WO2024090936A1 - 내화버스바 및 이를 구비한 배터리 팩 - Google Patents

내화버스바 및 이를 구비한 배터리 팩 Download PDF

Info

Publication number
WO2024090936A1
WO2024090936A1 PCT/KR2023/016517 KR2023016517W WO2024090936A1 WO 2024090936 A1 WO2024090936 A1 WO 2024090936A1 KR 2023016517 W KR2023016517 W KR 2023016517W WO 2024090936 A1 WO2024090936 A1 WO 2024090936A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
fireproof
coating layer
metal sheet
fire
Prior art date
Application number
PCT/KR2023/016517
Other languages
English (en)
French (fr)
Inventor
윤선우
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380022754.4A priority Critical patent/CN118743104A/zh
Publication of WO2024090936A1 publication Critical patent/WO2024090936A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a fire-resistant bus bar and a battery pack including the same.
  • a fire-resistant bus bar and battery pack that has a fire-resistant silicon coating layer that becomes ceramic at high temperature and a protective layer surrounding this coating layer, and can maintain insulating and airtight properties even at high temperatures where ignition occurs inside the battery pack.
  • Battery packs applied to electric vehicles, etc. have a structure in which multiple battery modules including a plurality of secondary batteries are connected in series or parallel to obtain high output.
  • the secondary battery is capable of repeated charging and discharging through electrochemical reactions between components, including positive and negative electrode current collectors, separators, active materials, and electrolyte solutions.
  • a bus bar is used to electrically connect terminal portions of adjacent battery modules or to connect battery modules to external electrical devices.
  • 1 is a schematic diagram showing a conventional busbar structure.
  • the conventional bus bar 1 consists of a bus bar conductor portion 10 and a covering layer 20 surrounding the bus bar conductor portion.
  • the busbar conductor 10 is, for example, a high-purity copper conductor such as C1100 or a metal conductor such as aluminum.
  • the coating layer 20 is made of a material such as common silicone rubber or epoxy. The coating layer 20 covers the body portion of the bus bar conductor portion 10 except for both ends 11. At both ends 11 of the bus bar conductor portion 10, fastening holes 11a are disposed for fastening with corresponding electrical connection portions.
  • the bus bar 1 is shown to electrically connect the battery module M installed in the battery pack.
  • the bus bar (1) is installed in the through hole (H) of the partition wall (W) installed between the battery modules (20), and both ends (11) of the exposed metal conductor portion (10) of the bus bar (1) It is connected to the module terminals on both sides of the partition wall.
  • the temperature of the flame is very high (500 to 800°C, or over 800°C, and in severe cases, over 1000°C), so the silicone rubber or epoxy coating layer melts and the bus bar conductor part is exposed to the outside. It is exposed as. In this case, the exposed bus bar conductor part electrically contacts other metal parts in the pack, causing a short circuit, and the flame spreads further due to heat generation from the electric short circuit.
  • a bus bar using mica sheet, glass fiber, or heat-resistant silicone (rubber), etc. may be considered as the coating layer.
  • the purpose of the present invention is to provide a fire-resistant bus bar that can maintain thermal and electrical insulation for as long as possible even when a flame occurs inside a battery pack.
  • the present invention is to provide a battery pack equipped with the fire-resistant bus bar.
  • the fire-resistant bus bar of the present invention for solving the above problems includes a bus bar conductor portion; A fire-resistant silicon coating layer that surrounds the bus bar conductor portion except for both ends and is ceramicized at a high temperature to support the bus bar conductor portion; and a protective layer surrounding the fire-resistant silicon coating layer, wherein the fire-resistant silicon coating layer has a built-in metal sheet that reinforces the structural rigidity of the fire-resistant silicon coating layer.
  • the refractory silicon can be ceramicized at a temperature of 500 to 1700°C.
  • the fire-resistant silicone includes a silicone resin containing a silicone compound represented by the following formula (1); It can be ceramicized by sintering a metal oxide containing silicon oxide.
  • n and n are each integers of 10 to 30.
  • the silicone resin and metal oxide may be included in a weight ratio of 1:0.5 to 1.5.
  • the metal oxide containing silicon oxide may include one or more of pure silicon dioxide, silica, quartz, silica, tridymite, and keatite.
  • the metal sheet may extend along the refractory silicon coating layer surrounding the bus bar conductor portion and be embedded in the refractory silicon coating layer to surround the bus bar conductor portion.
  • a fire-resistant silicon coating layer is provided between the inside of the metal sheet and the bus bar conductor part, and a fire-resistant silicon coating layer is provided between the outside of the metal sheet and the protective layer, and the fire-resistant silicon coating layer inside and outside the metal sheet is the metal sheet. It can be connected through a through hole formed in .
  • the metal sheet can be molded together with the fireproof silicon coating layer.
  • the metal sheet has a plurality of through holes, and by injection molding refractory silicon on the upper and lower surfaces of the metal sheet, the refractory silicon is coated on the upper and lower surfaces of the metal sheet and filled in the through holes, thereby forming a bond between the metal sheet and the refractory silicon.
  • the coating layer may be formed integrally.
  • the integrated metal sheet and the fire-resistant silicone coating layer are processed into a tape form, and the tape is wound around the busbar conductor portion, so that the busbar conductor portion can be coated with the fireproof silicone coating layer.
  • the fireproof bus bar of the present invention is subjected to insert injection molding in which the metal sheet is placed in a mold to surround the busbar conductor bar and spaced apart from the busbar conductor portion and the busbar conductor bar, and the fireproof silicon is injected into the mold.
  • a fireproof silicon coating layer including the metal sheet may be coated on the bus bar conductor portion.
  • the protective layer may be made of glass fiber or mica material.
  • the fire-resistant bus bar may be a high-voltage bus bar that electrically connects high-voltage terminals of a plurality of battery modules.
  • a battery pack as another aspect of the present invention includes a plurality of battery modules; A flame prevention partition installed between the battery modules; The fireproof bus bar electrically connecting the battery module; And it may include a pack housing accommodating the battery module and the flame prevention partition.
  • the flame prevention partition wall is provided with a bus bar installation through hole or a bus bar installation groove, the fire resistant bus bar is seated in the bus bar installation through hole or the bus bar installation groove, and both ends of the fire resistant bus bar are used for the flame prevention. It can be electrically coupled to the terminal portion of the battery module located on both sides of the partition.
  • the fire-resistant bus bar of the present invention has a fire-resistant silicon coating layer that is ceramicized and supports the bus bar conductor portion instead of a coating layer that burns away when a flame occurs inside the pack, so it can maintain insulating and airtight properties even at high temperatures.
  • the fireproof silicon coating layer includes a metal sheet to reinforce the structural rigidity of the coating layer, thereby preventing deformation due to external force.
  • the metal sheet maintains the insulation and shape of the bus bar and also performs the shielding function required for high voltage.
  • the fire-resistant bus bar of the present invention is provided with a protective layer that protects the fire-resistant silicon coating layer, so that the protective layer primarily serves as a fire-resistant wall and at the same time prevents the fire-resistant silicon coating layer from being directly exposed to flame, thereby protecting the overall Shape and dimensions can be maintained.
  • FIG. 1 is a schematic and cross-sectional view showing a conventional bus bar structure.
  • Figure 2 is a schematic diagram showing connecting a battery module to a conventional bus bar.
  • Figure 3 is a perspective view and cross-sectional view of a fire-resistant bus bar according to an embodiment of the invention
  • Figure 4 is a schematic diagram showing an example of a process for manufacturing a fire-resistant bus bar of the present invention.
  • Figure 5 is a schematic diagram showing another example of the process of manufacturing a fire-resistant bus bar of the present invention.
  • Figure 6 is a schematic diagram showing an example of a battery pack structure in which the fire-resistant bus bar of the present invention is installed.
  • Figure 7 is a schematic diagram showing another example of a battery pack structure in which the fire-resistant bus bar of the present invention is installed.
  • Figure 8 is a side cross-sectional view showing the fire-resistant bus bar of the present invention installed in a battery pack.
  • the fire-resistant bus bar of the present invention includes a bus bar conductor portion; A fire-resistant silicon coating layer that surrounds the bus bar conductor portion except for both ends and is ceramicized at a high temperature to support the bus bar conductor portion; and a protective layer surrounding the fire-resistant silicon coating layer, wherein the fire-resistant silicon coating layer includes a metal sheet that reinforces the structural rigidity of the fire-resistant silicon coating layer.
  • the bus bar conductor part may be a normal metal conductor part. In other words, it can be made of 99.9% or higher purity tough pitch copper material such as C1100, or it can also be made of aluminum material. That is, the busbar conductor portion of the present invention is not particularly limited as long as it is made of a metal material that can function as a busbar conductor for connecting electrical components. Both ends of the bus bar conductor portion are electrically connected to corresponding electrical connection portions.
  • the fire-resistant silicone coating layer is a layer that covers the bus bar conductor portion while surrounding the portion excluding both ends of the bus bar conductor portion. That is, the fireproof silicon coating layer is covered around the central portion of the bus bar conductor portion excluding both ends.
  • the refractory silicon coating layer is ceramicized at a high temperature to support the bus bar conductor portion.
  • the refractory silicon can be ceramicized at a temperature of 500 to 1700°C.
  • the fire-resistant silicon of the present invention is distinguished from heat-resistant silicon with a heat-resistant temperature of less than 300° C. in that it has a fire-resistant temperature of 500° C. or higher.
  • Heat-resistant silicone is a silicone resin or rubber composition that has flexibility and flexibility due to the characteristics of silicone, but is a material that burns away or turns into ash at high temperatures above 500°C. Therefore, there is a limit to its application in preventing short-circuiting or heat propagation of a battery pack in a heat propagation situation.
  • the fire-resistant silicone coating layer has 'fire-resistant' properties that make it ceramic at a high temperature of 500°C or higher, it can maintain insulating and airtight properties within the battery pack even when a flame occurs.
  • the fire-resistant bus bar according to the present invention can realize high fire-resistant performance by providing fire-resistant silicon inside along with structural improvement.
  • the fireproof silicone is a composition containing silicone resin and metal oxide as main ingredients, and has flexibility and flexibility due to the characteristics of silicone at room temperature. In addition, it has a certain elasticity and exhibits high impact resistance and insulation, and when exposed to high temperatures, a silicon sintered body with a complex ceramic structure can be formed by sintering silicon resin and metal oxide.
  • the silicone resin contained in fireproof silicon generates silica in powder form when burned at high temperature.
  • the silica produced in this way reacts with the metal oxide of the refractory silicon to form a "eutectic mixture" on the edge of the metal oxide, thereby performing a bridging role between the silica and the metal oxide, so it hardens at the ignition temperature.
  • This ceramic body can exercise the electrical function of the bus bar itself by preventing short circuits or disconnections between conductors due to damage to the fire-resistant silicon coating layer even when external mechanical shock is applied or moisture penetrates in the event of a fire.
  • the refractory silicone according to the present invention contains a silicone resin and a metal oxide.
  • the silicone resin is not particularly limited as long as it contains silicon (Si) in the molecule, but preferably may include a silicone compound represented by the following formula (1) (hereinafter referred to as “the silicone compound of formula 1”):
  • n and n are each integers of 10 to 30.
  • the silicone compound of Formula 1 includes a methylsiloxane repeating unit, and includes vinyl groups inside and at the ends of the methylsiloxane repeating unit, respectively.
  • the vinyl group is present not only at the ends of the silicone compound of Formula 1 but also inside the repeating unit, and plays a role in increasing the degree of polymerization of the silicone resin when exposed to high temperatures. Through this, it can realize better fire resistance properties compared to silicone compounds that do not contain a vinyl group. You can.
  • the weight average molecular weight of the silicone compound of Formula 1 may be adjusted to a specific range.
  • the silicone compound of Formula 1 is a compound that forms the base of a silicone resin, and depending on the weight average molecular weight of the silicone compound of Formula 1, it can affect the physical properties of fireproof silicon at room temperature and high temperatures. For example, if the weight average molecular weight of the silicone compound of Formula 1 is excessively high, the viscosity of the silicone resin may increase and reactivity may decrease during high temperature sintering, and if the weight average molecular weight is significantly low, the room temperature elasticity and flexibility of the silicone resin may decrease. As a result, the manufacturing process of the fire-resistant bus bar is degraded, and there is a limit to the impact resistance, etc.
  • the silicone compound of Formula 1 according to the present invention may have a weight average molecular weight adjusted to 1,000 to 9,000 g/mol, specifically 3,000 to 8,000 g/mol; Alternatively, it may have an adjusted value of 5,000 to 7,000 g/mol.
  • the metal oxide is a composition containing silicon oxide, and can act as a crystal nucleus when exposed to high temperature to form a high-density ceramic body together with the above-described silicone resin.
  • These metal oxides may include one or more of silicon dioxide, silica, quartz, silica, tridymite, and keatite.
  • the metal oxide contains pure silicon dioxide (SiO 2 ) as well as minerals such as quartz containing silicon dioxide (SiO 2 ) as a main component, so it is not only highly economical, but also has a high melting point (high refractoriness) and high sintering. degree) and can exhibit excellent electrical insulation performance.
  • silicon dioxide, silica, quartz, etc. can improve various performances during the sintering process, induce easy dissolution and molding of refractory silicon, and reduce defects that may occur in ceramic bodies.
  • the metal oxide can be sintered with a silicone resin to have a crystal structure that increases fire resistance, insulation, and mechanical strength.
  • This metal oxide is in the form of a powder, but is not particularly limited, and has a size of 200 ⁇ m or less, for example, 0.1 ⁇ m to 200 ⁇ m; Alternatively, those having a size of 0.1 ⁇ m ⁇ 100 ⁇ m can be used.
  • the silicone resin may further include a silicon compound represented by the following Chemical Formula 2 (hereinafter referred to as “the silicone compound of Chemical Formula 2”), and the silicone compound of Chemical Formula 2, together with the silicon compound of Chemical Formula 1, acts as a metal at high temperature. Participates in sintering of the oxide to form a silicon sintered body:
  • p is an integer of 10 to 30.
  • the silicone compound of Formula 2 increases the flexibility of the refractory silicon at room temperature, and can play a role in inducing the completion of sintering of the silicone resin through dehydration condensation with the silicone compound of Formula 1 during sintering, through which The ceramic body formation reaction can be terminated.
  • the silicone compound of Formula 2 may be used in an amount of less than 10 parts by weight, specifically 0.5 to 9 parts by weight, based on the total weight of the fireproof silicon; 1 to 6 parts by weight; Alternatively, it may be used in an amount of 2 to 5 parts by weight.
  • fireproof silicon may contain silicone resin and metal oxide in a certain ratio in order to realize high elasticity at room temperature and to quickly form a ceramic body when exposed to high temperatures.
  • the refractory silicon may have a weight ratio of silicone resin and metal oxide of 1:0.5 to 1.5, and specifically, 1:0.8 to 1.2. If the weight ratio of the metal oxide is low (less than 0.5), it is difficult to have a ceramic structure with a high density crystal structure at high temperature, so there is a problem of insufficient fire resistance and mechanical strength. Additionally, if the weight ratio of the metal oxide exceeds 1.5, the flexibility of the refractory silicon is reduced at room temperature, resulting in poor handleability.
  • the fire-resistant silicone of the present invention contains 35 to 50% by weight of the silicone compound of Formula 1; Quartz 16-32% by weight; 10-27% by weight of silicon dioxide; and a second silicone compound of Formula 2 in an amount of 1 to 6% by weight, and in some cases, a predetermined solvent may be additionally included to increase fairness during manufacturing.
  • the refractory silicon of the present invention is hardened by sintering a silicone resin and a metal oxide at 500° C. or higher to become ceramic.
  • it is ceramicized up to 1700°C, and theoretically, it can partially maintain ceramicization even at temperatures above 1700°C. However, if the temperature exceeds 1700°C, the ceramicization retention time becomes shorter and the fire resistance required for the battery pack may not be maintained.
  • the refractory silicone Before being ceramicized, the refractory silicone has rubber-like properties such as flexibility, flexibility, and elasticity, as described above. Therefore, it is easy to injection mold the fire-resistant silicone coating layer or coat it on the bus bar conductor as described later.
  • the fireproof silicon coating layer has flexibility before being ceramicized, it can flexibly follow the deformation of the bus bar conductor portion. Therefore, when installing the fire-resistant bus bar of the present invention in a battery pack, even if there is a slight assembly tolerance, it can be easily accommodated, thereby improving assembly efficiency. For example, when attaching a battery module to a battery pack by bolting, if the bus bar conductor portion connected to the battery module moves or is slightly distorted, the fireproof silicon coating layer can absorb such movement or distortion. Additionally, even when the battery pack vibrates due to the vibration of the electric vehicle, the fireproof silicon coating layer can naturally absorb the vibration.
  • a metal sheet embedded in the fire-resistant silicon coating layer and a protective layer surrounding the fire-resistant silicon coating layer are provided.
  • the protective layer is a layer that surrounds the outside of the fire-resistant silicon coating layer and protects the fire-resistant silicon coating layer from being directly exposed to flame. In other words, the protective layer primarily functions as a fireproof wall. Additionally, when the refractory silicon coating layer is ceramicized, the overall shape and dimensions of the coating layer can be maintained by wrapping the ceramicized coating layer.
  • the protective layer for example, a material such as glass fiber or mica material, which has both insulating properties and heat resistance, can be used. That is, glass fiber tape or mica tape can be wrapped around the outside of the fireproof silicone coating layer to prevent the fireproof silicone coating layer from being exposed to the outside.
  • the protective layer is not limited to this, and it is also possible to construct the protective layer from other materials with excellent insulation or heat resistance.
  • a metal sheet is embedded within the coating layer.
  • the metal sheet is embedded within the fireproof silicon coating layer and serves as a kind of framework. Since the refractory silicon coating layer has flexibility and softness before ceramicization, it may be structurally weak. For example, even if the fire-resistant silicone coating layer is coated or applied to the bus bar conductor and hardened, there is a possibility of deformation due to the characteristics of the material. However, when a metal sheet is provided in the fireproof silicon coating layer, the metal sheet serves as a frame to structurally support the coating layer.
  • the metal sheet structurally and strongly supports the ceramicized silicon, thereby preventing deformation of the coating layer due to external force.
  • the shape of the fireproof silicon coating layer can be maintained, and the insulating function of the coating layer can also be stably maintained.
  • the metal sheet can also perform an electromagnetic wave shielding function when, for example, a fireproof bus bar is used as a high voltage bus bar. Therefore, the fire-resistant bus bar of the present invention with a built-in metal sheet can be suitably used as a high-voltage bus bar.
  • the metal sheet may be made of, for example, one of aluminum, steel, and stainless steel. However, it is not limited to this, and other suitable metal materials that can reinforce the rigidity of the fireproof silicon coating layer and have an electromagnetic wave shielding function can also be used.
  • Figure 3 is a perspective view and a cross-sectional view of a fire-resistant bus bar according to an embodiment of the invention.
  • the fire-resistant bus bar 100 is provided with a bus bar conductor portion 110 on the innermost side, and a coating portion (P) is formed on the portion of the bus bar conductor portion 110 except for both ends 111. It is equipped with Both ends 111 of the bus bar conductor portion 110 are exposed to the outside and are provided with fastening holes 111a for coupling with corresponding electrical connection portions (eg, terminal portions).
  • the coating portion P includes a fire-resistant silicon coating layer 120 surrounding the busbar conductor portion 110 and a protective layer 130 surrounding the fire-resistant silicon coating layer 120.
  • a metal sheet 140 is embedded in the fireproof silicon coating layer 120.
  • the fireproof silicon coating layer 120 may be transparent or opaque depending on the detailed composition of the coating layer. In the perspective view of FIG. 3, the fireproof silicon coating layer 120 is shown in a transparent state in order to clearly show the shape of the embedded metal sheet 140.
  • the metal sheet 140 extends along the refractory silicon coating layer 120 surrounding the bus bar conductor portion 110 to surround the bus bar conductor portion 110.
  • the thickness of the metal sheet 140 can be appropriately determined depending on the thickness of the coating layer 120, the composition or physical properties of the fireproof silicon coating layer 120, etc. Additionally, in the case of a high voltage bus bar, the thickness of the metal sheet 140 can be set to the thickness necessary for electromagnetic wave shielding. For example, the metal sheet 140 can be manufactured with a thickness of 0.3 to 3 mm.
  • the metal sheet 140 and the bus bar conductor portion 110 are spaced apart for insulation.
  • a fireproof silicon coating layer 120 is disposed (filled) between the metal sheet 140 and the bus bar conductor portion 110.
  • a fire-resistant silicone coating layer 120 is provided between the outside of the metal sheet 140 and the protective layer 130. Accordingly, the fireproof silicon coating layer 120 is located inside and outside the metal sheet 140, bordering on the metal sheet 140. In this case, the fireproof silicon coating layer 120 on the inside and outside of the metal sheet 140 may be blocked by the metal sheet 140.
  • the fire-resistant silicon coating layers 120 on the inside and outside of the metal sheet 140 are connected to each other through the metal sheet 140. It is more desirable to form it as follows.
  • a through hole 141 may be placed in the metal sheet 140.
  • the fireproof silicon coating layer 120 inside and outside the metal sheet 140 may be connected to each other through the through hole 141.
  • the metal sheet 140 and the inner and outer refractory silicon coating layer 120 can be more strongly integrated, and the structural rigidity of the refractory silicon coating layer 120 is further improved. Therefore, when the refractory silicon coating layer 120 is ceramicized, the metal sheet 140 can more firmly support the coating layer 120.
  • the through holes 141 may be formed in plural numbers on the metal sheet 140 and spaced apart from each other.
  • the through hole 141 may have a circular, square, or other shape, and the size of the through hole 141 may also be appropriately selected.
  • the metal sheet 140 may be molded together with the fireproof silicon coating layer 120.
  • the process of forming the refractory silicon coating layer 120 and manufacturing the refractory bus bar 100 of the present invention will be described in detail in the following embodiments.
  • Figure 4 is a schematic diagram showing an example of the process of manufacturing the fire-resistant bus bar 100 of the present invention.
  • the metal sheet 140 is molded together with the fireproof silicon coating layer 120.
  • the metal sheet 140 has, for example, a plurality of circular through holes 141.
  • Fireproof silicon can be injected toward the metal sheet 140 from the nozzle 151 of the fireproof silicon storage tank 150 located above and below the metal sheet 140.
  • refractory silicone is, for example, a mixture of a silicone resin and a metal oxide, and can be contained in a predetermined solvent in the form of a fluid coating liquid or slurry.
  • this refractory silicon coating liquid is injected onto the upper and lower surfaces of the metal sheet 140, the upper and lower surfaces of the metal sheet 140 are coated with refractory silicon, and at the same time, the through hole 141 is also filled with refractory silicon.
  • the fireproof silicon on the upper and lower surfaces of the metal sheet 140 is integrally connected through the through hole 141 of the metal sheet 140. Since the injection of the refractory silicon can be performed within a certain mold, the metal sheet 140 and the refractory silicon can be manufactured integrally through injection molding.
  • the fireproof silicone coating layer 120 coated on the metal sheet 140 may have physical properties similar to, for example, silicone rubber through a drying and curing process.
  • the integrated metal sheet 140 and the fire-resistant silicone coating layer 120 may be processed into a tape form, as shown in FIG. 4.
  • the bus bar conductor portion 110 By winding this fire-resistant silicon coating tape around the bus bar conductor portion 110, the bus bar conductor portion 110 can be coated with the fire-resistant silicon coating layer 120.
  • the fireproof bus bar 100 of the present invention can be manufactured by winding a protective layer 130, such as a glass fiber tape, on the fireproof silicon coating layer 120.
  • the tape of the protective layer 130 After winding the fire-resistant silicone-coated tape around the busbar conductor portion 110, the tape of the protective layer 130 can be wound. However, as shown in FIG. 4, the tape of the protective layer 130 may be wound on the fire-resistant silicone-coated tape in advance. It can be manufactured with a covering tape that is attached to form the covering part (P). In this case, the fire-resistant bus bar 100 can be manufactured at once by winding the coating tape around the bus bar conductor part 110, which has the advantage of shortening the manufacturing process.
  • the coating portion (P) is in the form of a tape and the tape of the coating portion (P) can be repeatedly wound on the busbar conductor portion 110 as needed, so that insulation and fire resistance can be further strengthened. there is. In addition, it is convenient to adjust the insulation properties and fire resistance to meet the design values by adjusting the number of turns of the covering tape.
  • the flexibility of the metal sheet 140 may be problematic. If the thickness of the metal sheet 140 is very thin, the metal sheet 140 may be bent to follow the curve of the fire-resistant silicone coating layer 120, but if the thickness of the metal sheet 140 is relatively thick, it is wound in the form of a tape. It can be difficult.
  • the following embodiment solves these manufacturing difficulties by preprocessing the shape of the metal sheet 140.
  • Figure 5 is a schematic diagram showing another example of the process of manufacturing the fire-resistant bus bar 100 of the present invention.
  • the fire-resistant bus bar 100 is manufactured by a type of insert injection molding method in which the metal sheet 140 and the bus bar conductor portion 110 are placed in advance in a mold, and fire-resistant silicon is injected into the mold.
  • the bus bar conductor portion 110 and the metal sheet 140 are disposed to surround the bus bar conductor bar and to be spaced apart from the bus bar conductor bar. Thereafter, the coating liquid or slurry of refractory silicon is injected through the injection port 161 provided in the molds 160 and 160'. In this case, the refractory silicon is filled between the metal sheet 140 and the bus bar conductor portion 110 through the through hole 141 of the metal sheet 140, and also on the outside of the metal sheet 140 and the mold ( It is also charged between 160 and 160').
  • a coating layer with a built-in bus bar conductor portion 110 can be obtained, as shown in FIG. 3.
  • the fireproof bus bar 100 of the present invention can be obtained by wrapping a tape of the protective layer 130, such as a glass fiber tape or mica tape, on the coating layer.
  • the metal sheet 140 is pre-bent and processed to surround the bus bar conductor portion 110, even a relatively thick metal sheet 140 can be easily applied.
  • refractory silicon can be filled both inside and outside of the metal sheet 140 through the through hole 141 of the metal sheet 140, the manufacturing process is greatly simplified.
  • the thickness of the fireproof bus bar coating layer 120 can be easily adjusted depending on the mold size.
  • Figure 6 is a schematic diagram showing an example of a battery pack structure in which a fire-resistant bus bar of the present invention is installed
  • Figure 7 is a schematic diagram showing another example of a battery pack structure in which a fire-resistant bus bar of the present invention is installed
  • Figure 8 is a schematic diagram showing another example of a battery pack structure in which a fire-resistant bus bar of the present invention is installed. This is a side cross-sectional view showing the bus bar installed in the battery pack.
  • the fire-resistant bus bar 100 of the present invention described above includes a fire-resistant silicon coating layer 120 that is ceramicized at a high temperature, a protective layer 130 that surrounds the fire-resistant silicon coating layer 120 to maintain its shape, and the rigidity of the coating layer. It is provided with a metal sheet 140 that reinforces. Therefore, when applied to a battery pack where internal combustion may occur, the safety of the battery pack can be greatly improved.
  • the fire-resistant bus bar 100 can be used, for example, to electrically connect a plurality of battery modules accommodated in a battery pack to each other.
  • the fire-resistant bus bar 100 can electrically connect terminal portions of adjacent battery modules.
  • the fire-resistant bus bar 100 may be used to connect battery modules to external electrical devices.
  • the fire-resistant bus bar 100 of the present invention is suitable for application as a high-voltage bus bar that electrically connects the high-voltage terminal portions of a plurality of battery modules.
  • the fire-resistant bus bar 100 is provided with a metal sheet 140 with an electromagnetic wave shielding function, it is more suitable for application to a high voltage bus bar with a great need for electromagnetic wave shielding.
  • the battery pack 1000 of the present invention includes a plurality of battery modules 200; A flame prevention partition 300 installed between the battery modules; The above-described fire-resistant bus bar 100 electrically connecting the battery module; And it may include a pack housing 400 that accommodates the battery module and a flame prevention partition.
  • the battery module 200 includes a cell stack (not shown) in which a plurality of battery cells are stacked, and cell leads of different polarities are derived from the battery cells of the cell stack.
  • the cell leads are electrically connected to a bus bar such as a terminal bus bar or an interbus bar.
  • the fire-resistant bus bar 100 according to the present invention can be applied to electrically connect the plurality of battery modules.
  • Figures 6 and 7 show a typical battery module 200 in which the module housing completely surrounds the top, bottom, left, and right sides of the battery cell stack.
  • a battery module having a module housing of a modular structure configured to open at least one of the top, bottom, left, and right sides of the cell stack, or a battery module in which the entire top, bottom, left, and right sides of the cell stack are open.
  • the fire-resistant bus bar 100 of the present invention can also be applied to battery cell blocks. In this way, cell blocks or battery modules with all or part of the module housing omitted can be installed in the battery pack to form a battery pack with a so-called cell-to-pack structure.
  • the fire-resistant bus bar 100 of the present invention can be used for electrical connection of battery modules of a cell block or module-less structure installed in a battery pack of this cell-to-pack structure.
  • the battery pack 1000 may include a flame prevention partition 300 installed between battery modules.
  • the flame prevention partition 300 may be made of metal to ensure rigidity.
  • the flame prevention partition 300 functions to prevent the flame from spreading to adjacent modules when a fire occurs in one module.
  • the flame prevention partition 300 may be provided with a bus bar installation through hole 310 or a bus bar installation groove 320.
  • Figure 6 shows that the flame prevention partition 300 is provided with a bus bar installation through hole 310
  • Figure 7 shows that the flame prevention partition 300 is provided with a bus bar installation groove 320.
  • a partition wall provided with a bus bar installation through hole 310 as shown in FIG. 6 is advantageous. Since the top of the bus bar installation groove 320 in FIG. 7 is open, it is advantageous to install the bus bar and perform electrical connection work on the bus bar.
  • the fire-resistant bus bar 100 may be seated in the bus bar installation through hole 310 or the bus bar installation groove 320. At this time, both ends 111 of the bus bar conductor portion 110 may be electrically coupled to the terminal portions 210 and 220 of the battery module 200 located on both sides of the flame prevention partition 300.
  • FIG. 8 shows the fire-resistant bus bar 100 electrically connecting the battery module 200 within the battery pack 1000.
  • a flame-prevention partition wall 300 is located between neighboring battery modules 200, and the flame-prevention partition wall is provided with a bus bar installation through hole 310.
  • the fire-resistant bus bar 100 of the present invention is inserted into the through hole.
  • the fire-resistant silicon coating layer 120 surrounding the bus bar conductor portion 110 is ceramicized to form a dense sintered body. In other words, it does not burn out or turn to ash at high temperatures of 500°C or higher like conventional heat-resistant silicon, but becomes ceramic and maintains its shape. Accordingly, the fireproof silicon coating layer 120 stably supports the busbar conductor portion 110 even when a flame occurs.
  • the metal sheet 140 reinforces the rigidity of the fireproof silicon coating layer 120 and prevents the coating layer 120 from breaking.
  • the protective layer 130 prevents the refractory silicon coating layer 120 from coming into direct contact with a flame, thereby preventing deformation of the refractory silicon and further enhancing insulation and fire resistance.
  • Fireproof silicon consisting of 50% by weight of the silicon compound of Formula 1, 20% by weight of quartz, and 30% by weight of pure silicon dioxide was applied to all areas except both ends of the conductor portion of the copper bus bar having a predetermined cross-sectional area selected from the range of 0.5 to 3 mm 2. The part was coated to a predetermined thickness.
  • the fireproof silicone coated busbar of Example 1 was manufactured by wrapping a 0.18 mm thick glass fiber tape (product name: AGTWO) from SWECO on the fireproof silicone coated busbar twice.
  • the bus bar of Comparative Example 2 was manufactured by keeping the length of the bus bar conductor portion and the exposed length of both ends the same as in Example 1, and wrapping AGTWO glass fiber tape over the central portion of the bus bar conductor portion.
  • the coating thickness of the wound glass fiber tape was almost the same as that of Example 1.
  • busbar of Comparative Example 2 mica tape made of phlogopite mica, a natural mica, was wound around the central part of the busbar conductor, and AGTWO glass fiber tape was wound on it.
  • the length of the bus bar conductor portion and the exposed length of both ends are the same as Example 1 and Comparative Example 1.
  • the bus bar with the coating layer according to the present invention had the longest insulation failure time, and showed a significant difference from Comparative Example 1 and Comparative Example 2 in terms of insulation failure time.
  • Example 1 tested the insulation performance without a metal sheet, and it is clear that if a metal sheet is embedded in the fireproof silicon coating layer, the insulation performance will be further improved against high external temperatures. In addition, when installing a metal sheet, the mechanical strength of the ceramicized refractory silicon coating layer becomes better, and an electromagnetic wave shielding function can also be obtained additionally.
  • Fireproof silicone with the composition shown in Table 2 below was prepared by varying the weight ratio of the silicon compound of Formula 1 and the weight ratio of the metal oxide.
  • a fire-resistant silicon coating layer was coated to a predetermined thickness on the copper busbar conductor under the same conditions as in Experimental Example 1, and AGTWO glass fiber tape was wound on the fire-resistant silicon coating layer.
  • Example 2 Composition of fireproof silicone coating layer Insulation Fail Time
  • Example 1 Silicone compound 50% by weight: Metal oxide 50% by weight (Quartz: 20% by weight, pure silicon dioxide: 30% by weight) 14 minutes
  • Example 2 Silicone compound 50% by weight: Metal oxide 25% by weight (Quartz: 10% by weight, pure silicon dioxide: 15% by weight) 12 minutes 50 seconds
  • Example 3 Silicone compound 50% by weight: Metal oxide 75% by weight (Quartz: 30% by weight, pure silicon dioxide: 45% by weight) 16 minutes
  • Example 4 Silicone compound 50% by weight: Metal oxide 20% by weight (Quartz: 10% by weight, pure silicon dioxide: 10% by weight) 11 minutes
  • Example 5 Silicone compound 50% by weight: Metal oxide 80% by weight (Quartz: 35% by weight, pure silicon dioxide: 45% by weight) 16 minutes 40 seconds
  • the weight ratio of the silicon compound and the metal oxide was 1:1, 1:0.5, 1:1.5, 1:0.4, and 1:1.6.
  • Example 5 where the weight ratio was 1.6, the insulation failure time was sufficiently long, but the flexibility of the refractory silicon decreased at room temperature due to excessive metal oxide, making it difficult to follow and cover the bus bar conductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 내화버스바는, 버스바 도체부; 상기 버스바 도체부의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 버스바 도체부를 지지하는 내화실리콘 피복층; 및 상기 내화실리콘 피복층을 감싸는 보호층을 포함하고, 상기 내화실리콘 피복층은, 그 내화실리콘 피복층의 구조적 강성을 보강하는 금속시트가 내장된다. 또한, 본 발명은 상기 내화버스바를 포함하는 배터리 팩을 제공한다.

Description

내화버스바 및 이를 구비한 배터리 팩
본 발명은 내화버스바 및 이를 구비한 배터리 팩에 관한 것이다.
보다 상세하게는, 고온에서 세라믹화되는 내화실리콘 피복층과 이 피복층을 감싸는 보호층을 구비하여, 배터리 팩 내부에 발화가 발생하는 고온에서도 절연 및 기밀 특성을 유지할 수 있는 내화버스바 및 배터리 팩에 관한 것이다.
본 출원은 2022. 10.26자 한국 특허 출원 제10-2022-0139401호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
전기 차량 등에 적용되는 배터리 팩은 고출력을 얻기 위해 복수의 이차전지를 포함하는 다수의 배터리 모듈을 직렬 또는 병렬로 연결한 구조를 가지고 있다. 그리고, 상기 이차전지는 양극 및 음극 집전체, 세퍼레이터, 활물질, 전해액 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 반복적인 충방전이 가능하다.
상기 배터리 모듈을 전기적으로 연결하기 위하여, 버스바가 사용된다. 상기 버스바는 인접하는 배터리 모듈의 단자부들을 전기적으로 연결하거나, 배터리 모듈들을 외부의 전기 디바이스와 연결하기 위하여 사용된다.
도 1은 종래의 버스바 구조를 나타내는 개략도이다.
도시된 바와 같이, 종래의 버스바(1)는 버스바 도체부(10)와 상기 버스바 도체부를 둘러싸는 피복층(20)으로 구성된다. 상기 버스바 도체부(10)는 예컨대 C1100과 같은 고순도 구리 도체부 또는 알루미늄과 같은 금속 도체부이다. 상기 피복층(20)은 통상의 실리콘 고무 또는 에폭시와 같은 재질로 이루어져 있다. 상기 피복층(20)은 버스바 도체부(10)의 양단부(11)를 제외한 몸체 부분을 피복하고 있다. 상기 버스바 도체부(10)의 양단부(11)에는 대응되는 전기연결부와 체결되기 위한 체결공(11a)이 배치되어 있다.
도 2에서는 상기 버스바(1)가 배터리 팩 내에 설치되는 배터리 모듈(M)을 전기적으로 연결하는 것이 도시되어 있다. 상기 버스바(1)는 배터리 모듈(20) 사이에 설치되는 격벽(W)의 관통홀(H)에 설치되고, 상기 버스바(1)의 노출된 금속도체부(10)의 양단부(11)가 격벽 양쪽의 모듈 단자부에 각각 연결된다.
배터리 팩 내에서 상기 종래의 버스바로 예컨대 배터리 모듈들을 전기적으로 연결하는 경우, 배터리 팩이 정상 작동되는 통상의 온도에서는 배터리 팩의 작동에 문제가 발생하지 않는다.
그런데, 배터리 팩 내부 화염 발생시에는 그 화염의 온도가 매우 높으므로(500~800℃, 혹은 800℃ 이상, 심한 경우 1000℃ 이상), 상기 실리콘 고무나 에폭시의 피복층은 모두 녹아버리고 버스바 도체부가 외부로 노출되게 된다. 이렇게 되면, 노출된 버스바 도체부가 팩 내의 다른 금속 부분과 전기적으로 접촉하여 쇼트가 발생하고, 전기 쇼트에 의한 발열로 화염이 더욱 확산되게 된다.
열 확산(thermal propagation) 방지를 위하여, 상기 피복층으로서 마이카 시트나 유리섬유, 혹은 내열실리콘 (고무) 등을 사용한 버스바를 고려할 수 있다.
그러나, 상기와 같이 극심한 발열 상황에서는 상기 예시된 재료로서는 열 확산을 충분히 방지할 수 없다. 예컨대, 통상의 내열실리콘 고무는 내열온도가 125~300℃에 불과하여 배터리 팩 내부의 발화상황에 효과적으로 대처할 수 없다. 또한, 마이카 시트나 유리섬유제의 피복층도 충분한 내화성능을 구비하고 있지 않다.
이와 같이, 최근의 배터리 팩에서는 내부 발화시 팩 외부로 화염이 새어나오지 않도록 설계하는 것이 필수적으로 요구된다.
또한, 화염 발생시의 고온에서도 버스바 도체부를 주변과 열적으로 그리고 전기적으로 절연시킬 수 있는 설계가 필요하다.
이상으로부터 고온에서의 내화성을 구비함으로써 전기절연특성을 유지하면서도, 절연 강도 및 조립성을 개선할 수 있는 기술의 개발이 요망된다 하겠다.
[선행기술문헌]
[특허문헌]
한국 공개특허공보 제2022-0001228호
본 발명은 배터리 팩 내부의 화염 발생 시에도 가능한 오래 열적 및 전기적인 절연을 유지할 수 있는 내화버스바를 제공하기 위한 것이다.
또한, 본 발명은 상기 내화버스바를 구비한 배터리 팩을 제공하기 위한 것이다.
상기 과제를 해결하기 위한 본 발명의 내화버스바는, 버스바 도체부; 상기 버스바 도체부의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 버스바 도체부를 지지하는 내화실리콘 피복층; 및 상기 내화실리콘 피복층을 감싸는 보호층을 포함하고, 상기 내화실리콘 피복층은, 그 내화실리콘 피복층의 구조적 강성을 보강하는 금속시트가 내장되는 것을 특징으로 한다.
상기 내화실리콘은 500~1700℃의 온도에서 세라믹화할 수 있다.
상기 내화실리콘은 하기 화학식 1로 나타내는 실리콘 화합물을 포함하는 실리콘 수지와; 산화규소를 함유하는 금속 산화물의 소결에 의해 세라믹화될 수 있다.
[화학식 1]
Figure PCTKR2023016517-appb-img-000001
상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
상기 실리콘 수지와 금속 산화물은 1: 0.5~1.5의 중량 비율로 포함될 수 있다.
산화규소를 함유하는 금속 산화물은 순수 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함할 수 있다.
상기 금속시트는 상기 버스바 도체부를 감싸는 내화실리콘 피복층을 따라 연장되어 상기 버스바 도체부를 감싸도록 상기 내화실리콘 피복층에 내장될 수 있다.
상기 금속시트 내측과 상기 버스바 도체부 사이에 내화실리콘 피복층이 구비되고, 상기 금속시트 외측과 상기 보호층 사이에 내화실리콘 피복층이 구비되며, 상기 금속시트 내측 및 외측의 내화실리콘 피복층은 상기 금속시트에 형성된 관통홀을 통하여 연결될 수 있다.
상기 금속시트는 상기 내화실리콘 피복층과 함께 성형될 수 있다.
상기 금속시트는 복수개의 관통홀을 구비하고, 상기 금속시트의 상하면에 내화실리콘을 사출성형함으로써, 상기 내화실리콘이 상기 금속시트의 상하면에 코팅되고 상기 관통홀 내에 충전됨으로써, 상기 금속시트와 내화실리콘 피복층이 일체로 형성될 수 있다.
상기 일체로 된 금속시트와 내화실리콘 피복층을 테이프 형태로 가공하여, 상기 테이프를 상기 버스바 도체부에 권취함으로써 상기 버스바 도체부에 상기 내화실리콘 피복층이 피복될 수 있다.
본 발명의 내화버스바는, 금형 내에 상기 버스바 도체부와 상기 버스바 도체바와 이격되어 상기 버스바 도체바를 감싸도록 상기 금속시트를 배치하고, 상기 금형 내에 상기 내화실리콘을 사출하는 인서트 사출 성형에 의하여 상기 금속시트를 구비하는 내화실리콘 피복층이 상기 버스바 도체부에 피복될 수 있다.
상기 보호층은 유리섬유 또는 마이카재질일 수 있다.
상기 내화버스바는 복수개의 배터리 모듈의 고전압 단자부들을 전기적으로 연결하는 고전압 버스바일 수 있다.
본 발명의 다른 측면으로서의 배터리 팩은, 복수개의 배터리 모듈; 상기 배터리 모듈 사이에 설치되는 화염방지용 격벽; 상기 배터리 모듈을 전기적으로 연결하는 상기 내화버스바; 및 상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징을 포함할 수 있다.
상기 화염방지용 격벽은, 버스바 설치 관통홀 또는 버스바 설치홈을 구비하고, 상기 내화버스바는 상기 버스바 설치 관통홀 또는 버스바 설치홈에 안착되고, 상기 내화버스바의 양단부는 상기 화염방지용 격벽의 양측에 위치한 배터리 모듈의 단자부에 전기적으로 결합될 수 있다.
본 발명의 내화버스바는, 팩 내부에서의 화염 발생시 화염에 타서 없어지는 피복층 대신 세라믹화되어 버스바 도체부를 지지하는 내화실리콘 피복층을 구비하고 있으므로, 고온에서도 절연 및 기밀 특성을 유지할 수 있다.
또한, 상기 내화실리콘 피복층은 금속시트를 구비하여 상기 피복층의 구조적 강성을 보강함으로써, 외력에 의한 변형을 방지할 수 있다. 또한, 상기 금속시트는 버스바의 절연 및 형상을 유지하도록 하며, 고전압에 필요한 차폐 기능도 수행한다.
또한, 본 발명의 내화버스바는 상기 내화실리콘 피복층을 보호하는 보호층을 구비하여, 상기 보호층이 1차적으로 내화벽으로서 역할을 함과 동시에 내화실리콘 피복층이 화염에 직접 노출되지 않도록 함으로써, 전체적인 형상 및 치수를 유지할 수 있다.
도 1은 종래의 버스바 구조를 나타내는 개략도 및 단면도.
도 2는 종래의 버스바로 배터리 모듈을 연결하는 모습을 나타낸 개략도.
도 3은 발명의 일 실시예에 따른 내화버스바의 사시도 및 단면도
도 4는 본 발명의 내화버스바를 제조하는 과정의 일례를 나타낸 개략도.
도 5는 본 발명의 내화버스바를 제조하는 과정의 다른 예를 나타낸 개략도.
도 6은 본 발명의 내화버스바가 설치되는 배터리 팩 구조의 일례를 나타낸 개략도.
도 7은 본 발명의 내화버스바가 설치되는 배터리 팩 구조의 다른 예를 나타낸 개략도.
도 8은 본 발명의 내화버스바가 배터리 팩에 설치된 상태를 나타낸 측단면도.
이하, 첨부한 도면과 여러 실시예에 의하여 본 발명의 세부 구성을 상세하게 설명한다. 이하에서 설명되는 실시예는 본 발명의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 또한 첨부된 도면은 발명의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니며 일부 구성요소의 치수가 과장되게 도시될 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
[내화버스바]
본 발명의 내화버스바는, 버스바 도체부; 상기 버스바 도체부의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 버스바 도체부를 지지하는 내화실리콘 피복층; 및 상기 내화실리콘 피복층을 감싸는 보호층을 포함하고, 상기 내화실리콘 피복층은, 그 내화실리콘 피복층의 구조적 강성을 보강하는 금속시트가 내장된다.
상기 버스바 도체부는 통상의 금속도체부일 수 있다. 즉, C1100과 같은 99.9% 이상의 고순도 터프피치 구리소재로 만들어지거나, 알루미늄 재질로도 제조될 수 있다. 즉, 본 발명의 버스바 도체부는, 전기부품을 연결하기 위한 버스바 도체로서 기능할 수 있는 금속소재라면 특별히 한정되지 않는다. 상기 버스바 도체부의 양단부는 대응되는 전기 접속부와 전기적으로 연결된다.
내화실리콘 피복층은, 상기 버스바 도체부의 양단부를 제외한 부분을 감싸면서 상기 버스바 도체부에 피복되는 층이다. 즉, 양단부를 제외한 버스바 도체부의 중앙부 주변으로 내화실리콘 피복층이 피복된다. 상기 내화실리콘 피복층은 고온에서 세라믹화하여 상기 버스바 도체부를 지지한다. 상기 내화실리콘은 500~1700℃의 온도에서 세라믹화될 수 있다. 본 발명의 내화실리콘은 내화온도가 500℃ 이상이라는 점에서 내열온도가 300℃ 미만인 내열실리콘과 구별된다. 내열실리콘은 실리콘의 특성상 유연성과 가요성을 가지는 실리콘 수지 또는 고무 조성물이지만, 500℃ 이상의 고온에서는 타서 없어지거나 재(ash)가 되어 버리는 소재이다. 따라서, 열 전파 상황시의 배터리 팩의 단락 방지 혹은 열 전파 방지에 적용하는데 한계가 있다.
상기 내화실리콘 피복층은 500℃ 이상의 고온에서 세라믹화되는 '내화'성능을 가지므로, 화염발생시에도 배터리 팩 내에서 절연 특성과 기밀 특성을 유지할 수 있다.
이와 같이, 본 발명에 따른 내화버스바는 구조적 개선과 함께 내부에 내화실리콘을 구비함으로써 고내화 성능을 구현할 수 있다.
상기 내화실리콘은 실리콘 수지와 금속 산화물을 주성분으로 하는 조성물로서, 상온에서는 실리콘의 특성상 유연성과 가요성을 가진다. 또한, 소정의 탄성력을 가져 높은 내충격성과 절연성을 나타내고, 고온 노출 시에는 실리콘 수지와 금속 산화물의 소결에 의해 복잡한 세라믹 구조의 실리콘 소결체를 이룰 수 있다.
구체적으로, 내화실리콘에 함유된 실리콘 수지는 고온에서 연소 시 분말 형태의 실리카를 생성한다. 이렇게 생성된 실리카는 내화실리콘의 금속 산화물과 반응하여 상기 금속 산화물의 테두리에 "공융 혼합물(eutectic mixture)"을 형성함으로써 실리카와 금속 산화물 사이에서 브리징 작용(bridging role)을 수행하므로 발화온도에서 경화되고, 냉각될 때에는 응축된 세라믹화 생성물을 형성하게 된다. 이러한 세라믹체는 화재 시 외부의 기계적 충격이 가해지거나 수분이 침투할 때에도 내화실리콘 피복층의 훼손으로 인한 도체 간의 단락이나 단선이 방지되어 버스바 자체의 전기적인 기능을 발휘할 수 있다.
이를 위하여, 본 발명에 따른 내화실리콘은 실리콘 수지와 금속 산화물을 포함한다.
상기 실리콘 수지는 분자 내에 실리콘(Si)을 포함하는 수지라면 특별히 제한되는 것은 아니나, 바람직하게는 하기 화학식 1로 나타내는 실리콘 화합물(이하, "화학식 1의 실리콘 화합물"이라 함)을 포함할 수 있다:
[화학식 1]
Figure PCTKR2023016517-appb-img-000002
상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
상기 화학식 1의 실리콘 화합물은 메틸실록산 반복 단위를 포함하고, 상기 메틸실록산 반복 단위의 내부 및 말단에 각각 비닐기(vinyl group)를 포함한다. 상기 비닐기는 화학식 1의 실리콘 화합물의 말단은 물론 반복 단위 내부에도 존재하여 고온 노출 시 실리콘 수지의 중합도를 높이는 역할을 수행하며, 이를 통해 비닐기를 포함하지 않는 실리콘 화합물과 대비하여 보다 우수한 내화 특성을 구현할 수 있다.
또한, 상기 화학식 1의 실리콘 화합물은 중량평균분자량이 특정 범위로 조절될 수 있다. 화학식 1의 실리콘 화합물은 실리콘 수지의 베이스를 이루는 화합물로서 화학식 1의 실리콘 화합물의 중량평균분자량에 따라 내화실리콘의 상온 및 고온에서의 물성에 영향을 미칠 수 있다. 예컨대, 상기 화학식 1의 실리콘 화합물의 중량평균분자량이 과도하게 높은 경우 실리콘 수지의 점도가 증가하여 고온 소결 시 반응성이 저하될 수 있으며, 중량평균분자량이 현저히 낮은 경우 실리콘 수지의 상온 탄성력 및 유연성이 저감되어 내화버스바의 제조 공정성이 저하되는 한편 내충격성 등이 낮아지는 한계가 있다. 따라서, 본 발명에 따른 화학식 1의 실리콘 화합물은 중량평균분자량이 1,000~9,000 g/mol으로 조절된 값을 가질 수 있으며, 구체적으로는 3,000~8,000 g/mol; 또는 5,000~7,000 g/mol으로 조절된 값을 가질 수 있다.
아울러, 상기 금속 산화물은 산화규소를 함유하는 조성물로서, 고온 노출 시 결정핵으로 작용하여 상술된 실리콘 수지와 함께 고밀도의 세라믹체를 형성하는 역할을 할 수 있다.
이러한 금속 산화물로는 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함할 수 있다. 상기 금속 산화물은 순수 이산화규소(SiO2)와 함께 이산화규소(SiO2)를 주성분으로 포함하는 석영 등의 광물을 포함하여 경제성이 높을 뿐만 아니라, 높은 융점(고내화성) 및 높은 소결도(high sintering degree)를 가지며, 우수한 전기 절연 성능을 나타낼 수 있다. 특히, 이산화규소, 실리카, 석영 등은 소결 과정에서의 각종 성능을 개선하고, 내화 실리콘의 용이한 용해와 성형을 유도하며, 세라믹체에서 발생될 수 있는 결함을 저감시킬 수 있다.
또한, 상기 금속 산화물은 실리콘 수지와 소결을 통해 내화성, 절연성 및 기계적 강도 등을 증가시키는 결정 구조를 갖게 할 수 있으면 좋다. 이러한 금속 산화물은 분말 상으로서, 특별히 한정하는 것은 아니지만 200㎛ 이하의 크기, 구체적인 예를 들어 0.1㎛ ~ 200㎛; 또는 0.1㎛ ~ 100㎛의 크기를 가지는 것을 사용할 수 있다.
아울러, 상기 실리콘 수지는 하기 화학식 2로 나타내는 실리콘 화합물(이하, "화학식 2의 실리콘 화합물"이라 함)을 더 포함할 수 있으며, 상기 화학식 2의 실리콘 화합물은 화학식 1의 실리콘 화합물과 함께 고온에서 금속 산화물의 소결에 참여하여 실리콘 소결체를 형성하게 된다:
[화학식 2]
Figure PCTKR2023016517-appb-img-000003
상기 화학식 2에 있어서, p는 10 내지 30의 정수이다.
상기 화학식 2의 실리콘 화합물은 상온에서 내화실리콘의 유연성을 높이는 한편, 소결 시 화학식 1의 실리콘 화합물과 탈수 축합(dehydration condensation)을 통해 실리콘 수지의 소결 종결을 유도하는 역할을 수행할 수 있으며, 이를 통하여 세라믹체 형성 반응을 종결시킬 수 있다.
이를 위하여, 상기 화학식 2의 실리콘 화합물은 내화실리콘 전체 중량에 대하여 10 중량부 미만으로 사용될 수 있으며, 구체적으로는 0.5 내지 9 중량부; 1 내지 6 중량부; 또는 2 내지 5 중량부로 사용될 수 있다.
또한, 내화실리콘은 상온에서의 높은 탄성력 구현과 고온 노출 시 빠른 세라믹체 형성을 위하여 실리콘 수지와 금속 산화물을 일정한 비율로 포함할 수 있다.
구체적으로, 상기 내화 실리콘은 실리콘 수지와 금속 산화물의 중량 비율이 1: 0.5~1.5일 수 있으며, 구체적으로는 1: 0.8~1.2일 수 있다. 금속 산화물의 중량 비율이 0.5 미만으로 낮으면 고온에서 고밀도의 결정구조를 갖는 세라믹 구조를 갖기 어려우므로 내화성 및 기계적 강도가 충분히 구현되지 않은 문제가 있다. 또한, 금속 산화물의 중량 비율이 1.5를 초과하면 상온 상태에서 내화 실리콘의 유연성이 저감되어 취급성이 양호하지 않은 한계가 있다.
하나의 예로서, 본 발명의 내화실리콘은 화학식 1의 실리콘 화합물 35~50 중량%; 석영 16~32 중량%; 이산화규소 10~27 중량%; 및 화학식 2의 제2 실리콘 화합물 1~6 중량%로 포함할 수 있으며, 경우에 따라서는 제조 시 공정성을 높이기 위하여 소정의 용매를 추가적으로 더 포함할 수 있다.
이상과 같이, 본 발명의 내화실리콘은 500℃ 이상에서 실리콘 수지와 금속 산화물의 소결에 의해 경화되어 세라믹화된다. 또한, 1700℃까지도 세라믹화되며, 이론적으로는 1700℃ 이상의 온도에서도 부분적으로 세라믹화를 유지할 수 있다. 다만, 1700℃를 초과하면, 세라믹화 유지시간이 짧아져서 배터리 팩 내에서 요구하는 내화성능을 유지하지 못할 수 있다.
상기 내화실리콘은 세라믹화되기 전에는 상술한 바와 같이, 가요성과 유연성, 그리고 탄성을 가지는 고무와 같은 성질을 가진다. 따라서, 내화실리콘 피복층을 후술하는 바와 같이 사출성형하거나 혹은 버스바 도체부 상에 코팅하기 용이하다.
상기 내화실리콘 피복층은 세라믹화되기 전에는 유연성을 가지므로, 버스바 도체부의 변형에도 유연하게 추종할 수 있다. 따라서, 본 발명의 내화버스바를 배터리 팩 내에 설치할 경우 약간의 조립공차가 있더라도, 이에 용이하게 대응할 수 있으므로 조립성이 개선된다. 예컨대, 배터리 모듈을 배터리 팩에 볼팅에 의하여 체결할 경우, 배터리 모듈과 연결된 버스바 도체부가 유동하거나 미세하게 틀어질 경우, 상기 내화실리콘 피복층이 이러한 유동이나 틀어짐을 흡수할 수 있다. 또한, 전기자동차의 진동에 따라 배터리 팩이 진동하는 경우에도, 상기 내화실리콘 피복층이 그 진동을 자연스럽게 흡수할 수 있다.
한편, 상기 내화실리콘이 고온에서 세라믹화되면 열적으로 그리고 전기적으로 절연은 유지되지만, 기계적인 강도가 다소 약해져서 외력에 의해서 부서질 위험이 있다. 본 발명에서는 이러한 내화실리콘 피복층의 강성을 구조적으로 개선하기 위하여 상기 내화실리콘 피복층에 내장되는 금속시트와 상기 내화실리콘 피복층을 감싸는 보호층을 구비하고 있다.
상기 보호층은, 상기 내화실리콘 피복층의 외부를 둘러싸서 내화실리콘 피복층이 화염에 직접 노출되지 않도록 보호하는 층이다. 즉, 상기 보호층은 1차적으로 내화벽의 역할을 수행한다. 또한, 내화실리콘 피복층이 세라믹화될 경우, 세라믹화된 피복층을 감싸서 피복층의 전체적인 형상과 치수를 유지할 수 있도록 해 준다.
보호층으로서는 예컨대, 절연성과 내열성을 겸비한 유리섬유나 마이카재질의 재료를 채용할 수 있다. 즉, 유리섬유 테이프나 마이카테이프를 상기 내화실리콘 피복층의 외부에 감아서 내화실리콘 피복층이 외부에 노출되지 않도록 할 수 있다. 다만, 보호층이 이에 한정되는 것은 아니며, 절연성 또는 내열성이 우수한 다른 재질로 보호층을 구성하는 것도 가능하다.
내화실리콘 피복층의 강성을 보강하기 위하여 금속시트가 상기 피복층 내에 내장된다. 상기 금속시트는, 내화실리콘 피복층 내에 내장되어 일종의 뼈대 역할을 한다. 상기 내화실리콘 피복층은 세라믹화 전에는 가요성과 유연성을 가지므로, 구조적으로 취약할 수 있다. 예컨대, 내화실리콘 피복층이 버스바 도체부에 코팅 또는 도포되어 경화되더라도 그 재료의 특성상 변형될 가능성이 있다. 그러나, 금속시트가 상기 내화실리콘 피복층 내에 구비될 경우, 상기 금속시트가 골조의 역할을 하여 상기 피복층을 구조적으로 지지하는 역할을 한다.
특히, 상기 내화실리콘 피복층이 고온에서 세라믹화되면, 취성이 생겨 기계적강도가 약해질 수 있다. 이 경우 상기 금속시트가 세라믹화된 실리콘을 구조적으로 강고하게 지지함으로써, 외력에 의한 피복층의 변형을 방지할 수 있다. 이에 의하여, 내화실리콘 피복층의 형상을 유지할 수 있고, 또한 상기 피복층의 절연 기능도 안정적으로 유지할 수 있게 된다. 또한, 금속제로 이루어져 있으므로, 상기 금속시트는 예컨대 내화버스바가 고전압 버스바로 사용될 경우, 전자파 차폐 기능도 행할 수 있다. 따라서, 금속시트를 내장한 본 발명의 내화버스바는 고전압 버스바로서 적합하게 사용될 수 있다.
상기 금속시트는, 예컨대 알루미늄, 스틸, 스텐레스 중 하나의 금속으로 제조될 수 있다. 그러나, 이에 한정되는 것은 아니고, 내화실리콘 피복층의 강성을 보강할 수 있고, 전자파 차폐 기능을 구비하는 다른 적절한 재료의 금속도 사용할 수 있다.
구체적인 내화버스바 및 금속시트의 형태에 관해서는 이하의 실시형태에서 자세히 설명하기로 한다.
(제1 실시형태)
도 3은 발명의 일 실시예에 따른 내화버스바의 사시도 및 단면도이다.
도시된 바와 같이, 상기 내화버스바(100)는 최내측에 버스바 도체부(110)를 구비하고 있으며, 상기 버스바 도체부(110)의 양단부(111)를 제외한 부분에 피복부(P)를 구비하고 있다. 상기 버스바 도체부(110)의 양단부(111)는 외부로 노출되어 있으며, 대응되는 전기연결부(예컨대, 단자부)와 결합하기 위하여 체결공(111a)을 구비하고 있다.
상기 피복부(P)는, 버스바 도체부(110)를 감싸는 내화실리콘 피복층(120)과 상기 내화실리콘 피복층(120)을 감싸는 보호층(130)을 구비하고 있다. 상기 내화실리콘 피복층(120)에는 금속시트(140)가 내장되어 있다.
상기 내화실리콘 피복층(120)은 그 피복층의 세부 구성에 따라 투명 또는 불투명으로 형성될 수 있다. 도 3의 사시도에서는 내장된 금속시트(140)의 형상을 명확하게 나타내기 위하여, 상기 내화실리콘 피복층(120)을 투명상태로 도시하였다.
도 3에 도시된 바와 같이, 상기 금속시트(140)는 상기 버스바 도체부(110)를 감싸는 내화실리콘 피복층(120)을 따라 연장되어 상기 버스바 도체부(110)를 감싸도록 상기 내화실리콘 피복층(120)에 내장된다. 즉, 금속시트(140)가 뼈대와 같이 상기 내화실리콘 피복층(120)을 따라 함께 연장된다. 금속시트(140)의 두께는 상기 피복층(120)의 두께, 내화실리콘 피복층(120)의 조성이나 물성 등에 따라 적절하게 결정할 수 있다. 또한, 고전압 버스바의 경우, 전자파 차폐를 위하여 필요한 두께로 상기 금속시트(140)의 두께를 설정할 수 있다. 예컨대, 0.3~3mm의 두께로 금속시트(140)를 제조할 수 있다.
상기 금속시트(140)와 버스바 도체부(110)는 절연을 위하여 이격되는 것이 바람직하다. 이 경우, 도 3의 단면도와 같이 금속시트(140)와 버스바 도체부(110) 사이에 내화실리콘 피복층(120)이 배치(충전)된다. 또한, 상기 금속시트(140) 외측과 상기 보호층(130) 사이에 내화실리콘 피복층(120)이 구비된다. 따라서, 상기 금속시트(140)를 경계로 금속시트(140) 내측과 외측에 내화실리콘 피복층(120)이 위치한다. 이 경우, 금속시트(140) 내외측의 내화실리콘 피복층(120)이 금속시트(140)에 의하여 차단될 수 있다. 그러나, 금속시트(140)와 상기 내화실리콘 피복층(120)의 결합을 보다 강고하게 하기 위하여, 상기 금속시트(140)를 통하여 상기 금속시트(140) 내외측의 내화실리콘 피복층(120)이 서로 연결되게 형성하는 것이 보다 바람직하다.
이를 위하여, 도 3과 같이, 상기 금속시트(140)에 관통홀(141)을 배치할 수 있다. 이 경우, 상기 관통홀(141)을 통하여 금속시트(140) 내측 및 외측의 내화실리콘 피복층(120)이 서로 연결될 수 있다. 이렇게 되면, 금속시트(140)와 내외측의 내화실리콘 피복층(120)이 일체로 보다 강고하게 결합될 수 있어, 내화실리콘 피복층(120)의 구조적강성이 보다 향상된다. 따라서, 내화실리콘 피복층(120)이 세라믹화될 경우, 상기 금속시트(140)가 보다 강고하게 상기 피복층(120)을 지지할 수 있다. 상기 관통홀(141)은 상기 금속시트(140) 상에 이격되어 복수개 형성될 수 있다. 상기 관통홀(141)은 원형, 사각형, 기타 다른 형상을 가질 수 있으며, 관통홀(141)의 크기도 적절히 선택할 수 있다.
상기 금속시트(140)는 상기 내화실리콘 피복층(120)과 함께 성형될 수 있다. 상기 내화실리콘 피복층(120)의 성형 내지는 본 발명의 내화버스바(100)의 제조과정은 하기 실시형태에서 상세하게 설명한다.
(제2 실시형태)
도 4는 본 발명의 내화버스바(100)를 제조하는 과정의 일례를 나타낸 개략도이다.
본 실시형태에서 상기 금속시트(140)는 상기 내화실리콘 피복층(120)과 함께 성형된다.
상기 금속시트(140)는 예컨대 원형의 관통홀(141)을 복수개 구비하고 있다. 상기 금속시트(140)의 상하부에 위치한 내화실리콘 저장조(150)의 노즐(151)로부터 상기 금속시트(140)를 향하여 내화실리콘을 사출할 수 있다. 내화실리콘은 상술한 바와 같이, 예컨대 실리콘 수지와 금속산화물의 혼합물로서, 소정의 용매에 포함되어 유동성을 가지는 코팅액 또는 슬러리의 상태로 할 수 있다. 이러한 내화실리콘 코팅액을 상기 금속시트(140)의 상하면에 사출하면, 상기 금속시트(140)의 상하면에 내화실리콘이 코팅되며, 동시에 상기 관통홀(141)에도 내화실리콘이 충전되게 된다. 이 경우 도면과 같이 금속시트(140) 상하면의 내화실리콘은 상기 금속시트(140)의 관통홀(141)을 통하여 일체로 연결된다. 상기 내화실리콘의 사출은 일정한 금형 내에서 행해질 수 있으므로, 상기 금속시트(140) 및 내화실리콘은 사출성형으로 일체로 제조될 수 있다. 금속시트(140)에 코팅된 내화실리콘 피복층(120)은 건조 소정의 경화과정을 거쳐 예컨대 실리콘 고무와 같은 형태의 물성을 가질 수 있다.
상기 일체로 된 금속시트(140)와 내화실리콘 피복층(120)은 도 4에 도시된 바와 같이, 테이프 형태로 가공될 수 있다. 이러한 내화실리콘 피복테이프를 상기 버스바 도체부(110)에 권취함으로써 상기 버스바 도체부(110)에 상기 내화실리콘 피복층(120)이 피복될 수 있다. 다음으로, 상기 내화실리콘 피복층(120) 상에 보호층(130), 예컨대 유리섬유 테이프를 권취함으로써, 본 발명의 내화버스바(100)를 제조할 수 있다.
상기 내화실리콘 피복테이프를 버스바 도체부(110)에 권취한 후 상기 보호층(130)의 테이프를 권취할 수 있지만, 도 4와 같이, 내화실리콘 피복테이프에 미리 보호층(130)의 테이프를 부착하여 피복부(P)를 구성하는 피복부 테이프로 제조할 수 있다. 이 경우 상기 피복부 테이프를 버스바 도체부(110)에 권취하여 내화버스바(100)를 한번에 제조할 수 있으므로, 제조공정이 단축되는 장점이 있다.
본 실시형태의 경우, 피복부(P)를 테이프 형태로 하여 필요에 따라, 버스바 도체부(110) 상에 피복부(P)의 테이프를 반복적으로 감을 수 있으므로, 절연성 및 내화성을 보다 강화할 수 있다. 또한, 피복부 테이프의 권취회수를 조절하여, 설계치에 부합하도록 절연특성 및 내화성을 조절하기 편리하다.
다만, 본 실시형태의 경우, 테이프형태로 가공할 때, 상기 금속시트(140)의 가요성이 문제될 수 있다. 금속시트(140)의 두께를 매우 얇게 하면, 금속시트(140)가 내화실리콘 피복층(120)의 굴곡에 추종하여 굴곡될 수 있지만, 금속시트(140)의 두께가 비교적 두꺼울 경우, 테이프 형태로 감기 곤란할 수 있다. 다음의 실시형태는 금속시트(140)의 형태를 미리 가공함으로써, 이러한 제조상의 곤란함을 해소한 것이다.
(제3 실시형태)
도 5는 본 발명의 내화버스바(100)를 제조하는 과정의 다른 예를 나타낸 개략도이다.
본 실시형태는, 금속시트(140)와 버스바 도체부(110)를 금형 내에 미리 배치하고, 상기 금형으로 내화실리콘을 주입하는 일종의 인서트 사출성형방식에 의하여 내화버스바(100)를 제조한다.
도 5의 인서트 사출성형용의 상하 금형(160,160') 내에, 버스바 도체부(110)와 상기 버스바 도체바와 이격되어 상기 버스바 도체바를 감싸도록 상기 금속시트(140)를 배치한다. 이후, 상기 금형(160,160')에 구비된 주입구(161)를 통하여 내화실리콘의 코팅액 또는 슬러리를 주입한다. 이 경우, 상기 내화실리콘은 상기 금속시트(140)의 관통홀(141)을 통하여 금속시트(140)와 버스바 도체부(110) 사이로 충전되며, 또한 상기 금속시트(140)의 외측과 금형(160,160')사이에도 충전된다. 소정의 건조 및 경화과정 후, 금형을 제거하면, 도 3에 도시된 것과 같이 버스바 도체부(110)가 내장된 피복층을 얻을 수 있다. 이후, 유리섬유테이프 또는 마이카테이프와 같은 보호층(130)의 테이프를 상기 피복층 상에 감아서, 본 발명의 내화버스바(100)를 얻을 수 있다.
본 실시형태의 경우, 금속시트(140)가 상기 버스바 도체부(110)를 감싸도록 미리 구부려서 가공하므로, 비교적 두꺼운 금속시트(140)도 용이하게 적용할 수 있다. 또한, 상기 금속시트(140)의 관통홀(141)을 통하여 내화실리콘이 금속시트(140)의 내외측에 한꺼번에 충전되도록 할 수 있으므로, 제조공정이 매우 간소화된다. 그리고, 금형 크기에 따라 내화버스바 피복층(120)의 두께를 용이하게 조절할 수 있다.
[배터리 팩]
도 6은 본 발명의 내화버스바가 설치되는 배터리 팩 구조의 일례를 나타낸 개략도이고, 도 7은 본 발명의 내화버스바가 설치되는 배터리 팩 구조의 다른 예를 나타낸 개략도이고, 도 8은 본 발명의 내화버스바가 배터리 팩에 설치된 상태를 나타낸 측단면도이다.
상술한 본 발명의 내화버스바(100)는, 고온에서 세라믹화되는 내화실리콘 피복층(120)을 구비하고, 상기 내화실리콘 피복층(120)을 감싸서 형상을 유지하는 보호층(130)과 피복층의 강성을 보강하는 금속시트(140)를 구비하고 있다. 따라서, 내부 발화가 발생할 수 있는 배터리 팩에 적용할 경우, 배터리 팩의 안전성을 크게 향상시킬 수 있다.
상기 내화버스바(100)는, 예컨대 배터리 팩 내에 수용된 복수개의 배터리 모듈을 서로 전기적으로 연결하기 위하여, 사용될 수 있다. 이 경우 상기 내화버스바(100)는 인접하는 배터리 모듈의 단자부들을 전기적으로 연결할 수 있다. 또는 배터리 모듈들을 외부의 전기 디바이스와 연결하기 위하여 상기 내화버스바(100)가 사용될 수 있다.
특히, 배터리 모듈의 고전압 단자부들은 높은 전류로 인하여 비교적 높은 열이 발생한다. 이에 따라, 팩 내부 화염 발생시 상기 고전압 단자부에 보다 높은 열이 집중될 수 있다. 따라서, 본 발명의 내화버스바(100)는 복수개의 배터리 모듈의 고전압 단자부들을 전기적으로 연결하는 고전압 버스바로 적용하기에 적합하다. 또한, 상기 내화버스바(100)는 전자파 차폐기능이 있는 금속시트(140)를 구비하므로, 전자파 차폐 필요성이 큰 고전압 버스바에 적용하기 더욱 적합하다.
본 발명의 배터리 팩(1000)은, 복수개의 배터리 모듈(200); 상기 배터리 모듈 사이에 설치되는 화염방지용 격벽(300); 상기 배터리 모듈을 전기적으로 연결하는 상기에 기재된 내화버스바(100); 및 상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징(400)을 포함할 수 있다.
도 6을 참조하면, 복수개의 배터리 모듈(200)이 팩 하우징(400)에 수용되는 것이 도시되어 있다. 상기 배터리 모듈(200)은 복수개의 배터리 셀이 적층된 셀 적층체(도시하지 않음)를 구비하고 있으며, 상기 셀 적층체의 전지셀 들로부터 각기 다른 극성의 셀 리드가 도출된다. 상기 셀 리드들은 터미널 버스바나 인터버스바 등의 버스바, 혹은 버스바와 전기적으로 연결된다. 상기 복수개의 배터리 모듈을 전기적으로 연결하기 위하여 본 발명에 따른 내화버스바(100)가 적용될 수 있다.
한편, 도 6 및 도 7에는, 모듈 하우징이 배터리 셀 적층체의 상하좌우면을 완전히 감싸는 통상의 배터리 모듈(200)이 개시되어 있다. 그러나, 이에 한하지 않고, 예컨대 셀 적층체의 상하좌우면 중 적어도 하나의 면이 개방되도록 구성된 모듈리스 구조의 모듈 하우징을 가지는 배터리 모듈이나, 혹은 셀 적층체의 상하좌우면 전체가 개방된 형태의 전지셀 블록에 대해서도 본 발명의 내화버스바(100)를 적용할 수 있다. 이와 같이, 모듈 하우징의 전부 또는 일부가 생략된 셀 블록 또는 배터리 모듈들을 배터리 팩에 설치하여 이른바 셀투팩 구조의 배터리 팩을 구성할 수 있다. 본 발명의 내화버스바(100)는 이러한 셀투팩 구조의 배터리 팩 내에 설치된 셀 블록 또는 모듈리스 구조의 배터리 모듈의 전기적 연결을 위해서 사용될 수 있다.
인접하는 모듈 간의 화염전파를 방지하기 위하여, 상기 배터리 팩(1000)은 배터리 모듈 사이에 설치되는 화염방지용 격벽(300)을 포함할 수 있다. 화염방지용 격벽(300)은 강성 확보를 위하여 금속제의 재질일 수 있다. 상기 화염방지용 격벽(300)은 하나의 모듈에서 화재가 발생할 경우 인접하는 모듈로 화염이 전파되는 것을 방지하는 기능을 한다. 이 경우, 상기 화염방지용 격벽(300)에는, 버스바 설치 관통홀(310) 또는 버스바 설치홈(320)을 구비될 수 있다. 도 6은 화염방지용 격벽(300)에 버스바 설치 관통홀(310)이 구비된 것을 도시하고, 도 7은 화염방지용 격벽(300)이 버스바 설치홈(320)을 구비한 것을 도시한다. 화염방지 및 기밀성의 측면에서는 도 6과 같이 버스바 설치 관통홀(310)이 구비된 격벽이 유리하다. 도 7의 버스바 설치홈(320)은 상부가 개방되어 있으므로, 버스바 설치 및 버스바의 전기연결작업을 행하기 유리하다.
상기 내화버스바(100)는 상기 버스바 설치 관통홀(310) 또는 버스바 설치홈(320)에 안착될 수 있다. 이 때, 상기 버스바 도체부(110)의 양단부(111)는 상기 화염방지용 격벽(300)의 양측에 위치한 배터리 모듈(200)의 단자부(210,220)에 전기적으로 결합될 수 있다.
도 8에는 상기 내화버스바(100)가 배터리 팩(1000) 내에서 배터리 모듈(200)을 전기적으로 연결하는 모습이 도시되어 있다. 이웃하는 배터리 모듈(200) 사이에는 화염방지용 격벽(300)이 위치하며, 상기 화염방지용 격벽에는 버스바 설치 관통홀(310)이 구비되어 있다. 상기 관통홀 내에 본 발명의 내화버스바(100)를 삽입한다.
한편, 배터리 팩(1000) 내에서 화염이 발생할 경우, 본 발명의 내화버스바는 버스바 도체부(110)를 감싸는 내화실리콘 피복층(120)이 세라믹화되어 치밀한 소결체를 형성한다. 즉, 종래의 내열실리콘과 같이 500℃ 이상의 고온에서 타서 없어지거나 재가 되는 것이 아니라, 세라믹화되어 그 형상을 유지한다. 이에 따라, 내화실리콘 피복층(120)은 화염 발생시에도 버스바 도체부(110)를 안정적으로 지지한다. 이때, 상기 금속시트(140)는 내화실리콘 피복층(120)의 강성을 보강하여 상기 피복층(120)의 부서짐을 방지한다. 또한, 상기 보호층(130)은 내화실리콘 피복층(120)이 화염과 직접 접촉하는 것을 방지하여 내화실리콘의 변형을 방지하고 절연성 및 내화성을 한층 더 강화시킨다.
[실험예]
(실험예 1)
상기 화학식 1의 실리콘 화합물 50중량%, 석영 20중량%, 순수 이산화규소 30중량%로 이루어진 내화실리콘을 0.5~3mm2 범위의 단면적에서 선택되는 소정 단면적을 가지는 구리로 된 버스바 도체부의 양단부를 제외한 부분에 소정 두께로 코팅하였다. 상기 내화실리콘 코팅 버스바에 스웨코(SWECO)사의 0.18mm 두께의 유리섬유테이프(품명:AGTWO)를 2회 권취하여 실시예 1의 내화실리콘 코팅 버스바를 제조하였다.
버스바 도체부의 길이, 양단부 노출 길이를 실시예 1과 동일하게 하여 상기 버스바 도체부의 중앙부에 걸쳐 AGTWO의 유리섬유테이프를 감아서 비교예 2의 버스바를 제조하였다. 감겨진 유리섬유테이프의 피복 두께는 상기 실시예 1의 피복두께와 거의 동일하게 하였다.
비교예 2의 버스바로서, 천연마이카인 플로고파이트 운모 재질의 마이카 테이프를 버스바 도체부 중앙부에 감고, 그 위에 AGTWO의 유리섬유테이프를 감았다. 버스바 도체부의 길이, 양단부 노출길이는 실시예 1 및 비교예 1과 동일하다.
화재발생시의 절연특성(절연유지성능)을 시험하기 위하여, 실시예 1~비교예 2의 버스바의 피복부에 구리 와이어를 동일 권선수로 감고, 피복부 최외곽의 구리 와이어 일단부를 내전압테스터기의 음극단자에 연결하고, 버스바 도체부의 일단부를 내전압테스터기의 양극단자에 연결하였다. 상기 버스바들에 내전압테스터기로 1000V의 전압을 건 상태에서, 화염온도 1100~1150℃의 대형토치로 버스바의 전체 표면을 균일하게 가열하였다.
상기와 같은 전압 및 가열온도조건에서 절연상태가 파괴되는, 즉 단락이 발생하는 절연 Fail시간을 측정하였으며, 그 측정결과는 하기 표 1과 같다.
실험예 1 버스바 구성 절연 Fail 시간
비교예 1 구리 버스바 도체부+유리섬유테이프 1분35초
비교예 2 구리 버스바 도체부+마이카테이프+유리섬유테이프 10분
실시예 1 구리 버스바 도체부+내화실리콘피복층+유리섬유테이프 14분
상기 표 1에 도시된 바와 같이, 본 발명에 따른 피복층을 구비한 버스바가 절연 Fail시간이 가장 길었으며, 비교예 1 및 비교예 2와는 절연 Fail시간의 면에서 큰 차이를 나타내었다.
따라서, 상기한 내화실리콘 피복층과 보호층을 구비한 본 발명의 내화버스바의 절연특성이 매우 우수하다는 것을 알 수 있다. 실시예 1은 금속시트 없이 절연성능을 검사한 것으로서, 내화실리콘 피복층에 금속시트를 내장할 경우, 외부의 고온에 대하여 한층 더 절연성능이 개선되리라는 것은 명확하다 할 것이다. 또한, 금속시트를 설치할 경우, 세라믹화된 내화실리콘 피복층의 기계적 강도가 보다 우수해지고, 전자파 차폐기능도 부수적으로 얻을 수 있다.
(실험예 2)
상기 화학식 1의 실리콘 화합물의 중량과 금속산화물의 중량 비율을 달리하여 하기 표 2에 도시된 조성의 내화실리콘을 준비하였다.
실험예 1과 동일한 조건으로 구리제 버스바 도체부에 내화실리콘 피복층을 소정 두께로 코팅하고, AGTWO의 유리섬유테이프를 상기 내화실리콘 피복층 상에 감았다.
실험예 1과 동일한 조건으로 구리 와이어를 내화실리콘 피복층 상에 감고 내전압테스터기와 연결하였다. 전압이 걸린 상태에서 실험예 1과 동일한 조건으로 대형토치로 가열하고, 절연 Fail시간을 측정하였으며, 그 측정결과는 하기 표 2와 같다.
실험예 2 내화실리콘 피복층 조성 절연 Fail 시간
실시예 1 실리콘 화합물 50중량%: 금속산화물 50중량%
(석영: 20중량%, 순수이산화규소:30중량%)
14분
실시예 2 실리콘 화합물 50중량%: 금속산화물 25중량%
(석영: 10중량%, 순수이산화규소:15중량%)
12분 50초
실시예 3 실리콘 화합물 50중량%: 금속산화물 75중량%
(석영: 30중량%, 순수이산화규소:45중량%)
16분
실시예 4 실리콘 화합물 50중량%: 금속산화물 20중량%
(석영: 10중량%, 순수이산화규소:10중량%)
11분
실시예 5 실리콘 화합물 50중량%: 금속산화물 80중량%
(석영: 35중량%, 순수이산화규소:45중량%)
16분 40초
상기 실시예 1~5에서, 실리콘 화합물과 금속산화물의 중량 비율은, 1: 1, 1:0.5, 1;1.5, 1:0.4, 1:1.6이었다.
모든 실시예가 상기 비교예 1 및 2에 비하여 훨씬 긴 절연 Fail 시간을 가진다. 다만, 중량 비율이 0.5 미만인 실시예 4의 경우 절연 Fail 시간이 다소 짧았는데, 이는 금속산화물이 충분하지 않아 고온에서 고밀도의 결정구조를 가지는 세라믹 구조의 생성이 다소 부족하였기 때문으로 판단된다.
또한, 중량 비율이 1.6인 실시예 5의 경우 절연 Fail 시간은 충분히 길었지만, 금속산화물이 과다하여 상온상태에서 내화실리콘의 유연성이 저하되어, 버스바 도체부에 추종하여 피복시키기 어려워진다.
이상, 도면과 실시예 등을 통해 본 발명을 보다 상세히 설명하였다. 그러나, 본 명세서에 기재된 도면 또는 실시예 등에 기재된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
(부호의 설명)
100: 내화버스바
110: 버스바 도체부
120: 내화실리콘 피복층
130: 보호층
140: 금속시트
141: 관통홀
150: 내화실리콘 저장조
160,160': 상하금형
200: 배터리 모듈
210,220: 단자부
300: 화염방지용 격벽
310: 버스바 설치 관통홀
320: 버스바 설치홈
400: 팩 하우징
1000: 배터리 팩

Claims (15)

  1. 버스바 도체부;
    상기 버스바 도체부의 양단부를 제외한 부분을 감싸며 고온에서 세라믹화하여 상기 버스바 도체부를 지지하는 내화실리콘 피복층; 및
    상기 내화실리콘 피복층을 감싸는 보호층을 포함하고,
    상기 내화실리콘 피복층은, 그 내화실리콘 피복층의 구조적 강성을 보강하는 금속시트가 내장된 내화버스바.
  2. 제1항에 있어서,
    상기 내화실리콘은 500~1700℃의 온도에서 세라믹화하는 내화버스바.
  3. 제1항에 있어서,
    상기 내화실리콘은 하기 화학식 1로 나타내는 실리콘 화합물을 포함하는 실리콘 수지와; 산화규소를 함유하는 금속 산화물의 소결에 의해 세라믹화되는 것을 특징으로 하는 내화버스바:
    [화학식 1]
    Figure PCTKR2023016517-appb-img-000004
    상기 화학식 1에 있어서, m 및 n은 각각 10 내지 30의 정수이다.
  4. 제3항에 있어서,
    상기 실리콘 수지와 금속 산화물은 1: 0.5~1.5의 중량 비율로 포함되는 내화 버스바.
  5. 제3항에 있어서,
    산화규소를 함유하는 금속 산화물은 순수 이산화규소, 실리카, 석영, 규석, 트리디마이트(tridymite) 및 키타이트(keatite) 중 1종 이상을 포함하는 내화버스바.
  6. 제1항에 있어서,
    상기 금속시트는 상기 버스바 도체부를 감싸는 내화실리콘 피복층을 따라 연장되어 상기 버스바 도체부를 감싸도록 상기 내화실리콘 피복층에 내장되는 내화버스바.
  7. 제6항에 있어서,
    상기 금속시트 내측과 상기 버스바 도체부 사이에 내화실리콘 피복층이 구비되고,
    상기 금속시트 외측과 상기 보호층 사이에 내화실리콘 피복층이 구비되며,
    상기 금속시트 내측 및 외측의 내화실리콘 피복층은 상기 금속시트에 형성된 관통홀을 통하여 연결되는 내화버스바.
  8. 제1항에 있어서,
    상기 금속시트는 상기 내화실리콘 피복층과 함께 성형되는 내화버스바.
  9. 제8항에 있어서,
    상기 금속시트는 복수개의 관통홀을 구비하고,
    상기 금속시트의 상하면에 내화실리콘을 사출성형함으로써, 상기 내화실리콘이 상기 금속시트의 상하면에 코팅되고 상기 관통홀 내에 충전됨으로써, 상기 금속시트와 내화실리콘 피복층이 일체로 형성되는 내화버스바.
  10. 제9항에 있어서,
    상기 일체로 된 금속시트와 내화실리콘 피복층을 테이프 형태로 가공하여, 상기 테이프를 상기 버스바 도체부에 권취함으로써 상기 버스바 도체부에 상기 내화실리콘 피복층이 피복되는 내화버스바.
  11. 제8항에 있어서,
    금형 내에 상기 버스바 도체부와 상기 버스바 도체바와 이격되어 상기 버스바 도체바를 감싸도록 상기 금속시트를 배치하고,
    상기 금형 내에 상기 내화실리콘을 사출하는 인서트 사출 성형에 의하여 상기 금속시트를 구비하는 내화실리콘 피복층이 상기 버스바 도체부에 피복되는 내화버스바.
  12. 제1항에 있어서,
    상기 보호층은 유리섬유 또는 마이카재질인 내화버스바.
  13. 제1항에 있어서,
    상기 내화버스바는 복수개의 배터리 모듈의 고전압 단자부들을 전기적으로 연결하는 고전압 버스바인, 내화버스바.
  14. 복수개의 배터리 모듈;
    상기 배터리 모듈 사이에 설치되는 화염방지용 격벽;
    상기 배터리 모듈을 전기적으로 연결하는 제1항 내지 제13항 중 어느 한 항의 내화버스바; 및
    상기 배터리 모듈과 화염방지용 격벽을 수용하는 팩 하우징을 포함하는 배터리 팩.
  15. 제14항에 있어서,
    상기 화염방지용 격벽은, 버스바 설치 관통홀 또는 버스바 설치홈을 구비하고,
    상기 내화버스바는 상기 버스바 설치 관통홀 또는 버스바 설치홈에 안착되고,
    상기 내화버스바의 양단부는 상기 화염방지용 격벽의 양측에 위치한 배터리 모듈의 단자부에 전기적으로 결합되는 배터리 팩.
PCT/KR2023/016517 2022-10-26 2023-10-24 내화버스바 및 이를 구비한 배터리 팩 WO2024090936A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380022754.4A CN118743104A (zh) 2022-10-26 2023-10-24 耐火汇流条及包含所述汇流条的电池包

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0139401 2022-10-26
KR1020220139401A KR20240058547A (ko) 2022-10-26 2022-10-26 내화버스바 및 이를 구비한 배터리 팩

Publications (1)

Publication Number Publication Date
WO2024090936A1 true WO2024090936A1 (ko) 2024-05-02

Family

ID=90831369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016517 WO2024090936A1 (ko) 2022-10-26 2023-10-24 내화버스바 및 이를 구비한 배터리 팩

Country Status (3)

Country Link
KR (1) KR20240058547A (ko)
CN (1) CN118743104A (ko)
WO (1) WO2024090936A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096674A (ko) * 2018-02-09 2019-08-20 주식회사 엘지화학 전류 차단부를 구비한 버스바 및 그것을 포함한 배터리 모듈
KR20210050983A (ko) * 2019-10-29 2021-05-10 주식회사 엘지화학 화재 안전성이 우수한 버스바
CN214124043U (zh) * 2020-11-25 2021-09-03 比亚迪股份有限公司 电池托盘、电池包及电动汽车
KR20220001228A (ko) 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 화재 억제를 위한 격벽과 단열층이 구비된 전지 모듈
CN215770643U (zh) * 2021-06-23 2022-02-08 深圳市沃尔热缩有限公司 母排连接件
KR20220048212A (ko) * 2020-10-12 2022-04-19 주식회사 엘지에너지솔루션 배터리 팩 및 이를 포함하는 디바이스
KR20220139401A (ko) 2020-04-02 2022-10-14 가부시키가이샤 도쿠야마 반도체 처리액 및 그 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190096674A (ko) * 2018-02-09 2019-08-20 주식회사 엘지화학 전류 차단부를 구비한 버스바 및 그것을 포함한 배터리 모듈
KR20210050983A (ko) * 2019-10-29 2021-05-10 주식회사 엘지화학 화재 안전성이 우수한 버스바
KR20220139401A (ko) 2020-04-02 2022-10-14 가부시키가이샤 도쿠야마 반도체 처리액 및 그 제조 방법
KR20220001228A (ko) 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 화재 억제를 위한 격벽과 단열층이 구비된 전지 모듈
KR20220048212A (ko) * 2020-10-12 2022-04-19 주식회사 엘지에너지솔루션 배터리 팩 및 이를 포함하는 디바이스
CN214124043U (zh) * 2020-11-25 2021-09-03 比亚迪股份有限公司 电池托盘、电池包及电动汽车
CN215770643U (zh) * 2021-06-23 2022-02-08 深圳市沃尔热缩有限公司 母排连接件

Also Published As

Publication number Publication date
CN118743104A (zh) 2024-10-01
KR20240058547A (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2012053789A2 (ko) 안전성이 향상된 신규 구조의 전기소자
WO2022139451A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2020045851A1 (ko) 인쇄회로기판 어셈블리 및 그것을 제조하는 제조방법
WO2019231071A1 (ko) 과충전을 방지하기 위한 원통형 이차전지
WO2022177371A1 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024090936A1 (ko) 내화버스바 및 이를 구비한 배터리 팩
WO2024155023A1 (ko) 갭 필러 조성물 및 배터리 팩
WO2024090907A1 (ko) 내화케이블 및 이를 구비한 배터리 팩
WO2024090909A1 (ko) 캡 일체형 내화버스바 및 이를 구비한 배터리 팩
WO2024090937A1 (ko) 내화 버스바 캡 및 이를 구비한 배터리 팩
WO2023090926A1 (ko) 하부 냉각팬을 포함하는 전지셀 충방전장치
WO2024196060A1 (ko) 내화버스바 및 이를 구비한 배터리 팩
WO2023163400A1 (ko) 원통형 이차전지, 이를 포함하는 배터리 팩 및 자동차
WO2019146927A1 (ko) 이차 전지용 절연판 및 그의 제조 방법
WO2021085917A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2021060704A1 (ko) 버스바 플레이트를 포함하는 배터리 모듈, 그것을 포함하는 배터리 팩, 및 전자 디바이스
WO2018143596A1 (ko) 전지 모듈용 집전시스템, 전지 모듈 및 자동차
WO2019235714A1 (ko) 가스 발생 물질을 포함하는 접착부가 구비된 원통형 이차전지
WO2024054098A1 (ko) 내화염성이 향상된 버스바 및 이를 포함하는 전지팩
WO2024076135A1 (ko) 열 전파 방지 전지 셀
KR20240142976A (ko) 내화버스바 및 이를 구비한 배터리 팩
WO2024215021A1 (ko) 배터리 장치 및 이를 포함하는 배터리 시스템
WO2024034899A1 (ko) 배터리 모듈 및 그 제조 방법, 배터리 팩
WO2023158140A1 (ko) 개구부를 포함하는 패턴 퓨즈 및 이를 포함하는 전지모듈
WO2023080742A1 (ko) 배터리 모듈 및 이를 포함한 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23883042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023883042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023883042

Country of ref document: EP

Effective date: 20240807