WO2024090138A1 - 弾性繊維用処理剤及びその利用 - Google Patents

弾性繊維用処理剤及びその利用 Download PDF

Info

Publication number
WO2024090138A1
WO2024090138A1 PCT/JP2023/035625 JP2023035625W WO2024090138A1 WO 2024090138 A1 WO2024090138 A1 WO 2024090138A1 JP 2023035625 W JP2023035625 W JP 2023035625W WO 2024090138 A1 WO2024090138 A1 WO 2024090138A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
treatment agent
acid
elastic fibers
elastic fiber
Prior art date
Application number
PCT/JP2023/035625
Other languages
English (en)
French (fr)
Inventor
和史 安永
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Publication of WO2024090138A1 publication Critical patent/WO2024090138A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/02Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the present invention relates to a treatment agent for elastic fibers, elastic fibers to which the treatment agent has been applied, and a method for producing elastic fibers to which the treatment agent has been applied.
  • elastic fibers have a highly elastic property, the friction between the fibers and metal generated during contact with friction bodies such as guides during the spinning process and post-processing process may be large, resulting in thread breakage. Furthermore, elastic fibers are usually wound into a cheese shape during the spinning process to form a wound yarn (hereinafter sometimes referred to as cheese), but since the fibers have viscoelasticity, they tend to stick together, and sticking may progress over time, especially in the inner layer of the wound yarn, due to the pressure applied during winding. For this reason, elastic fiber treatment agents containing silicone components, mineral oils, ester oils, etc. as smoothing components are used for the elastic fibers in order to improve smoothness and fiber sticking prevention (Patent Documents 1 to 3).
  • Elastic fibers are used as textile products by being turned into fabrics through covering and warping processes, and are scoured and dyed in the advanced processing.
  • textile products containing elastic fibers to which conventional elastic fiber treatment agents are applied may experience dyeing problems such as dye aggregation and spotted dyeing in the dyeing process.
  • elastic fiber treatment agents are often composed mainly of hydrophobic components, and generally have poor degreasing properties in the scouring process, and the treatment agent remaining on the fiber causes dyeing problems such as dye aggregation and spotted dyeing in the subsequent dyeing process. Therefore, an object of the present invention is to provide a treatment agent for elastic fibers which has excellent degreasing properties in the scouring process, elastic fibers imparted with said treatment agent, and a method for producing elastic fibers imparted with said treatment agent.
  • the present invention includes the following aspects.
  • ⁇ 4> The treatment agent for elastic fibers according to any one of ⁇ 1> to ⁇ 3>, further comprising at least one selected from the group consisting of organic phosphate esters, organic phosphate ester salts, fatty acids, and fatty acid metal salts.
  • ⁇ 5> The treatment agent for elastic fibers according to any one of ⁇ 1> to ⁇ 4>, wherein the content of Mg element detected from the treatment agent by ICP emission spectrometry is 50 ppm to 1000 ppm.
  • ⁇ 6> The treatment agent for elastic fibers according to any one of ⁇ 1> to ⁇ 5>, having an acid value of 0.01 mgKOH/g to 20 mgKOH/g.
  • Elastic fibers to which the treating agent for elastic fibers of the present invention has been applied have excellent degreasing properties in the scouring process, and therefore can reduce problems during dyeing.
  • the elastic fiber produced by the method for producing an elastic fiber of the present invention has excellent degreasing properties in the scouring process, and therefore can reduce problems during dyeing.
  • FIG. 2 is a schematic diagram illustrating a method for evaluating anti-sticking properties.
  • FIG. 4 is a schematic diagram illustrating a method for evaluating antistatic properties.
  • the treatment agent for elastic fibers, elastic fibers, and the method for producing elastic fibers of the present invention are described in detail below.
  • the treatment agent for elastic fibers of the present invention contains a mineral oil (A) having an aniline point of more than 110° C. to 170° C.
  • aniline point of the mineral oil (A) is 110°C or lower, its strong affinity with the elastic fibers will cause it to easily penetrate into the interior of the elastic fibers, resulting in poor degreasing properties, and if it exceeds 170°C, its compatibility with other components of the treatment agent for elastic fibers will be poor, resulting in poor stability as a treatment agent.
  • the aniline point of the mineral oil (A) is not particularly limited as long as it is more than 110° C.
  • the upper limit of the aniline point is preferably 160° C., more preferably 150° C., even more preferably 140° C., and particularly preferably 135° C.
  • the lower limit of the aniline point is more preferably 113° C., even more preferably 115° C., and particularly preferably 118° C.
  • 113° C. to 160° C. is preferable, and 118° C. to 150° C. is more preferable.
  • the content of mineral oil (A) in the treatment agent for elastic fibers of the present invention is preferably 10% by weight to 100% by weight in order to more effectively exert the degreasing effect of the present application.
  • the upper limit of the weight percentage is more preferably 95% by weight, even more preferably 90% by weight, and especially preferably 80% by weight.
  • the lower limit of the weight percentage is more preferably 25% by weight, even more preferably 40% by weight, and especially preferably 50% by weight. Also, for example, 25% by weight to 90% by weight is more preferable, and 40% by weight to 80% by weight is even more preferable.
  • the weight percentage of naphthene components in the mineral oil (A) is not particularly limited, but in terms of suppressing deterioration of the elastic fiber, 0% by weight to 60% by weight is preferable.
  • the upper limit of the weight percentage is more preferably 58% by weight, even more preferably 55% by weight, and especially preferably 52% by weight.
  • the lower limit of the weight percentage is more preferably 5% by weight, even more preferably 10% by weight, and especially preferably 15% by weight. Also, for example, 5% by weight to 58% by weight is more preferable, and 10% by weight to 52% by weight is even more preferable.
  • the weight percentage of the paraffin component in the mineral oil (A) is not particularly limited, but in terms of suppressing deterioration of the elastic fiber, 35% by weight to 100% by weight is preferable.
  • the upper limit of the weight percentage is more preferably 95% by weight, even more preferably 90% by weight, and especially preferably 85% by weight.
  • the lower limit of the weight percentage is more preferably 40% by weight, even more preferably 50% by weight, and especially preferably 60% by weight. Also, for example, 40% by weight to 95% by weight is more preferable, and 50% by weight to 90% by weight is even more preferable.
  • the weight percentage of the aroma component in the mineral oil (A) is not particularly limited, but from the viewpoint of suppressing deterioration of the elastic fiber, 0% to 5% by weight is preferable.
  • the upper limit of the weight percentage is more preferably 3% by weight, even more preferably 2% by weight, and especially preferably 1% by weight.
  • the lower limit of the weight percentage is more preferably 0.01% by weight, even more preferably 0.05% by weight, and especially preferably 0.1% by weight. Also, for example, 0.01% to 3% by weight is more preferable, and 0.05% to 2% by weight is even more preferable.
  • the ratio of paraffin components to 100 parts by weight of naphthene components in mineral oil (A) is not particularly limited, but in terms of suppressing deterioration of elastic fibers, it is preferably 50 parts by weight to 10,000 parts by weight.
  • the upper limit of this ratio is more preferably 1,000 parts by weight, even more preferably 750 parts by weight, and especially preferably 500 parts by weight.
  • the lower limit of this ratio is more preferably 60 parts by weight, even more preferably 80 parts by weight, and especially preferably 100 parts by weight. Also, for example, 60 parts by weight to 1,000 parts by weight is more preferable, and 100 parts by weight to 750 parts by weight is even more preferable.
  • the weight percentages of naphthene components, paraffin components and aromatic components contained in the mineral oil (A) are the values of C N %, C p % and C A % measured by the ring analysis ndM method specified in ASTM D3238.
  • the mineral oil (A) there are no particular limitations on the mineral oil (A) as long as it satisfies the aniline point, but examples include machine oil, spindle oil, and liquid paraffin. Among these, liquid paraffin is preferred as the mineral oil because it produces little odor. One or more types of mineral oil may be used in combination.
  • the content of the silicone component (B) in the treatment agent for elastic fibers of the present invention is 0% by weight to less than 50% by weight.
  • the content of the silicone component (B) in this range it is possible to prevent a highly water-repellent silicone layer from firmly covering the fiber surface and inhibiting the effect of the mineral oil (A) of the present invention, and it is believed that this allows the agent to exhibit excellent degreasing properties.
  • the weight ratio is 50% or more, even if mineral oil (A) is used, the silicone layer will tightly cover the fiber surface, or conversely, part of the silicone component will penetrate into the fiber interior, resulting in poor degreasing properties.
  • the excessive fiber/fiber friction reducing effect of the silicone may cause the cheese to have a poor winding shape.
  • the upper limit of the content is preferably 45% by weight, more preferably 40% by weight, even more preferably 35% by weight, and particularly preferably 30% by weight.
  • the lower limit of the content is preferably 1% by weight, more preferably 5% by weight, even more preferably 10% by weight, and particularly preferably 20% by weight. Also, for example, 1 to 45% by weight is preferable, and 5 to 40% by weight is more preferable.
  • the silicone component (B) used in the present invention is not particularly limited, but examples include polydimethylsiloxane, polyalkylsiloxane, polyalkylphenylsiloxane, methylhydrogen silicone oil, modified silicone, silicone resin, etc. Silicone component (B) may be used alone or in combination of two or more kinds. It may also contain unreacted silanol groups and unreacted halogen groups derived from the raw materials, polymerization catalysts, cyclic siloxanes, etc.
  • the kinetic viscosity of the silicone component (B) at 20° C. is preferably 5 to 30 mm 2 /s, more preferably 5 to 25 mm 2 /s, and even more preferably 5 to 20 mm 2 /s.
  • the average bonding amount of siloxane bonds (SiOR a R b : R a and R b each independently represent an organic group) in the silicone component (B) is preferably from 3 to 900, more preferably from 5 to 500, and even more preferably from 7 to 200.
  • the organic groups of R a and R b are hydrocarbon groups having 1 to 24 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, a hexyl group, a cyclopropyl group, a cyclohexyl group, a phenyl group, and a benzyl group, with a methyl group and a phenyl group being particularly preferred.
  • modified silicone generally refers to a structure in which at least one reactive (functional) group or non-reactive (functional) group is bonded to at least one of both ends, one end, side chain, or both ends of a polysiloxane such as dimethyl silicone (polydimethylsiloxane).
  • modified silicones include alkyl-modified silicones such as modified silicones having a long-chain alkyl group (such as an alkyl group having 6 or more carbon atoms or a 2-phenylpropyl group); ester-modified silicones, which are modified silicones having an ester bond; polyether-modified silicones, which are modified silicones having a polyoxyalkylene group (such as a polyoxyethylene group, a polyoxypropylene group, a polyoxyethyleneoxypropylene group, etc.); amino-modified silicones, which are modified silicones having an aminopropyl group or an N-(2-aminoethyl)aminopropyl group; carbinol-modified silicones, which are modified silicones having an alcoholic hydroxyl group; epoxy-modified silicones, which are modified silicones having an epoxy group such as a glycidyl group or an alicyclic epoxy group; carboxy-modified silicones, which are modified silicones having a carboxyl
  • the silicone resin mentioned above refers to an organopolysiloxane resin, which means a silicone having a three-dimensional crosslinked structure.
  • Silicone resins generally consist of at least one type of structural unit selected from monofunctional structural units (M), bifunctional structural units (D), trifunctional structural units (T) and tetrafunctional structural units (Q).
  • the silicone resin is not particularly limited, but examples include MQ silicone resin, MQT silicone resin, T silicone resin, DT silicone resin, etc., and one or more of these may be used in combination.
  • MQ silicone resin examples include silicone resins containing a monofunctional structural unit R a R b R c SiO 1/2 (wherein R a , R b and R c are all hydrocarbon groups) and a tetrafunctional structural unit SiO 4/2 .
  • MQT silicone resin examples include silicone resins containing a monofunctional structural unit R a R b R c SiO 1/2 (wherein R a , R b and R c are all hydrocarbon groups), a tetrafunctional structural unit SiO 4/2 and a trifunctional structural unit RSiO 3/2 (wherein R is a hydrocarbon group).
  • T silicone resin examples include silicone resins containing a trifunctional structural unit RSiO 3/2 (wherein R is a hydrocarbon group) (the terminus of which may be a silanol group or an alkoxy group in addition to a hydrocarbon group).
  • Examples of the DT silicone resin include a difunctional structural unit R a R b SiO 2/2 (wherein R a and R b are both hydrocarbon groups) and a trifunctional structural unit RSiO 3/2 (wherein R is a hydrocarbon group).
  • the hydrocarbon group for R, R a , R b and R c is a hydrocarbon group having 1 to 24 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, a hexyl group, a cyclopropyl group, a cyclohexyl group, a phenyl group and a benzyl group, with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a phenyl group being particularly preferred.
  • the blending ratio of the silicone resin to the entire treatment agent is preferably 0.1% to 9% by weight, more preferably 0.2% to 5% by weight, and even more preferably 0.3% to 3% by weight.
  • the blending ratio is 0.1% by weight or more, the effect of improving anti-sticking properties by adding silicone resin is improved.
  • the blending ratio is 9% by weight or less, the collapse of the outer layer is further reduced.
  • the treatment agent for elastic fibers of the present invention may contain at least one or more smoothing components selected from poly- ⁇ -olefins and ester oils in addition to the mineral oil (A) and silicone component (B) described above.
  • Poly- ⁇ -olefin is a compound obtained by polymerizing ⁇ -olefin.
  • the kinetic viscosity of poly- ⁇ -olefin at 40° C. is preferably 10 to 100 mm 2 /s, more preferably 15 to 70 mm 2 /s, and even more preferably 15 to 50 mm 2 /s, in order to obtain good smoothness against metal.
  • the kinetic viscosity of poly- ⁇ -olefin compound is measured in accordance with JIS K 2283.
  • the poly- ⁇ -olefin is preferably a trimer to octamer of an ⁇ -olefin having a carbon number of 6 to 18.
  • the poly- ⁇ -olefin mainly contains a trimer to octamer of ⁇ -decene (having 10 carbon atoms) or a trimer to octamer of ⁇ -dodecene (having 12 carbon atoms), as well as dimers, pentamers, or higher thereof.
  • a suitable example of the production of poly- ⁇ -olefins is synthesis of an ⁇ -olefin having 6 to 18 carbon atoms by low polymerization of ethylene or thermal decomposition of wax, followed by polymerizing and hydrogenating 3 to 8 units of this ⁇ -olefin.
  • the average number of carbon atoms per molecule of the poly- ⁇ -olefin is not particularly limited as long as it is within the above-mentioned range of kinematic viscosity at 40° C., but is preferably 18 to 150, more preferably 24 to 140, and even more preferably 30 to 100.
  • the weight percentage of poly-alpha-olefin in the treatment agent is not particularly limited, but is preferably 1 to 80% by weight in terms of obtaining good smoothness against metal.
  • the upper limit of the weight percentage is more preferably 70% by weight, even more preferably 60% by weight, and especially preferably 50% by weight.
  • the lower limit of the weight percentage is more preferably 5% by weight, even more preferably 10% by weight, and especially preferably 20% by weight. Also, for example, 5 to 70% by weight is more preferable, and 10 to 60% by weight is even more preferable.
  • poly-alphaolefins there are no particular limitations on the poly-alphaolefins, but examples include Nippon Steel Sumikin Chemical Co., Ltd.'s product name PAO201, Nippon Steel Sumikin Chemical Co., Ltd.'s product name PAO401, Nippon Steel Sumikin Chemical Co., Ltd.'s product name PAO601, Nippon Steel Sumikin Chemical Co., Ltd.'s product name PAO801, Lion Specialty Chemicals Co., Ltd.'s product name Lipolube 40, Lion Specialty Chemicals Co., Ltd.'s product name Lipolube 60, Lion Specialty Chemicals Co., Ltd.'s product name Lipolube 80, etc.
  • the treatment agent for elastic fibers of the present invention may contain an ester oil as a smoothing component other than the mineral oil (A) and the silicone component (B) explained above.
  • the weight percentage of the ester oil in the treatment agent is not particularly limited, but is preferably 1 to 80% by weight.
  • the upper limit of the weight percentage is more preferably 70% by weight, even more preferably 60% by weight, and particularly preferably 50% by weight.
  • the lower limit of the weight percentage is more preferably 5% by weight, even more preferably 10% by weight, and particularly preferably 20% by weight. Also, for example, 5 to 70% by weight is more preferable, and 10 to 60% by weight is even more preferable.
  • the ester oil is not particularly limited as long as it is at least one selected from esters of monohydric alcohols and monocarboxylic acids, esters of monohydric alcohols and polycarboxylic acids, and esters of polyhydric alcohols and monocarboxylic acids.
  • monohydric alcohol monohydric aliphatic alcohols, aromatic alcohols, alicyclic alcohols, phenols, etc., as described below, can be used. Among these, at least one selected from monohydric aliphatic alcohols and aromatic alcohols is preferred.
  • the monohydric aliphatic alcohol is not particularly limited, and examples thereof include octanol, 2-ethylhexanol, 1-nonanol, 1-decanol, undecyl alcohol, lauryl alcohol, tridecyl alcohol, isotridecyl alcohol, myristyl alcohol, pentadecyl alcohol, 1-hexadecanol, palmitoleic alcohol, 1-heptadecanol, stearyl alcohol, oleyl alcohol, isostearyl alcohol, nonadecyl alcohol, 1-eicosanol, behenyl alcohol, 1-tetracosanol, erucyl alcohol, lignoceryl alcohol, etc.
  • the monohydric aliphatic alcohol has a branch
  • the number of branches, the branch chain length, or the position of the branch there is no particular limit to the number of branches, the branch chain length, or the position of the branch.
  • the aromatic alcohol include phenol and benzyl alcohol.
  • the alicyclic alcohol include cyclooctanol, cyclododecanol, cyclohexanol, cycloheptanol, cyclopentanol, and menthol.
  • the polyhydric alcohol is not particularly limited, but examples include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, cyclohexanediol, glycerin, diglycerin, triglycerin, tetraglycerin, hexaglycerin, decaglycerin, polyglycerin, sorbitol, trimethylolpropane, and pentaerythritol.
  • the monovalent carboxylic acid the monovalent aliphatic carboxylic acid, aromatic carboxylic acid, hydroxycarboxylic acid, etc. described below can be used. Among these, the monovalent aliphatic carboxylic acid and aromatic carboxylic acid are preferred.
  • the monovalent carboxylic acid there are no particular limitations on the monovalent carboxylic acid, but examples include valeric acid, caproic acid, enanthic acid, caprylic acid, 2-ethylhexyl acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, oleic acid, isostearic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, behenic acid, lignoceric acid, cetyronic acid, and benzoic acid.
  • Polycarboxylic acids are not particularly limited, but examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, phthalic acid, trimellitic acid, pyromellitic acid, citric acid, and isocitric acid.
  • ester oils include, but are not limited to, heptyl valerate, heptyl caproate, octyl caproate, cetyl caprylate, isooctyl laurate, isopropyl myristate, isopropyl palmitate, isostearyl palmitate, butyl stearate, octyl stearate, oleyl laurate, isotridecyl stearate, octyl stearate, isooctyl stearate, tridecyl stearate, isobutyl stearate, methyl oleate, isobutyl oleate, heptyl oleate, oleyl oleate, polyethylene glycol dilaurate, polyethylene glycol dimyristate, polyethylene glycol dioleate, polyethylene glycol distearate, polypropylene glycol dilaurate, poly
  • the elastic fiber treating agent of the present invention may further contain at least one selected from fatty acids and fatty acid metal salts.
  • the total weight ratio of the fatty acids and fatty acid metal salts in the treating agent is not particularly limited, but is preferably 0.001% by weight to 5% by weight.
  • the upper limit of the weight ratio is more preferably 3% by weight, even more preferably 1.5% by weight, and particularly preferably 1% by weight.
  • the lower limit of the weight ratio is more preferably 0.01% by weight, even more preferably 0.05% by weight, and particularly preferably 0.15% by weight. Also, for example, 0.01% by weight to 3% by weight is more preferable, and 0.05% by weight to 1.5% by weight is even more preferable.
  • the fatty acids and fatty acid metal salts include fatty acids having 8 to 22 carbon atoms and/or monovalent to trivalent metal salts thereof.
  • Examples of fatty acids include 2-ethylhexyl acid, lauric acid, palmitic acid, myristic acid, stearic acid, hydroxystearic acid, behenic acid, and tribehenic acid.
  • fatty acid metal salts include calcium laurate, calcium palmitate, barium myristate, magnesium myristate, magnesium palmitate, magnesium laurate, magnesium stearate, magnesium 2-ethylhexylate, zinc behenate, aluminum tribehenate, calcium stearate, calcium 2-ethylhexylate, aluminum stearate, aluminum palmitate, barium stearate, zinc caprate, zinc stearate, and the like.
  • These fatty acids and fatty acid metal salts are preferably at least one selected from fatty acids having 12 to 18 carbon atoms and their alkaline earth metal salts in terms of preventing sticking in the inner layer of the cheese, more preferably at least one selected from lauric acid, myristic acid, palmitic acid, stearic acid and their alkaline earth metal salts, still more preferably at least one selected from magnesium laurate, magnesium myristate, magnesium palmitate and magnesium stearate, and particularly preferably at least one selected from magnesium myristate, magnesium palmitate and magnesium stearate.
  • lauric acid myristic acid, palmitic acid, stearic acid and their alkaline earth metal salts
  • magnesium laurate magnesium myristate, magnesium palmitate and magnesium stearate
  • magnesium myristate, magnesium palmitate and magnesium stearate magnesium myristate, magnesium palmitate and magnesium stearate.
  • magnesium myristate, magnesium palmitate and magnesium stearate may be used.
  • the elastic fiber treatment agent of the present invention may further contain at least one selected from organic phosphate esters and organic phosphate ester salts.
  • the weight ratio of the organic phosphate esters and organic phosphate ester salts in the treatment agent is not particularly limited, but is preferably 0.1% by weight to 10% by weight.
  • the upper limit of the weight ratio is more preferably 5% by weight, even more preferably 3% by weight, and particularly preferably 1% by weight.
  • the lower limit of the weight ratio is more preferably 0.2% by weight, even more preferably 0.4% by weight, and particularly preferably 0.5% by weight. Also, for example, 0.2% by weight to 5% by weight is more preferable, and 0.4% by weight to 3% by weight is even more preferable.
  • Organophosphate esters are not particularly limited as long as they contain at least one hydrocarbon group or oxyalkylene group in the molecule, but examples include hexyl phosphate, octyl phosphate, decyl phosphate, dodecyl phosphate, tetradecyl phosphate, hexadecyl phosphate, octadecyl phosphate, behenyl phosphate, trioctacosanyl phosphate, octadecenyl phosphate, 2-ethylhexyl phosphate, isoheptyl phosphate, isooctyl phosphate, isononyl phosphate, isodecyl phosphate, isoundecyl phosphate, isododecyl phosphate, isotridecyl phosphate, isotetradecyl phosphate, isohexyl phosphate, and the like
  • organic phosphate ester examples include decyl phosphate ester, isooctadecyl phosphate ester, t-butyl phosphate ester, benzyl phosphate ester, octylphenyl phosphate ester, cyclohexyl phosphate ester, hexadecyl ether phosphate ester with 5 moles of polyoxyethylene added, hexadecyl ether phosphate ester with 15 moles of polyoxyethylene added, secondary alkyl ether phosphate ester with 7 moles of polyoxyethylene added and 3.5 moles of polyoxypropylene added, dodecyl phosphate ester with 2 moles of polyoxyethylene added, secondary alkyl ether phosphate ester with 3 moles of polyoxyethylene added, dodecyl ether phosphate ester with 2 moles of polyoxyethylene added, phenol phosphate ester with 4 moles of polyoxyethylene added, etc.
  • the organic phosphate salts include alkali metal salts and/or alkaline earth metal salts.
  • alkali metal and alkaline earth metal which form a salt with the organic phosphate sodium, potassium, calcium and magnesium are preferred, calcium and magnesium are more preferred, and magnesium is particularly preferred.
  • the treatment agent for elastic fibers of the present invention may further contain at least one other component selected from higher alcohols, polyhydric alcohols, organic amines, nonionic surfactants, cationic surfactants and anionic surfactants, in addition to the components described above.
  • the other components may be used.
  • the higher alcohol is not particularly limited, and examples thereof include linear and/or branched alcohols having 6 to 30 carbon atoms. Specific examples thereof include linear alcohols such as hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eicosanol, heneicosanol, docosanol, tricosanol, tetracosanol, pentacosanol, hexacosanol, heptacosanol, octacosanol, nonacosanol, and triacosanol; 2-ethylhexanol, 2-propylh
  • branched alkanols such as hexenol, isotridecanol, and 3,5,5-trimethylhexanol; straight-chain alkenols such as hexenol, heptenol, octenol, nonenol, decenol, undecenol, dodecenol, tridecenol, tetradecenol, pentadecenol, hexadecenol, pentadecenol, hexadecenol, heptadecenol, octadecenol, nonadecenol, eisenol, docosenol, tetracosenol, pentacosenol, hexacosenol, heptacosenol, octacosenol, nonacosenol, and triaconseno
  • the organic amine is not particularly limited as long as it contains at least one hydrocarbon group or oxyalkylene group in the molecule, but examples include laurylamine, myristylamine, cetylamine, stearylamine, oleylamine, diethylamine, dioctylamine, distearylamine, methylstearylamine, polyoxypropylene-added laurylamine, polyoxyethylene-added laurylamine, polyoxyethylene-added stearylamine, polyoxyethylene-added oleylamine, monoethanolamine, diethylethanolamine, dibutylethanolamine, triethanolamine, laurylethanolamine, trioctylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylstearylamine, etc.
  • Nonionic surfactants include, but are not limited to, polyoxyalkylene alkyl ethers having an alkyl group of 8 to 22 carbon atoms (oxyalkylene is 1 to 20 moles, the oxyalkylene is oxyethylene and/or oxypropylene, and is random and/or block), alkylene oxide adducts of polyhydric alcohols such as sorbitan fatty acid esters and oxyalkylene adducts of sorbitan fatty acid esters (oxyalkylene is 1 to 20 moles, the oxyalkylene is oxyethylene and/or oxypropylene, and is random and/or block), alkylphenols having an alkyl group of 6 to 22 carbon atoms, oxyalkylene adducts of alkylphenols having an alkyl group of 6 to 22 carbon atoms (oxyalkylene is 1 to 20 moles, the oxyalkylene is oxyethylene and/or oxypropylene, and is random and/or block),
  • the cationic surfactant is not particularly limited, but examples thereof include the organic amines and/or their salts, as well as quaternary ammonium salts. Specific examples of quaternary ammonium salts include didecyldimethylammonium salts, decyltrimethylammonium salts, dioctyldimethylammonium salts, and octyltrimethylammonium salts. These cationic surfactants may be used alone or in combination of two or more.
  • the anionic surfactant is not particularly limited, but examples thereof include alkane sulfonic acid and/or its salt, dialkyl sulfosuccinic acid and/or its salt, alkyl benzene sulfonic acid and/or its salt, alkyl naphthalene sulfonic acid and/or its salt, alkyl sulfuric acid and/or its salt, polyoxyethylene alkyl ether sulfuric acid and/or its salt, polyoxyethylene alkyl ether acetic acid and/or its salt, etc.
  • alkane sulfonic acid and/or its salt having an alkyl group with 6 to 22 carbon atoms dialkyl sulfosuccinic acid ester and/or its salt, alkyl benzene sulfonic acid and/or its salt having an alkyl group with 6 to 22 carbon atoms, alkyl sulfuric acid and/or its salt having an alkyl group with 1 to 20 carbon atoms, polyoxyethylene alkyl ether sulfuric acid and/or its salt having an alkyl group with 6 to 22 carbon atoms, polyoxyethylene alkyl ether acetic acid and/or its salt having an alkyl group with 6 to 22 carbon atoms, etc.
  • anionic surfactants may be used alone or in combination.
  • the treatment agent for elastic fibers of the present invention contains mineral oil (A), the aniline point of which is greater than 110°C and less than 170°C, and the content of silicone component (B) is 0% by weight to less than 50% by weight.
  • the weight ratio of the silicone component (B) to 100 parts by weight of the mineral oil (A) contained in the elastic fiber treatment agent of the present invention is not particularly limited, but is preferably 5 parts by weight to 80 parts by weight in terms of obtaining excellent degreasing properties.
  • the upper limit of the weight ratio is more preferably 70 parts by weight, even more preferably 50 parts by weight, and particularly preferably 40 parts by weight.
  • the lower limit of the weight ratio is more preferably 10 parts by weight, even more preferably 20 parts by weight, and particularly preferably 25 parts by weight. Also, for example, 10 parts by weight to 70 parts by weight is more preferable, and 20 parts by weight to 50 parts by weight is even more preferable.
  • the elastic fiber treatment agent of the present invention further contains at least one selected from organic phosphate esters, organic phosphate ester salts, fatty acids, and fatty acid metal salts.
  • the content of organic phosphate esters, organic phosphate ester salts, fatty acids, and fatty acid metal salts in the treatment agent is not particularly limited, but is preferably 0.001% to 10% by weight.
  • the upper limit of the content is more preferably 5% by weight, even more preferably 3% by weight, and particularly preferably 1% by weight.
  • the lower limit of the content is more preferably 0.01% by weight, even more preferably 0.05% by weight, and particularly preferably 0.15% by weight.
  • organic phosphate esters organic phosphate ester salts, fatty acids, and fatty acid metal salts may be used in combination.
  • the magnesium element content detected by ICP emission spectrometry is preferably 50 ppm to 1000 ppm, since it has excellent anti-sticking properties in the inner layer of the cheese.
  • the upper limit of the content is more preferably 850 ppm, even more preferably 700 ppm, and particularly preferably 500 ppm.
  • the lower limit of the content is more preferably 60 ppm, even more preferably 70 ppm, and particularly preferably 80 ppm. Also, for example, 60 ppm to 850 ppm is more preferable, and 70 ppm to 700 ppm is even more preferable.
  • the method for measuring the magnesium element content by ICP emission spectrometry is the method described in the Examples.
  • the magnesium element contained in the elastic fiber treatment agent of the present invention is preferably derived from a magnesium-containing compound.
  • the magnesium-containing compound is not particularly limited as long as it is a compound containing magnesium element, but examples thereof include magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium sulfonate, hydrotalcite, the above-mentioned magnesium salt of fatty acid, magnesium salt of organic phosphate, etc., and magnesium salt of fatty acid and magnesium salt of organic phosphate are preferred in terms of further excellent anti-sticking property in the inner layer part of cheese.
  • the acid value of the elastic fiber treatment agent of the present invention is preferably 0.01 mgKOH/g to 20 mgKOH/g, since excellent antistatic properties can be obtained.
  • the upper limit of the acid value is more preferably 15 mgKOH/g, even more preferably 10 mgKOH/g, and particularly preferably 5 mgKOH/g.
  • the lower limit of the acid value is more preferably 0.1 mgKOH/g, even more preferably 0.5 mgKOH/g, and particularly preferably 1 mgKOH/g. Also, for example, 0.1 mgKOH/g to 15 mgKOH/g is more preferable, and 0.5 mgKOH/g to 10 mgKOH/g is even more preferable.
  • the method for measuring the acid value of the elastic fiber treatment agent is the method described in the Examples.
  • the moisture content of the elastic fiber treatment agent of the present invention is preferably 0 ppm to 1000 ppm, since excessive fiber/fiber friction reduction caused by the treatment agent is appropriately suppressed.
  • the upper limit of the moisture content is more preferably 500 ppm, even more preferably 300 ppm, and especially preferably 200 ppm.
  • the lower limit of the moisture content is more preferably 1 ppm, even more preferably 10 ppm, and especially preferably 100 ppm. Also, for example, 1 ppm to 500 ppm is more preferable, and 10 ppm to 300 ppm is even more preferable.
  • the moisture content of the elastic fiber treatment agent is measured by the method described in the Examples.
  • the kinetic viscosity at 30° C. of the treatment agent for elastic fibers of the present invention is not particularly limited, but from the viewpoint of spinning stability, it is preferably 8 to 40 mm 2 /s, more preferably 9 to 30 mm 2 /s, and even more preferably 9 to 20 mm 2 /s.
  • the method for producing the elastic fiber treatment agent of the present invention is not particularly limited, and known methods can be adopted. For example, some components may be blended in advance and mixed with other components, or all components may be mixed at once.
  • the elastic fiber treatment agent of the present invention contains a higher fatty acid metal salt, it may be produced by mixing a higher fatty acid metal salt that has already been pulverized with a smooth component, etc., or by mixing a higher fatty acid metal salt with a smooth component, etc., and pulverizing it to a predetermined average particle size using a conventionally known wet pulverizer.
  • the elastic fiber of the present invention is an elastic fiber body to which the treatment agent for elastic fibers of the present invention has been applied.
  • the adhesion ratio of the treatment agent for elastic fibers to the entire elastic fiber is not particularly limited, but is preferably 0.1 to 15% by weight, and more preferably 0.5 to 10% by weight.
  • the method for applying the treatment agent for elastic fibers of the present invention to the elastic fiber body is not particularly limited, and any known method can be used.
  • the elastic fiber (elastic fiber body) of the present invention is an elastic fiber made of polyether polyurethane, polyester polyurethane, polyether ester elastomer, polyester elastomer, polyethylene elastomer, polyamide elastomer, etc., and its elongation is usually 100% or more. If the elongation is 300% or more, it is preferable because it can be used for any application such as warp knitting, circular knitting, and covering.
  • the elastic fiber of the present invention is not particularly limited, but is preferably composed of polyurethane or polyurethane urea, which is prepared by reacting PTMG or polyester diol with an organic diisocyanate, and then chain-extending with 1,4-butanediol, ethylenediamine, propylenediamine, pentanediamine, or the like.
  • PTMG polytetramethylene glycol
  • MDI diphenylmethane diisocyanate
  • the elastic fiber body of the present invention may contain inorganic substances such as titanium oxide, magnesium oxide, hydrotalcite, zinc oxide, and divalent metal soaps.
  • divalent metal soaps include calcium 2-ethylhexylate, calcium stearate, calcium palmitate, magnesium stearate, magnesium palmitate, magnesium laurate, barium stearate, zinc caprate, zinc behenate, and zinc stearate.
  • One or more types of inorganic substances may be used.
  • the treatment agent for elastic fibers of the present invention can be suitably used when the elastic fiber body contains an inorganic substance.
  • the content of inorganic substances in the elastic fiber body there is no particular limit to the content of inorganic substances in the elastic fiber body, but 0.01 to 5% by weight is preferable, and 0.1 to 3% by weight is even more preferable.
  • the elastic fiber of the present invention can be used as fabrics by processing yarns such as covering yarns such as CSY, single covering, PLY, and air covering, or by circular knitting, tricot, etc. These processed yarns and fabrics are also used to impart elasticity for comfort to products that require elasticity, such as stockings, socks, underwear, and swimwear, as well as outerwear such as jeans and suits. More recently, they have also been used in disposable diapers.
  • the method for producing elastic fiber of the present invention is obtained by oiling the elastic fiber with the elastic fiber treatment agent of the present invention.
  • the oiling method of the treatment agent a method of attaching the agent to the elastic fiber in the spinning process of the elastic fiber by a neat oiling method without dilution is preferable.
  • a known method such as a roller oiling method, a guide oiling method, a spray oiling method, etc. can be applied.
  • the oiling roller is generally located between the die and the winding traverse.
  • the aniline point of the mineral oil (A) was measured in accordance with JIS K 2256.
  • the acid value of the treatment agent was measured in accordance with JIS K 2501.
  • the moisture content of the treatment agent was measured in accordance with JIS K0068.
  • FIG. 1 a cheese (1) made of fibers to which a treatment agent was applied was set on the unwinding side of the unwinding speed ratio measuring machine, and a paper tube (2) was set on the winding side. After the winding speed was set to a constant speed, the rollers (3) and (4) were started simultaneously. In this state, almost no tension was applied to the yarn (5), so the yarn stuck on the cheese and did not come off, and the unwinding point (6) was in the state shown in FIG. 1. Since the unwinding point (6) of the yarn (5) from the cheese changes by changing the unwinding speed, the unwinding speed was set so that this point coincided with the contact point (7) between the cheese and the roller.
  • Unwinding speed ratio (%) ((winding speed - unwinding speed) / unwinding speed) x 100 Formula (1)
  • the unwinding speed ratio (%) at the time when the remaining amount of the cheese wound was 50 g or less was defined as the unwinding speed ratio (%) of the inner layer part, and anti-sticking ability was evaluated as pass with a score of ⁇ or higher based on the following index.
  • Unwinding speed ratio is less than 100 (very good) ⁇ : Unwinding speed ratio is 100 or more and less than 130 (good) ⁇ : Unwinding speed ratio is 130 or more and less than 180 (slightly poor) ⁇ : Unwinding speed ratio is 180 or more (bad)
  • polyoxyethylene 9-mol adduct lauryl ether and water were placed in a mini color dyeing pot (manufactured by Texam Giken Co., Ltd.) as a scouring agent, and Marpon A-20 (manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) was added as a chelating agent to prepare a scouring bath with a scouring agent concentration of 5 g/L.
  • the interwoven fabric was then placed in a scouring bath and treated with a mini-color.
  • the bath ratio (interwoven fabric weight: dyeing bath weight) was 1:10.
  • the scouring bath was heated to 90°C and kept at 90°C for 30 minutes.
  • the scouring bath was then cooled and discarded, and the fabric was washed with hot water for 1 minute and then washed with water.
  • the interwoven fabric obtained was dehydrated by centrifugation and dried at 90°C for 1 hour to obtain a scouring interwoven fabric.
  • the resulting scoured interwoven fabric was extracted with n-hexane for 2 hours in a Soxhlet extractor, and the amount of residual oil was measured, which means the weight percent of the treatment agent extracted relative to the fiber.
  • the oil content of the mixed knitted fabric (grey) before the scouring treatment was 1.98% by Soxhlet extraction.
  • the oil removal rate (%) was calculated by the following formula (2).
  • Example 1 to 12 and Comparative Examples 1 to 10 (Preparation of spinning dope) Polytetramethylene ether glycol having a number average molecular weight of 2000 was reacted with 4,4'-diphenylmethane diisocyanate in a molar ratio of 1:2, and then chain extension was performed using a dimethylformamide solution of 1,2-diaminopropane to obtain a dimethylformamide solution with a polymer concentration of 27%.
  • the viscosity at 30°C was 1500 mPaS.
  • the polyurethane spinning dope was discharged into a 190°C N2 stream and dry spun.
  • a treatment agent prepared using the components shown in Tables 2 to 5 (the blending amounts in the tables are in weight %) was applied to the running yarn at 6 weight % relative to the fiber using an oiling roller, and the yarn was then wound around a bobbin at a speed of 500 m per minute to obtain a 22 dtex monofilament cheese (winding amount 400 g).
  • the evaluation results of the performance of the treatment agent using the obtained cheese are shown in Tables 2 to 5.
  • the aniline points, naphthene components, paraffin components and aromatic components of the mineral oils used in Tables 2 to 5 were as shown in Table 1.
  • b-1 Dimethyl silicone having a kinetic viscosity of 10 mm 2 /s at 25° C.
  • b-2 Dimethyl silicone having a kinetic viscosity of 6 mm 2 /s at 25° C.
  • b-3 Silicone resin (MQ resin) (500 mm 2 /s (25° C.))
  • b-4 Polyether modified silicone
  • c-1 2-ethylhexyl stearate
  • c-2 polyalphaolefin having a kinematic viscosity of 19 mm 2 /s at 40° C.
  • e-1 Magnesium stearate: average particle size 0.5 ⁇ m, needle-shaped (1:5)
  • e-2 Palmitic acid
  • Examples 1 to 12 use mineral oils whose aniline points are greater than 110°C and less than 170°C, and the content of silicone component (B) is 0% by weight to less than 50% by weight, thereby solving the problem of the present application.
  • Comparative Examples 1 to 10 do not use a mineral oil whose aniline point satisfies the range of more than 110°C and not more than 170°C, or the content of the silicone component (B) is not 0% by weight to less than 50% by weight, and therefore the degreasing property, which is the issue of the present application, is insufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

精練工程での脱脂性に優れる弾性繊維用処理剤及び該処理剤が付与された弾性繊維及び該処理剤が付与された弾性繊維の製造方法を提供する。 鉱物油(A)を含有する弾性繊維用処理剤であって、前記鉱物油(A)のアニリン点が110℃超~170℃であり、シリコーン成分(B)の含有量が0重量%~50重量%未満である、弾性繊維用処理剤。前記鉱物油(A)に占めるナフテン成分の含有量が0重量%~60重量%であるとこのましい。

Description

弾性繊維用処理剤及びその利用
 本発明は弾性繊維用処理剤、該処理剤が付与された弾性繊維及び該処理剤が付与された弾性繊維の製造方法に関する。
 弾性繊維は、伸縮性に富んだ性質を有しているために、製糸工程、後加工工程において、ガイド等の摩擦体との接触時に発生する繊維/金属間摩擦が大きく、糸切れが発生する場合がある。また、弾性繊維はその製糸工程において通常、チーズ形状に巻き取られ、捲糸体(以下、チーズということもある)となるが、繊維が粘弾性を有するため膠着し易く、特に捲糸体の内層部においては、巻き取り時にかかる圧力により膠着が経時的に進行する場合がある。
 そのため、弾性繊維には、平滑性及び繊維膠着防止性を改善する目的でシリコーン成分、鉱物油及びエステル油等を平滑成分とした弾性繊維用処理剤が用いられている。(特許文献1~3)
日本国特開昭57-128276 日本国特開昭58-104283 日本国特開2001-115377
 弾性繊維は、その用途としてカバリング加工や整経加工などを経て布帛となり、繊維製品として使用されるが、その際の高次加工において精練・染色される。しかし、従来の弾性繊維用処理剤が付着した弾性繊維を含む繊維製品では、染色工程において染料凝集や斑染め等の染色トラブルが発生する場合があった。染色工程における染料凝集や斑染め等の原因を調査した結果、弾性繊維用処理剤が疎水性成分を中心に構成されている場合が多く、概して精練工程における脱脂性に劣り、繊維上に残った処理剤が、続く染色工程において染料凝集や斑染め等の染色トラブル発生の原因となることを見出した。
 従って、本発明の目的は精練工程での脱脂性に優れる弾性繊維用処理剤及び該処理剤が付与された弾性繊維及び該処理剤が付与された弾性繊維の製造方法を提供することにある。
 本発明者は係る従来の技術背景に鑑み鋭意検討した結果、特定の鉱物油(A)及び任意選択でシリコーン成分(B)を含有し、シリコーン成分(B)の含有量が特定の範囲である弾性繊維用処理剤を使用することにより、上記課題を解決することを見出し、本発明に到達した。
 すなわち本発明は、以下の態様が含まれる。
<1> 鉱物油(A)を含有する弾性繊維用処理剤であって、前記鉱物油(A)のアニリン点が110℃超~170℃であり、シリコーン成分(B)の含有量が0重量%~50重量%未満である弾性繊維用処理剤。
<2> 前記鉱物油(A)に占めるナフテン成分の含有量が0重量%~60重量%である、<1>に記載の弾性繊維用処理剤。
<3> 前記鉱物油(A)に占めるナフテン成分100重量部に対する、パラフィン成分の比率が、50重量部~10000重量部である、<1>又は<2>に記載の弾性繊維用処理剤。
<4> 有機リン酸エステル、有機リン酸エステル塩、脂肪酸及び脂肪酸金属塩から選ばれる少なくとも1種をさらに含有する、<1>~<3>のいずれかに記載の弾性繊維用処理剤。
<5> ICP発光分析法によって処理剤から検出されるMg元素の含有量が50ppm~1000ppmである、<1>~<4>のいずれかに記載の弾性繊維用処理剤。
<6> 酸価が0.01mgKOH/g~20mgKOH/gである、<1>~<5>のいずれかに記載の弾性繊維用処理剤。
<7> <1>~<6>のいずれかに記載の弾性繊維用処理剤を弾性繊維本体に対して付与してなる、弾性繊維。
<8> <1>~<6>のいずれかに記載の弾性繊維用処理剤を弾性繊維本体に対して付与する工程を含む、弾性繊維の製造方法。
 本発明の弾性繊維用処理剤が付与されてなる弾性繊維は、精練工程での脱脂性に優れるため、染色時のトラブルを低減できる。
 本発明の弾性繊維の製造方法で製造した弾性繊維は、精練工程での脱脂性に優れるため、染色時のトラブルを低減できる。
膠着防止性の評価方法を説明する模式図。 制電性の評価方法を説明する模式図。
 本発明の弾性繊維用処理剤、弾性繊維及び弾性繊維の製造方法について、以下に詳細に説明する。
〔鉱物油(A)〕
 本発明の弾性繊維用処理剤はアニリン点が110℃超~170℃である鉱物油(A)を含む。鉱物油(A)のアニリン点が該範囲であることで、鉱物油(A)と弾性繊維との親和性が強くなり過ぎることなく、鉱物油(A)自身のみならず他の処理剤成分も含めて弾性繊維内部への過度な浸透を抑制できるため、優れた脱脂性を発揮できると考えている。
 一方、鉱物油(A)のアニリン点が110℃以下であると、弾性繊維との強い親和性により弾性繊維内部へ浸透しやすくなるため脱脂性が悪くなり、170℃超であると他の弾性繊維用処理剤成分との相溶性が悪くなり、処理剤としての安定性が悪くなる。
 鉱物油(A)のアニリン点は110℃超~170℃であれば特に限定はないが、本願の効果である脱脂性をより発揮できる観点で、該アニリン点の上限は、160℃が好ましく、150℃がより好ましく、140℃がさらに好ましく、135℃が特に好ましい。一方、該アニリン点の下限は、113℃がより好ましく、115℃がさらに好ましく、118℃が特に好ましい。また、例えば113℃~160℃が好ましく、118℃~150℃がより好ましい。
 本発明の弾性繊維用処理剤に占める鉱物油(A)の含有割合は、本願の効果である脱脂性をより効果的に発揮する観点で10重量%~100重量%が好ましい。該重量割合の上限は、より好ましくは95重量%、さらに好ましくは90重量%、特に好ましくは80重量%である。一方、該重量割合の下限はより好ましくは25重量%、さらに好ましくは40重量%、特に好ましくは50重量%である。また、例えば25重量%~90重量%がより好ましく、40重量%~80重量%がさらに好ましい。
 鉱物油(A)に占めるナフテン成分の重量割合は特に限定はないが、弾性繊維の劣化を抑制する点で0重量%~60重量%が好ましい。該重量割合の上限は、より好ましくは58重量%、さらに好ましくは55重量%、特に好ましくは52重量%である。一方、該重量割合の下限はより好ましくは5重量%、さらに好ましくは10重量%、特に好ましくは15重量%である。また、例えば5重量%~58重量%がより好ましく、10重量%~52重量%がさらに好ましい。
 鉱物油(A)に占めるパラフィン成分の重量割合は特に限定はないが、弾性繊維の劣化を抑制する点で35重量%~100重量%が好ましい。該重量割合の上限は、より好ましくは95重量%、さらに好ましくは90重量%、特に好ましくは85重量%である。一方、該重量割合の下限はより好ましくは40重量%、さらに好ましくは50重量%、特に好ましくは60重量%である。また、例えば40重量%~95重量%がより好ましく、50重量%~90重量%がさらに好ましい。
 鉱物油(A)に占めるアロマ成分の重量割合は特に限定はないが、弾性繊維の劣化を抑制する点で0重量%~5重量%が好ましい。該重量割合の上限は、より好ましくは3重量%、さらに好ましくは2重量%、特に好ましくは1重量%である。一方、該重量割合の下限はより好ましくは0.01重量%、さらに好ましくは0.05重量%、特に好ましくは0.1重量%である。また、例えば0.01重量%~3重量%がより好ましく、0.05重量%~2重量%がさらに好ましい。
 鉱物油(A)に占めるナフテン成分100重量部に対する、パラフィン成分の比率は、特に限定はないが、弾性繊維の劣化を抑制する点で、50重量部~10000重量部であると好ましい。該比率の上限は、より好ましくは1000重量部、さらに好ましくは750重量部、特に好ましくは500重量部である。一方、該比率の下限はより好ましくは60重量部、さらに好ましくは80重量部、特に好ましくは100重量部である。また、例えば60重量部~1000重量部がより好ましく、100重量部~750重量部がさらに好ましい。
 尚、本発明における、鉱物油(A)に含まれるナフテン成分、パラフィン成分及びアロマ成分の重量割合は、ASTMのD3238に規定された環分析n-d-M法により測定されたC%、C%、C%の値である。
 鉱物油(A)としては前記アニリン点を満たすものであれば特に限定は無いが、マシン油、スピンドル油、流動パラフィン等を挙げることができる。これらの中でも、鉱物油としては、臭気の発生が低いという理由から、流動パラフィンが好ましい。鉱物油は、1種又は2種以上を併用してもよい。
〔シリコーン成分(B)〕
 本発明の弾性繊維用処理剤はシリコーン成分(B)の含有量が0重量%~50重量%未満である。シリコーン成分(B)の含有量が該範囲であることで、撥水性の高いシリコーン層が繊維表面を強固に覆って本発明の鉱物油(A)の効果を阻害してしまうことを抑制できるため、優れた脱脂性を発揮できると考えている。
 一方、該重量割合が50重量%以上であると、鉱物油(A)を使用しているといえどもシリコーン層が繊維表面を強固に覆ってしまったり、また逆にシリコーン成分の一部が繊維内部に浸透したりして、脱脂性に劣る。また、シリコーンの過剰な繊維/繊維間摩擦低下効果により、チーズの巻き形状が悪くなる場合がある。
 該含有量の上限は好ましくは45重量%、より好ましくは40重量%、さらに好ましくは35重量%、特に好ましくは30重量%である。一方、該含有量の下限は好ましくは1重量%、より好ましくは5重量%、さらに好ましくは10重量%、特に好ましくは20重量%である。また、例えば1重量%~45重量%が好ましく、5重量%~40重量%がより好ましい。
 本発明に用いられるシリコーン成分(B)としては、特に限定はないが、ポリジメチルシロキサン、ポリアルキルシロキサン、ポリアルキルフェニルシロキサン、メチルハイドロジェンシリコーンオイル、変性シリコーン、シリコーンレジン等を挙げることができる。シリコーン成分(B)は1種または2種以上を併用してもよい。また、原料由来の未反応シラノール基や未反応のハロゲン基、重合触媒、環状シロキサン等を含んでいてもよい。
 シリコーン成分(B)の20℃における動粘度は、5~30mm/sが好ましく、5~25mm/sがより好ましく、5~20mm/sがさらに好ましい。該動粘度が5mm/s以上であるとシリコーン成分の揮発が低減し、30mm/s以下であると、処理剤に配合される他成分の溶解性が向上する。
 シリコーン成分(B)のシロキサン結合(SiOR:R及びRは、それぞれ独立して、有機基を示す)の平均結合量は、3~900が好ましく、5~500がより好ましく、7~200がさらに好ましい。R、Rの有機基は、炭素数1~24の炭化水素基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ヘキシル基、シクロプロピル基、シクロヘキシル基、フェニル基、ベンジル基等を挙げることができ、特に、メチル基、フェニル基が好ましい。
 上記変性シリコーンとは、一般には、ジメチルシリコーン(ポリジメチルシロキサン)等のポリシロキサンの両末端、片末端、側鎖及び側鎖両末端の少なくとも1ヶ所において、反応性(官能)基または非反応性(官能)基が少なくとも1つ結合した構造を有するものをいう。
 上記変性シリコーンとしては、より詳細には、長鎖アルキル基(炭素数6以上のアルキル基や2-フェニルプロピル基等)を有する変性シリコーン等のアルキル変性シリコーン;エステル結合を有する変性シリコーンであるエステル変性シリコーン;ポリオキシアルキレン基(たとえば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシエチレンオキシプロピレン基等)を有する変性シリコーンであるポリエーテル変性シリコーン等;アミノプロピル基やN-(2-アミノエチル)アミノプロピル基等を有する変性シリコーンであるアミノ変性シリコーン;アルコール性水酸基を有する変性シリコーンであるカルビノール変性シリコーン;グリシジル基または脂環式エポキシ基等のエポキシ基を有する変性シリコーンであるエポキシ変性シリコーン;カルボキシル基を有する変性シリコーンであるカルボキシ変性シリコーン;メルカプト基を有する変性シリコーンであるメルカプト変性シリコーン等を挙げることができる。
 上記シリコーンレジンとは、オルガノポリシロキサン樹脂のことで、3次元架橋構造を有するシリコーンを意味する。シリコーンレジンは、一般に、1官能性構成単位(M)、2官能性構成単位(D)、3官能性構成単位(T)および4官能性構成単位(Q)から選ばれた少なくとも1種の構成単位からなっている。
 上記シリコーンレジンとしては、特に限定されないが、例えば、MQシリコーンレジン、MQTシリコーンレジン、Tシリコーンレジン、DTシリコーンレジン等のシリコーンレジンを挙げることができ、これらのうちの1種又は2種以上を併用してもよい。
 上記MQシリコーンレジンとしては、たとえば、1官能性構成単位であるRSiO1/2(但し、R、RおよびRはいずれも炭化水素基である。)と、4官能性構成単位であるSiO4/2を含むシリコーンレジン等を挙げることができる。
 上記MQTシリコーンレジンとしては、たとえば、1官能性構成単位であるRSiO1/2(但し、R、RおよびRはいずれも炭化水素基である。)と、4官能性構成単位であるSiO4/2と、3官能性構成単位であるRSiO3/2(但し、Rは炭化水素基である。)を含むシリコーンレジン等を挙げることができる。
 上記Tシリコーンレジンとしては、たとえば、3官能性構成単位であるRSiO3/2(但し、Rは炭化水素基である。)を含むシリコーンレジン(その末端は炭化水素基のほか、シラノール基やアルコキシ基となっていても良い。)等を挙げることができる。
 上記DTシリコーンレジンとしては、たとえば、2官能性構成単位であるRSiO2/2(但し、R、およびRはいずれも炭化水素基である。)と、3官能性構成単位であるRSiO3/2(但し、Rは炭化水素基である。)等を挙げることができる。
 R、R、RおよびRの炭化水素基としては、炭素数1~24の炭化水素基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ヘキシル基、シクロプロピル基、シクロヘキシル基、フェニル基、ベンジル基等を挙げることができ、特に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、フェニル基が好ましい。
 シリコーンレジンを含有する場合、シリコーンレジンの処理剤全体に対する配合比率は、0.1重量%~9重量%が好ましく、0.2重量%~5重量%がより好ましく、0.3重量%~3重量%がさらに好ましい。前記配合比率が、0.1重量%以上の場合、シリコーンレジンの添加による、膠着防止性の向上効果が向上する。一方、前記配合比率が、9重量%以下の場合は、外層部における捲き崩れがさらに低減する。
〔鉱物油(A)及びシリコーン成分(B)以外の平滑成分〕
 本発明の弾性繊維用処理剤は、上記で説明した鉱物油(A)及びシリコーン成分(B)以外にポリαオレフィン、及び、エステル油から選ばれる少なくとも1種または2種以上を平滑成分として使用してもよい。
〔ポリαオレフィン〕
 ポリαオレフィンは、αオレフィンを重合させた化合物である。ポリαオレフィンの40℃における動粘度は、良好な対金属平滑性が得られる点で、好ましくは10~100mm/sであり、より好ましくは15~70mm/sであり、さらに好ましくは15~50mm/sである。ポリαオレフィン化合物の動粘度は、JIS K 2283に準拠して測定されたものである。
 ポリαオレフィンは、炭素数が6~18のαオレフィンの3~8量体であることが好ましい。例えば、ポリαオレフィンは、αデセン(炭素数10)の3~8量体、またはαドデセン(炭素数12)の3~8量体を中心に、それらの2量体や5量体以上のものを含有するものである。
 ポリαオレフィンの好適な製造例としては、エチレンの低重合またはワックスの熱分解によって炭素数6~18のαオレフィンを合成、このαオレフィン3~8単位を重合、水添反応を行うことによって合成される。
 ポリαオレフィンの1分子当りの平均炭素数としては、上記の40℃動粘度範囲である限り特に制限しないが、好ましくは18~150であり、より好ましくは24~140であり、さらに好ましくは30~100である。
 本発明の弾性繊維用処理剤がポリαオレフィンを含む場合、処理剤に占めるポリαオレフィンの重量割合は特に限定はないが、良好な対金属平滑性が得られる点で、好ましくは1重量%~80重量%である。該重量割合の上限はより好ましくは70重量%、さらに好ましくは60重量%、特に好ましくは50重量%である。一方、該重量割合の下限はより好ましくは5重量%、さらに好ましくは10重量%、特に好ましくは20重量%である。また、例えば5重量%~70重量%がより好ましく、10重量%~60重量%がさらに好ましい。
 ポリαオレフィンとしては特に限定は無いが、例えば、新日鉄住金化学社製の商品名PAO201、新日鉄住金化学社製の商品名PAO401、新日鉄住金化学社製の商品名PAO601、新日鉄住金化学社製の商品名PAO801、ライオン・スペシャリティ・ケミカルズ株式会社製の商品名リポルーブ40、ライオン・スペシャリティ・ケミカルズ株式会社製の商品名リポルーブ60、ライオン・スペシャリティ・ケミカルズ株式会社製の商品名リポルーブ80等が挙げられる。
〔エステル油〕
 本発明の弾性繊維用処理剤は、上記で説明した鉱物油(A)及びシリコーン成分(B)以外の平滑成分としてエステル油を使用してもよい。
 本発明の弾性繊維用処理剤がエステル油を含む場合、処理剤に占めるエステル油の重量割合は特に限定はないが、好ましくは1重量%~80重量%である。該重量割合の上限はより好ましくは70重量%、さらに好ましくは60重量%、特に好ましくは50重量%である。一方、該重量割合の下限はより好ましくは5重量%、さらに好ましくは10重量%、特に好ましくは20重量%である。また、例えば5重量%~70重量%がより好ましく、10重量%~60重量%がさらに好ましい。
 エステル油としては、1価アルコールと1価カルボン酸とのエステル、1価アルコールと多価カルボン酸とのエステル及び多価アルコールと1価カルボン酸とのエステルから選ばれる少なくとも1種であれば特に限定はない。1価アルコールとしては、後述の1価の脂肪族アルコール、芳香族アルコール、脂環式アルコール、フェノール類等を使用できる。これらの中でも、1価の脂肪族アルコール及び芳香族アルコールから選ばれる少なくとも1種が好ましい。
 1価の脂肪族アルコールとしては、特に限定はないが、例えば、オクタノール、2-エチルヘキサノール、1-ノナノール、1-デカノール、ウンデシルアルコール、ラウリルアルコール、トリデシルアルコール、イソトリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、1-ヘキサデカノール、パルミトレイルアルコール、1-ヘプタデカノール、ステアリルアルコール、オレイルアルコール、イソステアリルアルコール、ノナデシルアルコール、1-エイコサノール、ベヘニルアルコール、1-テトラコサノール、エルシルアルコール、リグノセリルアルコール等が挙げられる。上記1価の脂肪族アルコールが分岐を有する場合には、分岐数、分岐鎖長、分岐の位置に特に限定はない。
 芳香族アルコールとしては、フェノール、ベンジルアルコール等が挙げられる。
 脂環式アルコールとしては、シクロオクタノール、シクロドデカノール、シクロヘキサノール、シクロヘプタノール、シクロペンタノール、メントール等が挙げられる。
 多価アルコールとしては、特に限定はないが、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、シクロヘキサンジオール、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ヘキサグリセリン、デカグリセリン、ポリグリセリン、ソルビトール、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
 1価カルボン酸としては、後述の1価の脂肪族カルボン酸、芳香族カルボン酸、ヒドロキシカルボン酸等を使用できる。これらの中でも、1価の脂肪族カルボン酸、芳香族カルボン酸が好ましい。
 1価カルボン酸としては、特に限定はないが、例えば、吉草酸、カプロン酸、エナント酸、カプリル酸、2-エチルヘキシル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、イソステアリン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、ベヘン酸、リグノセリン酸、セチロン酸、安息香酸等が挙げられる。
 多価カルボン酸としては、特に限定はないが、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、フタル酸、トリメリット酸、ピロメリット酸、クエン酸、イソクエン酸等が挙げられる。
 エステル油の具体例としては、特に限定はないが、例えば、吉草酸ヘプチル、カプロン酸ヘプチル、カプロン酸オクチル、カプリル酸セチル、ラウリン酸イソオクチル、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、パルミチン酸イソステアリル、ステアリン酸ブチル、ステアリン酸オクチル、ラウリン酸オレイル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸トリデシル、ステアリン酸イソブチル、オレイン酸メチル、オレイン酸イソブチル、オレイン酸ヘプチル、オレイン酸オレイル、ジラウリン酸ポリエチレングリコール、ジミリスチル酸ポリエチレングリコール、ジオレイン酸ポリエチレングリコール、ジステアリン酸ポリエチレングリコール、ジラウリン酸ポリプロピレングリコール、ジミリスチン酸ポリプロピレングリコール、ジオレイン酸ポリプロピレングリコール、ジステアリン酸ポリプロピレングリコール、シュウ酸ジセチル、マロン酸ジイソオクチル、コハク酸ジラウリル、アジピン酸ジイソデシル、アジピン酸イソノニル、アジピン酸ジオクチル、フマル酸ジイソオクチル、フタル酸ジイソオクチル、フタル酸ジオクチル、フタル酸ジノニル、フタル酸ジイソデシル、フタル酸ジウンデシル、トリメリット酸トリイソオクチル、トリメリット酸トリイソブチル、トリメリット酸トリイソデシル、トリメリット酸トリイソステアリル、グリセリントリイソオクチル、グリセリントリラウリル、グリセリントリミリスチル、グリセリントリオレイル、グリセリントリステアリル、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート、ソルビタンセスキオレエート、ソルビタントリラウレート、ソルビタントリステアレート、ソルビタントリパルミテート等が挙げられる。
〔脂肪酸及び脂肪酸金属塩〕
 本発明の弾性繊維用処理剤はさらに脂肪酸及び脂肪酸金属塩から選ばれる少なくとも1種を含有してもよい。該処理剤が脂肪酸及び脂肪酸金属塩から選ばれる少なくとも1種を含有する場合、該処理剤に占める脂肪酸及び脂肪酸金属塩の合計の重量割合は特に限定はないが、好ましくは0.001重量%~5重量%である。脂肪酸及び脂肪酸金属塩の合計の重量割合が前述の範囲内であると、チーズ内層部における膠着防止性に優れる傾向がある。該重量割合の上限はより好ましくは3重量%、更に好ましくは1.5重量%、特に好ましくは1重量%である。一方、該重量割合の下限はより好ましくは0.01重量%、更に好ましくは0.05重量%、特に好ましくは0.15重量%である。また、例えば0.01重量%~3重量%がより好ましく、0.05重量%~1.5重量%がさらに好ましい。
 脂肪酸及び脂肪酸金属塩としては、炭素数8~22の脂肪酸及び/又はその1価~3価の金属塩を挙げることができる。
 脂肪酸としては、例えば、2-エチルヘキシル酸、ラウリン酸、パルミチン酸、ミリスチン酸、ステアリン酸、ヒドロキシステアリン酸、ベヘニン酸、トリベヘニン酸等を挙げることができる。
 脂肪酸金属塩としては、例えば、ラウリン酸カルシウム、パルミチン酸カルシウム、ミリスチン酸バリウム、ミリスチン酸マグネシウム、パルミチン酸マグネシウム、ラウリン酸マグネシウム、ステアリン酸マグネシウム、2-エチルヘキシル酸マグネシウム、ベヘニン酸亜鉛、トリベヘニン酸アルミニウム、ステアリン酸カルシウム、2-エチルヘキシル酸カルシウム、ステアリン酸アルミニウム、パルミチン酸アルミニウム、ステアリン酸バリウム、カプリン酸亜鉛、ステアリン酸亜鉛等を挙げることができる。
 これらの脂肪酸及び脂肪酸金属塩としては、チーズ内層部における膠着防止性の点で炭素数12~18の脂肪酸及びこれらのアルカリ土類金属塩から選ばれる少なくとも1種が好ましく、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸及びこれらのアルカリ土類金属塩から選ばれる少なくとも1種がより好ましく、ラウリン酸マグネシウム、ミリスチン酸マグネシウム、パルミチン酸マグネシウム、及びステアリン酸マグネシウムから選ばれる少なくとも1種がさらに好ましく、ミリスチン酸マグネシウム、パルミチン酸マグネシウム、及びステアリン酸マグネシウムから選ばれる少なくとも1種が特に好ましい。これらの脂肪酸及び脂肪酸金属塩は、1種又は2種以上を使用してもよい。
〔有機リン酸エステル及び有機リン酸エステル塩〕
 本発明の弾性繊維用処理剤はさらに有機リン酸エステル及び有機リン酸エステル塩から選ばれる少なくとも1種を含有してもよい。該処理剤が有機リン酸エステル及び有機リン酸エステル塩から選ばれる少なくとも1種を含有する場合、該処理剤に占める有機リン酸エステル及び有機リン酸エステル塩の重量割合は特に限定はないが、好ましくは0.1重量%~10重量%である。有機リン酸エステル及び有機リン酸エステル塩の重量割合が前述の範囲内であると、制電性が優れる傾向がある。該重量割合の上限はより好ましくは5重量%、更に好ましくは3重量%、特に好ましくは1重量%である。一方、該重量割合の下限はより好ましくは0.2重量%、更に好ましくは0.4重量%、特に好ましくは0.5重量%である。また、例えば0.2重量%~5重量%がより好ましく、0.4重量%~3重量%がさらに好ましい。
 有機リン酸エステルとしては、分子中に炭化水素基もしくはオキシアルキレン基を少なくとも一つ以上含むものであれば特に限定はされないが、例えばヘキシルリン酸エステル、オクチルリン酸エステル、デシルリン酸エステル、ドデシルリン酸エステル、テトラデシルリン酸エステル、ヘキサデシルリン酸エステル、オクタデシルリン酸エステル、ベヘニルリン酸エステル、トリオクタコサニルリン酸エステル、オクタデセニルリン酸エステル、2-エチルヘキシルリン酸エステル、イソへプチルリン酸エステル、イソオクチルリン酸エステル、イソノニルリン酸エステル、イソデシルリン酸エステル、イソウンデシルリン酸エステル、イソドデシルリン酸エステル、イソトリデシルリン酸エステル、イソテトラデシルリン酸エステル、イソヘキサデシルリン酸エステル、イソオクタデシルリン酸エステル、t-ブチルリン酸エステル、ベンジルリン酸エステル、オクチルフェニルリン酸エステル、シクロヘキシルリン酸エステル、ポリオキシエチレン5モル付加ヘキサデシルエーテルリン酸エステル、ポリオキシエチレン15モル付加ヘキサデシルエーテルリン酸エステル、ポリオキシエチレン7モル付加ポリオキシプロピレン3.5モル付加セカンダリーアルキルエーテルリン酸エステル、ポリオキシエチレン2モルポリオキシプロピレン5モル付加ドデシルリン酸エステル、ポリオキシエチレン3モル付加セカンダリーアルキルエーテルリン酸エステル、ポリオキシエチレン2モル付加ドデシルエーテルリン酸エステル、ポリオキシエチレン4モル付加フェノールリン酸エステル等が挙げられる。有機リン酸エステルは1種又は2種以上を併用してもよい。
 有機リン酸エステル塩としてはアルカリ金属塩及び/又はアルカリ土類金属塩が挙げられる。
 有機リン酸エステルと塩を形成するアルカリ金属及びアルカリ土類金属としては、ナトリウム、カリウム、カルシウム、マグネシウムが好ましく、カルシウム、マグネシウムがより好ましく、マグネシウムが特に好ましい。
〔その他成分〕
 本発明の弾性繊維用処理剤は、平滑性、解舒性及び制電性の性能向上、チーズの巻き形状の改善という観点から、上記で説明した各成分以外の、高級アルコール、多価アルコール、有機アミン、ノニオン界面活性剤、カチオン界面活性剤及びアニオン界面活性剤から選ばれる少なくとも1種のその他成分をさらに含有してもよい。その他成分は、1種または2種以上を使用してもよい。
 高級アルコールとしては、特に限定されないが、炭素数6~30の直鎖及び/又は分岐鎖のアルコールが挙げられ、具体例として、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘネイコサノール、ドコサノール、トリコサノール、テトラコサノール、ペンタコサノール、ヘキサコサノール、ヘプタコサノール、オクタコサノール、ノナコサノール、およびトリアコサノール等の直鎖アルコール;2-エチルヘキサノール、2-プロピルヘプタノール、2-ブチルオクタノール、1-メチルヘプタデカノール、2-ヘキシルオクタノール、1-ヘキシルヘプタノール、イソデカノール、イソトリデカノール、3,5,5-トリメチルヘキサノール等の分岐アルカノール;ヘキセノール、ヘプテノール、オクテノール、ノネノール、デセノール、ウンデセノール、ドデセノール、トリデセノール、テトラデセノール、ペンタデセノール、ヘキサデセノール、ペンタデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール、エイセノール、ドコセノール、テトラコセノール、ペンタコセノール、ヘキサコセノール、ヘプタコセノール、オクタコセノール、ノナコセノールおよびトリアコンセノール等の直鎖アルケノール;イソヘキセノール、2-エチルヘキセノール、イソトリデセノール、1-メチルヘプタデセノール、1-ヘキシルヘプテノール、イソトリデセノール、およびイソオクタデセノール等の分岐アルケノール等が挙げられる。
 多価アルコールとしては、上記の多価アルコールが使用できる。
 有機アミンとしては、分子中に炭化水素基もしくはオキシアルキレン基を少なくとも一つ以上含むものであれば特に限定はされないが、例えばラウリルアミン、ミリスチルアミン、セチルアミン、ステアリルアミン、オレイルアミン、ジエチルアミン、ジオクチルアミン、ジステアリルアミン、メチルステアリルアミン、ポリオキシプロピレン付加ラウリルアミン、ポリオキシエチレン付加ラウリルアミン、ポリオキシエチレン付加ステアリルアミン、ポリオキシエチレン付加オレイルアミン、モノエタノールアミン、ジエチルエタノールアミン、ジブチルエタノールアミン、トリエタノールアミン、ラウリルエタノールアミン、トリオクチルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルステアリルアミン等が挙げられる。
 ノニオン界面活性剤としては、特に限定されないが、例えば、炭素数8~22のアルキル基を有するポリオキシアルキレンアルキルエーテル(オキシアルキレンが1~20モル、オキシアルキレンはオキシエチレン及び/又はオキシプロピレンであり、ランダム及び/又はブロックである。)、ソルビタン脂肪酸エステル、ソルビタン脂肪酸エステルのオキシアルキレン付加物(オキシアルキレンが1~20モル、オキシアルキレンはオキシエチレン及び/又はオキシプロピレンであり、ランダム及び/又はブロックである。)などの多価アルコールのアルキレンオキサイド付加物、炭素数6~22のアルキル基を有するアルキルフェノール、炭素数6~22のアルキル基を有するアルキルフェノールのオキシアルキレン付加物(オキシアルキレンが1~20モル、オキシアルキレンはオキシエチレン及び/又はオキシプロピレンであり、ランダム及び/又はブロックである。)、脂肪酸ポリオキシアルキレングリコールエステル(オキシアルキレンが1~20モル、オキシアルキレンはオキシエチレン及び/又はオキシプロピレンであり、ランダム及び/又はブロックである。)等が挙げられる。これらのノニオン界面活性剤は、1種又は2種以上を使用してもよい。
 上記カチオン界面活性剤としては、特に限定されないが、例えば上記有機アミン及び/又はその塩、並びに4級アンモニウム塩がある。4級アンモニウム塩として具体的には、ジデシルジメチルアンモニウム塩、デシルトリメチルアンモニウム塩、ジオクチルジメチルアンモニウム塩、オクチルトリメチルアンモニウム塩等が挙げられる。これらのカチオン界面活性剤は、1種又は2種以上を使用してもよい。
 アニオン界面活性剤としては、特に限定されないが、例えば、アルカンスルホン酸及び/またはその塩、ジアルキルスルホコハク酸及び/またはその塩、アルキルベンゼンスルホン酸及び/またはその塩、アルキルナフタレンスルホン酸及び/またはその塩、アルキル硫酸及び/またはその塩、ポリオキシエチレンアルキルエーテル硫酸及び/またはその塩、ポリオキシエチレンアルキルエーテル酢酸及び/またはその塩等がある。具体的には、炭素数6~22のアルキル基を有するアルカンスルホン酸及び/またはその塩、ジアルキルスルホコハク酸エステル及び/またはその塩、炭素数6~22のアルキル基を有するアルキルベンゼンスルホン酸及び/又はその塩、炭素数1~20のアルキル基を有するアルキル硫酸及び/またはその塩、炭素数6~22のアルキル基を有するポリオキシエチレンアルキルエーテル硫酸及び/またはその塩、炭素数6~22のアルキル基を有するポリオキシエチレンアルキルエーテル酢酸及び/またはその塩等が挙げられる。これらのアニオン界面活性剤は、1種又は2種以上を使用してもよい。
〔弾性繊維用処理剤〕
 本発明の弾性繊維用処理剤は、前述の通り鉱物油(A)を含有し、鉱物油(A)のアニリン点が110℃超~170℃であり、シリコーン成分(B)の含有量が0重量%~50重量%未満である。
 本発明の弾性繊維用処理剤に含まれる鉱物油(A)100重量部に対するシリコーン成分(B)の重量割合は、特に限定はないが、優れた脱脂性が得られる点で5重量部~80重量部が好ましい。該重量割合の上限は、より好ましくは70重量部、さらに好ましくは50重量部、特に好ましくは40重量部である。一方、該重量割合の下限は、より好ましくは10重量部、さらに好ましくは20重量部、特に好ましくは25重量部である。また、例えば10重量部~70重量部がより好ましく、20重量部~50重量部がさらに好ましい。
 本発明の弾性繊維用処理剤は有機リン酸エステル、有機リン酸エステル塩、脂肪酸及び脂肪酸金属塩から選ばれる少なくとも1種をさらに含有するとチーズの風合いの観点から好ましい。該処理剤に占める有機リン酸エステル、有機リン酸エステル塩、脂肪酸及び脂肪酸金属塩の含有量は、特に限定はないが、0.001重量%~10重量%が好ましい。該含有量の上限は、5重量%がより好ましく、3重量%がさらに好ましく、1重量%が特に好ましい。一方、該含有量の下限は、0.01重量%がより好ましく、0.05重量%がさらに好ましく、0.15重量%が特に好ましい。また、例えば0.01重量%~5重量%がより好ましく、0.1重量%~3重量%が特に好ましい。有機リン酸エステル、有機リン酸エステル塩、脂肪酸及び脂肪酸金属塩は1種又は2種以上を併用しても良い。
 本発明の弾性繊維用処理剤は、ICP発光分析法によって検出されるマグネシウム元素の含有量が50ppm~1000ppmであると、チーズ内層部における膠着防止性が優れる点で好ましい。該含有量の上限はより好ましくは850ppm、さらに好ましくは700ppm、特に好ましくは500ppmである。一方、該含有量の下限はより好ましくは60ppm、さらに好ましくは70ppm、特に好ましくは80ppmである。また、例えば60ppm~850ppmがより好ましく、70ppm~700ppmがさらに好ましい。なお、ICP発光分析法によりマグネシウム元素の含有量を測定する方法は、実施例に記載の方法によるものである。
 本発明の弾性繊維用処理剤に含まれるマグネシウム元素はマグネシウム含有化合物に由来すると好ましい。マグネシウム含有化合物としては、マグネシウム元素を含む化合物であれば特に限定はないが、例えば酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、スルホン酸マグネシウム、ハイドロタルサイトや、前述の脂肪酸のマグネシウム塩や有機リン酸エステルのマグネシウム塩等が挙げられ、チーズ内層部における膠着防止性がさらに優れる点で脂肪酸のマグネシウム塩や有機リン酸エステルのマグネシウム塩が好ましい。
 本発明の弾性繊維用処理剤の酸価は、0.01mgKOH/g~20mgKOH/gであると、優れた制電性が得られる点で好ましい。該酸価の上限は、より好ましくは15mgKOH/g、さらに好ましくは10mgKOH/g、特に好ましくは5mgKOH/gである。一方、該酸価の下限は、より好ましくは0.1mgKOH/g、さらに好ましくは0.5mgKOH/g、特に好ましくは1mgKOH/gである。また、例えば0.1mgKOH/g~15mgKOH/gがより好ましく、0.5mgKOH/g~10mgKOH/gがさらに好ましい。なお、弾性繊維用処理剤の酸価を測定する方法は、実施例に記載の方法によるものである。
 本発明の弾性繊維用処理剤に含まれる水分量は、0ppm~1000ppmであると、処理剤による過度な繊維/繊維間摩擦の低下が適度に抑制される点で好ましい。該水分量の上限は、より好ましくは500ppm、さらに好ましくは300ppm、特に好ましくは200ppmである。一方、該水分量の下限は、より好ましくは1ppm、さらに好ましくは10ppm、特に好ましくは100ppmである。また、例えば1ppm~500ppmがより好ましく、10ppm~300ppmがさらに好ましい。なお、弾性繊維用処理剤の水分量を測定する方法は、実施例に記載の方法によるものである。
 本発明の弾性繊維用処理剤の30℃における動粘度については、特に制限は無いが、製糸安定性の点で、好ましくは8~40mm/sであり、より好ましくは9~30mm/s、更に好ましくは9~20mm/sである。
〔弾性繊維処理剤の製造方法〕
 本発明の弾性繊維用処理剤の製造方法については、特に限定はなく、公知の方法を採用することができる。例えば、いくつかの成分を予め配合していて、それ以外の成分と混合する方法でもよく、全成分を一挙に混合する方法でもよい。また、本発明の弾性繊維用処理剤が高級脂肪酸金属塩を含有する場合、既に粉砕された高級脂肪酸金属塩を平滑成分等と混合して製造してもよく、平滑成分等に高級脂肪酸金属塩を混合し、従来公知の湿式粉砕機を用いて、所定の平均粒子径になるように粉砕して製造してもよい。
〔弾性繊維〕
 本発明の弾性繊維は、弾性繊維本体に、本発明の弾性繊維用処理剤が付与されたものである。弾性繊維全体に占める弾性繊維用処理剤の付着割合は特に限定は無いが、0.1~15重量%が好ましく、0.5~10重量%がさらに好ましい。弾性繊維本体に本発明の弾性繊維用処理剤を付与する方法としては、特に限定はなく、公知の方法を採用できる。
 本発明の弾性繊維(弾性繊維本体)は、ポリエーテル系ポリウレタン、ポリエステル系ポリウレタン、ポリエーテルエステルエラストマー、ポリエステルエラストマー、ポリエチレンエラストマー、ポリアミドエラストマー等を使用した弾性を有する繊維であり、その伸度は通常100%以上である。伸度が300%以上であると経編、丸編み、カバリングいずれの用途でも使用できるため好ましい。
 本発明の弾性繊維としては、特に限定はないが、PTMGやポリエステルジオールと有機ジイソシアネートを反応させ、次いで、1,4ブタンジオール、エチレンジアミン、プロピレンジアミン、ペンタンジアミンなどで鎖延長した、ポリウレタンあるいはポリウレタンウレアから構成されるものが好ましい。例えば、ポリウレタンウレア弾性繊維は、分子量1000~3000のポリテトラメチレングリコール(PTMG)とジフェニルメタンジイソシアネート(MDI)とを用意し、PTMG/MDI=1/2~1/1.5(モル比)でジメチルアセトアミドやジメチルホルムアミド等の溶媒中で反応させ、エチレンジアミン、プロパンジアミン等のジアミンで鎖延長して得られるポリウレタンウレアポリマーの20~40%溶液を乾式紡糸で、紡糸速度400~1200m/minで紡糸することにより製造できる。弾性繊維本体の適応繊度は、特に制限はない。
 本発明の弾性繊維本体は、酸化チタン、酸化マグネシウム、ハイドロタルサイト、酸化亜鉛、二価の金属石鹸等の無機物を含有してもよい。二価の金属石鹸としては、2-エチルヘキシル酸カルシウム、ステアリン酸カルシウム、パルミチン酸カルシウム、ステアリン酸マグネシウム、パルミチン酸マグネシウム、ラウリン酸マグネシウム、ステアリン酸バリウム、カプリン酸亜鉛、ベヘニン酸亜鉛、ステアリン酸亜鉛等が挙げられる。無機物は、1種又は2種以上を用いてもよい。
 弾性繊維本体が無機物を含有する場合、均一解舒性が不良になる場合があるが、弾性繊維本体に本発明の処理剤を付与することにより、均一解舒性を良好にすることができる。従って、本発明の弾性繊維用処理剤は、弾性繊維本体が無機物を含有する場合に好適に使用できる。弾性繊維本体に占める無機物の含有量は特に限定は無いが、0.01~5重量%が好ましく、0.1~3重量%がさらに好ましい。
 本発明の弾性繊維の用途として、CSY、シングルカバリング、PLY、エアーカバリング等のカバリング糸等の加工糸や、丸編み、トリコット等により、布帛として使用することができる。また、これらの加工糸、布帛を使用してストッキング、靴下、下着、水着等の伸縮性が必要とされる製品や、ジーンズ、スーツ等のアウターウェア等に快適性のために伸縮性を付与させる目的でも使用される。さらに最近では、紙おむつにも適用される。
〔弾性繊維の製造方法〕
 本発明の弾性繊維の製造方法は、本発明の弾性繊維用処理剤を弾性繊維に給油することにより得られる。処理剤の給油方法としては、希釈することなくニート給油法により、弾性繊維の紡糸工程において弾性繊維に付着させる方法が好ましい。付着方法としては、例えば、ローラー給油法、ガイド給油法、スプレー給油法等の公知の方法が適用できる。給油ローラーは、通常口金から巻き取りトラバースまでの間に位置することが一般的である。これらの中でも延伸ローラーと延伸ローラーの間に位置する給油ローラーにて弾性繊維用処理剤を弾性繊維(例えば、ポリウレタン系弾性繊維)に付着させることが本願効果を奏するため好ましい。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はここに記載した実施例に限定されるものではない。なお、以下の実施例に示される「パーセント(%)」及び「部」は、特に限定しない限り、「重量%」及び「重量部」を示す。なお、実施例及び比較例において、弾性繊維用処理剤の各特性の評価は次の方法に従って行った。
(アニリン点の測定方法)
 鉱物油(A)のアニリン点は、JIS K 2256に準拠して測定した。
(ICP発光分析法による処理剤中のマグネシウム元素含有量の測定方法)
(1)前処理
 白金坩堝に弾性繊維用処理剤5gを秤取し、電熱ヒーター上で炭化した後、硫酸(有害金属測定用)4mlを加え電気炉で灰化させた。最後に硝酸(有害金属測定用)0.5mlおよび超純水を加え50mlとし測定試料とした。
(2)検量線
 予め調整したマグネシウム濃度が既知の10ppm標準液及び100ppm標準液をそれぞれICP(測定機器名:島津製作所製ICPS-8100、ICP発光分析装置)に供し、検量線を作成した。
(3)測定
 上記(1)で作製した測定試料をICP(測定機器名:島津製作所製ICPS-8100、ICP発光分析装置)に供し、上記(2)で作製した検量線を用いて弾性繊維用処理剤中のマグネシウム元素の含有量を測定した。
(酸価の測定方法)
 処理剤の酸価についてはJIS K 2501に準拠して測定した。
(水分の測定方法)
 処理剤の水分率についてはJIS K 0068に準拠して測定した。
(膠着防止性)
 図1において、解舒速度比測定機の解舒側に処理剤を付与した繊維のチーズ(1)をセットし、巻き取り側紙管(2)をセットした。巻取速度を一定速度にセットした後、ローラー(3)および(4)を同時に起動させた。この状態では糸(5)に張力はほとんどかからないため、糸はチーズ上で膠着して離れず、解舒点(6)は図1に示す状態にあった。解舒速度を変えることによって、チーズからの糸(5)の解舒点(6)が変わるので、この点がチーズとローラーとの接点(7)と一致するように解舒速度を設定した。解舒速度比は下記式(1)によって求めた。この値が小さいほど、解舒性が良いことを示す。
 解舒速度比(%)=((巻取速度-解舒速度)/解舒速度)×100 式(1)
 チーズの巻き量が残り50g以下となった時点での解舒速度比(%)を内層部の解舒速度比(%)とし、膠着防止性を以下の指標で○以上を合格とした。
(指標)
◎:解舒速度比が100未満(非常に良好)
○:解舒速度比が100以上、130未満(良好)
△:解舒速度比が130以上、180未満(やや不良)
×:解舒速度比が180以上(不良)
(制電性評価法)
 制電性評価の代用評価として、静電気発生量測定方法により行った。図2において、(17)の位置に春日式静電気測定器をセットし、100m/分で巻き取りながら、20℃、60%RHの条件下において発生する静電気量を測定した。
 以下の評価基準で、○以上を合格とした。
◎:4kV未満(非常に良好)
○:4kV以上10kV未満(良好)
△:10kV以上15kV未満(やや不良)
×:15kV以上(不良)
〔脱脂性評価法〕
 大隈シングル丸編機(30インチ24ゲージ)を用いて、処理剤を付与した繊維チーズより弾性繊維をドラフト比1.7倍下で8本1口に引き揃えて、ナイロン6繊維(東レ株式会社製ミラコスモ(登録商標))56dtex/17フィラメント3本を1本につき1口使用し、計4口で引き揃えて交編編地を作成した。
 次に、精練剤として、ポリオキシエチレン9モル付加ラウリルエーテルおよび水をミニカラー専用染色ポット(テクサム技研株式会社製)に入れ、キレート剤としてマーポンA-20(松本油脂製薬株式会社製)を加えて、精練剤濃度が5g/Lである精練浴を調製した。
 そして上記交編編地を精練浴に投入し、ミニカラーにて処理した。その際の浴比(交編編地重量:染色浴重量)は、1:10であった。90℃まで精練浴を加温し、90℃を30分間保った。その後冷却して精練浴を廃棄し、1分間湯洗い、水洗いを行った。得られた交編編地を遠心分離により脱水し、90℃で1時間乾燥して、精練交編編地を得た。
 得られた精練交編編地について、n-ヘキサンを用いてソックスレー抽出装置で2時間抽出し、残脂量を測定した。ここでの残脂量は、繊維に対して抽出された処理剤の重量%をいう。
 尚、上記精練処理を行う前の交編編地(生機)のソックスレー抽出における油分は1.98%であった。そして下記式(2)により、油剤の脱落率(%)を算出した。
Figure JPOXMLDOC01-appb-M000001
最後に以下の評価基準で、○以上を脱脂性合格とした。
◎:油剤脱落率80%以上
○:油剤脱落率50%以上、80%未満
△:油剤脱落率30%以上、50%未満
×:油剤脱落率30%未満
[実施例1~12及び比較例1~10]
(紡糸原液の調整)
 数平均分子量2000のポリテトラメチレンエーテルグリコールと4,4’―ジフェニルメタンジイソシアネートをモル比率1:2で反応させ、次いで1,2-ジアミノプロパンのジメチルホルムアミド溶液を用いて鎖延長し、ポリマー濃度27%のジメチルホルムアミド溶液を得た。30℃での粘度は1500mPaSであった。
(弾性繊維の製造)
 ポリウレタン紡糸原液を190℃のN気流中に吐出して乾式紡糸した。紡糸中走行糸に表2~5に記載の成分を用いて作製した処理剤(表中の配合量は重量%)をオイリングローラーにより繊維に対して6重量%付与した後毎分500mの速度でボビンに巻き取り、22dtexモノフィラメントチーズ(巻き量400g)を得た。得られたチーズによる処理剤性能の評価結果を表2~5に示した。
 尚、表2~表5中で使用した鉱物油のアニリン点、ナフテン成分、パラフィン成分及びアロマ成分の重量割合については表1の通りであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(シリコーン成分)
b-1:25℃における動粘度が10mm/sであるジメチルシリコーン
b-2:25℃における動粘度が6mm/sであるジメチルシリコーン
b-3:シリコーンレジン(MQレジン)(500mm/s(25℃))
b-4:ポリエーテル変性シリコーン
c-1:2-エチルヘキシルステアレート
c-2:40℃における動粘度が19mm/sであるポリアルファオレフィン
(有機リン酸エステル及び有機リン酸エステル塩)
d-1:イソセチルリン酸エステル
d-2:ポリオキシエチレン3mol付加ラウリルエーテルリン酸エステルマグネシウム
(脂肪酸及び脂肪酸金属塩)
e-1:ステアリン酸マグネシウム:平均粒子径0.5μm、針状(1:5)
e-2:パルミチン酸
(その他成分)
x-1:イソステアリルアルコール
x-2:ジオクチルスルホコハク酸ナトリウム
 表2~表5から分かるように実施例1~12は、アニリン点が110℃超~170℃以下を満たす鉱物油を用いており、シリコーン成分(B)の含有量が0重量%~50重量%未満であるために本願の課題の解決が出来ている。
 一方、比較例1~10は、アニリン点が110℃超~170℃以下を満たす鉱物油を用いていない、または、シリコーン成分(B)の含有量が0重量%~50重量%未満でないため、本願課題である脱脂性が不十分である。
 1 弾性繊維のチーズ
 2 巻取り用紙管
 3 ローラー
 4 ローラー
 5 走行糸条
 6 解舒点
 7 チーズとローラーの接点
 8 弾性繊維のチーズ
 9 糸
 10 コンペンセーター
 11 ローラー
 12 編針
 13 Uゲージ
 14 ローラー
 15 速度計
 16 巻取りローラー
 17 春日式電位測定装置

 

Claims (8)

  1.  鉱物油(A)を含有する弾性繊維用処理剤であって、前記鉱物油(A)のアニリン点が110℃超~170℃であり、シリコーン成分(B)の含有量が0重量%~50重量%未満である、弾性繊維用処理剤。
  2.  前記鉱物油(A)に占めるナフテン成分の含有量が0重量%~60重量%である、請求項1に記載の弾性繊維用処理剤。
  3.  前記鉱物油(A)に占めるナフテン成分100重量部に対する、パラフィン成分の比率が、50重量部~10000重量部である、請求項1又は2に記載の弾性繊維用処理剤。
  4.  有機リン酸エステル、有機リン酸エステル塩、脂肪酸及び脂肪酸金属塩から選ばれる少なくとも1種をさらに含有する、請求項1~3のいずれかに記載の弾性繊維用処理剤。
  5.  ICP発光分析法によって処理剤から検出されるMg元素の含有量が50ppm~1000ppmである、請求項1~4のいずれかに記載の弾性繊維用処理剤。
  6.  酸価が0.01mgKOH/g~20mgKOH/gである、請求項1~5のいずれかに記載の弾性繊維用処理剤。
  7.  請求項1~6のいずれかに記載の弾性繊維用処理剤を弾性繊維本体に対して付与してなる、弾性繊維。
  8.  請求項1~6のいずれかに記載の弾性繊維用処理剤を弾性繊維本体に対して付与する工程を含む、弾性繊維の製造方法。
PCT/JP2023/035625 2022-10-29 2023-09-29 弾性繊維用処理剤及びその利用 WO2024090138A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173835 2022-10-29
JP2022-173835 2022-10-29

Publications (1)

Publication Number Publication Date
WO2024090138A1 true WO2024090138A1 (ja) 2024-05-02

Family

ID=90830572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035625 WO2024090138A1 (ja) 2022-10-29 2023-09-29 弾性繊維用処理剤及びその利用

Country Status (1)

Country Link
WO (1) WO2024090138A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163489A (ja) * 2006-12-27 2008-07-17 Takemoto Oil & Fat Co Ltd 合成繊維用処理剤及び合成繊維の処理方法
WO2022050411A1 (ja) * 2020-09-07 2022-03-10 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維
WO2022050409A1 (ja) * 2020-09-07 2022-03-10 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163489A (ja) * 2006-12-27 2008-07-17 Takemoto Oil & Fat Co Ltd 合成繊維用処理剤及び合成繊維の処理方法
WO2022050411A1 (ja) * 2020-09-07 2022-03-10 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維
WO2022050409A1 (ja) * 2020-09-07 2022-03-10 竹本油脂株式会社 弾性繊維用処理剤及び弾性繊維

Similar Documents

Publication Publication Date Title
JP6713273B2 (ja) 弾性繊維用処理剤及びその利用
CN107407044B (zh) 弹性纤维用处理剂及其利用
JP6606061B2 (ja) 弾性繊維用処理剤及び弾性繊維
CN107208357B (zh) 弹性纤维用处理剂及其利用
JP5887032B1 (ja) 弾性繊維用処理剤及び弾性繊維
JP5627825B1 (ja) 弾性繊維用処理剤及び弾性繊維
KR102232594B1 (ko) 합성 섬유용 처리제 및 그 이용
JP6858609B2 (ja) 弾性繊維用処理剤及び弾性繊維
JP5730144B2 (ja) 合成繊維用処理剤およびその利用
WO2024090138A1 (ja) 弾性繊維用処理剤及びその利用
JP7163095B2 (ja) 弾性繊維用処理剤及び弾性繊維
JP7217394B1 (ja) 弾性繊維用処理剤及びその利用
JP7331296B1 (ja) 弾性繊維用処理剤及びその利用
JP5887033B1 (ja) 弾性繊維用処理剤及び弾性繊維
WO2023181744A1 (ja) 弾性繊維用処理剤及びその利用
JP7259127B1 (ja) 弾性繊維用処理剤及びその利用
WO2024122372A1 (ja) 弾性繊維用処理剤及びその利用
JP7374656B2 (ja) 弾性繊維用処理剤及び弾性繊維
JP6980951B2 (ja) 弾性繊維用処理剤及びその利用
JP2023054453A (ja) 弾性繊維用処理剤及びその利用
JP7296360B2 (ja) 弾性繊維用処理剤及びその利用
JP6235354B2 (ja) 弾性繊維用処理剤及び弾性繊維
JP2019002093A (ja) 合成繊維用処理剤及びその用途