of the opening groove 131A of the upper case 130A and the inner peripheral surface of the lower case opening groove 131B, so that the cable core wire 110 can be stably maintained in the metal case 130. You can.
- the cable core wire 110 is fixed (covered) to the fireproof silicone coating layer 120 and the metal case 130 is secured. Assembly can be performed simultaneously.
- a shape (not shown) corresponding to the outer circumference of the cable core wire 110 may be formed in the upper fire-resistant silicon coating layer 120A and the lower fire-resistant silicon coating layer 120B shown in FIG. 3.
- the cable core wire may not be completely wrapped by the fireproof silicone coating layer 120 despite the hook bonding force of the upper and lower cases. In this case, a space may be partially formed between the core wire 110 and the fireproof silicon coating layer 120.
- the upper and lower fireproof silicone coating layers 120A and the lower fireproof silicone coating layer 120B are provided with shapes corresponding to, for example, the upper and lower outer circumferential shapes of the cable core 110.
- the shape of the silicone coating layer can be molded.
- the fireproof silicon having the composition of the above-described embodiment has sufficient elasticity and flexibility, so in principle, even if the cable core shape is not formed as shown in FIG. 3, it can be flexibly deformed by the hook bonding force and tightly wrap the cable core wire.
- the assembly of the core wire 110 and the metal case 130 may be performed in advance as shown in FIG. 3.
- the fire-resistant silicone coating layer 120 may be previously charged or applied to the metal case 130 and then the core wire 110 may be joined to the metal case 130 only at the site where the battery pack is installed.
- the fireproof silicon coating layer 120 when forming the fireproof silicon coating layer 120 within the metal case 130, flexible fireproof silicon is applied to the metal case 130, or an opening is formed in a part of the metal case 130 and the fireproof silicon flows through the opening. It is also possible to charge silicon from outside. In the latter case, for example, by placing the core wire 110 in advance in the metal case 130 and injecting (injection molding) fire-resistant silicon into the metal case 130 through the opening, the fire-resistant silicon naturally forms the core wire ( It is also possible to wrap and cover 110).
- Figure 6 is a cross-sectional view of a fire-resistant cable according to another embodiment of the present invention.
- the fire-resistant cable 100' of this embodiment is anodized on the inner and outer surfaces of the metal case 130 to reinforce insulation. Except for anodizing, it is provided with a cable core wire 110 and a fire-resistant silicon coating layer 120 surrounding the cable core wire 110, and accommodates the cable core wire 110 and the fire-resistant silicon coating layer 120. It is the same as the first embodiment in that the metal case 130 is provided on both sides with openings through which both ends of the cable core wire are exposed.
- anodizing improves the corrosion resistance and wear resistance of non-ferrous metal products.
- the metal case is aluminum
- the aluminum is placed on the anode and electrolyzed in a diluted acid solution, and the oxygen generated at the anode forms an insulating oxide film 133 on the aluminum surface, that is, a metal oxide (alumina (Al) 2 O 3 )) is formed. Accordingly, the insulation of the fire-resistant cable 100' of this embodiment is further improved.
- the anodizing treatment can be performed on the inner or outer surface of the metal case 130, or on both the inner and outer surfaces as shown in the example of FIG. 6. If the inner surface of the metal case 130 is anodized, the cable core wire 110 can be double-insulated along with the fire-resistant silicone coating layer 120 inside the metal case. By anodizing the outer surface of the metal case, the electrical insulation performance of external metal parts can be improved. All of the above effects can be achieved by anodizing both the inner and outer surfaces of the metal case.
- Figure 7 is a plan view of a fire-resistant cable according to another embodiment of the present invention.
- This embodiment shows a fire-resistant cable (100") in which the cable core wire 110 has a bent portion, and the metal case 130' also has a bent shape corresponding to the shape of the bent portion.
- the fire-resistant cable In addition to the shape of the fire-resistant cable, it is provided with a cable core wire and a fire-resistant silicon coating layer surrounding the cable core wire, and is provided with a metal case that accommodates the cable core wire and the fire-resistant silicon coating layer and has openings on both sides through which both ends of the cable core wire are exposed.
- a metal case that accommodates the cable core wire and the fire-resistant silicon coating layer and has openings on both sides through which both ends of the cable core wire are exposed.
- the fire-resistant cable (100") of the present embodiment structure can be first connected to the corresponding electrical coupling part by bending only the cable core wire 110 without a covering layer.
- the core wire 110 By bending only the core wire without a covering layer, Therefore, it can be bent by reducing the radius of curvature, that is, the R value.
- a metal case 130' having a shape corresponding to the bent cable core wire and having a fireproof silicon coating layer on the inside can be combined with the core wire.
- the hook coupling portion 132' provided in the metal case 130' can also be made into a curved shape.
- the fire-resistant cable (100) of this embodiment has the advantage that the fire-resistant cable can be easily installed even when the thickness of the core wire is relatively thick, thereby further improving assembly efficiency.
- the cable core wire 110 can be installed first at the site. Therefore, since only the core wire can be first formed into the desired shape without a covering layer, even a relatively thick core wire can be easily formed. Thereafter, a metal case 130' is manufactured to correspond to the shape of the core wire, a fireproof silicone coating layer is applied or filled into the metal case 130', and the core wire is assembled into the metal case at the site, thereby easily manufacturing the present invention. Fire resistant cables can be installed.
- the shape of the bent portion shown in FIG. 7 is an example, and as long as the manufacturing conditions of the metal case allow, the fire-resistant cable of this embodiment can be applied to other shapes such as continuous bent portions or having both bent portions and straight portions. can do.
- Figure 8 is a schematic diagram showing an example of a battery pack structure in which a fire-resistant cable of the present invention is installed
- Figure 9 is a schematic diagram showing another example of a battery pack structure in which a fire-resistant cable of the present invention is installed
- Figure 10 is a schematic diagram showing another example of a battery pack structure in which a fire-resistant cable of the present invention is installed. This is a side cross-sectional view showing the cable installed in the battery pack.
- the fire-resistant cable (100, 100', 100") of the present invention described above has a fire-resistant silicon coating layer 120 that is ceramicized at a high temperature, and a metal case 130 that wraps the fire-resistant silicon coating layer and maintains its shape. Therefore, when applied to a battery pack where internal combustion may occur, the safety of the battery pack can be greatly improved.
- the fire-resistant cable can be used, for example, to electrically connect a plurality of battery modules accommodated in a battery pack to each other.
- the fire-resistant cable can electrically connect terminal portions of adjacent battery modules.
- the fire-resistant cable may be used to electrically connect the BMS unit and the battery module.
- the fire-resistant cable may be used to connect battery modules to an external electrical device.
- the fire-resistant cable of the present invention is suitable for application as a high-voltage cable that electrically connects high-voltage terminals of a plurality of battery modules.
- the battery pack 1000 of the present invention includes a plurality of battery modules 200; A flame prevention partition 300 installed between the battery modules; It may include the above-described fire-resistant cables (100, 100', 100") electrically connecting the battery module; and a pack housing 400 that accommodates the battery module and a flame-prevention partition.
- the battery module 200 includes a cell stack (not shown) in which a plurality of battery cells are stacked, and cell leads of different polarities are derived from the battery cells of the cell stack.
- the cell leads are electrically connected to bus bars such as terminal buses or interbus bars, or cables.
- a fire-resistant cable according to the present invention can be applied to electrically connect the plurality of battery modules.
- a typical battery module 200 is disclosed in which the module housing completely surrounds the top, bottom, left, and right sides of the battery cell stack.
- a battery module having a module housing of a modular structure configured to open at least one of the top, bottom, left, and right sides of the cell stack, or a battery module in which the entire top, bottom, left, and right sides of the cell stack are open.
- the fire-resistant cable of the present invention can also be applied to battery cell blocks. In this way, cell blocks or battery modules with all or part of the module housing omitted can be installed in the battery pack to form a battery pack with a so-called cell-to-pack structure.
- the fire-resistant cable (100, 100', 100") of the present invention can be used for electrical connection between cell blocks installed in a cell-to-pack battery pack or a module-less battery module.
- the battery pack 1000 may include a flame prevention partition 300 installed between battery modules.
- the flame prevention partition 300 may be made of metal to ensure rigidity.
- the flame prevention partition 300 functions to prevent the flame from spreading to adjacent modules when a fire occurs in one module.
- the flame prevention partition 300 may be provided with a cable installation through hole 310 or a cable installation groove 320.
- Figure 8 shows that the flame prevention partition 300 is provided with a cable installation through hole 310
- Figure 9 shows that the flame prevention partition 300 is provided with a cable installation groove 320.
- a partition wall provided with a cable installation through hole 310 as shown in FIG. 8 is advantageous. Since the top of the cable installation groove 320 in FIG. 9 is open, it is convenient for cable installation and cable electrical connection work.
- the fire-resistant cables (100, 100', 100") may be seated in the cable installation through-hole 310 or the cable installation groove 320. At this time, the cable core wire ( Both ends of 110) may be electrically coupled to the terminal portions 210 and 220 of the battery module 200 located on both sides of the flame prevention partition 300.
- FIG. 10 shows the fire-resistant cable 100 electrically connecting the battery module 200 within the battery pack 1000.
- a flame-prevention partition wall 300 is located between neighboring battery modules 200, and the flame-prevention partition wall is provided with a cable installation penetration hole 310.
- the metal case 130 of the fire-resistant cable 100 of the present invention is inserted into the through hole.
- the shape of the metal case 130 of the fire-resistant cable is formed to correspond to the shape of the cable installation through hole (or cable installation groove). Therefore, the fire-resistant cable 100 of the present invention can be airtightly adhered to the flame prevention partition 300. Accordingly, the airtightness of the battery pack can be further improved.
- the metal case 130 surrounds and protects the fireproof silicon coating layer 120 and the cable core wire 110. In other words, the insulation strength and airtightness of the fire-resistant cable are further improved by the metal case.
- the insulation of the fire resistant cable 100' can be further improved by anodizing at least one side of the metal case as in the second embodiment.
- the fire-resistant cable 100 is shown in FIG. 10 as having a straight shape, as in the third embodiment, the cable core wire and the metal case may have curved portions to connect the battery module. In this case, the radius of curvature of the fire-resistant cable can be reduced, thereby increasing the energy density of the battery pack.
- the fire-resistant silicon coating layer surrounding the cable core is ceramicized to form a dense sintered body. In other words, it does not burn out or turn to ash at high temperatures of 500°C or higher like conventional heat-resistant silicon, but becomes ceramic and maintains its shape. Accordingly, the fire-resistant silicone coating layer stably supports the cable core wire even in the event of a flame.
- the metal case not only maintains the shape of the refractory silicon coating layer, but also prevents flames from contacting the refractory silicon coating layer, thereby preventing deformation of the refractory silicon and further strengthening the insulating and airtight properties.
- Fireproof silicon consisting of 50% by weight of the silicon compound of Formula 1, 20% by weight of quartz, and 30% by weight of pure silicon dioxide is coated to a predetermined thickness on a copper cable core wire having a predetermined cross-sectional area selected from the cross-sectional area of 0.5 to 3 mm 2. did.
- the fireproof silicone coated cable of Example 1 was manufactured by exposing both ends of the cable core other than the coating portion.
- the length of the cable core wire and the exposed length of both ends were the same as in Example 1, and a glass fiber tape (3M 361) was wound a total of two times over the central part of the cable core wire.
- the cable of Comparative Example 1 was manufactured by making the coating thickness of the wound glass fiber tape almost the same as the coating thickness of the fireproof silicone.
- copper wire was wound with the same number of turns around the covering part (coating part, tape winding part) of the cables of Examples 1 to Comparative Example 2, and the outermost part of the covering part was wound.
- One end of the copper wire was connected to the negative terminal of the withstand voltage tester, and one end of the cable core wire was connected to the positive terminal of the withstand voltage tester.
- a voltage of 1000V applied to the cables using a withstand voltage tester the entire surface of the cable was uniformly heated using a large torch with a flame temperature of 1100 to 1150°C.
- the cable with the fire-resistant silicone coating layer according to the present invention had the longest insulation failure time, and showed a significant difference from Comparative Example 1 and Comparative Example 2 in terms of insulation failure time.
- Example 1 tested the insulation performance without a metal case, and it is clear that when a metal case is installed outside the fireproof silicon coating layer, the insulation performance will be further improved against high external temperatures by not exposing the fireproof silicon directly to the flame. something to do.
- Fireproof silicone with the composition shown in Table 2 below was prepared by varying the weight ratio of the silicon compound of Formula 1 and the weight ratio of the metal oxide.
- the fireproof silicon of Examples 1 to 5 was coated to a predetermined thickness on a copper core wire under the same conditions as in Experimental Example 1, and the copper wire was wound on the cable coating layer and connected to a withstand voltage tester under the same conditions as in Experimental Example 1.
- Example 1 Silicone compound 50% by weight: Metal oxide 50% by weight (Quartz: 20% by weight, pure silicon dioxide: 30% by weight) 7 minutes 10 seconds
- Example 2 Silicone compound 50% by weight: Metal oxide 25% by weight (Quartz: 10% by weight, pure silicon dioxide: 15% by weight) 6 minutes 30 seconds
- Example 3 Silicone compound 50% by weight: Metal oxide 75% by weight (Quartz: 30% by weight, pure silicon dioxide: 45% by weight) 8 minutes 5 seconds
- Example 5 Silicone compound 50% by weight: Metal oxide 80% by weight (Quartz: 35% by weight, pure silicon dioxide: 45% by weight) 8 minutes 20 seconds
- the weight ratio of the silicon compound and the metal oxide was 1:1, 0.5, 1:1.5, 1:0.4, and 1:1.6.
- Example 4 where the weight ratio was less than 0.5, the insulation failure time was a relatively short 5 minutes, which is believed to be because the metal oxide was not sufficient and the creation of a ceramic structure with a high-density crystal structure at high temperature was somewhat insufficient.
- Example 5 where the weight ratio was 1.6, the insulation failure time was sufficiently long, but the flexibility of the fireproof silicon was reduced at room temperature due to excessive metal oxide, making it difficult to follow and cover the cable core wire.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Insulated Conductors (AREA)
Abstract
본 발명의 내화케이블은, 케이블 심선; 상기 케이블 심선의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 케이블 심선을 지지하는 내화실리콘 피복층; 및 상기 케이블 심선 및 내화실리콘 피복층이 수용되고, 양측부에 상기 케이블 심선의 양단부가 외부로 도출되는 개구부를 가지는 금속케이스를 포함한다. 또한, 본 발명은 상기 내화케이블을 포함하는 배터리 팩을 제공한다.
Description
본 발명은 내화케이블 및 이를 구비한 배터리 팩에 관한 것이다.
보다 상세하게는, 고온에서 세라믹화되는 내화실리콘 피복층과 이 피복층을 감싸는 금속케이스를 구비하여, 배터리 팩 내부에 발화가 발생하는 고온에서도 절연 및 기밀 특성을 유지할 수 있는 내화케이블 및 배터리 팩에 관한 것이다.
본 출원은 2022. 10.24자 한국 특허 출원 제10-2022-0137521호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
전기 차량 등에 적용되는 배터리 팩은 고출력을 얻기 위해 복수의 이차전지를 포함하는 다수의 배터리 모듈을 직렬 또는 병렬로 연결한 구조를 가지고 있다. 그리고, 상기 이차전지는 양극 및 음극 집전체, 세퍼레이터, 활물질, 전해액 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 반복적인 충방전이 가능하다.
상기 배터리 모듈을 전기적으로 연결하기 위하여, 버스바, 케이블 등이 사용된다. 상기 케이블은 인접하는 배터리 모듈의 단자부들을 전기적으로 연결하거나, 혹은 BMS부와 배터리 모듈 또는 BMS부와 배터리 모듈에 구비된 각 전지셀들을 전기적으로 연결하거나, 배터리 모듈들을 외부의 전기 디바이스와 연결하기 위하여 사용된다.
도 1은 종래의 케이블 구조를 나타내는 개략도이다.
도시된 바와 같이, 종래의 케이블(1)은 케이블 심선(10)과 상기 심선을 둘러싸는 피복층(20)으로 구성된다. 상기 심선은 일반적인 구리 와이어 심선이다. 피복층은 폴리에틸렌(PE) 또는 폴리염화비닐(PVC)과 같은 플라스틱 수지로 이루어져 있다.
배터리 팩 내에서 상기 종래의 케이블로 예컨대 배터리 모듈들을 전기적으로 연결하는 경우, 배터리 팩이 정상 작동되는 통상의 온도에서는 배터리 팩의 작동에 문제가 발생하지 않는다.
그런데, 배터리 팩 내부 화염 발생시에는 그 화염의 온도가 매우 높으므로(500~800℃, 혹은 800℃ 이상, 심한 경우 1000℃ 이상), 상기 플라스틱 수지제의 피복층은 모두 녹아버리고 케이블 심선이 외부로 노출되게 된다. 이렇게 되면, 노출된 케이블 심선이 팩 내의 다른 금속 부분과 전기적으로 접촉하여 쇼트가 발생하고, 전기 쇼트에 의한 발열로 화염이 더욱 확산되게 된다.
열 확산(thermal propagation) 방지를 위하여, 상기 피복층으로서 마이카 시트나 유리섬유, 혹은 내열실리콘 (고무) 등을 사용한 케이블을 고려할 수 있다.
그러나, 상기와 같이 극심한 발열 상황에서는 상기 예시된 재료로서는 열 확산을 충분히 방지할 수 없다. 예컨대, 통상의 내열실리콘 시트는 내열온도가 125~300℃에 불과하여 배터리 팩 내부의 발화상황에 효과적으로 대처할 수 없다. 또한, 마이카 시트나 유리섬유제의 피복층도 충분한 내화성능을 구비하고 있지 않다.
이와 같이, 최근의 배터리 팩에서는 내화 발화시 팩 외부로 화염이 새어나오지 않도록 설계하는 것이 필수적으로 요구된다.
또한, 배터리 팩 내부에 화염 발생시의 고온에서도 케이블 심선을 주변과 열적으로 그리고 전기적으로 절연시킬 수 있는 설계가 필요하다.
한편, 예컨대 케이블이 배터리 모듈들을 연결할 때, 상기 케이블이 배터리 팩의 구조물(예컨대, 격벽)에 지지되거나 구조물을 통과하여 설치되는 경우가 있다. 이러한 경우, 케이블의 피복층이 격벽의 날카로운 에지(sharp edge)에 의해 손상되어 심선의 절연이 훼손되거나 기밀 특성이 훼손될 수 있다.
혹은 전기 연결 경로상 케이블을 부득이하게 과도하게 구부려야 할 경우가 있다. 그러나, 대용량 배터리에 사용되는 굵은 케이블의 경우, 원하는 대로 케이블을 구부리기 어려워서 배터리 팩 내에서 조립성이 좋지 않은 문제가 있었다.
이상으로부터 고온에서의 내화성을 구비함으로써 전기절연특성을 유지하면서도, 절연 강도 및 조립성을 개선할 수 있는 기술의 개발이 요망된다 하겠다.
[선행기술문헌]
[특허문헌]
일본 등록특허공보 제5312710호
본 발명은 배터리 팩 내부의 화염 발생 시에도 가능한 오래 열적 및 전기적인 절연을 유지할 수 있는 내화케이블을 제공하기 위한 것이다.
또한, 본 발명은 상기 내화케이블을 구비한 배터리 팩을 제공하기 위한 것이다.
상기 과제를 해결하기 위한 본 발명의 내화케이블은, 케이블 심선; 상기 케이블 심선의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 케이블 심선을 지지하는 내화실리콘 피복층; 및 상기 케이블 심선 및 내화실리콘 피복층이 수용되고, 양측부에 상기 케이블 심선의 양단부가 외부로 도출되는 개구부를 가지는 금속케이스를 포함한다.
상기 내화실리콘은 500~1700℃의 온도에서 세라믹화될 수 있다.
상기 내화실리콘은 하기 화학식 1로 나타내는 실리콘 화합물을 포함하는 실리콘 수지와; 산화규소를 함유하는 금속 산화물의 소결에 의해 세라믹화될 수 있다.
[화학식 1]
상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
상기 실리콘 수지와 금속 산화물은 1: 0.5~1.5의 중량 비율로 포함될 수 있다.
산화규소를 함유하는 금속 산화물은 순수 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함할 수 있다.
상기 금속케이스는 상부 케이스와 하부 케이스를 구비하고, 상기 상하부 케이스는 후크 결합에 의하여 결합될 수 있다.
상기 금속케이스는 내측면 및 외측면 중 적어도 하나의 측면이 양극산화처리(anodizing)될 수 있다.
상기 금속케이스는, 알루미늄, 스틸, 스텐레스 중 하나로 이루어질 수 있다.
상기 케이블 심선은 굴곡부를 가지고,
상기 금속케이스는 상기 굴곡부의 형상에 대응하는 굴곡 형상부를 가질 수 있다.
상기 내화케이블은 복수개의 배터리 모듈의 고전압 단자부들을 전기적으로 연결하는 고전압 케이블일 수 있다.
본 발명의 다른 측면으로서의 배터리 팩은, 복수개의 배터리 모듈; 상기 배터리 모듈 사이에 설치되는 화염방지용 격벽; 상기 배터리 모듈을 전기적으로 연결하는 상기에 기재된 내화케이블; 및 상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징을 포함할 수 있다.
상기 화염방지용 격벽은, 케이블 설치 관통홀 또는 케이블 설치홈을 구비하고, 상기 내화케이블의 금속케이스는 상기 케이블 설치 관통홀 또는 케이블 설치홈에 안착되고, 상기 금속케이스의 개구부로부터 도출된 상기 케이블 심선의 양단은 상기 화염방지용 격벽의 양측에 위치한 배터리 모듈의 단자부에 전기적으로 결합될 수 있다.
상기 내화케이블의 금속케이스는, 상기 케이블 설치 관통홀 또는 케이블 설치홈의 형상에 대응되게 형성될 수 있다.
본 발명의 내화케이블은, 팩 내부에서의 화염 발생시 화염에 타서 없어지는 피복층 대신 세라믹화되어 케이블 심선을 지지하는 내화실리콘 피복층을 구비하고 있으므로, 고온에서도 절연 및 기밀 특성을 유지할 수 있다.
또한, 본 발명의 내화케이블은 내화실리콘 피복층을 감싸는 금속케이스를 구비하고 있다. 상기 금속케이스는, 케이블 심선의 형상을 유지해주고, 내화실리콘을 감싸 상기 내화실리콘을 화염에 직접 노출되지 않게 함으로써, 내화실리콘의 변형을 방지하여 절연 및 기밀 특성을 한층 더 강화할 수 있다.
또한, 상기 금속케이스는 내화실리콘 및 심선을 보호하여 날카로운 에지부에 의한 절연 손상을 방지하고 배터리 팩 격벽과의 기밀성을 향상시킬 수 있다.
뿐만 아니라, 본 발명에 따르면 심선을 먼저 성형하여 배터리 팩 내에 설치한 뒤, 내화피복층을 구비한 금속케이스와 심선을 결합할 수 있다. 따라서, 굵은 심선도 곡률반경(R값)이 작게 성형할 수 있으므로 대용량 배터리에 적합하다.
도 1은 종래의 케이블 구조를 나타내는 개략도.
도 2는 본 발명의 일 실시예에 따른 내화케이블의 사시도.
도 3은 도 2의 내화케이블의 금속케이스의 조립 전 상태를 나타내는 사시도.
도 4는 도 2의 실시예의 내화케이블의 측면도 및 평면도.
도 5는 도 2의 실시예의 내화케이블의 단면도.
도 6은 본 발명의 다른 실시예의 내화케이블의 단면도.
도 7은 본 발명의 또 다른 실시예의 내화케이블의 평면도.
도 8은 본 발명의 내화케이블이 설치되는 배터리 팩 구조의 일례를 나타낸 개략도.
도 9는 본 발명의 내화케이블이 설치되는 배터리 팩 구조의 다른 예를 나타낸 개략도.
도 10은 본 발명의 내화케이블이 배터리 팩에 설치된 상태를 나타낸 측단면도.
이하, 첨부한 도면과 여러 실시예에 의하여 본 발명의 세부 구성을 상세하게 설명한다. 이하에서 설명되는 실시예는 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 또한 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니며 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
[내화케이블]
본 발명의 내화케이블은, 케이블 심선; 상기 케이블 심선의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 케이블 심선을 지지하는 내화실리콘 피복층; 및 상기 케이블 심선 및 내화실리콘 피복층이 수용되고, 양측부에 상기 케이블 심선의 양단부가 외부로 도출되는 개구부를 가지는 금속케이스를 포함한다.
상기 케이블 심선은 통상의 구리 심선일 수 있다. 상기 심선은 복수개의 구리 와이어가 꼬여서 이루어지는 와이어 심선일 수 있다. 상기 심선의 양단부는 대응되는 결합부와 전기적으로 연결된다.
내화실리콘 피복층은, 상기 케이블 심선의 양단부를 제외한 부분을 감싸면서 상기 심선에 피복되는 층이다. 즉, 도 2 내지 도 5에 도시된 바와 같이, 양단부를 제외한 심선의 중앙부 주변으로 내화실리콘 피복층이 피복된다. 상기 내화실리콘 피복층은 고온에서 세라믹화하여 상기 케이블 심선을 지지한다. 상기 내화실리콘은 500~1700℃의 온도에서 세라믹화될 수 있다. 본 발명의 내화실리콘은 내화온도가 500℃ 이상이라는 점에서 내열온도가 300℃ 미만인 내열실리콘과 구별된다. 내열실리콘은 실리콘의 특성상 유연성과 가요성을 가지는 실리콘 수지 또는 고무 조성물이지만, 500℃ 이상의 고온에서는 세라믹화되지 않고 타서 없어지거나 재(ash)가 되어 버리는 소재이다. 따라서, 열 전파 상황시의 배터리 팩의 단락 방지 혹은 열 전파 방지에 적용하는데 한계가 있다.
상기 내화실리콘 피복층은 500℃ 이상의 고온에서 세라믹화되는 '내화'성능을 가지므로, 화염발생시에도 배터리 팩 내에서 절연 특성과 기밀 특성을 유지할 수 있다.
이와 같이, 본 발명에 따른 내화케이블은 케이블의 구조적 개선과 함께 내부에 내화실리콘을 구비함으로써 고내화 성능을 구현할 수 있다.
상기 내화실리콘은 실리콘 수지와 금속 산화물을 주성분으로 하는 조성물로서, 상온에서는 실리콘의 특성상 유연성과 가요성을 가진다. 또한, 소정의 탄성력을 가져 높은 내충격성과 절연성을 나타내고, 고온 노출 시에는 실리콘 수지와 금속 산화물의 소결에 의해 복잡한 세라믹 구조의 실리콘 소결체를 이룰 수 있다.
구체적으로, 내화실리콘에 함유된 실리콘 수지는 고온에서 연소 시 분말 형태의 실리카를 생성한다. 이렇게 생성된 실리카는 내화실리콘의 금속 산화물과 반응하여 상기 금속 산화물의 테두리에 "공융 혼합물(eutectic mixture)"을 형성함으로써 실리카와 금속 산화물 사이에서 브리징 작용(bridging role)을 수행하므로 발화온도에서 경화되고, 냉각될 때에는 응축된 세라믹화 생성물을 형성하게 된다. 이러한 세라믹체는 화재 시 외부의 기계적 충격이 가해지거나 수분이 침투할 때에도 내화실리콘 피복층의 훼손으로 인한 도체 간의 단락이나 단선이 방지되어 케이블 자체의 전기적인 기능을 발휘할 수 있다.
이를 위하여, 본 발명에 따른 내화실리콘은 실리콘 수지와 금속 산화물을 포함한다.
상기 실리콘 수지는 분자 내에 실리콘(Si)을 포함하는 수지라면 특별히 제한되는 것은 아니나, 바람직하게는 하기 화학식 1로 나타내는 실리콘 화합물(이하, "화학식 1의 실리콘 화합물"이라 함)을 포함할 수 있다:
[화학식 1]
상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
상기 화학식 1의 실리콘 화합물은 메틸실록산 반복 단위를 포함하고, 상기 메틸실록산 반복 단위의 내부 및 말단에 각각 비닐기(vinyl group)를 포함한다. 상기 비닐기는 화학식 1의 실리콘 화합물의 말단은 물론 반복 단위 내부에도 존재하여 고온 노출 시 실리콘 수지의 중합도를 높이는 역할을 수행하며, 이를 통해 비닐기를 포함하지 않는 실리콘 화합물과 대비하여 보다 우수한 내화 특성을 구현할 수 있다.
또한, 상기 화학식 1의 실리콘 화합물은 중량평균분자량이 특정 범위로 조절될 수 있다. 화학식 1의 실리콘 화합물은 실리콘 수지의 베이스를 이루는 화합물로서 화학식 1의 실리콘 화합물의 중량평균분자량에 따라 내화실리콘의 상온 및 고온에서의 물성에 영향을 미칠 수 있다. 예컨대, 상기 화학식 1의 실리콘 화합물의 중량평균분자량이 과도하게 높은 경우 실리콘 수지의 점도가 증가하여 고온 소결 시 반응성이 저하될 수 있으며, 중량평균분자량이 현저히 낮은 경우 실리콘 수지의 상온 탄성력 및 유연성이 저감되어 내화케이블의 제조 공정성이 저하되는 한편 내충격성 등이 낮아지는 한계가 있다. 따라서, 본 발명에 따른 화학식 1의 실리콘 화합물은 중량평균분자량이 1,000~9,000 g/mol으로 조절된 값을 가질 수 있으며, 구체적으로는 3,000~8,000 g/mol; 또는 5,000~7,000 g/mol으로 조절된 값을 가질 수 있다.
아울러, 상기 금속 산화물은 산화규소를 함유하는 조성물로서, 고온 노출 시 결정핵으로 작용하여 상술된 실리콘 수지와 함께 고밀도의 세라믹체를 형성하는 역할을 할 수 있다.
이러한 금속 산화물로는 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함할 수 있다. 상기 금속 산화물은 순수 이산화규소(SiO2)와 함께 이산화규소(SiO2)를 주성분으로 포함하는 석영 등의 광물을 포함하여 경제성이 높을 뿐만 아니라, 높은 융점(고내화성) 및 높은 소결도(high sintering degree)를 가지며, 우수한 전기 절연 성능을 나타낼 수 있다. 특히, 이산화규소, 실리카, 석영 등은 소결 과정에서의 각종 성능을 개선하고, 내화 실리콘의 용이한 용해와 성형을 유도하며, 세라믹체에서 발생될 수 있는 결함을 저감시킬 수 있다.
또한, 상기 금속 산화물은 실리콘 수지와 소결을 통해 내화성, 절연성 및 기계적 강도 등을 증가시키는 결정 구조를 갖게 할 수 있으면 좋다. 이러한 금속 산화물은 분말 상으로서, 특별히 한정하는 것은 아니지만 200㎛ 이하의 크기, 구체적인 예를 들어 0.1㎛ ~ 200㎛; 또는 0.1㎛ ~ 100㎛의 크기를 가지는 것을 사용할 수 있다.
아울러, 상기 실리콘 수지는 하기 화학식 2로 나타내는 실리콘 화합물(이하, "화학식 2의 실리콘 화합물"이라 함)을 더 포함할 수 있으며, 상기 화학식 2의 실리콘 화합물은 화학식 1의 실리콘 화합물과 함께 고온에서 금속 산화물의 소결에 참여하여 실리콘 소결체를 형성하게 된다:
[화학식 2]
상기 화학식 2에 있어서, p는 10 내지 30의 정수이다.
상기 화학식 2의 실리콘 화합물은 상온에서 내화실리콘의 유연성을 높이는 한편, 소결 시 화학식 1의 실리콘 화합물과 탈수 축합(dehydration condensation)을 통해 실리콘 수지의 소결 종결을 유도하는 역할을 수행할 수 있으며, 이를 통하여 세라믹체 형성 반응을 종결시킬 수 있다.
이를 위하여, 상기 화학식 2의 실리콘 화합물은 내화실리콘 전체 중량에 대하여 10 중량부 미만으로 사용될 수 있으며, 구체적으로는 0.5 내지 9 중량부; 1 내지 6 중량부; 또는 2 내지 5 중량부로 사용될 수 있다.
또한, 내화실리콘은 상온에서의 높은 탄성력 구현과 고온 노출 시 빠른 세라믹체 형성을 위하여 실리콘 수지와 금속 산화물을 일정한 비율로 포함할 수 있다.
구체적으로, 상기 내화 실리콘은 실리콘 수지와 금속 산화물의 중량 비율이 1: 0.5~1.5일 수 있으며, 구체적으로는 1: 0.8~1.2일 수 있다. 금속 산화물의 중량 비율이 0.5 미만으로 낮으면 고온에서 고밀도의 결정구조를 갖는 세라믹 구조를 갖기 어려우므로 내화성 및 기계적 강도가 충분히 구현되지 않은 문제가 있다. 또한, 금속 산화물의 중량 비율이 1.5를 초과하면 상온 상태에서 내화 실리콘의 유연성이 저감되어 취급성이 양호하지 않은 한계가 있다.
하나의 예로서, 본 발명의 내화 실리콘은 화학식 1의 실리콘 화합물 35~50 중량%; 석영 16~32 중량%; 이산화규소 10~27 중량%; 및 화학식 2의 제2 실리콘 화합물 1~6 중량%로 포함할 수 있으며, 경우에 따라서는 제조 시 공정성을 높이기 위하여 소정의 용매를 추가적으로 더 포함할 수 있다.
이상과 같이, 본 발명의 내화실리콘은 500℃ 이상에서 실리콘 수지와 금속 산화물의 소결에 의해 경화되어 세라믹화된다. 또한, 1700℃까지도 세라믹화되며, 이론적으로는 1700℃ 이상의 온도에서도 부분적으로 세라믹화를 유지할 수 있다. 다만, 1700℃를 초과하면, 세라믹화 유지시간이 짧아져서 배터리 팩 내에서 요구하는 내화성능을 유지하지 못할 수 있다.
상기 내화실리콘은 세라믹화되기 전에는 상술한 바와 같이, 가요성과 유연성, 그리고 탄성을 가지는 고무와 같은 성질을 가진다. 따라서, 내화실리콘 피복층을 후술하는 금속케이스에 주입하여 사출성형하거나 혹은 금속케이스 내에 도포하기 용이하다. 또한, 금속케이스 내에 구비된 내화실리콘 피복층에 상기 케이블 심선을 끼워넣는 경우에, 유연성 있는 내화실리콘이 상기 케이블 심선을 가압하면서 상기 심선을 둘러싸게 된다. 이에 따라, 유연성을 가진 내화실리콘이 케이블 심선의 형상에 추종하면서 상기 심선을 빈틈 없이 피복할 수 있다.
상기 내화실리콘 피복층은 세라믹화되기 전에는 유연성을 가지므로, 케이블 심선의 변형에도 유연하게 추종할 수 있다. 따라서, 본 발명 내화케이블을 배터리 팩 내에 설치할 경우 약간의 조립공차가 있더라도, 이에 유연하게 대응할 수 있다. 예컨대, 배터리 모듈을 배터리 팩에 볼팅에 의하여 체결할 경우, 배터리 모듈과 연결된 케이블 심선이 유동하거나 미세하게 틀어질 경우, 상기 내화실리콘 피복층이 이러한 유동이나 틀어짐을 흡수할 수 있다. 또한, 전기자동차의 진동에 따라 배터리 팩이 진동하는 경우에도, 상기 내화실리콘 피복층이 그 진동을 자연스럽게 흡수할 수 있다.
한편, 세라믹화된 내화실리콘은 심선을 직접 감싸 지지하며 심선의 형상을 계속 유지할 수 있다.
본 발명의 내화케이블은 또한 상기 케이블 심선 및 내화실리콘 피복층이 수용되는 금속케이스를 포함한다.
상기 금속케이스는, 케이블 심선의 양단부가 외부로 도출되는 개구부를 양측부에 포함할 수 있다. 상기 양측부의 개구부를 통하여 상기 케이블 심선의 양단부가 외부로 노출될 수 있다. 또한, 상기 심선의 양단부는 각각 대응되는 전기연결부에 결합될 수 있다.
상기 금속케이스는, 성형된 케이블 심선의 형상을 유지한다. 또한, 내화실리콘 피복층을 감싸 배터리 팩 내부 발화시 상기 내화실리콘 피복층이 화염에 직접 노출되지 않도록 한다. 이에 따라, 내화실리콘 피복층이 변형되는 것을 방지하여 절연 특성 및 기밀 특성을 강화할 수 있다. 또한, 상기 금속케이스는, 배터리 팩의 내부 발화시에 내화실리콘의 외곽형상이 무너지지 않도록 단단하게 잡아줌으로써, 오랜 시간 동안 절연 및 기밀 유지가 가능하게 한다.
또한, 상기 금속케이스는 예컨대 배터리 팩 내에 설치될 경우 배터리 팩 내의 조립 공간에 면착되어 기밀을 유지할 수 있다. 금속케이스는 단단한 표면을 가지므로, 배터리 팩 내의 조립 공간에 날카로운 에지부분이 있더라도, 내화케이블 내의 절연물이나 케이블 심선이 손상되는 것을 방지할 수 있다.
상기 금속케이스는 알루미늄, 스틸, 스텐레스 중 하나로 이루어질 수 있다. 다만, 이에 한정되는 것은 아니고, 케이블 심선과 내화실리콘 피복층을 보호할 수 있는 강도를 가지고 성형이나 가공이 용이한 것이라면 다른 재질의 금속으로 금속케이스를 제조할 수 있다.
절연성의 보강을 위하여 상기 금속케이스 표면에 표면처리를 행할 수 있다. 예컨대, 상기 금속케이스의 내측면 또는 외측면 또는 내외측면 모두에 양극산화처리(anodizing)를 할 수 있다.
양극산화처리는, 인산염피막처리, 크로메이트 등과 함께 화성피막처리에 속하는 금속표면처리 기술 중 하나로 알루미늄, 티타늄, 구리, 마그네슘 등의 비철계 금속제품의 내식성과 내마모성 향상을 위해 적용되는 기술이다. 대상 금속을 양극에 걸고 희석한 산 용액에서 전해하면 양극에서 발생하는 산소에 의해 산화피막을 형성한다. 알루미늄의 경우 산화피막으로서 알루미나(Al2O3)가 형성된다. 이러한 산화피막은 절연물이므로, 양극산화처리된 금속제(예컨대 알루미늄제)의 금속케이스는 표면 절연물이 된다. 따라서, 양극산화처리된 금속케이스를 구비한 본 발명의 내화케이블은 2개의 전기절연물을 구비하게 된다. 즉, 제1 절연물로서 내화실리콘 피복층을, 제2 절연물로서 금속케이스 표면의 산화피막을 구비한다. 따라서, 양극산화처리에 의하여 내화케이블의 절연성이 한층 더 향상된다.
상기 금속케이스는, 상기 케이블 심선, 상기 심선을 감싸는 내화실리콘 피복층을 수용하는 형태라면, 일체로 형성되는 케이스 형태이거나 혹은 분리된 케이스 부품이 서로 결합되어 하나의 케이스를 이루는 형태라도 적용 가능하다. 다만, 어떠한 형태이든 케이블 심선 양단부가 외부로 도출될 수 있는 개구부를 양측부에 가질 필요가 있다.
구체적인 내화케이블 및 금속케이스의 형태에 관해서는 이하의 실시형태에서 자세히 설명하기로 한다.
(제1 실시형태)
도 2는 본 발명의 일 실시예에 따른 내화케이블의 사시도이고, 도 3은 도 2의 내화케이블의 금속케이스의 조립 전 상태를 나타내는 사시도이고, 도 4는 도 2의 실시예의 내화케이블의 측면도 및 평면도이고, 도 5는 도 2의 실시예의 내화케이블의 단면도이다.
도면을 참조하면, 본 실시형태의 내화케이블(100)에 따른 금속케이스(130)는 상부 케이스(130A)와 하부 케이스(130B)를 구비하고 있다. 즉, 본 실시형태에서는, 금속케이스(130)가 일체로 형성되지 않고, 2개의 부품으로 구성된다. 상기 상부 케이스(130A)와 하부 케이스(130B)는 후크 결합부(132)를 구비하여 간편하게 결합될 수 있다. 즉, 하부 케이스(130B)는 그 전면 상부측에 돌출부(132B)를 구비하고, 상부 케이스(130A)는 그 전면 하부측에 상기 돌출부가 끼워지는 후크부(132A)를 구비하고 있다. 상기 후크부(132A)와 돌출부(132B)가 후크 결합부(132)를 구성한다. 도 3에 도시된 바와 같이, 상기 상부 케이스(130A)와 하부 케이스(130B)의 후크 결합부(132)가 형성되지 않은 쪽 측면은 힌지 결합에 의하여 서로 연결되어 있다. 따라서, 상하부 케이스 중 하나는 다른 하나에 대하여 힌지 회전하여 상대이동(회동)될 수 있다. 도 3의 상태에서 상하부 케이스 중 하나를 다른 하나에 대하여 회동시켜 서로 접근시키고, 상기 후크부(132A)에 상기 돌출부(132B)를 끼워 결합시킴으로써, 상하부 케이스가 결합하여 본 발명의 금속케이스(130)를 이루게 된다.
도 3에 도시된 바와 같이, 상기 상부 케이스(130A)와 하부 케이스(130A)의 양측면에는, 개방홈(131A, 131B)이 각각 구비되어 있다. 따라서, 상하부 케이스를 결합하면 상부 케이스의 개방홈(131A)과 하부 케이스의 개방홈(131B)이 서로 맞물려 개구부(131)를 형성하게 된다. 상기 개구부(131)를 통하여 케이블 심선(110)의 양단부가 외부로 도출될 수 있다. 상부 및 하부 케이스에 구비된 개방홈(131A, 131B)의 크기나 형태는 반드시 동일할 필요가 없다. 2개의 개방홈(131A, 131B)이 맞물려 상기 심선의 형태에 부합하는 개구부를 형성할 수 있다면, 예컨대 2개의 개방홈 중 하나가 다른 하나에 비하여 크기가 작아도 무방하다.
본 실시형태에서는 2개의 개방홈(131A, 131B)이 맞물려 개구부(131)를 형성하였지만, 이에 한정되는 것은 아니다. 예컨대, 상부 케이스(130A) 또는 하부 케이스(130B) 중 하나의 케이스의 양측면에 개구부가 형성되고, 다른 케이스에는 개구부가 형성되지 않고 막힌 형태라도 무방하다. 다만, 본 실시형태와 같이, 2개의 케이스가 각각 개방홈을 가지고 2개의 개방홈이 합쳐져 개구부를 이루는 경우에는, 상하부 케이스의 사이에 심선(110)을 위치시키고, 상하부케이스를 결합하여 내화케이블을 조립하기 편리한 측면이 있다.
또한, 후크결합에 의하여 보다 간편하게 케이블 심선(110)을 금속케이스(130)에 고정 결합할 수 있다.
도 3을 참조하면, 상부 케이스(130A)의 내측에 상부 내화실리콘 피복층(120A)이 충전되어 있고, 하부 케이스(130B)의 내측에 하부 내화실리콘 피복층(120B)이 충전되어 있다. 도 2 및 도 3을 참조하여 케이블 심선(110)과 금속케이스(130)의 조립과정을 설명한다. 상기 상부 및 하부 내화실리콘 피복층(120A,120B)의 어느 한 쪽의 피복층, 예컨대 하부 내화실리콘 피복층(120B) 상에 케이블 심선(110)을 위치시킨다. 이때 상기 케이블 심선(110)의 양단부의 하부를 하부 케이스(130B)의 양측면에 구비된 개방홈(131B) 상에 위치시키고, 상기 양단부가 상기 개방홈(131B) 외부로 일정 길이만큼 도출되도록 한다. 다음으로, 상기 상부 케이스(130A)의 개방홈(131A)이 상기 케이블 심선(110)의 양단부 상부를 덮도록 하면서, 상부 케이스(130A)를 하부 케이스(130B)에 후크 결합한다. 도 2 및 도 5와 같이 상하부 케이스가 후크 결합되면, 상기 케이블 심선(110)은 상기 후크 결합력에 의하여 상하부의 내화실리콘 피복층(120A,120B)에 의하여 눌리면서, 상기 금속케이스(130) 내에 고정되게 된다. 상기 내화실리콘 피복층(120)은 탄성과 유연성을 가지므로, 상기 후크 결합력에 의하여 케이블 심선(110)이 상하부 내화실리콘에 눌려 파묻히게 된다. 이에 의하여, 케이블 심선(110)이 도 5와 같은 형태로 내화실리콘 피복층(120)에 의하여 피복되어 금속케이스(130) 내에 고정된다. 이때, 상기 케이블 심선(110) 양단부는 외부로 일정 길이만큼 도출된다. 상기 심선(110)의 외주는 상부 케이스(130A)의 개방홈(131A) 내주면과 하부 케이스 개방홈(131B) 내주면에 의하여 규제되어 상기 케이블 심선(110)이 안정적으로 금속케이스(130) 내에 유지될 수 있다.
이와 같이, 금속케이스(130)를 상하부 케이스로 구성하고 후크결합에 의하여 상하부 케이스를 결합하는 것에 의하여, 케이블 심선(110)의 내화실리콘 피복층(120)에의 고정(피복)과 금속케이스(130)의 조립을 동시에 행할 수 있다.
필요에 따라, 도 3에 도시된 상부 내화실리콘 피복층(120A) 및 하부 내화실리콘 피복층(120B)에 상기 케이블 심선(110)의 외주 형상에 대응되는 형상(도시하지 않음)을 성형할 수 있다. 예컨대, 내화실리콘 피복층(120)의 탄성 및 유연성이 충분하지 못한 경우에는, 상하부 케이스의 후크 결합력에도 불구하고, 케이블 심선이 내화실리콘 피복층(120)에 의하여 온전하게 감싸지지 못할 수 있다. 이 경우에는, 상기 심선(110)과 내화실리콘 피복층(120) 사이에 부분적으로 공간이 형성될 수 있다. 상기 공간이 생기는 것을 방지하기 위하여, 상부 내화실리콘 피복층(120A)과 하부 내화실리콘 피복층(120B) 상에 예컨대, 케이블 심선(110)의 상반부 외주형상과 하반부 외주형상에 대응되는 형상이 구비되도록 상하부 내화실리콘 피복층의 형상을 성형할 수 있다. 그러나, 상술한 실시예의 조성을 가지는 내화실리콘은 탄성과 유연성이 충분하여 원칙적으로 도 3과 같이 케이블 심선 형상을 성형하지 않더라도, 후크 결합력에 의하여 유연하게 변형하여 케이블 심선을 빈틈 없이 감쌀 수 있다.
상기 심선(110)과 금속케이스(130)의 조립은 도 3과 같이 미리 행할 수도 있다. 혹은, 금속케이스(130) 내에 내화실리콘 피복층(120)을 미리 충전 내지 도포한 다음, 배터리 팩이 설치되는 현장에서 비로소 상기 심선(110)을 금속케이스(130) 내에 결합할 수도 있다.
또한, 금속케이스(130) 내에 내화실리콘 피복층(120)을 형성할 때는, 유연성을 가진 내화실리콘을 금속케이스(130)에 도포하거나, 금속케이스(130) 일부에 개구를 형성하고 상기 개구를 통하여 내화실리콘을 외부로부터 충전하는 것도 가능하다. 후자의 경우에는, 예컨대, 금속케이스(130) 내에 미리 심선(110)을 위치시키고, 상기 개구를 통하여 금속케이스(130) 내로 내화실리콘을 주입(사출 성형)함으로써, 자연스럽게 상기 내화실리콘이 상기 심선(110)을 감싸 피복하도록 하는 것도 가능하다.
심선(110)을 내화실리콘 피복층(120)이 구비된 금속케이스(130)에 현장에서 결합하는 경우의 장점에 관해서는 후술하는 다른 실시형태와 관련하여 구체적으로 설명하기로 한다.
(제2 실시형태)
도 6은 본 발명의 다른 실시예의 내화케이블의 단면도이다.
본 실시형태의 내화케이블(100')은, 절연성의 보강을 위하여 상기 금속케이스(130)의 내측면 및 외측면에 양극산화처리를 한 것이다. 양극산화처리를 한 것 외에는, 케이블 심선(110)과 상기 케이블 심선(110)을 감싸는 내화실리콘 피복층(120)을 구비한 점, 그리고 상기 케이블 심선(110)과 내화실리콘 피복층(120)을 수용하고 양측부에 케이블 심선 양단부가 도출되는 개구부를 구비한 금속케이스(130)를 구비한 점은 제1 실시형태와 동일하다.
상술한 바와 같이, 양극산화처리는 비철계 금속제품의 내식성과 내마모성을 향상시킨다. 예컨대, 상기 금속케이스가 알루미늄인 경우, 상기 알루미늄을 양극에 위치시키고, 희석한 산 용액에서 전해하면 양극에서 발생하는 산소에 의해 알루미늄 표면에 절연물인 산화피막(133), 즉 금속산화물(알루미나(Al2O3))이 형성된다. 따라서, 본 실시형태의 내화케이블(100')은 절연성이 한층 더 향상된다.
상기 양극산화처리는, 상기 금속케이스(130)의 내측면, 또는 외측면, 또는 도 6의 예와 같이 내측면 및 외측면에 모두 실시할 수 있다. 금속케이스(130)의 내측면에 양극산화처리를 하면, 금속케이스 내측의 내화실리콘 피복층(120)과 함께 케이블 심선(110)을 2중으로 절연할 수 있다. 금속케이스 외측면에 양극산화처리를 하면, 외부의 금속제 부품에 대한 전기절연성능을 향상시킬 수 있다. 금속케이스 내측면 및 외측면에 모두 양극산화처리를 하면 상기한 효과를 모두 달성할 수 있다.
(제3 실시형태)
도 7은 본 발명의 또 다른 실시예의 내화케이블의 평면도이다.
본 실시형태는, 케이블 심선(110)이 굴곡부를 가지며, 상기 금속케이스(130')도 상기 굴곡부의 형상에 대응하는 굴곡 형상부를 가지는 내화케이블(100")을 도시한 것이다.
내화케이블의 형상 외에, 케이블 심선과 상기 케이블 심선을 감싸는 내화실리콘 피복층을 구비한 점, 그리고 상기 케이블 심선과 내화실리콘 피복층을 수용하고 양측부에 케이블 심선 양단부가 도출되는 개구부를 구비한 금속케이스를 구비한 점은 다른 실시형태와 동일하다.
예컨대, 배터리 팩 내의 부품 배치상 케이블을 많이 구부려야 할 경우가 있다. 그러나, 대용량 배터리 팩의 경우, 종래의 굵은 케이블은 작은 곡률반경(R값)으로, 즉 어느 한계치 이상으로 구부리기 어려웠다. 이로 인하여, 케이블이 배터리 팩 내에서 차지하는 부피가 커졌고, 그에 따라 배터리 셀 등 다른 부품이 차지하는 면적이 줄어서 에너지 밀도가 감소하는 문제가 있었다.
그러나, 본 실시형태 구조의 내화케이블(100")은 대용량 배터리 팩의 경우에도, 피복층 없이 케이블 심선(110)만을 구부려서 대응되는 전기 결합부에 먼저 결합할 수 있다. 피복층을 포함하지 않은 심선만을 구부리므로 곡률반경, 즉 R값을 작게 하여 구부릴 수 있다. 이후, 구부려진 케이블 심선에 대응하는 형상을 가지고 내부에 내화실리콘 피복층을 가진 금속케이스(130')를 상기 심선과 결합할 수 있다. 이 경우 필요에 따라 금속케이스(130')에 구비되는 후크결합부(132')도 굴곡형상으로 만들 수 있다.
이와 같이, 본 실시형태의 내화케이블(100")은 심선의 굵기가 비교적 굵은 경우에도 간편하게 내화케이블을 설치할 수 있어 조립성이 더욱 향상된다는 장점이 있다.
본 실시형태는, 본 발명 특유의 내화케이블 구조로 인하여, 케이블 심선(110)을 현장에 먼저 설치할 수 있다. 따라서, 피복층 없이 원하는 형상대로 심선만을 먼저 성형할 수 있으므로, 비교적 굵은 굵기의 심선이라도 용이하게 성형할 수 있다. 이후, 상기 심선의 형상에 대응되도록 금속케이스(130')를 제조하고, 상기 금속케이스(130') 내에 내화실리콘 피복층을 도포 내지 충전하여, 현장에서 상기 심선을 금속케이스에 조립함으로써, 손쉽게 본 발명의 내화케이블을 설치할 수 있다.
도 7에 도시된 굴곡부의 형상은 일례이고, 금속케이스의 제조여건이 허락하는 한에는, 굴곡부가 연속적으로 이어지거나 굴곡부와 직선부를 모두 구비하는 등 다른 형태의 경우에도 본 실시형태의 내화케이블을 적용할 수 있다.
[배터리 팩]
도 8은 본 발명의 내화케이블이 설치되는 배터리 팩 구조의 일례를 나타낸 개략도이고, 도 9는 본 발명의 내화케이블이 설치되는 배터리 팩 구조의 다른 예를 나타낸 개략도이고, 도 10은 본 발명의 내화케이블이 배터리 팩에 설치된 상태를 나타낸 측단면도이다.
상술한 본 발명의 내화케이블(100,100',100")은, 고온에서 세라믹화되는 내화실리콘 피복층(120)을 구비하고, 상기 내화실리콘 피복층을 감싸서 형상을 유지하는 금속케이스(130)를 구비하고 있다. 따라서, 내부 발화가 발생할 수 있는 배터리 팩에 적용할 경우, 배터리 팩의 안전성을 크게 향상시킬 수 있다.
상기 내화케이블은, 예컨대 배터리 팩 내에 수용된 복수개의 배터리 모듈을 서로 전기적으로 연결하기 위하여, 사용될 수 있다. 이 경우 상기 내화케이블은 인접하는 배터리 모듈의 단자부들을 전기적으로 연결할 수 있다. 혹은 BMS부와 배터리 모듈을 전기적으로 연결하기 위하여 상기 내화케이블이 사용될 수 있다. 또는 배터리 모듈들을 외부의 전기 디바이스와 연결하기 위하여 상기 내화케이블이 사용될 수 있다.
특히, 배터리 모듈의 고전압 단자부들은 높은 전류로 인하여 비교적 높은 열이 발생한다. 이에 따라, 팩 내부 화염 발생시 상기 고전압 단자부에 보다 높은 열이 집중될 수 있다. 따라서, 본 발명의 내화케이블은 복수개의 배터리 모듈의 고전압 단자부들을 전기적으로 연결하는 고전압 케이블로 적용하기에 적합하다.
본 발명의 배터리 팩(1000)은, 복수개의 배터리 모듈(200); 상기 배터리 모듈 사이에 설치되는 화염방지용 격벽(300); 상기 배터리 모듈을 전기적으로 연결하는 상기에 기재된 내화케이블(100,100',100"); 및 상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징(400)을 포함할 수 있다.
도 8을 참조하면, 복수개의 배터리 모듈(200)이 팩 하우징(400)에 수용되는 것이 도시되어 있다. 상기 배터리 모듈(200)은 복수개의 배터리 셀이 적층된 셀 적층체(도시하지 않음)를 구비하고 있으며, 상기 셀 적층체의 전지셀 들로부터 각기 다른 극성의 셀 리드가 도출된다. 상기 셀 리드들은 터미널 버스바나 인터버스바 등의 버스바, 혹은 케이블과 전기적으로 연결된다. 상기 복수개의 배터리 모듈을 전기적으로 연결하기 위하여 본 발명에 따른 내화케이블이 적용될 수 있다.
한편, 도 8 및 도 9에서는, 모듈 하우징이 배터리 셀 적층체의 상하좌우면을 완전히 감싸는 통상의 배터리 모듈(200)이 개시되어 있다. 그러나, 이에 한하지 않고, 예컨대 셀 적층체의 상하좌우면 중 적어도 하나의 면이 개방되도록 구성된 모듈리스 구조의 모듈 하우징을 가지는 배터리 모듈이나, 혹은 셀 적층체의 상하좌우면 전체가 개방된 형태의 전지셀 블록에 대해서도 본 발명의 내화케이블을 적용할 수 있다. 이와 같이, 모듈 하우징의 전부 또는 일부가 생략된 셀 블록 또는 배터리 모듈들을 배터리 팩에 설치하여 이른바 셀투팩 구조의 배터리 팩을 구성할 수 있다. 본 발명의 내화케이블(100,100',100")은 이러한 셀투팩 구조의 배터리 팩 내에 설치된 셀 블록 또는 모듈리스 구조의 배터리 모듈의 전기적 연결을 위해서 사용될 수 있다.
인접하는 모듈 간의 화염전파를 방지하기 위하여, 상기 배터리 팩(1000)은 배터리 모듈 사이에 설치되는 화염방지용 격벽(300)을 포함할 수 있다. 화염방지용 격벽(300)은 강성 확보를 위하여 금속제의 재질일 수 있다. 상기 화염방지용 격벽(300)은 하나의 모듈에서 화재가 발생할 경우 인접하는 모듈로 화염이 전파되는 것을 방지하는 기능을 한다. 이 경우, 상기 화염방지용 격벽(300)에는, 케이블 설치 관통홀(310) 또는 케이블 설치홈(320)을 구비될 수 있다. 도 8은 화염방지용 격벽(300)에 케이블 설치 관통홀(310)이 구비된 것을 도시하고, 도 9는 화염방지용 격벽(300)이 케이블 설치홈(320)을 구비한 것을 도시한다. 화염방지 및 기밀성의 측면에서는 도 8과 같이 케이블 설치 관통홀(310)이 구비된 격벽이 유리하다. 도 9의 케이블 설치홈(320)은 상부가 개방되어 있으므로, 케이블 설치 및 케이블의 전기연결작업을 행하기 유리하다.
상기 내화케이블(100,100',100")은 상기 케이블 설치 관통홀(310) 또는 케이블 설치홈(320)에 안착될 수 있다. 이 때, 상기 금속케이스(130)의 개구부로부터 도출된 상기 케이블 심선(110)의 양단부는 상기 화염방지용 격벽(300)의 양측에 위치한 배터리 모듈(200)의 단자부(210,220)에 전기적으로 결합될 수 있다.
도 10에는 상기 내화케이블(100)이 배터리 팩(1000) 내에서 배터리 모듈(200)을 전기적으로 연결하는 모습이 도시되어 있다. 이웃하는 배터리 모듈(200) 사이에는 화염방지용 격벽(300)이 위치하며, 상기 화염방지용 격벽에는 케이블 설치 관통홀(310)이 구비되어 있다. 상기 관통홀 내에 본 발명의 내화케이블(100)의 금속케이스(130)를 삽입한다. 이 경우, 상기 내화케이블의 금속케이스(130)의 형상은, 상기 케이블 설치 관통홀(또는 케이블 설치홈)의 형상에 대응되게 형성된다. 따라서, 본 발명의 내화케이블(100)은 화염방지용 격벽(300)에 기밀하게 면착될 수 있다. 이에 따라, 배터리 팩의 기밀성이 더욱 개선될 수 있다. 또한, 케이블 설치 관통홀이나 케이블 설치홈이 가공에 의하여 날카로운 에지 부분을 구비하고 있는 경우에도, 상기 금속케이스(130)가 내화실리콘 피복층(120) 및 케이블 심선(110)을 감싸 보호한다. 즉, 내화케이블의 절연강도 및 기밀특성이 상기 금속케이스에 의하여 한층 더 개선된다.
이 경우, 제2 실시형태와 같이 금속케이스의 적어도 한 측면에 양극산화처리를 하면 내화케이블(100')의 절연성을 한층 더 향상시킬 수 있다. 또한, 도 10에서는 내화케이블(100)이 직선형의 형태를 가지는 것이 나타나 있지만, 제3 실시형태와 같이, 케이블 심선 및 금속케이스가 굴곡부를 가지도록 하여 배터리 모듈을 연결할 수도 있다. 이 경우, 내화케이블의 곡률반경을 줄일 수 있어, 배터리 팩의 에너지밀도를 높일 수 있다.
한편, 배터리 팩(1000) 내에서 화염이 발생할 경우, 본 발명의 내화케이블은 케이블 심선을 감싸는 내화실리콘 피복층이 세라믹화되어 치밀한 소결체를 형성한다. 즉, 종래의 내열실리콘과 같이 500℃ 이상의 고온에서 타서 없어지거나 재가 되는 것이 아니라, 세라믹화되어 그 형상을 유지한다. 이에 따라, 내화실리콘 피복층은 화염 발생시에도 케이블 심선을 안정적으로 지지한다. 상기 금속케이스는 내화실리콘 피복층의 형상을 유지할 뿐 아니라, 화염이 내화실리콘 피복층과 접촉하는 것을 방지하여 내화실리콘의 변형을 방지하고 절연특성 및 기밀특성을 한층 더 강화시킨다.
[실험예]
(실험예 1)
상기 화학식 1의 실리콘 화합물 50중량%, 석영 20중량%, 순수 이산화규소 30중량%로 이루어진 내화실리콘을 0.5~3mm2 범위의 단면적에서 선택되는 소정 단면적을 가지는 구리로 된 케이블 심선에 소정 두께로 코팅하였다. 코팅부 외의 케이블 심선 양단부를 노출시켜 실시예 1의 내화실리콘 코팅 케이블을 제조하였다.
케이블 심선의 길이, 양단부 노출 길이를 실시예 1과 동일하게 하여 상기 케이블 심선의 중앙부에 걸쳐 유리섬유테이프(3M 361)를 총 2회 감았다. 감겨진 유리섬유테이프의 피복 두께는 상기 내화실리콘의 코팅두께와 거의 동일하게 하여 비교예 1의 케이블을 제조하였다.
비교예 2의 케이블로서, 천연마이카인 플로고파이트 운모 재질의 마이카 테이프를 케이블 심선 중앙부에 1회 감고, 그 위에 비교예 1의 유리섬유테이프를 1회 감았다. 케이블 심선의 길이, 양단부 노출길이는 실시예 1 및 비교예 1과 동일하다.
화재발생시의 절연특성(절연유지성능)을 시험하기 위하여, 실시예 1~비교예 2의 케이블의 피복부(코팅부, 테이프 권취부)에 구리 와이어를 동일 권선수로 감고, 피복부 최외곽의 구리 와이어 일단부를 내전압테스터기의 음극단자에 연결하고, 케이블 심선의 일단부를 내전압테스터기의 양극단자에 연결하였다. 상기 케이블들에 내전압테스터기로 1000V의 전압을 건 상태에서, 화염온도 1100~1150℃의 대형토치로 케이블의 전체 표면을 균일하게 가열하였다.
상기와 같은 전압 및 가열온도조건에서 절연상태가 파괴되는, 즉 단락이 발생하는 절연 Fail시간을 측정하였으며, 그 측정결과는 하기 표 1과 같다.
실험예 1 | 케이블 구성 | 절연 Fail 시간 |
비교예 1 | 구리 심선+유리섬유테이프 | 1분30초 |
비교예 2 | 구리 심선+마이카시트+유리섬유테이프+ | 4분 20초 |
실시예 1 | 구리 심선+내화실리콘 | 7분 10초 |
상기 표 1에 도시된 바와 같이, 본 발명에 따른 내화실리콘 피복층을 구비한 케이블이 절연 Fail시간이 가장 길었으며, 비교예 1 및 비교예 2와는 절연 Fail시간의 면에서 큰 차이를 나타내었다.
따라서, 상기한 내화실리콘 피복층을 금속케이스 내에 충전한 본 발명의 내화케이블의 절연특성이 매우 우수하다는 것을 알 수 있다. 실시예 1은 금속케이스 없이 절연성능을 검사한 것으로서, 내화실리콘 피복층 외부에 금속케이스를 설치할 경우, 내화실리콘이 화염에 직접 노출되지 않음으로써 외부의 고온에 대하여 한층 더 절연성능이 개선되리라는 것은 명확하다 할 것이다.
(실험예 2)
상기 화학식 1의 실리콘 화합물의 중량과 금속산화물의 중량 비율을 달리하여 하기 표 2에 도시된 조성의 내화실리콘을 준비하였다.
실시예 1~5의 내화실리콘을 실험예 1과 동일한 조건으로 구리제 심선에 소정 두께로 코팅하고, 실험예 1과 동일한 조건으로 구리 와이어를 케이블 피복층 상에 감고 내전압테스터기와 연결하였다.
또한, 전압이 걸린 상태에서 실험예 1과 동일한 조건으로 대형토치로 가열하고, 절연 Fail시간을 측정하였으며, 그 측정결과는 하기 표 2와 같다.
실험예 2 | 내화실리콘 피복층 조성 | 절연 Fail 시간 |
실시예 1 | 실리콘 화합물 50중량%: 금속산화물 50중량% (석영: 20중량%, 순수이산화규소:30중량%) |
7분 10초 |
실시예 2 | 실리콘 화합물 50중량%: 금속산화물 25중량% (석영: 10중량%, 순수이산화규소:15중량%) |
6분 30초 |
실시예 3 | 실리콘 화합물 50중량%: 금속산화물 75중량% (석영: 30중량%, 순수이산화규소:45중량%) |
8분 5초 |
실시예 4 | 실리콘 화합물 50중량%: 금속산화물 20중량% (석영: 10중량%, 순수이산화규소:10중량%) |
5분30초 |
실시예 5 | 실리콘 화합물 50중량%: 금속산화물 80중량% (석영: 35중량%, 순수이산화규소:45중량%) |
8분 20초 |
상기 실시예 1~5에서, 실리콘 화합물과 금속산화물의 중량 비율은, 1: 1, 0.5, 1;1.5, 1:0.4, 1:1.6이었다.
모든 실시예가 상기 비교예 1 및 2에 비하여 훨씬 긴 절연 Fail 시간을 가진다. 다만, 중량 비율이 0.5 미만인 실시예 4의 경우 절연 Fail 시간이 다소 짧은 5분이었는데, 이는 금속산화물이 충분하지 않아 고온에서 고밀도의 결정구조를 가지는 세라믹 구조의 생성이 다소 부족하였기 때문으로 판단된다.
또한, 중량 비율이 1.6인 실시예 5의 경우 절연 Fail 시간은 충분히 길었지만, 금속산화물이 과다하여 상온상태에서 내화실리콘의 유연성이 저하되어, 케이블 심선에 추종하여 피복시키기 어려워진다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
(부호의 설명)
100,100',100": 내화케이블
110: 케이블 심선
120: 내화실리콘 피복층
130: 금속케이스
131: 개구부
132: 후크 결합부
133: 산화피막
200: 배터리 모듈
210,220: 단자부
300: 화염방지용 격벽
310: 케이블 설치 관통홀
320: 케이블 설치홈
400: 팩 하우징
1000: 배터리 팩
Claims (13)
- 케이블 심선;상기 케이블 심선의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 케이블 심선을 지지하는 내화실리콘 피복층; 및상기 케이블 심선 및 내화실리콘 피복층이 수용되고, 양측부에 상기 케이블 심선의 양단부가 외부로 도출되는 개구부를 가지는 금속케이스를 포함하는 내화케이블.
- 제1항에 있어서,상기 내화실리콘은 500~1700℃의 온도에서 세라믹화하는 내화케이블.
- 제3항에 있어서,상기 실리콘 수지와 금속 산화물은 1: 0.5~1.5의 중량 비율로 포함되는 내화 케이블.
- 제3항에 있어서,산화규소를 함유하는 금속 산화물은 순수 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함하는 내화케이블.
- 제1항에 있어서,상기 금속케이스는 상부 케이스와 하부 케이스를 구비하고, 상기 상하부 케이스는 후크 결합에 의하여 결합되는 내화케이블.
- 제1항에 있어서,상기 금속케이스는 내측면 및 외측면 중 적어도 하나의 측면이 양극산화처리(anodizing)된 내화케이블.
- 제1항에 있어서,상기 금속케이스는, 알루미늄, 스틸, 스텐레스 중 하나로 이루어지는 내화케이블.
- 제1항에 있어서,상기 케이블 심선은 굴곡부를 가지고,상기 금속케이스는 상기 굴곡부의 형상에 대응하는 굴곡 형상부를 가지는 내화케이블.
- 제1항에 있어서,상기 내화케이블은 복수개의 배터리 모듈의 고전압 단자부들을 전기적으로 연결하는 고전압 케이블인, 내화케이블.
- 복수개의 배터리 모듈;상기 배터리 모듈 사이에 설치되는 화염방지용 격벽;상기 배터리 모듈을 전기적으로 연결하는 제1항 내지 제10항 중 어느 한 항의 내화케이블; 및상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징을 포함하는 배터리 팩.
- 제11항에 있어서,상기 화염방지용 격벽은, 케이블 설치 관통홀 또는 케이블 설치홈을 구비하고,상기 내화케이블의 금속케이스는 상기 케이블 설치 관통홀 또는 케이블 설치홈에 안착되고,상기 금속케이스의 개구부로부터 도출된 상기 케이블 심선의 양단은 상기 화염방지용 격벽의 양측에 위치한 배터리 모듈의 단자부에 전기적으로 결합되는 배터리 팩.
- 제12항에 있어서,상기 금속케이스는, 상기 케이블 설치 관통홀 또는 케이블 설치홈의 형상에 대응되게 형성되는 배터리 팩.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380020762.5A CN118661233A (zh) | 2022-10-24 | 2023-10-20 | 耐火电缆及包含其的电池包 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0137521 | 2022-10-24 | ||
KR1020220137521A KR20240057150A (ko) | 2022-10-24 | 2022-10-24 | 내화케이블 및 이를 구비한 배터리 팩 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024090907A1 true WO2024090907A1 (ko) | 2024-05-02 |
Family
ID=90831150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/016354 WO2024090907A1 (ko) | 2022-10-24 | 2023-10-20 | 내화케이블 및 이를 구비한 배터리 팩 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20240057150A (ko) |
CN (1) | CN118661233A (ko) |
WO (1) | WO2024090907A1 (ko) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100378524B1 (ko) * | 1998-12-03 | 2003-03-31 | 와커-헤미 게엠베하 | 화재시 기능을 유지한 케이블 또는 프로파일의 제조용실리콘러버 조성물 |
JP2013038338A (ja) * | 2011-08-10 | 2013-02-21 | Toshiba Corp | 太陽電池モジュール用導電部材および太陽光発電システム |
JP5312710B1 (ja) | 2011-12-09 | 2013-10-09 | 本田技研工業株式会社 | 電気自動車用バッテリパック |
JP2015072766A (ja) * | 2013-10-02 | 2015-04-16 | 株式会社オートネットワーク技術研究所 | 絶縁電線 |
KR20180096525A (ko) * | 2017-02-20 | 2018-08-29 | 델피 테크놀로지스, 엘엘씨. | 금속/카본 나노튜브 복합 와이어 |
KR102254205B1 (ko) * | 2019-12-19 | 2021-05-21 | 인지컨트롤스 주식회사 | 전기 자동차용 배터리 팩 |
KR20210129399A (ko) * | 2020-04-20 | 2021-10-28 | 한화디펜스 주식회사 | 화재 전이 방지 시스템을 구비한 지상에 설치되는 대용량 에너지 저장 시스템 |
KR20220137521A (ko) | 2021-04-02 | 2022-10-12 | 주식회사 뱅크엑스 | 결제 수단을 추천하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5312710U (ko) | 1976-07-06 | 1978-02-02 |
-
2022
- 2022-10-24 KR KR1020220137521A patent/KR20240057150A/ko active Search and Examination
-
2023
- 2023-10-20 CN CN202380020762.5A patent/CN118661233A/zh active Pending
- 2023-10-20 WO PCT/KR2023/016354 patent/WO2024090907A1/ko active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100378524B1 (ko) * | 1998-12-03 | 2003-03-31 | 와커-헤미 게엠베하 | 화재시 기능을 유지한 케이블 또는 프로파일의 제조용실리콘러버 조성물 |
JP2013038338A (ja) * | 2011-08-10 | 2013-02-21 | Toshiba Corp | 太陽電池モジュール用導電部材および太陽光発電システム |
JP5312710B1 (ja) | 2011-12-09 | 2013-10-09 | 本田技研工業株式会社 | 電気自動車用バッテリパック |
JP2015072766A (ja) * | 2013-10-02 | 2015-04-16 | 株式会社オートネットワーク技術研究所 | 絶縁電線 |
KR20180096525A (ko) * | 2017-02-20 | 2018-08-29 | 델피 테크놀로지스, 엘엘씨. | 금속/카본 나노튜브 복합 와이어 |
KR102254205B1 (ko) * | 2019-12-19 | 2021-05-21 | 인지컨트롤스 주식회사 | 전기 자동차용 배터리 팩 |
KR20210129399A (ko) * | 2020-04-20 | 2021-10-28 | 한화디펜스 주식회사 | 화재 전이 방지 시스템을 구비한 지상에 설치되는 대용량 에너지 저장 시스템 |
KR20220137521A (ko) | 2021-04-02 | 2022-10-12 | 주식회사 뱅크엑스 | 결제 수단을 추천하기 위한 방법, 시스템 및 비일시성의 컴퓨터 판독 가능한 기록 매체 |
Also Published As
Publication number | Publication date |
---|---|
KR20240057150A (ko) | 2024-05-02 |
CN118661233A (zh) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022004997A1 (ko) | 화재 억제를 위한 격벽과 단열층이 구비된 전지 모듈 | |
WO2022139451A1 (ko) | 전극 조립체 및 이를 포함하는 이차전지 | |
WO2019231071A1 (ko) | 과충전을 방지하기 위한 원통형 이차전지 | |
WO2024090907A1 (ko) | 내화케이블 및 이를 구비한 배터리 팩 | |
WO2024090936A1 (ko) | 내화버스바 및 이를 구비한 배터리 팩 | |
WO2024090909A1 (ko) | 캡 일체형 내화버스바 및 이를 구비한 배터리 팩 | |
WO2024090937A1 (ko) | 내화 버스바 캡 및 이를 구비한 배터리 팩 | |
WO2023163400A1 (ko) | 원통형 이차전지, 이를 포함하는 배터리 팩 및 자동차 | |
WO2024196060A1 (ko) | 내화버스바 및 이를 구비한 배터리 팩 | |
WO2023090926A1 (ko) | 하부 냉각팬을 포함하는 전지셀 충방전장치 | |
WO2019146927A1 (ko) | 이차 전지용 절연판 및 그의 제조 방법 | |
WO2022186663A1 (ko) | 배터리 팩 및 이를 포함하는 자동차 | |
WO2021085917A1 (ko) | 전극 조립체 및 이를 포함하는 이차전지 | |
WO2018143596A1 (ko) | 전지 모듈용 집전시스템, 전지 모듈 및 자동차 | |
WO2024054098A1 (ko) | 내화염성이 향상된 버스바 및 이를 포함하는 전지팩 | |
WO2024076135A1 (ko) | 열 전파 방지 전지 셀 | |
WO2023080742A1 (ko) | 배터리 모듈 및 이를 포함한 배터리 팩 | |
WO2019235714A1 (ko) | 가스 발생 물질을 포함하는 접착부가 구비된 원통형 이차전지 | |
WO2019146926A1 (ko) | 이차 전지 및 이차 전지용 절연판 | |
WO2024039133A1 (ko) | 소화액체가 포함된 인터-모듈 버스바 | |
WO2023149694A1 (ko) | 발화억제 구조의 리튬이차전지 | |
WO2023121415A1 (ko) | 안전성이 강화된 배터리 모듈 | |
WO2024034899A1 (ko) | 배터리 모듈 및 그 제조 방법, 배터리 팩 | |
KR20240056202A (ko) | 내화버스바 및 이를 구비한 배터리 팩 | |
WO2023149688A1 (ko) | 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23883013 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023883013 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023883013 Country of ref document: EP Effective date: 20240730 |