WO2018143596A1 - 전지 모듈용 집전시스템, 전지 모듈 및 자동차 - Google Patents

전지 모듈용 집전시스템, 전지 모듈 및 자동차 Download PDF

Info

Publication number
WO2018143596A1
WO2018143596A1 PCT/KR2018/001017 KR2018001017W WO2018143596A1 WO 2018143596 A1 WO2018143596 A1 WO 2018143596A1 KR 2018001017 W KR2018001017 W KR 2018001017W WO 2018143596 A1 WO2018143596 A1 WO 2018143596A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collecting
collecting plate
battery cells
group
plate
Prior art date
Application number
PCT/KR2018/001017
Other languages
English (en)
French (fr)
Inventor
고루브코브안드레
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP17154844.9A external-priority patent/EP3358649B1/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US16/474,364 priority Critical patent/US11342633B2/en
Priority to CN201880010195.4A priority patent/CN110249478B/zh
Publication of WO2018143596A1 publication Critical patent/WO2018143596A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a current collecting system for a battery module, and more particularly, to a current collecting system, a current collecting system, and a vehicle for a battery module.
  • Rechargeable batteries or secondary batteries are widely used in various electronic products.
  • Low-capacity rechargeable batteries are used to power small electronic devices such as mobile phones, laptops, computers, and camcorders, while high-capacity rechargeable batteries are used in the automotive and aerospace industries.
  • Lithium ion cells provide high energy density, low self discharge and long battery life. Lithium-ion batteries are becoming increasingly popular in the automotive sector, beyond their applications in the field of portable electronics.
  • a plurality of unit battery cells are connected in series or in parallel to implement a high power rechargeable battery, such as for driving a motor of an automobile.
  • the electrically conductive negative or positive electrode current collecting plate may be further connected to an electrical interface of the battery module. Meanwhile, a plurality of battery modules may be connected in series to reach a system voltage required for the battery system.
  • the threshold which is typically about 150 ° C.
  • the exothermic reaction of the battery cell is accelerated by the increased temperature, and a positive feedback situation occurs that causes additional temperature rises while releasing energy sequentially.
  • the thermal conduction path between two adjacent battery cells in the battery module includes direct physical contact of the two battery cells and thermal conduction through the current collecting plate. In addition, heat can be propagated within a short time through the convection of the hot gas emitted from the fault cell.
  • the current collecting system may further include a heat insulation layer between the first current collecting plate and the second current collecting plate.
  • the first current collecting plate may include a plurality of through holes corresponding to the connection part except the first connection part among the entire connection parts
  • the second current collecting plate may include the plurality of through holes corresponding to the connection part except the second connection part. It may include.
  • the current collecting system may further include a third current collecting plate stacked on the second current collecting plate and a heat insulating layer therebetween.
  • the third current collecting plate may include a plurality of through holes corresponding to the first connection part of the first current collecting plate and the second connection part of the second current collecting plate to expose the first connection part and the second connection part. .
  • the third current collecting plate may include a plurality of through holes corresponding to the connection portion except for the third connection portion electrically connected to the third group of battery cells.
  • the current collecting system may further include a fourth current collecting plate stacked on the third current collecting plate and a heat insulating layer stacked between the third current collecting plate.
  • the fourth current collecting plate may include a plurality of through holes corresponding to the connection parts except for the fourth connection part, and the fourth current collecting plate may be electrically connected to the fourth group of battery cells through the fourth connection part.
  • Each current collecting plate may comprise a sheet of aluminum or copper alloy.
  • Each collector plate may have a thickness of 0.1 mm to 2 mm.
  • the heat insulation layer may comprise a thermally stable composite such as mica based, fiberglass based, silicon based, aerogel or ceramic fiber mat.
  • the thermal insulation layer may have a thickness between 0.1 mm and 5 mm.
  • the current collecting plate and the heat insulating layer may be glued together to form one rigid composite.
  • At least two current collecting plates are electrically connected to each other at a connection point.
  • the connection point may be located adjacent to the high current interface of the battery module. All current collecting plates may be electrically connected to each other at the connection point.
  • the current collecting plate may be electrically connected to a pair of current collecting plates at two or more spatially separated connection points.
  • groups of battery cells may be connected in series.
  • connection point is located at a distance d with respect to neighboring battery cells, and the distance d is larger than the minimum distance S between two battery cells of the same group.
  • the connection point is located on the extension line of the current collecting plate.
  • connection point may be formed at a portion where a heat insulating layer is not provided between the current collecting plates.
  • the current collecting plates may be preformed to contact each other at the connection point through stamping or the like. Good quality electrical contact can be achieved by welding the bolts or studs between the current collector plates at the connection points.
  • the battery module has a plurality of battery cells divided into at least a first group and a second group having a positive electrode terminal and a negative electrode terminal and at least one first current collecting plate and a second current collecting plate insulated from each other It includes a current collecting system that includes.
  • the battery module may further include a second current collecting system in which at least a first current collecting plate and a second current collecting plate are stacked and insulated from each other, wherein one of the negative electrode terminal and the positive electrode terminal of each battery cell of the first group is the first current collecting plate.
  • the first current collector may be electrically connected to a first connection part of the first current collecting plate, and the other one of the negative electrode terminal and the positive electrode terminal may be electrically connected to the first current collecting plate of the second current collecting system.
  • One of the negative electrode terminal and the positive electrode terminal provided in each of the battery cells of the second group is electrically connected to the second connection portion provided in the second current collecting plate of the first current collecting system, the other of the negative terminal and the positive terminal It may be electrically connected to the second connection portion of the second current collecting plate provided in the second current collecting system.
  • the battery cells may be arranged in a hexagonal or right angle pattern.
  • the battery cells of the first group and the second group may be connected in parallel or in series by one or more connection points.
  • a current collecting system including a battery module including a plurality of battery cells divided into a first group and a second group, and a first current collecting plate and a second current collecting plate which are insulated from each other.
  • An automobile is provided.
  • Each battery cell of the first group is electrically connected to the first current collecting plate at a first connection part
  • each battery cell of the second group is electrically connected to a second current collecting plate at a second connection part.
  • the minimum distance between two battery cells connected to one of the first current collecting plate and the second current collecting plate is greater than the distance between two neighboring battery cells in the battery module.
  • Neighboring battery cells are electrically connected to different current collector plates that are insulated from each other, so that the heat generated by the faulty cells is distributed to a larger area than conventional battery modules provided with a single current collector plate. Therefore, the temperature of each battery cell can be maintained below the critical temperature and thermal runaway propagation can be prevented.
  • the heat of the battery cells is dispersed in a wide area so that the temperature of each battery cell is maintained below a critical temperature and thermal runaway propagation is prevented.
  • 1 is a view schematically showing a cylindrical battery cell.
  • 2A is a plan view of the battery module.
  • FIG. 2B is a cross-sectional view taken along the dotted line shown in FIG. 2A.
  • 3A is a plan view of a battery module including a current collector system according to a first embodiment of the present invention.
  • FIGS. 3A-3B are plan views of the first current collecting plate, the second current collecting plate, and the third current collecting plate of the current collecting system illustrated in FIGS. 3A-3B, respectively.
  • 5A is a plan view of a battery module including a current collector system according to a second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view taken along the dotted line shown in FIG. 5A.
  • FIG. 6 is a plan view of a battery module including a current collector system according to a third embodiment of the present invention.
  • FIG. 7B is a cross-sectional view taken along the line B-B shown in FIG. 6.
  • FIGS. 8A to 8E are top views of a first current collecting plate, a first heat insulating layer, a second current collecting plate, a second heat insulating layer, and a third current collecting plate according to a third embodiment of the present invention.
  • FIG. 9A is a plan view of a battery module including a current collector system according to a fourth embodiment of the present invention.
  • FIG. 9B is a cross-sectional view taken along the dotted line shown in FIG. 9A.
  • FIGS 10A to 10D are top views of the first current collecting plate, the second current collecting plate, the third current collecting plate, and the fourth current collecting plate according to the fourth embodiment of the present invention.
  • a component when referred to as being 'connected' or 'connected' to another component, the component may be directly connected to or connected to the other component, but in between It will be understood that may exist.
  • a component when referred to as 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
  • the term 'comprises' or 'having' is only intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more. It is to be understood that it does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, actions, components, parts or combinations thereof.
  • 'and / or' includes any combination of the plurality of listed items or any of the plurality of listed items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • FIG. 3A and 3B are top and cross-sectional views of a battery module 4 having a battery and a current collector system 5 arranged in a hexagon in accordance with a first embodiment of the present invention.
  • the battery module 4 includes a plurality of battery cells 1 as shown in FIG. 1.
  • the rechargeable battery cell includes an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, a case accommodating the electrode assembly, a positive electrode terminal 18 extending outside the case and electrically connected to the positive electrode, and the outside of the case. And an anode terminal 19 extending and electrically connected to the cathode.
  • Electrolyte is injected into the case to enable charge and discharge of the battery through the electrochemical reaction of the positive electrode, the negative electrode, and the electrolyte.
  • the electrolyte may be composed of an organic solvent such as EC, PC, DEC, EMC, EMC, and a lithium salt such as LiPF 6 or LiBF 4.
  • the electrolyte can be in liquid, solid or gel state.
  • the case may be formed of a metal such as aluminum.
  • a solid electrolyte comprising or containing an oxide, sulfide glass (Li 2 O, Li 2 S), ceramic glass (LAGP, LiPS), ceramic (LLZO), or the like may be provided.
  • the case may be cylindrical as shown in FIG. 1, but is not limited thereto, and may have a rectangular shape according to the purpose of the battery.
  • a vent member configured to be opened by a predetermined pressure in the battery cell may be provided.
  • the battery cells may be arranged to have a hexagonal pattern in the battery module 4.
  • the battery cells in the battery module 4 are divided into three groups 1a, 1b, 1c so that cells belonging to the same group do not neighbor each other.
  • the current collecting system 5 corresponds to a stack comprising three separate current collecting plates 3a, 3b, 3c.
  • the first current collector plate 3a includes a plurality of first connectors 17a corresponding to positions where the battery cells of the first group 1a are electrically connected to the first current collector plate 3a.
  • the second current collecting plate 3b includes a plurality of second connection parts 17b corresponding to positions where the battery cells of the second group 1b are electrically connected to the second current collecting plate 3b.
  • the third collector plate 3c includes a plurality of third connectors 17c corresponding to positions where the battery cells of the third group 1c are electrically connected to the third collector plate 3c.
  • the first current collecting plate 3a is the outermost current collecting plate located farthest from the battery cell of the battery module 4.
  • the second current collecting plate 3b is located on the first current collecting plate 3a, and the third current collecting plate 3c is located on the second current collecting plate 3b.
  • the third current collecting plate 3c is the innermost current collecting plate facing the inside of the battery module 4, that is, the battery cells 1a, 1b, 1c.
  • the first, second, and third current collecting plates 3a, 3b, and 3c are insulated from each other.
  • a first insulation layer (not shown) is provided between the first current collecting plate 3a and the second current collecting plate 3b, and a second current collecting plate 3b and the third current collecting plate 3c are disposed between the second current collecting plate 3b and the third current collecting plate 3c.
  • An insulating layer may be provided.
  • the thermal insulation layer may be made of a thermally stable composite, such as a mica substrate, a glass fiber substrate, or a silicone substrate, or a thermal insulation material, such as an aerogel or a ceramic fiber mat.
  • voids may be formed between neighboring current collector plates to insulate the current collector plates from each other.
  • FIG. 4A is a plan view of the first current collecting plate 3a which is composed of one layer made of an electrically conductive material and corresponding to the outermost plate of the current collecting system 5.
  • the first current collecting plate 3a may be, for example, a sheet made of copper or an aluminum alloy.
  • a protective coating such as nickel may further be applied on the first current collecting plate 3a.
  • the battery cells of the second group 1b are inserted into the through holes 6c of the third current collecting plate 3c corresponding to the second connecting portion 17b and are formed to correspond to the second connecting portion 17b. It is electrically connected on the 2nd collecting plate 3b. Finally, the battery cells of the third group 1c are electrically connected to the third current collecting plate 3c so as to be equivalent to the third connecting portion 17c.
  • all the battery cell groups 1a, 1b, 1c can be electrically connected in parallel.
  • the first to third current collector plates 3a, 3b, and 3c may be electrically connected at a connection point spaced apart from the current collector system 5.
  • the current collecting plates may be interconnected via metal wires.
  • the distance between the connection point and the current collecting system 5 may be 50% or more of the minimum distance S between two battery cells of the same group.
  • the distance between the connection point and the neighboring battery cells is greater than the minimum distance S between two battery cells of the same group.
  • the cells closest to the faulty cell absorb some of the heat emitted from the faulty cell while directly contacting the heat emitted from the faulty cell and the hot gas, but are discharged from the faulty cell.
  • the other part of the heat may be distributed to the battery cell (at least the minimum distance (S)) far from the fault cell through a current collecting plate connected to the fault cell.
  • the battery module may include two current collecting systems as shown in FIG. 3B or 5B to connect the positive and negative terminals in parallel, respectively, to mutually separate the positive and negative terminals of battery cells belonging to different groups. .
  • first and second current collecting systems 35a and 35b are sectional views taken along the lines A-A and B-B of FIG. 6, respectively.
  • the first and second current collecting systems 35a and 35b each include three current collecting plates 35a stacked and insulated from each other.
  • FIG. 8E is a plan view of the third current collecting plate 33c including a plurality of third through holes 36c corresponding to the connection parts 37a and 37b except for the third connection part 37c of the third current collecting plate 33c.
  • the battery cells of the third group 31c are connected to the third current collecting plate 33c.
  • the first and second insulation layers 34a and 34b include first and second through-holes to correspond to all of the connection portions 37a, 37b and 37c, thereby providing respective connection portions 37a, 37b and 37c in the first current collection system 35a. Only one different current collecting plate is provided each time, and the first and second insulating layers 34a and 34b are provided between the current collecting plate regions of the different connection portions 37a, 37b and 37c.
  • the through holes correspond to the positions of the first connection points 71 and the positions of the positive electrode tabs 81 of the battery module 30, and thus the first, second, and third current collecting plates 33a, 33b, 33c, and first first. And two insulating layers 34a and 34b.
  • the fourth to sixth collector plates 33a ', 33b' and 33c 'and the insulating layer therebetween may have a structure similar to that of the current collector plate in the first current collector system, and the fourth to sixth collector plates 33a', 33b 'and 33c' include a plurality of through-holes in areas corresponding to the respective connecting portions, and the heat insulation layer is located at all the connecting portions, the second connecting points 72 and the negative terminal tabs 82 of the battery module 30. And a corresponding plurality of through holes.
  • the contact area between adjacent current collecting plates is minimized, and the battery is minimized. Heat dissipation outside the module is increased. Thus, the safety of the battery module is improved.
  • first and second embodiments relate to a current collecting system including three or two current collecting plates, respectively, the present invention is not limited thereto, and a current collecting system including four or more current collecting plates may be provided.
  • arrangements other than hexagonal and lattice arrangements (checkboard arrangements) may be used without departing from the scope of the present invention.
  • 9A-9B and 10A-10D illustrate another embodiment of the present invention having a battery cell arranged orthogonally and including four current collecting plates.
  • FIGS. 9A and 9B show a plan view and a cross-sectional view of a battery module 20 including a first current collecting system (top) 25a and a second current collecting system (bottom) 25b according to a fourth embodiment of the present invention.
  • the battery cells are divided into four groups 21a, 21b, 21c, and 21d, and the first and second current collection systems 25a and 25b include four current collector plates stacked and insulated from each other.
  • FIG. 10A is a plan view of the first current collecting plate 23a, wherein the first current collecting plate 23a is disposed at the outermost side of the first current collecting system 25a, and the first connection portion 27a on the first current collecting plate 23a. It is composed of a single layer of an electrically conductive material including a plurality of first through holes 26a corresponding to the second, third, and fourth connectors 27b, 27c, and 27d except for a). The battery cells of the first group 21a are connected to the first current collecting plate 23a.
  • the positive electrode terminal 18 of the first group 21a battery cells is connected to the first current collecting plate 23a, but the present invention is not limited thereto.
  • FIG. 10B is a plan view of the second current collecting plate 23b, wherein the second current collecting plate 23b includes the first, third, and fourth connecting parts 27a, 27c, except for the second connection part 27b on the second current collecting plate 23b. And a plurality of second through holes 26b corresponding to 27d).
  • the battery cells of the second group 21b are connected to the second current collecting plate 23b.
  • the negative electrode terminal 19 of the second group 21b battery cell is connected to the second current collecting plate 23b, but is not limited thereto.
  • the battery cells of the third group 21c are connected to the third current collecting plate 23c.
  • the positive electrode terminal 18 of the third group 21c battery cell is connected to the third current collecting plate 23c.
  • FIG. 10D is a plan view of the fourth collector plate 23d, and the fourth collector plate 23d may include the first, second, and third connection parts 27a, 27b, except for the fourth connector 27d on the fourth collector plate 23d. And a plurality of fourth through holes corresponding to 27c).
  • the heat insulation layer may be provided between adjacent current collector plates, and may include through holes corresponding to the first to fourth connectors 27a, 27d, 27c, and 27d.
  • the connecting portion of each of the first to fourth current collector plates 23a, 23b, 23c, and 23d is disposed such that the minimum distance S between two battery cells of the same group is greater than the distance between two neighboring battery cells in the battery module 20. do.
  • the first to fourth groups 21a, 21b, 21c and 21d of the battery cells are connected in series.
  • the first current collecting system 25a is formed with a first connection point 71 'connecting the second current collecting plate 23b and the third current collecting plate 23c.
  • Second and third connection points 72 'and 73' are provided in the second current collecting system 25b, and the second connection point 72 'is the first current collecting plate 23a' of the second current collecting system 25b. Is electrically connected to the second current collecting plate 23b 'of the second current collecting system 25b, and the third connection point 73' is connected to the third current collecting plate 23c 'of the second current collecting system 25b. It is electrically connected to the fourth collector plate 23d 'of the two current collectors 25b.
  • the battery cells of the first group 21a are coupled between the first current collecting plate 23a of the first current collecting system 25a and the first current collecting plate 23a 'of the second current collecting system 25b, and the second The connection point 72 'is connected to the second current collecting plate 23b' of the second current collecting system 25b.
  • the battery cells of the second group 21b are coupled between the second current collecting plate 23b 'of the second current collecting system 25b and the second current collecting plate 23b of the first current collecting system 25a, and the first connection is performed.
  • the point 71 ' is connected to the third current collecting plate 23c of the first current collecting system 25a.
  • the battery cells of the third group 21c are coupled between the third current collecting plate 23c of the first current collecting system 25a and the third current collecting plate 23c 'of the second current collecting system 25b, and the third connection is performed.
  • the point 73 ' is connected to the fourth current collecting plate 23d' of the second current collecting system 25b.
  • the battery cells of the fourth group 21d are coupled between the fourth current collecting plate 23d 'of the second current collecting system 25b and the fourth current collecting plate 23d of the first current collecting system 25a, and the battery module ( 30 is connected to the negative electrode terminal tab 82.
  • the positive electrode terminal tab 81 of the battery module 30 is connected to the first current collecting plate 23a of the first current collecting system 25a. Therefore, the battery cells of the four groups 21a, 21b, 21c, and 21d are connected in series between the positive terminal tab 81 and the negative terminal tab 82.
  • the present invention is not limited thereto, and the four groups 21a, 21b, 21c, and 21d may be connected in other ways.
  • the current collector system having a stacked structure may prevent heat transfer between adjacent battery cells in the battery module, thereby reducing the temperature rise of the battery cells adjacent to the faulty cell. Therefore, it is possible to prevent thermal runaway from propagating to adjacent battery cells and to increase safety of the battery module.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

전지모듈용 집전시스템, 이를 포함하는 전지 모듈 및 자동차가 개시된다. 본 발명의 일실시예에 따른 집전시스템은 서로 적층되고 단열되는 제1집전플레이트 및 제2집전플레이트을 포함하고, 상기 제1집전플레이트는 제1그룹의 전지셀과 복수의 제1연결부에서 각각 연결되고, 상기 제2집전플레이트는 제2그룹의 전지셀과 복수의 제2연결부에서 각각 연결되며, 상기 제1집전플레이트에서 2개의 제1연결부간 최소거리 및 상기 제2집전플레이트에서 2개의 제2연결부간 최소거리는 이웃하는 어느 한 쌍의 연결부간 거리보다 더 길게 마련된다.

Description

전지 모듈용 집전시스템, 전지 모듈 및 자동차
본 발명은 전지 모듈용 집전시스템에 관한 것으로, 더욱 상세하게는 전지 모듈용 집전시스템, 집전시스템 및 자동차에 관한 것이다.
충전식 전지 또는 이차 전지는 다양한 전자제품에 널리 사용된다. 저용량의 충전식 전지는 휴대전화, 노트북, 컴퓨터 및 캠코더와 같은 소형 전자장치의 전원으로 사용되는 반면, 고용량의 충전식 전지는 자동차 및 항공 우주 산업 분야 등에 이용된다.
리튬 이온 전지는 고 에너지 밀도, 낮은 자체 방전 및 긴 전지 수명을 제공한다. 리튬 이온 전지는 휴대용 전자기기 분야에서의 활용을 넘어서 자동차 분야에서도 인기가 높아지고 있다.
개별적인 전지의 전기용량이 전지 모듈의 요구 용량보다 작은 경우, 복수의 단위 전지셀을 자동차의 모터 구동용과 같이 고출력의 충전식 전지를 구현하기 위해 직렬 또는 병렬로 연결한다.
전지 모듈은 상기 복수의 단위 전지셀들의 전극 단자들을 상호 연결하여 형성되며, 상기 전지셀들의 수는 요구 전력량에 따라 결정된다. 자동차용 리튬 이온 전지시스템은 일반적으로 복수의 전지 모듈을 연결하여 구성한다.
원통형 전지로 구성된 전지 모듈의 예가 도 1 및 도 2에 도시되어 있다. 도 1은 양극단자(18) 및 음극단자(19)를 포함하는 원통형 전지셀(1)을 도시하고, 도 2a 및 도 2b는 각각 전지 모듈(2)의 평면도 및 측면상의 단면도를 도시하고 있으며, 상기 전지 모듈(2)은 복수의 원통형 전지셀(1)과, 상기 원통형 전지셀(1)의 음극단자(19)에 연결되어 복수의 전지셀(1)을 병렬로 연결하는 음극 집전플레이트(3)을 포함하여 더 큰 용량을 구현한다. 모든 전지셀(2)의 양극단자(18) 또한 유사한 방법으로 양극 집전플레이트에 병렬로 연결될 수 있다(미도시).
전기 전도성의 음극 또는 양극 집전플레이트는 전지 모듈의 전기 인터페이스에 추가로 연결될 수 있다. 한편, 전지시스템에 요구되는 시스템 전압에 도달하도록 복수의 전지 모듈이 직렬로 연결될 수 있다.
다만, 모듈 내에 가연성의 전해액을 포함하는 다수의 리튬 이온 전지를 사용하는 것은 안정상의 위험이 따를 수 있다. 따라서, 전지 제조분야에 있어 전지셀에서 발생되는 열을 효율적으로 배출, 방출 또는 분산시킴으로써 전지 모듈의 온도를 안전상의 임계값 이하로 유지하는 열적 제어시스템을 제공하는 것은 중요하다.
하나 이상의 전지셀에서 온도의 증가는 해당 전지셀의 내부단락, 전기적 접촉 불량에 의한 열 발생 또는 인접한 전지셀의 단락과 같은 국부적인 고장에 의해 발생할 수 있다.
이 경우, 전지 모듈의 방열이 충분히 이루어지지 않으면 온도 상승이 인접한 전지셀들로 확대될 수 있고, 비정상적인 반응을 일으킬 수 있다. 이러한 비정상 반응 상태의 예로는 심하게 과열되거나 과충전된 리튬 이온 전지셀에 의해 발생될 수 있는 열폭주(thermal runaway)가 있다.
고장난 전지셀 내부의 온도가 통상적으로 약 150℃인 임계값을 초과하면, 증가된 온도에 의해 전지셀의 발열 반응이 가속되고, 순차적으로 에너지를 방출하면서 추가적인 온도 상승을 일으키는 양성적 피드백 상황이 일어난다.
열폭주 중에는 고장셀이 900℃ 이상까지 가열될 수 있으며, 모든 가연성 물질을 소비할 때까지 다량의 고온 가스를 전지시스템 내부로 방출할 수 있다. 즉, 다량의 열과 가스가 인접한 셀을 향해 방출될 수 있고, 상당량의 열은 음극 또는 양극 집전플레이트와 같은 열전도경로를 통해 확산될 수 있다.
전지 모듈 내에서 인접한 2개의 전지셀 사이의 열전도경로에는 2개의 전지셀의 직접적인 물리적 접촉과 집전플레이트를 통한 열전도가 포함된다. 또한, 열은 상기 고장셀에서 방출되는 고온 가스의 대류를 통해 단시간내에 전파될 수 있다.
집전플레이트는 보통 열전도율이 좋기 때문에, 고장난 전지셀에서 나오는 대량의 열이 집전플레이트를 통해 직접 인접한 전지셀로 전달될 수 있다. 결과적으로, 인접한 전지셀의 온도는 고장셀로부터 방출된 고온 가스와 집전플레이트에 의해 전달된 열이 모여 과도하게 상승한다.
고장셀과 인접하게 위치된 정상상태의 전지셀이 150℃ 이상으로 가열되어 열 폭주가 일어날 수 있고, 그 결과 전지 모듈 전체에서 전지셀간의 열폭주 전파가 일어난다. 결국, 열폭주 전파는 전지의 소손, 심지어 차량 전체의 손실을 유발할 수 있다.
따라서, 본 발명은 종래기술의 결점을 극복하거나 감소시키고, 집전플레이트를 통해 이웃하는 전지셀로 전달되는 열을 감소시키며, 복수의 전지셀 사이에서 고장셀의 열을 적절히 분배함으로써 열폭주 전파가 방지될 수 있는 전지 모듈을 제공하고자 하는 것이다.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
본 발명의 실시예들은 인접한 전지셀 사이에서 열폭주 전파를 방지 또는 억제할 수 있는 전지 모듈을 제공하고자 한다.
본 발명은 2개 이상의 집전플레이트가 서로 단열된 상태로 적층된 구조를 가지고, 전지 모듈의 각 전지셀이 집전플레이트에 연결되는 전지 모듈용 집전시스템을 제공하고자 하며, 또한 고장셀에서 발생된 열을 고장셀과 인접하지 않은 전지셀로 분배하기 위한 적층된 집전시스템을 포함하는 전지 모듈을 제공하고, 나아가 이러한 전지 모듈을 포함하는 자동차를 제공하고자 한다.
본 발명의 일측면에 따르면, 집전시스템은 상호 적층 및 단열된 제1집전플레이트 및 제2집전플레이트를 포함하고, 상기 제1집전플레이트는 제1연결부에서 상기 전지 모듈 내의 전지셀 중 제1그룹과 전기적으로 연결되도록 마련되며, 제2집전플레이트는 제2연결부에서 전지셀 중 제2그룹과 전기적으로 연결되도록 마련되고, 제1집전플레이트에서 2개의 제1연결부간 최소거리 및 제2집전플레이트 내에서 2개의 제2연결부간 최소거리는 집전시스템에서 이웃하는 2개의 연결부 사이의 거리보다 크다.
상기 집전시스템은 상기 제1집전플레이트와 상기 제2집전플레이트 사이에 단열층을 더 포함할 수 있다.
제1집전플레이트는 전기 전도성 물질의 균일한 시트일 수 있다. 제2집전플레이트는 제1집전플레이트의 제1연결부를 노출시키기 위해 상기 제1연결부에 대응하는 위치에 다수의 개구(관통공)를 포함할 수 있다.
이를 달리 표현하면, 제1집전플레이트는 전체 연결부 중 제1연결부를 제외한 연결부에 대응하는 복수의 관통공을 포함할 수 있으며, 제2집전플레이트는 제2연결부를 제외한 연결부에 대응하는 복수의 관통공을 포함할 수 있다.
상기 집전시스템은 상기 제2집전플레이트에 적층된 제3집전플레이트 및 그 사이의 단열층을 더 포함할 수 있다. 상기 제3집전플레이트는 상기 제1연결부 및 상기 제2연결부를 노출시키기 위해 상기 제1집전플레이트의 제1연결부 및 상기 제2집전플레이트의 제2연결부에 대응하는 복수의 관통공을 포함할 수 있다.
이를 달리 표현하면, 제3집전플레이트는 제3그룹의 전지셀과 전기적으로 연결되는 제3연결부를 제외한 연결부에 대응하는 복수의 관통공을 포함할 수 있다.
상기 집전시스템은 상기 제3집전플레이트에 적층된 제4집전플레이트 및 상기 제3집전플레이트 사이에 적층된 단열층을 더 포함할 수 있다. 상기 제4집전플레이트는 제4연결부를 제외한 연결부에 대응하는 복수의 관통공을 포함하고, 상기 제4집전플레이트는 제4그룹의 전지셀과 상기 제4연결부를 통해 전기적으로 연결될 수 있다.
각 집전플레이트는 알루미늄 또는 구리 합금의 시트를 포함할 수 있다. 각 집전플레이트의 두께는 0.1mm 내지 2mm일 수 있다.
단열층은 운모계, 유리섬유계, 실리콘계, 에어로겔 또는 세라믹섬유 매트 등 열적으로 안정한 복합재를 포함할 수 있다. 단열층은 0.1mm와 5mm 사이의 두께를 가질 수 있다. 집전플레이트 및 단열층은 하나의 강성 복합체를 형성하도록 함께 접착될 수 있다.
적어도 2개의 집전플레이트는 접속지점에서 서로 전기적으로 연결된다. 접속지점은 전지 모듈의 고전류 인터페이스에 인접하게 위치할 수 있다. 모든 집전플레이트는 상기 접속지점에서 서로 전기적으로 연결될 수 있다.
이 경우, 모든 전지셀 그룹이 병렬로 연결된다. 또는, 상기 집전플레이트는 2개 이상의 공간적으로 분리된 접속지점에서 한 쌍의 집전플레이트가 상호 전기적으로 연결될 수 있다. 이 경우 전지셀의 그룹들은 직렬로 연결될 수 있다.
접속지점은 이웃하는 전지셀에 대해 거리 d 에 위치하고, 상기 거리 d 는 동일한 그룹의 2개의 전지셀들 사이의 최소거리(S)보다 크다. 접속지점은 집전플레이트의 연장선상에 위치한다.
상기 접속지점은 집전플레이트 사이에서 단열층이 제공되지 않은 부분에 형성될 수 있다. 집전플레이트는 스탬핑 등을 통해 접속지점에서 서로 접촉하도록 예비 성형될 수 있다. 접속지점에서 집전플레이트 사이는 볼트 또는 스터드(stud)와 함께 용접됨으로써 양질의 전기접촉이 구현될 수 있다.
본 발명의 다른 측면에 따르면, 전지 모듈은 양극단자 및 음극단자를 갖고 적어도 제1그룹 및 제2그룹으로 구분되는 복수의 전지셀 및 서로 단열된 적어도 하나의 제1집전플레이트 및 제2집전플레이트를 포함하는 집전시스템을 포함한다.
상기 제1그룹의 각 전지셀은 그와 대응되는 제1집전플레이트의 제1연결부에 전기적으로 연결되고, 상기 제2그룹의 전지셀은 그와 대응하는 제2집전플레이트의 제2연결부에 전기적으로 연결되며, 상기 제1집전플레이트와 제2집전플레이트 중 어느 하나에 연결된 2개의 전지셀간 최소거리는 전지 모듈에서 이웃하는 2개의 전지셀간 거리보다 더 크다.
상기 전지 모듈은 적어도 제1집전플레이트와 제2집전플레이트가 상호 적층 및 단열된 제2집전시스템을 더 포함할 수 있고, 상기 제1그룹의 각 전지셀의 음극단자 및 양극단자 중 하나는 상기 제1집전시스템에 마련된 제1집전플레이트의 제1연결부에 전기적으로 연결되고, 상기 음극단자 및 상기 양극단자 중 다른 하나는 상기 제2집전시스템의 제1집전플레이트에 전기적으로 연결될 수 있다.
상기 제2그룹의 각 전지셀에 마련된 음극단자 및 양극단자 중 어느 하나는 상기 제1집전시스템의 제2집전플레이트에 마련된 제2연결부에 전기적으로 연결되며, 상기 음극단자 및 양극단자 중 다른 하나는 제2집전시스템에 마련된 제2집전플레이트의 제2연결부에 전기적으로 연결될 수 있다.
상기 전지셀은 육각 또는 직각 패턴으로 배치될 수 있다. 제1그룹 및 제2그룹의 전지셀은 하나 이상의 접속지점에 의해 병렬 또는 직렬로 연결될 수 있다.
본 발명의 또 다른 측면에 따르면, 제1그룹 및 제2그룹을 포함하여 구분되는 복수의 전지셀을 포함하는 전지 모듈과, 서로 단열된 제1집전플레이트 및 제2집전플레이트를 포함하는 집전시스템을 포함하는 자동차가 제공된다.
상기 제1그룹의 각 전지셀은 제1연결부에서 상기 제1집전플레이트에 전기적으로 연결되고, 상기 제2그룹의 각 전지셀은 제2연결부에서 제2집전플레이트와 전기적으로 연결된다.
상기 제1집전플레이트와 상기 제2집전플레이트 중 어느 하나에 연결되는 2 개의 전지셀간 최소거리는 전지 모듈 내의 2개의 이웃하는 전지셀 사이의 거리보다 크다.
이웃하는 전지셀은 서로 단열된 상이한 집전플레이트에 전기적으로 연결되어, 고장셀에 의해 발생된 열이 단일의 집전플레이트가 구비된 기존의 전지 모듈 대비 더 넓은 영역으로 분산된다. 따라서, 각 전지셀의 온도가 임계온도 이하로 유지될 수 있고 열폭주 전파가 방지될 수 있다.
상술한 바와 본 발명의 실시예들은 전지셀의 열이 넓은 영역으로 분산되어 각 전지셀의 온도가 임계온도 이하로 유지되도록 하고 열폭주 전파가 방지되도록 한다.
도 1은 원통형 전지셀을 개략적으로 나타낸 도면이다.
도 2a는 전지 모듈의 평면도이다.
도 2b는 도 2a에 도시된 점선을 따라 취한 단면도이다.
도 3a는 본 발명의 제1실시예에 따른 집전시스템을 포함하는 전지 모듈의 평면도이다.
도 3b는 도 3a에 도시된 점선을 따라 취한 단면도이다.
도 4a-4c는 각각 도 3a-3b에 도시된 집전시스템의 제1집전플레이트, 제2집전플레이트 및 제3집전플레이트의 평면도이다.
도 5a는 본 발명의 제2실시예에 따른 집전시스템을 포함하는 전지 모듈의 평면도이다.
도 5b는 도 5a에 도시된 점선을 따라 취한 단면도이다.
도 6은 본 발명의 제3실시예에 따른 집전시스템을 포함하는 전지 모듈의 평면도이다.
도 7a는 도 6에 도시된 A-A선을 따라 취한 단면도이다.
도 7b는 도 6에 도시된 B-B선을 따라 취한 단면도이다.
도 8a 내지 도 8e는 본 발명의 제3실시예에 따른 제1집전플레이트, 제1단열 층, 제2집전플레이트, 제2단열층 및 제3집전플레이트 상면도이다.
도 9a는 본 발명의 제4실시예에 따른 집전시스템을 포함하는 전지 모듈의 평면도이다.
도 9b는 도 9a에 도시된 점선을 따라 취한 단면도이다.
도 10a 내지 도 10d는 본 발명의 제4실시예에 따른 제1집전플레이트, 제2집전플레이트, 제3집전플레이트 및 제4집전플레이트의 상면도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서에서, 동일한 구성요소에 대해서 중복된 설명은 생략한다.
또한 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '직접 연결되어' 있다거나 '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
또한, 본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용되는 것으로써, 본 발명을 한정하려는 의도로 사용되는 것이 아니다.
또한 본 명세서에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
또한 본 명세서에서, '포함하다' 또는 '가지다' 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것이 존재함을 지정하려는 것일 뿐, 하나 또는 그 이상의 다른 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 할 것이다.
또한 본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.
도 3a 및 도 3b는 본 발명의 제1실시예에 따라 육각형으로 배열된 전지 및 집전시스템(5)을 가지는 전지 모듈(4)의 상면도 및 단면도이다. 전지 모듈(4)은 도 1에 도시된 바와 같이 복수의 전지셀(1)을 포함한다.
충전식 전지셀은 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전극조립체, 상기 전극조립체를 수용하는 케이스, 케이스 외부로 연장되고 양극에 전기적으로 연결되는 양극단자(18) 및 케이스 외부로 연장되고 음극에 전기적으로 연결되는 음극단자(19)를 포함한다.
양극, 음극 및 전해액의 전기 화학적 반응을 통해 전지의 충방전이 가능하도록 상기 케이스 내부로 전해액이 주입된다. 상기 전해액은 EC, PC, DEC, EMC, EMC 등의 유기용매와 LiPF6 또는 LiBF4 등의 리튬염으로 이루어질 수 있다. 전해액은 액체, 고체 또는 겔 상태일 수 있다.
케이스는 알루미늄과 같은 금속으로 형성될 수 있다. 또는, 산화물, 황화 유리(Li2O, Li2S), 세라믹 유리(LAGP, LiPS) 또는 세라믹(LLZO) 등으로 구성되거나 포함하는 고체 전해질이 제공될 수 있다.
상기 케이스는 도 1에 도시 된 바와 같이 원통형일 수 있으나 이에 한정되는 것은 아니며, 전지의 목적 등에 따라 사각 형상일 수도 있다. 또한, 전지셀 내의 소정 압력에 의해 개방되도록 구성되는 벤트부재가 제공될 수 있다.
제1실시예에 따르면, 전지셀은 전지 모듈(4)에서 육각형 패턴을 가지도록 배열될 수 있다. 전지 모듈(4)내의 전지셀은 동일한 그룹에 속하는 셀들이 서로 이웃하지 않도록 3개의 그룹(1a, 1b, 1c)으로 분할된다.
제1실시예에 따르면, 집전시스템(5)은 3개의 개별적인 집전플레이트(3a, 3b, 3c)을 포함하는 적층물에 해당한다. 제1집전플레이트(3a)는 제1그룹(1a)의 전지셀이 제1집전플레이트(3a)에 전기적으로 연결되는 위치에 대응하는 복수의 제1연결부(17a)를 포함한다.
제2집전플레이트(3b)는 제2그룹(1b)의 전지셀이 제2집전플레이트(3b)에 전기적으로 연결되는 위치에 대응하는 복수의 제2연결부(17b)를 포함한다. 제3집전플레이트(3c)는 제3그룹(1c)의 전지셀이 제3집전플레이트(3c)와 전기적으로 연결되는 위치에 대응하는 복수의 제3연결부(17c)를 포함한다.
제1집전플레이트는(3a)는 전지 모듈(4)의 전지셀로부터 가장 멀리 위치된 최외측의 집전플레이트이다. 제2집전플레이트(3b)는 제1집전플레이트(3a)상에 위치하고, 제3집전플레이트(3c)는 제2집전플레이트(3b)상에 위치된다.
제3집전플레이트(3c)는 전지 모듈(4)의 내부, 즉 전지셀(1a, 1b, 1c)을 마주하는 최내측 집전플레이트이다. 제1, 2, 3집전플레이트(3a, 3b, 3c)는 서로 단열되어 있다. 이를 위해, 제1집전플레이트(3a)와 제2집전플레이트(3b) 사이에는 제1단열층(미도시)이 구비되고, 제2집전플레이트(3b) 및 제3집전플레이트(3c) 사이에는 제2단열층(미도시)이 구비될 수 있다.
단열층은 운모 기재, 유리 섬유 기재, 또는 실리콘 기재와 같이 열적으로 안정적인 복합재나 에어로켈 또는 세라믹 섬유 매트와 같은 단열 물질로 제조될 수 있다. 또는, 이웃하는 집전플레이트 사이에 공극을 형성하여 상기 집전플레이트를 서로 단열시킬 수 있다.
하나의 집전플레이트에서 다른 집전플레이트로의 열전도를 효과적으로 방지하기 위해, 단열층의 두께는 0.1mm 이상이 바람직하지만 5mm를 초과하지 않도록 하여 집전시스템의 총 두께 및 전지모듈의 사이즈가 과도하게 증가하지 않도록 할 수 있다.
도 4a는 집전시스템(5)의 최외측 플레이트에 해당하고 전기 전도성 물질로 이루어지는 하나의 층으로 구성된 제1집전플레이트(3a)의 평면도이다. 제1집전플레이트(3a)는 예컨대 구리 또는 알루미늄 합금으로 이루어진 시트일 수 있다. 니켈 등의 보호 코팅이 제1집전플레이트(3a)상에 추가로 도포될 수 있다.
제1집전플레이트(3a)는 개구나 관통공이 없는 균일 시트이고, 제2, 3집전플레이트(3b, 3c)에는 관통공(6b, 6c)이 형성되어 있다.
도 4b는 제1집전플레이트(3a)상의 제1연결부(17a)에 대응하는 다수의 관통공(6b)을 포함하는 제2집전플레이트(3b)의 평면도이며, 제1그룹(1a)의 전지셀은 제1집전플레이트(3a)에 연결된다.
도 4c는 제1연결부(17a) 및 제2연결부(17b)에 대응하는 복수의 관통공(6c)을 포함하는 제3집전플레이트(3c)의 평면도이다. 관통공(6b, 6c)의 크기는 전지셀의 단면적보다 크게 형성되어 전지셀(1a, 1b)을 삽입하기에 충분히 크도록 마련된다.
제1단열층에는 제2집전플레이트(3b)와 동일한 관통공(6b)이 마련되고, 제2단열층에는 제3집전플레이트(3c)와 동일한 관통공(6c)이 마련될 수 있다. 그러나, 본 발명은 이에 한정되지 않고 이웃하는 집전플레이트와는 다른 관통공 패턴을 가지는 단열층이 마련될 수도 있다.
제1그룹(1a)의 전지셀은 제1연결부(17a)에 대응하는 제2, 3집전플레이트(3b, 3c)의 관통공(6b, 6c)에 삽입되고, 제1연결부(17a)와 대응되도록 제1집전플레이트(3a)상에 전기적으로 연결된다.
예컨대, 전지셀은 용접, 납땜 또는 도전성 접착제에 의해 제1연결부(17a)에 고정될 수 있다. 제1연결부(17a)의 위치는 제1그룹(1a)의 2개 전지셀간 최소거리(S)가 전지 모듈(4)에서 이웃하는 2개의 전지셀간 거리보다 더 크도록 하는 방식으로 배치된다.
이와 유사하게, 제2그룹(1b)의 전지셀은 제2연결부(17b)에 대응하는 제3집전플레이트(3c)의 관통공(6c)에 삽입되고, 제2연결부(17b)와 대응되도록 제2집전플레이트(3b)상에 전기적으로 연결된다. 마지막으로, 제3그룹(1c)의 전지셀은 제3연결부(17c)와 대등되도록 제3집전플레이트(3c)상에 전기적으로 연결된다.
또한, 제2그룹(1b) 및 제3그룹(1c)에 대해서, 동일한 그룹의 2개 전지셀 사이의 최소거리(S)는 전지 모듈(4) 내에서 이웃하는 2개의 전지셀 사이의 거리보다 크다.
제1그룹(1a) 전지셀의 음극단자(19)는 제1집전플레이트(3a)에 전기적으로 연결된다. 마찬가지로, 제2그룹(1b) 전지셀의 음극단자(19)는 제2집전플레이트(3b)에 전기적으로 연결되고, 제3그룹(1c) 전지셀의 음극단자(19)는 제3집전플레이트(3c)에 전기적으로 연결될 수 있다.
그러나, 본 발명은 이에 한정되지 않고 양극단자(18)가 집전플레이트에 연결될 수도 있다. 또한, 전지 모듈(4)은 양극단자(18)와 음극단자(19)를 병렬로 연결하기 위해 양극단자(18) 또는 음극단자(19)에 각각 연결되는 2개의 집전시스템을 포함할 수 있다.
제1, 2, 3집전플레이트(3a, 3b, 3c)는 제1 및 2단열층에 의해 서로 열적 및 전기적으로 절연되어 있다. 제1 내지 3집전플레이트(3a, 3b, 3c)는 단열층이 형성되지 않은 집전플레이트(3a, 3b, 3c)의 연장선에 위치된 접속지점(미도시)에서 전기적으로 접속할 수 있다.
집전플레이트는 스탬핑 등에 의해 접속지점에서 서로 접촉하도록 예비 성형된다. 집전플레이트 사이는 볼트 또는 스터드 (stud)와 함께 용접함으로써 양질의 전기 접촉이 구현될 수 있다. 접속지점은 전지 모듈의 고전류 단자 근처에 위치할 수 있다.
따라서, 모든 전지셀 그룹(1a, 1b, 1c)은 전기적으로 병렬 접속될 수 있다. 예컨대, 상기 제1 내지 3집전플레이트(3a, 3b, 3c)는 상기 집전시스템(5)과 이격된 접속지점에서 전기적으로 연결될 수 있다. 집전플레이트들은 금속 와이어를 통해 상호 연결될 수도 있다.
접속지점과 집전시스템(5) 사이의 거리는 동일한 그룹의 2개의 전지셀들 사이의 최소거리(S)의 50% 이상일 수 있다. 바람직하게는, 접속지점과 이웃하는 전지셀 사이의 거리는 동일한 그룹의 2개 전지셀 사이의 최소거리(S)보다 크다.
따라서, 일정량의 열이 접속지점을 통해 어느 하나의 집전플레이트로부터 다른 집전플레이트로 전달될 수 있는 경우라도, 공간적으로 분리된 접속지점을 통해 전달되는 열의 양은 도 2B에 도시된 것과 같은 단일 집전플레이트에서 이웃하는 전지셀간의 열 전달량보다 크게 감소된다.
본 발명의 일실시예에서 전지 모듈(4)내의 각 전지셀은 이웃하는 2개의 전지셀이 서로 동일한 집전플레이트에 연결되지 않도록 복수의 집전플레이트(3a, 3b, 3c) 중 어느 하나에만 전기적 및 열적으로 접촉된다.
이웃하는 2개의 전지셀이 서로 전기적으로 직접 연결되지 않기 때문에, 2개의 이웃하는 전지셀 사이에서 집전플레이트를 통한 열전도경로가 최소화될 수 있다.
결과적으로, 고장셀에서 발생된 열은 주로 상기 고장셀에 연결된 집전플레이트를 통해 동일한 그룹에 속하는 다른 전지셀로 전달되고, 각 집전플레이트(3a, 3b, 3c)는 서로 단열되어 있기 때문에 상이한 집전플레이트간의 열전달은 억제 또는 감소된다.
집전플레이트는 이웃하는 두 셀 사이의 거리보다 큰 최소거리(S)를 가지는 전지셀들을 서로 연결하기 때문에, 어느 하나의 전지셀이 열폭주에 들어가면 열폭주 상태의 고장셀에서 방출되는 열이 종래의 전지 모듈과 비교하여 최소거리(S) 이상의 거리를 가지는 더 넓은 영역으로 분산된다.
본 발명의 일실시예에 따른 전지 모듈에서, 고장셀에 가장 가깝게 이웃하는 셀들은 고장셀로부터 방출된 열 및 고온 가스와 직접 접촉하면서 고장셀로부터 방출된 열의 일부를 흡수하지만, 고장셀로부터 방출된 열의 다른 일부는 상기 고장셀에 연결된 집전플레이트를 통해 상기 고장셀에서 멀리 떨어진 전지셀(최소거리(S) 이상)로 분배될 수 있다.
따라서, 두 셀간의 전체 열교환량이 감소되고, 열은 전지 모듈의 전지셀 사이에서 보다 고르게 분포되는 바, 정상상태의 각 전지셀는 고장셀에 의해 생성된 열의 작은 부분을 소비하게 된다.
정상셀에서 소비되는 열량이 충분히 작다면, 정상셀의 온도를 150℃ 미만으로 항상 유지하여 열폭주 전파를 방지할 수 있다. 이에 따라, 전지시스템의 화재위험이 크게 감소하고 안전한 상태를 유지할 수 있게 된다.
또한, 전지 모듈 내부에서 발생된 열을 전지 모듈의 외부로 방열시키기 위해 냉각시스템이 추가적으로 이용될 수 있다.
도 5a 및 도 5b에는 본 발명의 다른 실시예로서 전지셀이 직교 형태로 배열된 실시예가 도시되어 있다. 도 5a 및 도 5b는 본 발명의 제2실시예에 따른 집전시스템(15)을 포함하는 전지 모듈(10)의 평면도 및 단면도이다.
본 실시예에서, 전지셀은 2개의 그룹(11a, 11b)으로 구분되고, 집전시스템(15)은 서로 적층되고 단열된 2개의 집전플레이트(13a, 13b)로 구성된다. 최외측의 제1집전플레이트(13a)는 개구나 관통공이 없는 균일 시트로 마련되고, 제2집전플레이트(13b)에는 관통공이 형성되어 있다.
제1그룹(11a)의 전지셀은 제2집전플레이트(13b)의 관통공에 삽입되고, 제1연결 부(17a')와 대응하여 제1집전플레이트(13a)과 전기적으로 연결된다. 제2그룹(11b)의 전지셀은 제2연결부(17b')와 대응하도록 제2집전플레이트(13b)에 전기적으로 연결된다.
상기 제1연결부(17a')와 제2연결부(17b')는 격자 패턴(체크보드 패턴)으로 배치되고, 동일한 그룹의 2개 전지셀간 최소거리(S')가 전지 모듈(10)에서 이웃하는 2개 전지셀간의 거리보다 더 크게 배치된다.
따라서, 제2실시예는 제1실시예와 집전플레이트의 개수 및 관통공의 분포가 다르지만, 단일 집전플레이트 및 단열층의 특성은 도 3a 및 도 3b, 도 4a 내지 도 4c에 도시된 제1실시예에서 설명한 것과 실질적으로 동일하므로 그 설명을 생략한다.
도 3b 및 도 5b에 도시된 실시예에서 집전시스템(5, 15)은 서로 다른 그룹의 전지셀들이 서로 분리되어 단열되도록 전지셀의 음극단자(19)가 연결되지만, 본 발명은 이에 한정되지 않으며, 집전시스템은 전지셀의 양극단자(18)에 연결될 수도 있다.
또한, 전지 모듈은 양극 및 음극단자를 각각 병렬로 연결하기 위해 도 3b 또는 도 5b에 도시된 것과 같은 집전시스템을 2개 포함하여 상이한 그룹에 속하는 전지셀의 양극 및 음극단자를 상호 분리할 수 있다.
본 발명의 실시예에서는 다른 전기적 구성이 사용될 수도 있다. 예컨대, 전지셀의 양극 및 음극단자가 집전플레이트에 교대로 연결될 수도 있다.
한편, 도 6, 도 7a 및 7b에는 육각형으로 배열된 전지셀을 가지는 본 발명의 또 다른 실시예가 도시되어 있다. 도 6은 본 발명의 제3실시예에 따라 제1집전시스템(35a) 및 제2집전시스템(35b)을 포함하는 전지 모듈(30)의 평면도이다.
도 7a 및 도 7b는 각각 도 6의 A-A선 및 B-B선을 따라 취한 단면도이다. 본 실시예에서, 제1, 2집전시스템(35a, 35b)은 서로 적층되고 단열된 3개의 집전플레이트(35a)를 각각 포함한다.
상기 제1집전시스템(35a)은 제1, 2, 3집전플레이트(33a, 33b, 33c)를 포함하고, 제2집전시스템(35b)은 제 4, 5, 6집전플레이트(33a', 33b', 33c')를 포함한다. 전지셀은 도 3B의 제1실시예와 유사하게 3개의 그룹(31a, 31b, 31c)으로 구분되는 바, 제1, 2, 3그룹의 전지셀에 대한 상세한 설명은 여기에서 생략될 것이다.
제3실시예에 따르면, 전지셀의 양극 및 음극단자는 제1, 2집전플레이트(35a, 35b)에 교대로 연결된다. 예컨대, 제1그룹(31a)과 제3그룹(31c) 전지셀의 양극단자는 제1집전시스템(35a)에 연결되고, 제1그룹(31a)과 제3그룹(31c) 전지셀의 음극단자는 제2집전시스템(35b)에 연결되며, 반면 제2그룹(31b) 전지셀의 음극단자는 제1집전시스템(35a)에 연결되고, 제2그룹(31b) 전지셀의 양극단자는 제2집전시스템(35b)에 연결될 수 있다. 그러나, 본 발명은 이것에 한정되지 않고 다른 전기적 구성이 반영될 수 있다.
본 실시예에서 전지셀들은 모두 병렬로 연결되는 것이 아니며, 동일한 그룹의 전지셀만이 해당 집전플레이트를 통해 병렬로 연결되는 반면, 제1 내지 3그룹간의 전지셀은 상호 직렬로 연결될 수 있다.
따라서, 제1집전세스템(35a)을 구성하는 제1 내지 3집전플레이트(33a, 33b, 33c)는 하나의 접속지점을 통해 상호 연결되지 않는 대신, 제1집전시스템(35a)에서 제2집전플레이트(33b) 및 제3집전플레이트(33c)를 연결하는 제1접속지점(71)이 마련되고, 제2집전시스템(35b)에서 제4집전플레이트(33a') 및 제5집전플레이트(33b')를 연결하는 제2접속지점(72)이 마련된다.
제1그룹(31a)의 전지셀은 제1집전플레이트(33a)와 제4집전플레이트(33a') 사이에 결합되고, 상기 제4집전플레이트(33a')는 제2접속지점(72)을 통해 제5집전플레이트(33b')에 연결된다.
제2그룹(31b)의 전지셀은 제5집전플레이트(33b')와 제2집전플레이트(33b) 사이에 결합되고, 상기 제2집전플레이트(33b)는 제1접속지점(71)를 통해 제3집전플레이트(33c)에 연결된다.
제3그룹(31c)의 전지셀은 제3집전플레이트(33c)와 제6집전플레이트(33c') 사이에 결합된다.
또한, 제1집전플레이트(33a)에는 전지 모듈(30)의 양극단자탭(81)이 연결되고, 제6집전플레이트(33c')에는 전지 모듈(30)의 음극단자탭(82)이 연결된다. 따라서, 전지셀의 3개 그룹(31a, 31b, 31c)은 양극 및 음극단자탭(81, 82) 사이에서 직렬로 연결된다.
도 8a 내지 도 8e는 각각 제1집전플레이트(33a), 제1 및 2집전플레이트(33a, 33b) 사이에 위치하는 제1단열층(34a), 제2집전플레이트(33b), 제2 및 3집전플레이트(33b, 33c) 사이에 위치하는 제2단열층(34b)과 제3집전플레이트(33c)를 도시한다.
본 실시예에 따르면, 제1 내지 3집전플레이트(33a, 33b, 33c)의 관통공은 도 4a 내지 도 4c에 도시된 관통공과는 상이하다. 특히, 도 8a에 도시된 제1집전플레이트(33a)는 제1집전플레이트(33a)의 제1연결부(37a)를 제외한 연결부(37b, 37c)에 대응하는 복수의 제1관통공(36a)을 포함하고, 제1그룹(31a)의 전지셀은 제1집전플레이트(33a)에 연결된다.
도 8c는 제2집전플레이트(33b)의 제2연결부(37b)를 제외한 연결부(37a, 37c)에 대응하는 복수의 제2관통공(36b)를 포함하는 제2집전플레이트(33b)의 평면도이고, 제2그룹(31b)의 전지셀은 제2집전플레이트(33b)에 연결된다.
도 8e는 제3집전플레이트(33c)의 제3연결부(37c)를 제외한 연결부(37a, 37b)에 대응하는 복수의 제3관통공(36c)을 포함하는 제3집전플레이트(33c)의 평면도이고, 제3그룹(31c)의 전지셀은 제3집전플레이트(33c)에 연결된다.
도 8b 및 도 8d는 제1단열층(34a) 및 제2단열층(34b)의 펑면도를 도시한다. 제1 및 2단열층(34a, 34b)은 모든 연결부(37a, 37b, 37c)와 대응하도록 제1, 2관통공을 포함함으로써, 제1집전시스템(35a)에서 각 연결부(37a, 37b, 37c)마다 서로 다른 하나의 집전플레이트만이 제공되도록 하며, 제1, 2단열층(34a, 34b)은 서로 다른 연결부(37a, 37b, 37c)의 집전플레이트 영역 사이에 마련된다.
나아가, 관통공은 제1접속지점(71)의 위치 및 전지 모듈(30)의 양극단자탭(81)의 위치와 대응하여 제1, 2, 3집전플레이트(33a, 33b, 33c) 및 제1, 2단열층(34a, 34b)에 마련될 수 있다.
제4 내지 6집전플레이트(33a', 33b', 33c')와 그 사이의 단열층은 상기 제1집전시스템에서의 집전플레이트와 유사한 구조를 가질 수 있으며, 상기 제4 내지 6집전플레이트(33a', 33b', 33c')는 각각의 연결부에 대응하는 영역에 복수의 관통공을 포함하고, 단열층은 모든 연결부, 제2접속지점(72) 및 전지 모듈(30)의 음극단자탭(82) 위치에 대응하는 복수의 관통공을 포함한다.
제3실시예에 따르면, 모든 연결부(37a, 37b, 37c)에는 제1, 2집전시스템(35a, 35b) 각각에서 하나의 집전플레이트만이 제공되기 때문에 인접한 집전플레이트간의 접촉 면적이 최소화되고, 전지 모듈 외부로의 열 배출이 증가된다. 따라서, 전지 모듈의 안전성이 향상된다.
제1 및 2실시예는 각각 3개 또는 2개의 집전플레이트를 포함하는 집전시스템에 관한 것이지만, 본 발명은 이에 한정되지 않고 4개 이상의 집전플레이트를 포함하는 집전시스템이 제공될 수 있다. 따라서, 본 발명의 범위를 벗어나지 않는 한도에서 육각형 및 격자형 배치(체크보드 배치) 외의 다른 배열이 이용될 수 있다.
도 9a-9b 및 도 10a-10d에는 직교형으로 배열되고 4개의 집전플레이트를 포함하는 전지셀을 가지는 본 발명의 또 다른 실시예가 도시되어 있다.
도 9a 및 9b는 본 발명의 제4실시예에 따른 제1집전시스템(상부)(25a) 및 제 2집전시스템(하부)(25b)을 포함하는 전지 모듈(20)의 평면도 및 단면도를 도시한다. 본 실시예에서 전지셀은 4개의 그룹(21a, 21b, 21c, 21d)으로 구분되며, 제1, 2집전시스템(25a, 25b)은 서로 적층되고 단열된 4개의 집전플레이트를 각각 포함한다.
도 10a 내지 도 10d는 제1집전시스템(25a)를 형성하는 제1, 2, 3, 4집전플레이트(23a, 23b, 23c, 23d)의 평면도이다.
도 10a는 제1집전플레이트(23a)의 평면도이며, 상기 제1집전플레이트(23a)는 제1집전시스템(25a)의 최외측에 배치되고, 제1집전플레이트(23a)상의 제1연결부(27a)를 제외한 제2, 3, 4연결부(27b, 27c, 27d)에 대응하는 복수의 제1관통공(26a)을 포함하는 전기 전도성 물질의 단일층으로 구성된다. 제1그룹(21a)의 전지셀은 제1집전플레이트(23a)에 연결된다.
도 9b에 도시된 실시예에 따르면, 제1그룹(21a) 전지셀의 양극단자(18)가 제1집전플레이트(23a)에 연결되지만, 본 발명은 이에 한정되지 않는다.
도 10b는 제2집전플레이트(23b)의 평면도로서, 제2집전플레이트(23b)는 제2집전플레이트(23b)상의 제2연결부(27b)를 제외한 제1, 3, 4연결부(27a, 27c, 27d)에 대응하는 복수의 제2관통공(26b)을 포함한다.
제2그룹(21b)의 전지셀은 제2집전플레이트(23b)에 연결된다. 본 실시예에 따르면, 제2그룹(21b) 전지셀의 음극단자(19)가 제2집전플레이트(23b)와 연결되지만, 이에 한정되는 것은 아니다.
도 10c는 제3집전플레이트(23c)의 평면도이며, 제3집전플레이트(23c)는 제3집전플레이트(23c)의 제3연결부(27c)를 제외한 제1, 2, 4연결부(27a, 27b, 27d)에 대응하는 복수의 제3관통공(26c)을 포함한다.
제3그룹(21c)의 전지셀은 제3집전플레이트(23c)에 연결된다. 본 실시예에 따르면, 제3그룹(21c) 전지셀의 양극단자(18)가 제3집전플레이트(23c)에 연결된다.
도 10d는 제4집전플레이트(23d)의 평면도이며, 제4집전플레이트(23d)는 제4집전플레이트(23d)상의 제4연결부(27d)를 제외한 제1, 2, 3연결부(27a, 27b, 27c)에 대응하는 복수의 제4관통공을 포함한다.
제4그룹(21d)의 전지셀은 제4집전플레이트(23d)에 연결된다. 본 실시예에 따르면, 제4그룹(21d) 전지셀의 음극단자(19)가 제4집전플레이트(23d)에 연결된다.
단열층은 인접하는 집전플레이트 사이에 마련될 수 있고, 제1 내지 4연결부(27a, 27d, 27c, 27d)에 대응하는 관통공을 포함할 수 있다. 제1 내지 4집전플레이트(23a, 23b, 23c, 23d) 각각의 연결부는 동일한 그룹의 2 개 전지셀간 최소거리(S)가 전지 모듈(20)에서 이웃하는 2개 전지셀간 거리보다 더 크도록 배치된다.
제4실시예에 따르면, 전지셀의 제1 내지 4그룹(21a, 21b, 21c, 21d)은 직렬로 연결된다. 구체적으로, 제1집전시스템(25a)에는 제2집전플레이트(23b)와 제3집전플레이트(23c)를 연결하는 제1접속지점(71')이 형성된다.
제2집전시스템(25b)에는 제2 및 3접속지점(72', 73')이 마련되며, 제2접속지점 (72')은 제2집전시스템(25b)의 제1집전플레이트(23a')를 제2집전시스템(25b)의 제2집전플레이트(23b')에 전기적으로 연결하고, 제3접속지점(73')은 제2집전시스템(25b)의 제3집전플레이트(23c')를 제2집전시스템(25b)의 제4집전플레이트(23d')에 전기적으로 연결한다.
또한, 전지 모듈(20)의 양극단자탭(81)은 제1집전시스템(25a)의 제1집전플레이트(23a)에 전기적으로 연결되고, 전지 모듈(20)의 음극단자탭(82)은 제1집전시스템 (25a)의 제4집전플레이트(23d)에 전기적으로 연결된다.
제1그룹(21a)의 전지셀은 제1집전시스템(25a)의 제1집전플레이트(23a)와 제2집 전시스템(25b)의 제1집전플레이트(23a') 사이에 결합되고, 제2접속지점(72')을 통해 제2집전시스템(25b)의 제2집전플레이트(23b')와 연결된다.
제2그룹(21b)의 전지셀들은 제2집전시스템(25b)의 제2집전플레이트(23b')와 제1집전시스템(25a)의 제2집전플레이트(23b) 사이에 결합되고, 제1접속지점(71')을 통해 제1집전시스템(25a)의 제3집전플레이트(23c)와 연결된다.
제3그룹(21c)의 전지셀은 제1집전시스템(25a)의 제3집전플레이트(23c)와 제2집전시스템(25b)의 제3집전플레이트(23c') 사이에 결합되고, 제3접속지점(73')을 통해 제2집전시스템(25b)의 제4집전플레이트(23d')와 연결된다.
제4그룹(21d)의 전지셀은 제2집전시스템(25b)의 제4집전플레이트(23d')와 제1집전시스템(25a)의 제4집전플레이트(23d) 사이에 결합되고, 전지 모듈(30)의 음극단자탭(82)에 연결된다.
또한, 전지 모듈(30)의 양극단자탭(81)은 제1집전시스템(25a)의 제1집전플레이트(23a)에 연결되어 있다. 따라서, 4개 그룹(21a, 21b, 21c, 21d)의 전지셀은 양극단자탭 (81)과 음극단자탭(82) 사이에서 직렬로 연결된다. 그러나, 본 발명은 이에 한정되지 않으며, 상기 4개의 그룹(21a, 21b, 21c, 21d)은 다른 방식으로 연결될 수도 있다.
하나의 예로, 전지 모듈은 각 그룹이 16개의 전지셀을 갖는 3개의 그룹으로 구분되는 48개의 전지셀을 포함할 수 있고, 상기 그룹들은 3s16p구성(병렬로 16셀, 직렬로 3셀)으로 연결될 수 있다.
또 다른 예로, 전지 모듈은 각 그룹이 12개의 전지셀을 갖는 4개의 그룹으로 구분되는 48개의 전지셀을 포함할 수 있고, 전지 모듈은 4s12p구성으로 전지셀을 연결하기 위해 4개의 양극 집전플레이트 및 4 개의 음극 집전플레이트를 더 포함할 수 있다.
다만, 전지 모듈 내의 전지셀의 수는 48개에 한정되지 않으며 다른 구성들이 이용될 수 있다. 예컨대, 4sXp구성(여기서 X는 병렬로 연결된 전지셀의 수를 나타냄)은 12V 전지시스템에 이상적일 수 있다.
본 발명의 실시예들에 따르면, 적층 구조를 가지는 집전시스템이 전지 모듈 내의 인접한 전지셀 사이의 열 전달을 방지하여 고장셀에 인접한 전지셀의 온도 상승을 감소시킬 수 있다. 따라서, 인접한 전지셀에 열폭주가 전파되는 것을 방지하고 전지 모듈의 안전성을 높일 수 있다.
본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
- 부호의 설명 -
1 : 전지셀
1a, 11a, 21a, 31a : 제1그룹
1b, 11b, 21b, 31b : 제2그룹
1c, 21c, 31c : 제3그룹
3a, 13a, 23a, 23a', 33a : 제1집전플레이트
3b, 13b, 23b, 23b', 33b : 제2집전플레이트
3c, 23c, 23c', 33c : 제3집전플레이트
4, 10, 20, 30 : 전지 모듈
5, 15 : 집전시스템
25a, 35a : 제1집전시스템
25b, 35b : 제2집전시스템
17a, 17a', 27a, 37a : 제1연결부
17b, 17b', 27b, 37b : 제2연결부
17c, 27c, 37c : 제3연결부
6b, 6c : 관통공
26a, 36a : 제1관통공
26b, 36b : 제2관통공
26c, 36c : 제3관통공
71, 71' : 제1접속지점
72, 72' : 제2접속지점
73' : 제3접속지점

Claims (15)

  1. 적어도 제1그룹 및 제2그룹으로 구분되는 복수의 전지셀을 포함하는 전지 모듈의 집전시스템에 있어서,
    상기 집전시스템은,
    서로 적층되고 단열되는 제1집전플레이트 및 제2집전플레이트;을 포함하고,
    상기 제1집전플레이트는 상기 제1그룹의 전지셀과 복수의 제1연결부에서 각각 연결되고, 상기 제2집전플레이트는 상기 제2그룹의 전지셀과 복수의 제2연결부에서 각각 연결되며,
    상기 제1집전플레이트에서 2개의 제1연결부간 최소거리 및 상기 제2집전플레이트에서 2개의 제2연결부간 최소거리는 이웃하는 어느 한 쌍의 연결부간 거리보다 더 긴 집전시스템.
  2. 청구항 1에 있어서,
    상기 제1집전플레이트 및 제2집전플레이트 사이에 마련되는 단열층;을 더 포함하는 집전시스템.
  3. 청구항 1에 있어서,
    상기 제2집전플레이트는 상기 제1집전플레이트의 상기 제1연결부와 대응되는 복수의 관통공이 마련되어 상기 제1연결부를 노출시키는 집전시스템.
  4. 청구항 1에 있어서,
    상기 제2집전플레이트상에 적층되고, 상기 제2집전플레이트와의 사이에 단열층이 마련되는 제3집전플레이트;를 더 포함하는 집전시스템.
  5. 청구항 4에 있어서,
    상기 제3집전플레이트는 상기 제1집전플레이트의 상기 제1연결부 및 상기 제2집전플레이트의 상기 제2연결부와 대응되는 복수의 관통공이 마련되어 상기 제1연결부 및 제2연결부를 노출시키는 집전시스템.
  6. 청구항 1에 있어서,
    상기 제1집전플레이트는 상기 제2연결부에 대응하는 복수의 관통공이 마련되고, 상기 제2집전플레이트는 상기 제1연결부에 대응하는 복수의 관통공이 마련되는 집전시스템.
  7. 청구항 6에 있어서,
    상기 제2집전플레이트상에 적층되고, 상기 제2집전플레이트와의 사이에 단열층이 마련되는 제3집전플레이트;를 더 포함하며,
    상기 제3집전플레이트는 상기 제1연결부 및 제2연결부와 대응되는 복수의 관통공이 마련되고, 제3연결부에서 제3그룹의 전지셀과 전기적으로 연결되는 집전시스템.
  8. 청구항 7에 있어서,
    상기 제3집전플레이트상에 적층되고, 상기 제3집전플레이트와의 사이에 단열층이 마련되는 제4집전플레이트;를 더 포함하며,
    상기 제4집전플레이트는 상기 제1연결부, 제2연결부 및 제3연결부와 대응되는 복수의 관통공이 마련되고, 제4연결부에서 제4그룹의 전지셀과 전기적으로 연결되는 집전시스템.
  9. 청구항 1에 있어서,
    상기 제1집전플레이트 및 제2집전플레이트는 전기 전도성의 금속합금 시트를 포함하는 집전시스템.
  10. 청구항 1에 있어서,
    상기 단열층은 공극 또는 단열성 복합재를 포함하는 집전시스템.
  11. 청구항 1에 있어서,
    상기 제1집전플레이트 및 제2집전플레이트는 그 연장선상에 위치하는 접속지점에서 서로 전기적으로 연결되는 집전시스템.
  12. 적어도 제1그룹 및 제2그룹으로 구분되고, 각각 양극단자 및 음극단자를 가지는 복수의 전지셀;
    청구항 1 내지 11 중 어느 하나에 따른 제1집전시스템; 를 포함하고,
    상기 제1그룹의 전지셀은 상기 제1집전플레이트에 마련된 복수의 제1연결부에 각각 전기적으로 연결되고, 상기 제2그룹의 전지셀은 상기 제2집전플레이트에 마련된 복수의 제2연결부에 각각 전기적으로 연결되며,
    상기 제1집전플레이트 및 제2집전플레이트 중 어느 하나에 함께 연결된 2개의 전지셀간 최소거리는 상기 전지 모듈에서 이웃하는 2개의 전지셀간 거리보다 더 긴 전지 모듈
  13. 청구항 12에 있어서,
    청구항 1 내지 11 중 어느 하나에 따른 제2집전시스템;을 더 포함하고,
    상기 제1그룹의 전지셀에 마련된 양극단자 및 음극단자 중 어느 하나는 상기 제1집전시스템의 제1집전플레이트에 마련된 제1연결부에 전기적으로 연결되고, 상기 제1그룹의 전지셀에 마련된 양극단자 및 음극단자 중 다른 하나는 상기 제2집전시스템의 제1집전플레이트에 마련된 제1연결부에 전기적으로 연결되며,
    상기 제2그룹의 전지셀에 마련된 양극단자 및 음극단자 중 어느 하나는 상기 제1집전시스템의 제2집전플레이트에 마련된 제2연결부에 전기적으로 연결되고, 상기 제2그룹의 전지셀에 마련된 양극단자 및 음극단자 중 다른 하나는 상기 제2집전시스템의 제2집전플레이트에 마련된 제2연결부에 전기적으로 연결되는 전지 모듈.
  14. 청구항 13에 있어서,
    상기 제1그룹 및 제2그룹의 전지셀은 병렬 또는 직렬로 연결되는 전지 모듈.
  15. 청구항 12 내지 14 중 어느 하나에 따른 전지 모듈을 포함하는 자동차.
PCT/KR2018/001017 2017-02-06 2018-01-23 전지 모듈용 집전시스템, 전지 모듈 및 자동차 WO2018143596A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/474,364 US11342633B2 (en) 2017-02-06 2018-01-23 Current collecting system for battery module, battery module, and vehicle
CN201880010195.4A CN110249478B (zh) 2017-02-06 2018-01-23 用于电池模块的集流系统、电池模块和车辆

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP17154844.9A EP3358649B1 (en) 2017-02-06 2017-02-06 Current collector system of a battery module
EP17154844.9 2017-02-06
KR1020180007840A KR102272268B1 (ko) 2017-02-06 2018-01-22 전지 모듈용 집전시스템, 전지 모듈 및 자동차
KR10-2018-0007840 2018-01-22

Publications (1)

Publication Number Publication Date
WO2018143596A1 true WO2018143596A1 (ko) 2018-08-09

Family

ID=63041190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001017 WO2018143596A1 (ko) 2017-02-06 2018-01-23 전지 모듈용 집전시스템, 전지 모듈 및 자동차

Country Status (2)

Country Link
US (1) US11342633B2 (ko)
WO (1) WO2018143596A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021133296A1 (de) 2021-12-15 2023-06-15 Bayerische Motoren Werke Aktiengesellschaft Energiespeicher mit einer definierten Breite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021456A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 二次電池
JP2004171856A (ja) * 2002-11-19 2004-06-17 Matsushita Electric Ind Co Ltd 電池間接続構造および電池モジュール並びに電池パック
KR20110060490A (ko) * 2009-11-30 2011-06-08 삼성에스디아이 주식회사 배터리 팩
JP2012190716A (ja) * 2011-03-11 2012-10-04 Toyota Industries Corp 組電池
KR20140115905A (ko) * 2013-03-20 2014-10-01 심플로 테크놀로지 컴퍼니 리미티드 열전도체

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385793A (en) 1992-07-20 1995-01-31 Globe-Union Inc. Thermal management of battery systems
JP4079572B2 (ja) 2000-04-14 2008-04-23 松下電器産業株式会社 電池パック
US8945746B2 (en) 2009-08-12 2015-02-03 Samsung Sdi Co., Ltd. Battery pack with improved heat dissipation efficiency
JP2007311124A (ja) 2006-05-17 2007-11-29 Toyota Motor Corp 電池パックおよび車両
JP5252937B2 (ja) 2008-01-31 2013-07-31 三洋電機株式会社 積層式電池及びその製造方法
US20090197160A1 (en) 2008-01-31 2009-08-06 Sanyo Electric Co., Ltd. Stack type battery
KR101093696B1 (ko) 2009-12-01 2011-12-15 삼성에스디아이 주식회사 이차 전지
JP2013016321A (ja) 2011-07-01 2013-01-24 Sharp Corp 集電体および非水系二次電池
JP5783331B2 (ja) 2012-07-17 2015-09-24 新神戸電機株式会社 二次電池の集電構造及び二次電池
JP2014086388A (ja) 2012-10-26 2014-05-12 Toyota Motor Corp 組電池及びその製造方法
US20160006007A1 (en) 2013-02-27 2016-01-07 Panasonic Corporation Battery module
DE102013112395A1 (de) 2013-11-12 2015-05-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterieeinheit
JP6168167B2 (ja) 2014-02-12 2017-07-26 日産自動車株式会社 電池モジュール
US9147875B1 (en) * 2014-09-10 2015-09-29 Cellink Corporation Interconnect for battery packs
US9397376B2 (en) 2014-09-25 2016-07-19 Atieva, Inc. Battery pack with segmented, electrically isolated heat sink
US9397375B2 (en) 2014-09-25 2016-07-19 Atieva, Inc. Battery pack with segmented, electrically isolated heat sink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021456A (ja) * 1998-07-03 2000-01-21 Hitachi Ltd 二次電池
JP2004171856A (ja) * 2002-11-19 2004-06-17 Matsushita Electric Ind Co Ltd 電池間接続構造および電池モジュール並びに電池パック
KR20110060490A (ko) * 2009-11-30 2011-06-08 삼성에스디아이 주식회사 배터리 팩
JP2012190716A (ja) * 2011-03-11 2012-10-04 Toyota Industries Corp 組電池
KR20140115905A (ko) * 2013-03-20 2014-10-01 심플로 테크놀로지 컴퍼니 리미티드 열전도체

Also Published As

Publication number Publication date
US11342633B2 (en) 2022-05-24
US20190372078A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2022004997A1 (ko) 화재 억제를 위한 격벽과 단열층이 구비된 전지 모듈
WO2018105905A1 (ko) 배터리 팩
WO2019059538A1 (ko) 가이드 결합 구조를 포함한 배터리 모듈 및 그것을 포함한 배터리 팩
WO2018174451A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017204458A1 (ko) 전지 팩
WO2019098507A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018186604A1 (ko) 배터리 팩
WO2017188533A1 (ko) 멤브레인을 갖는 이차 전지
WO2018128295A1 (ko) 전지시스템 및 이를 포함하는 자동차
WO2022097935A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018143596A1 (ko) 전지 모듈용 집전시스템, 전지 모듈 및 자동차
WO2017209423A1 (ko) 방열 카트리지 및 이를 이용한 전기자동차용 전지팩
WO2023158186A1 (ko) 절연유를 포함하는 전지모듈 및 이를 포함하는 전지팩
WO2023090926A1 (ko) 하부 냉각팬을 포함하는 전지셀 충방전장치
WO2018074846A1 (ko) 이차 전지
WO2021096023A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2018080183A1 (ko) 전지시스템 및 이를 포함하는 전기자동차
WO2021040242A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
KR102272268B1 (ko) 전지 모듈용 집전시스템, 전지 모듈 및 자동차
WO2019132155A1 (ko) 전지 모듈
WO2023075200A1 (ko) 패턴 퓨즈 및 이의 제조방법
WO2023080742A1 (ko) 배터리 모듈 및 이를 포함한 배터리 팩
WO2024076135A1 (ko) 열 전파 방지 전지 셀
WO2018084439A1 (ko) 전지 시스템
WO2024039192A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747867

Country of ref document: EP

Kind code of ref document: A1