WO2024089994A1 - 油中水滴型エマルジョン紙力増強剤 - Google Patents

油中水滴型エマルジョン紙力増強剤 Download PDF

Info

Publication number
WO2024089994A1
WO2024089994A1 PCT/JP2023/030428 JP2023030428W WO2024089994A1 WO 2024089994 A1 WO2024089994 A1 WO 2024089994A1 JP 2023030428 W JP2023030428 W JP 2023030428W WO 2024089994 A1 WO2024089994 A1 WO 2024089994A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
paper strength
oil emulsion
paper
monomer
Prior art date
Application number
PCT/JP2023/030428
Other languages
English (en)
French (fr)
Inventor
愛子 鈴木
夏彦 佐藤
Original Assignee
ハイモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハイモ株式会社 filed Critical ハイモ株式会社
Publication of WO2024089994A1 publication Critical patent/WO2024089994A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents

Definitions

  • the present invention relates to a paper strength agent used in the papermaking process and a method for increasing paper strength using the same. More specifically, the present invention relates to a paper strength agent consisting of a water-soluble polymer produced by a specific polymerization method from a monomer (mixture) containing a specific monomer as an essential component, and a method for using the same.
  • Amphoteric PAM polyacrylamide
  • acrylamide as the main component and copolymerizes cationic monomers, anionic monomers, crosslinkable monomers, etc.
  • amphoteric PAM requires the formation of hydrogen bonds between functional groups such as amide groups in the polymer and hydroxyl groups in cellulose, and the molecular weight to several million. Increasing the molecular weight increases the paper strength effect, but at the same time, the viscosity of the product also increases, which is an obstacle.
  • the mainstream paper strength agents currently on the market are in the form of an aqueous solution.
  • Patent Document 1 it is known that a polymer dispersion with excellent dispersibility and high concentration and low product viscosity can be obtained by using water-in-oil emulsion polymerization in the presence of a surfactant.
  • Patent Documents 2 to 5 there are no specific examples of water-in-oil emulsion paper strength agents.
  • special equipment is required to obtain the desired product, including the selection of the surfactant and emulsification means, and the preparation of appropriate equipment. In particular, when performing industrial production, production is virtually impossible without special equipment. Therefore, there is a demand for the development of a practical water-in-oil emulsion paper strength agent.
  • the present invention relates to a paper strength agent that imparts strength to paper during the papermaking process, and aims to provide a paper strength agent that, compared to conventional paper strength agents, can be made into a highly concentrated product form even when it reaches a molecular weight of several million, has a high paper strength enhancing effect, is easy to handle, and has high dispersibility and solubility, as well as a paper strength enhancing method using the same.
  • the inventors conducted extensive research to solve the above problems, and arrived at the following invention. They discovered that the above problems can be solved by using a water-in-oil emulsion of a water-soluble polymer produced by subjecting an aqueous solution of a specific monomer mixture to water-in-oil emulsion polymerization in the presence of a surfactant as a paper strength agent.
  • the product in the form of a water-in-oil emulsion in this invention is highly concentrated, yet has low product viscosity and excellent dispersibility. Not only is it possible to achieve the high molecular weight required to improve paper strength, but it is also possible to reduce logistics costs. Because it has excellent dispersibility and solubility, one or more dissolving equipment is usually required to dissolve a high-concentration emulsion product, but the product of this invention can be used with simple dissolving equipment.
  • the water-soluble polymer in the present invention comprises, as constituent units, 1 to 20 mol % of a tertiary amino group-containing cationic monomer represented by the following general formula (1), 0 to 8 mol % of a quaternary ammonium group-containing cationic monomer, 0.1 to 10 mol % of an anionic monomer represented by the following general formula (2), and 62 to 98.9 mol % of a nonionic monomer:
  • R1 represents hydrogen or a methyl group
  • R2 and R3 represent an alkyl or alkoxy group having 1 to 3 carbon atoms
  • R4 represents hydrogen, an alkyl or alkoxy group having 1 to 3 carbon atoms, an alkyl or aryl group having 7 to 20 carbon atoms
  • A represents oxygen or NH
  • B represents an alkylene group having 2 to 4 carbon atoms
  • X1- represents an anion.
  • R5 represents hydrogen, a methyl group or a carboxymethyl group
  • Q represents SO3- , CH2SO3- , C6H4SO3- , CONHC( CH3 ) 2CH2SO3- , C6H4COO- or COO-
  • R6 represents hydrogen or COO - Y2 +
  • Y1 and Y2 represent hydrogen or a cation.
  • Examples of the tertiary amino group-containing cationic monomer represented by general formula (1) include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, and diethylaminopropyl (meth)acrylamide.
  • Examples of the quaternary ammonium group-containing cationic monomer represented by the general formula (1) include (meth)acryloyloxyethyl trimethyl ammonium chloride, (meth)acryloyloxyethyl dimethyl benzyl ammonium chloride, (meth)acryloylaminopropyl trimethyl ammonium chloride, (meth)acryloylaminopropyl dimethyl benzyl ammonium chloride, etc. Two or more of these may be combined. It is preferable to contain 3 to 18 mol % of the tertiary amino group-containing cationic monomer represented by the general formula (1) and 0 to 5 mol % of the quaternary ammonium group-containing cationic monomer.
  • Examples of the anionic monomer represented by the general formula (2) include (meth)acrylic acid, acrylamido-2-methylpropanesulfonic acid, methallylsulfonic acid, itaconic acid, and salts thereof. Two or more of these may be combined. It is preferable to contain 0.5 to 8 mol % of the anionic monomer represented by the general formula (2).
  • the C/A ratio is preferably in the range of 1.5 to 2.5, particularly preferably 1.7 to 2.3.
  • the nonionic monomers used in the present invention include (meth)acrylamide, N,N'-dimethylacrylamide, acrylonitrile, 2-hydroxyethyl (meth)acrylate, diacetone acrylamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, acryloylmorpholine, and the like. Of these, (meth)acrylamide is preferred. Two or more of these may be combined.
  • the water-soluble polymer of the present invention can be produced by water-in-oil emulsion polymerization. That is, a monomer mixture containing a monomer selected from a cationic monomer, an anionic monomer, and a nonionic monomer is mixed with water, an oily substance consisting of at least a water-immiscible hydrocarbon, and at least one surfactant having an effective amount and HLB for forming a water-in-oil emulsion, and the mixture is stirred vigorously to form a water-in-oil emulsion, which is then polymerized.
  • the monomer mixture may be divided and added continuously or intermittently to produce the polymer.
  • oily substances made of hydrocarbons used as dispersion media include paraffins, naphthenes, mineral oils such as kerosene, light oil, and medium-weight oil, synthetic hydrocarbon oils having substantially the same range of boiling point, viscosity, and other properties as these, and mixtures of these.
  • the content is in the range of 20 to 50% by mass, and preferably 20 to 35% by mass, based on the total amount of the water-in-oil emulsion.
  • a high HLB surfactant with an HLB of 8 to 15 is used for emulsification.
  • Surfactants other than those with high HLB may also be combined.
  • examples of surfactants include nonionic surfactants, and specific examples thereof include sorbitan monooleate, sorbitan monostearate, sorbitan monopalmitate, polyoxyethylene sorbitan trioleate, polyoxyethylene nonylphenyl ether, etc. Two or more of these may also be combined.
  • the addition rate of these surfactants is 0.5 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the water-in-oil emulsion.
  • the pH of the monomer mixture is adjusted to 3-8. A pH of 3.5-7.5 is preferred.
  • the pH is adjusted with an acid or alkali.
  • acids include inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, adipic acid, succinic acid, and citric acid, and examples of alkalis include sodium hydroxide and calcium hydroxide.
  • the monomer concentration during polymerization is in the range of 25 to 50% by mass, and the polymerization concentration and temperature are set appropriately depending on the monomer composition and the selection of initiator. From the viewpoint of increasing the concentration of the product, a polymerization concentration of 30 to 50% by mass is preferred, with 35 to 50% by mass being even more preferred.
  • the polymerization temperature is in the range of 20 to 80°C, preferably 20 to 60°C.
  • a radical polymerization initiator is used to start the polymerization. These initiators may be either oil-soluble or water-soluble, and polymerization can be carried out with any of the azo, redox, and peroxide types.
  • oil-soluble azo initiators examples include 2,2'-azobisisobutyronitrile, dimethyl-2,2'-azobisisobutyrate, 1,1'-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis(2-methylbutyronitrile), dimethyl-2,2'-azobis(2-methylpropionate), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), and the like.
  • water-soluble azo initiators examples include 2,2'-azobis(amidinopropane) dihydrochloride, 2,2'-azobis[2-(5-methyl-imidazolin-2-yl)propane] dihydrochloride, and 4,4'-azobis(4-cyanovaleric acid).
  • redox initiators examples include combinations of ammonium peroxodisulfate with sodium sulfite, sodium hydrogensulfite, trimethylamine, and tetramethylethylenediamine.
  • peroxide initiators include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy-2-ethylhexanoate, and t-butyl hydroperoxide.
  • the water-in-oil emulsion produced by adding an ionic polymer dispersant during polymerization to produce the water-in-oil emulsion of the present invention is preferable because it enhances the dispersion effect when added to papermaking raw materials and improves the paper strength effect without impairing the texture of the paper.
  • the ionic polymer dispersant may be polymerized by being contained in an aqueous monomer mixture solution, or may be added during polymerization.
  • Ionic polymer dispersants can be produced by known methods such as aqueous solution polymerization, emulsion polymerization, dispersion polymerization, and suspension polymerization.
  • cationic polymer dispersants include polymerized cationic monomers such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, (meth)acryloyloxyethyl trimethylammonium chloride, dimethyldiallylammonium chloride, or salts thereof, or copolymers of these cationic monomers and nonionic monomers.
  • nonionic monomers examples include acrylamide, N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, N,N'-dimethylacrylamide, acrylonitrile, diacetoneacrylamide, and 2-hydroxyethyl (meth)acrylate.
  • the amphoteric polymer dispersant is a copolymer of the cationic monomer, or the cationic monomer, the nonionic monomer, and the anionic monomer.
  • the anionic monomer include (meth)acrylic acid, acrylamido-2-methylpropanesulfonic acid, methallylsulfonic acid, itaconic acid, or salts thereof.
  • the weight average molecular weight of the ionic polymer dispersant is 5,000 to 500,000, preferably 10,000 to 100,000.
  • the addition rate is preferably 0.1 to 10% by mass, more preferably 0.5 to 10% by mass, based on the amount of the water-in-oil emulsion.
  • the paper strength enhancing effect tends to be improved, and this is preferable.
  • the crosslinkable monomer is present in the range of 0.0005 to 0.5 mass% relative to the total amount of monomers. 0.001 to 0.1 mass% is preferable.
  • crosslinkable monomers examples include N,N'-methylenebis(meth)acrylamide, triallylamine, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, polyethylene glycol di(meth)acrylate, N-vinyl(meth)acrylamide, N-methylallylacrylamide, glycidyl acrylate, polyethylene glycol diglycidyl ether, acrolein, glyoxal, vinyltrimethoxysilane, etc., and N,N'-methylenebis(meth)acrylamide is preferable.
  • isopropyl alcohol at 0.1 to 5% by mass relative to the monomer as a chain transfer agent to adjust the degree of polymerization, or to use formate at 0.01 to 0.5% by mass relative to the monomer or hypophosphite at 0.1 to 5% by mass relative to the monomer.
  • the viscosity of the product can be adjusted by adding a salt during or after polymerization.
  • salts include sodium chloride, potassium chloride, calcium chloride, lithium chloride, sodium sulfate, ammonium sulfate, magnesium sulfate, sodium carbonate, calcium carbonate, etc. Two or more of these may be added.
  • hydrophilic surfactant called a phase inversion agent is added to make the emulsion particles covered with an oil film more compatible with water and to make the water-soluble polymer inside more soluble, and the emulsion is then diluted with water for use in its intended purpose.
  • hydrophilic surfactants include cationic surfactants and nonionic surfactants with an HLB of 9 to 15, such as polyoxyethylene polyoxypropylene alkyl ethers and polyoxyethylene alcohol ethers.
  • the water-soluble polymer of the present invention needs a certain molecular weight to perform as a paper strength enhancer.
  • Intrinsic viscosity is an index of molecular weight.
  • the intrinsic viscosity of the water-soluble polymer of the present invention in a 1N saline solution measured at 25°C is preferably 2 to 20 dL/g, more preferably 3 to 15 dL/g, and even more preferably 5 to 15 dL/g. If it is lower than 2 dL/g, the paper strength enhancing effect will not be as high as that of conventional aqueous polymer-type paper strength enhancers, and if it is higher than 20 dL/g, the cohesive force will be too high and the texture of the paper will be damaged.
  • the intrinsic viscosity is measured using a general device such as the automatic viscosity measuring device SS-120-L1 model manufactured by Shibayama Scientific Machinery Manufacturing Co., Ltd.
  • the weight average molecular weight is preferably in the range of 2 million to 10 million.
  • the product viscosity of the water-in-oil emulsion of the present invention measured at 25° C. is preferably 1500 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s. If the viscosity is 1500 mPa ⁇ s or less, the energy consumed during the transportation of the product can be further reduced, and the dispersibility when diluted with water during use is excellent, making it difficult for dissolution problems to occur.
  • Conventional aqueous solution polymers have a product viscosity of several thousand to several tens of thousands of mPa ⁇ s, whereas the water-in-oil emulsion of the present invention maintains its paper strength effect while adjusting various polymerization conditions such as monomer composition, type and amount of surfactant, amount of chain transfer agent, etc., so that the product viscosity is lower than that of conventional products and the solubility is excellent.
  • the particle size of the water-in-oil emulsion of the present invention is preferably 100 to 1000 nm.
  • the water-in-oil emulsion of the present invention is emulsified using a high HLB surfactant during production.
  • the reason is as follows.
  • a water-in-oil emulsion has low viscosity in its finished state, but becomes highly viscous when diluted with water.
  • the water-in-oil emulsion of the present invention has excellent solubility because a high HLB surfactant is used during production and emulsification, and it can be quickly diluted and dissolved, making it suitable for continuous dissolution.
  • the water-in-oil emulsion of the present invention can be dissolved without using dissolving equipment with an agitator, which is usually required for dissolving high-concentration emulsion products.
  • a means for mixing the water-in-oil emulsion and water can be connected to the middle of the piping, and the diluted solution of the continuously dissolved water-in-oil emulsion can be added to the papermaking raw material before papermaking.
  • An example of a means for mixing the water-in-oil emulsion and water is a line mixer.
  • a line mixer for example, a general one such as that disclosed in JP-A-7-328319 can be used.
  • water-in-oil emulsion products that are commonly used as pharmaceuticals are prepared by adding a low HLB surfactant to a mixture of a water-immiscible organic liquid and an aqueous monomer solution to prepare a water-in-oil emulsion, polymerizing it, and then adding a high HLB surfactant, which is then treated so that it is compatible with water and easily soluble when mixed with dilution water.
  • the compatibility with water during emulsification is improved, and furthermore, the diluted solution can be prepared without suddenly becoming viscous.
  • the high HLB surfactant is hydrophilic, does not mix with oil, and diffuses into water, helping to disperse the oil film peeling off from the emulsion particle surface in water. As a result, it is thought that the emulsion is diluted and dissolved smoothly.
  • a high HLB surfactant is added after polymerization to help dissolve the water-in-oil emulsion.
  • the high HLB surfactant diffuses into the water, but the emulsion particles whose surfaces are covered with a hydrophobic emulsifier and an oil film are left behind.
  • the oil is emulsified in the water, but it is speculated that the difference between the diffusion of the high HLB surfactant into the water and the emulsification of the oil on the surface of the water-in-oil emulsion into the water is the cause of the generation of insoluble matter.
  • emulsification is achieved by using a high HLB surfactant in an appropriate amount, and the monomer composition makes the polymer more soluble after phase inversion, which is believed to facilitate dissolution in water.
  • the paper strength agent in the present invention is added to the raw paper material before papermaking where the pulp dry solids concentration is 2.0% by mass or more upstream in the papermaking process, such as a refiner, a raw material blending chest, a mixing chest, a machine chest, or a seed box.
  • high-concentration papermaking raw material with a pulp dry solids concentration of 2.0% by mass or more is diluted with white water or clean water just before the papermaking machine to a papermaking raw material with a pulp dry solids concentration of less than 2.0% by mass.
  • it is diluted to 0.5 to 1.5% by mass, and these are called inlet raw material or headbox raw material, and it can be added to these raw materials (hereinafter referred to as inlet raw material).
  • the addition location of the process is before or after the fan pump or before or after the screen, which is the shearing process.
  • the types of paper to which the paper strength enhancer of the present invention is added include liner and core base paper board, which are in high demand for paper strength, but it can also be applied to newsprint, fine printing paper, medium printing paper, gravure printing paper, PPC paper, coated base paper, lightly coated paper, packaging paper, etc.
  • the paper strength agent of the present invention can be used by diluting and dissolving it in water to 0.01 to 10% by mass.
  • the water to be used for dissolution can be distilled water, ion-exchanged water, tap water, industrial water, etc. A mixture of these waters can also be used.
  • the diluted solution can also be further diluted a second or third time. It can also be added as is without dilution.
  • the addition rate of the paper strength agent is in the range of 0.001 to 3 mass % (pure polymer content) based on the solid content concentration of the paper stock.
  • the paper strength agent of the present invention can be used in combination with papermaking chemicals such as sizing agents, coagulants, aluminum sulfate, retention aids, and drainage aids.
  • An ionic polymer dispersant that can be used in producing a water-in-oil emulsion of a water-soluble polymer in the present invention was prepared as follows. (Production of ionic polymer dispersant) Into a 2000 mL capacity stainless steel polymerization reaction tank equipped with a nitrogen inlet tube, a stirrer, a thermometer, and an oxygen concentration meter, 200.0 g of dimethylaminoethyl methacrylate (hereinafter abbreviated as DAM) as a water-soluble monomer, 81.6 g of anhydrous citric acid, 4.0 g of sodium hypophosphite, and 714.4 g of pure water were sequentially charged to prepare a monomer reaction liquid.
  • DAM dimethylaminoethyl methacrylate
  • the viscosity of this aqueous solution polymer was 600 mPa ⁇ s, and the weight average molecular weight was 50,000.
  • polyacryloyloxyethyl trimethylammonium chloride ionic polymer dispersant sample B, polymer viscosity 1,129 mPa ⁇ s, weight average molecular weight 80,000
  • polyacryloyloxyethyl dimethylbenzylammonium chloride ionic polymer dispersant sample C, polymer viscosity 100 mPa ⁇ s, weight average molecular weight 30,000
  • Example 1 In a reaction vessel equipped with a stirrer and a temperature control device, 15 g of polyoxyethylene sorbitan trioleate (HLB 4.3) and 7.5 g of sorbitan monooleate (HLB 11.0) were charged and dissolved in 258 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C.
  • HLB 4.3 polyoxyethylene sorbitan trioleate
  • HLB 11.0 sorbitan monooleate
  • DAM dimethylaminoethyl methacrylate
  • AAM 50% by weight aqueous solution of acrylamide
  • AAC acrylic acid
  • AAC 50% by weight aqueous solution of acrylic acid
  • the oil and the aqueous solution were then mixed and emulsified by stirring for 15 minutes at 5000 rpm with a homogenizer.
  • the temperature of the monomer solution of the obtained emulsion was kept at 25-30°C, and nitrogen substitution was performed for 30 minutes, after which 0.055 g (0.015 mass% relative to monomer) of 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added to initiate the polymerization reaction.
  • the reaction was carried out at a reaction temperature of 27 ⁇ 2°C for 24 hours to complete the reaction.
  • Example 1 After polymerization, 30.0 g (3 mass% relative to liquid) of polyoxyethylene polyoxypropylene alkyl ether with HLB of 11.7 was added as a phase inversion agent to the water-in-oil emulsion produced and mixed to obtain a total of 1 kg of water-in-oil emulsion.
  • the viscosity of the water-in-oil emulsion was 380 mPa ⁇ s and the intrinsic viscosity was 7.8 dL/g.
  • Example 1 Water-in-oil emulsions were produced in the same manner as in Example 1, except that the monomer composition ratio and the presence or absence, type and amount of an ionic polymer dispersant were changed from those in Example 1. These are Examples 2 to 5 and 8, and their compositions and physical properties are shown in Table 1.
  • Example 6 In a reaction vessel equipped with a stirrer and a temperature control device, 15g of polyoxyethylene sorbitan trioleate (HLB 4.3) and 7.5g of sorbitan monooleate (HLB 11.0) were charged and dissolved in 258g of isoparaffin having a boiling point of 190°C to 230°C.
  • HLB 4.3 polyoxyethylene sorbitan trioleate
  • HLB 11.0 sorbitan monooleate
  • DAM dimethylaminoethyl methacrylate
  • AAM acrylamide
  • SMS sodium methallylsulfonate
  • 12.0g of anhydrous citric acid 20.0g of polydimethylaminoethyl methacrylate (2% by weight relative to the liquid), and ion-exchanged water were collected, mixed, and completely dissolved. Then, the oil and the aqueous solution were mixed, and emulsified by stirring with a homogenizer at 5000 rpm for 15 minutes.
  • the temperature of the monomer solution of the obtained emulsion was kept at 25-30°C, and nitrogen substitution was performed for 30 minutes.
  • 0.053 g (0.015 mass% relative to the monomer) of 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added to initiate the polymerization reaction.
  • the polymerization was carried out for 24 hours at a reaction temperature of 27 ⁇ 2°C to complete the reaction.
  • Example 7 A water-in-oil type emulsion was produced in the same manner as in Example 6, except that the monomer composition ratio was the same as in Example 6 and no ionic polymer dispersant was added. This was designated Example 7, and its composition and physical properties are shown in Table 1.
  • nitrogen gas was blown into the monomer reaction liquid, and the solution temperature of the monomer reaction liquid was adjusted to 48° C. while replacing the gas-liquid phase of the polymerization reactor with nitrogen gas. 20 minutes after the start of nitrogen gas blowing, 0.2 g of a 2 mass % 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride aqueous solution was added as a radical initiator to the monomer reaction liquid.
  • DAM dimethylaminoethyl methacrylate
  • AAM 50% by weight aqueous solution of acrylamide
  • IA itaconic acid
  • DMBZ acryloyloxyethyl dimethylbenzylammonium chloride
  • the oil and the aqueous solution were mixed, and emulsified by stirring for 15 minutes at 5000 rpm with a homogenizer.
  • the temperature of the monomer solution of the obtained emulsion was kept at 25-30°C, and nitrogen substitution was performed for 30 minutes.
  • 0.053 g (0.015 mass% of monomer) of 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70 manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added to initiate the polymerization reaction.
  • the reaction was completed by polymerization for 24 hours at a reaction temperature of 27 ⁇ 2°C.
  • 30.0 g (3 mass% of liquid) of polyoxyethylene polyoxypropylene alkyl ether having an HLB of 11.7 was added and mixed as a phase inversion agent to the water-in-oil emulsion produced, to obtain a water-in-oil emulsion of a total amount of 1 kg.
  • the viscosity of the water-in-oil emulsion was 381 mPa ⁇ s, and the intrinsic viscosity was 2.0 dL/g. This is Comparative Example 2 and is shown in Table 1.
  • Comparative Examples 3 and 4 Two commercially available products (amphoteric polyacrylamide, form: aqueous solution polymer, product concentration: 20% by mass) that are widely used as paper strength agents were prepared as Comparative Examples 3 and 4. The compositions and physical properties of these are shown in Table 1.
  • Paper was made using a TAPPI standard sheet machine (using an 80 mesh wire), followed by pressing at a pressure of 410 kPa for 5 minutes, and then drying at 105 ° C. for 3 minutes using a rotary drum wire.
  • the paper was conditioned for 24 hours under conditions of a temperature of 23 ° C. and a humidity of 50%, to obtain a paper with a basis weight of 100 g/cm 2 .
  • the burst strength and compression strength of the obtained paper were measured and expressed as specific burst strength and specific compression strength, respectively.
  • the burst strength was measured using a KRK burst strength tester (high pressure type, manufactured by Kumagai Riki Kogyo Co., Ltd.) according to JIS P 8131, and the compression strength was measured using a short span compression tester (manufactured by L&W, Compressive Strength Tester STFI) according to JIS P 8156. The same tests were also carried out for the paper strength agent samples Examples 2 to 8. The results are shown in Table 2.
  • Example 1-1 Paper Quality Measurement Test
  • Example 1-2 Filtration Volume Measurement Test
  • the paper strength effect was improved compared to the comparative examples where a paper strength enhancer sample outside the scope of the present invention was added.
  • the amount of filtered water was within a practical range, and it was confirmed that there were no problems with the drainage performance.
  • Pulp slurry for paperboard liner making Pulp solids concentration 6200 ppm, pH 7.3, electrical conductivity 73.0 mS/m was used for the test. A predetermined amount of pulp slurry was collected, and 0.72 mass% of the paper strength enhancer sample Example 1 in Table 1 was added to the pulp solids (polymer pure content), and the mixture was stirred at 800 rpm for 30 seconds.
  • 0.3 mass% aluminum sulfate was added and stirred at 800 rpm for 10 seconds, and then 90 ppm of anionic retention aid (commercial product, anionic polyacrylamide, form: water-in-oil emulsion) was added to the pulp solids (polymer pure content), and the mixture was stirred at 800 rpm for 30 seconds.
  • Paper was made using a TAPPI standard sheet machine (using an 80 mesh wire), followed by pressing for 5 minutes at a pressure of 410 kPa, and then drying for 3 minutes at 105°C using a rotary drum wire. The paper was conditioned for 24 hours under conditions of a temperature of 23°C and a humidity of 50%, to obtain a paper having a basis weight of 100 g/ cm2 .
  • the burst strength and compression strength of the obtained paper were measured and expressed as specific burst strength and specific compression strength, respectively.
  • the burst strength was measured using a KRK burst strength tester (high pressure type, manufactured by Kumagai Riki Kogyo Co., Ltd.) according to JIS P 8131, and the compression strength was measured using a short span compression tester (manufactured by L&W, Compressive Strength Tester STFI) according to JIS P 8156.
  • the same test was also carried out on the paper strength agent example sample 4.
  • Example 2-1 Paper Quality Measurement Test
  • Example 2-2 Comparative Test Example 2-2, Filtration Volume Measurement Test
  • Table 3 Comparative Test Example 2-2, Filtration Volume Measurement Test
  • the paper strength effect and drainage performance were equal to or greater than those of commercially available aqueous polymer-type paper strength agents, and the effectiveness was confirmed in actual paper stock.
  • Electrical conductivity is an index of the amount of salts (or ions) dissolved in the liquid, and is an index of the solubility of a water-in-oil emulsion. Electrical conductivity is low at the beginning of dissolution, but increases as dissolution progresses, and reaches a substantially constant level. 473.0 g of desalted water was collected in a 500 mL beaker, and an electrical conductivity meter was placed in the water.
  • Example Test 3 Electrical Conductivity Measurement Test

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

抄紙工程における成紙に紙力を付与する紙力増強剤に関するものであり、高い紙力効果を維持しつつ、取り扱い容易で物流コスト削減が可能な紙力増強剤を提供する。従来の水溶液形態の紙力増強剤は、製造時、使用時のハンドリング性確保の観点から高濃度化が困難であった。特定の単量体組成を含有する単量体混合物水溶液を、界面活性剤存在下、油中水滴型エマルジョン重合して得られる水溶性高分子を紙力増強剤として添加することで課題を達成できる。従来品と比較しハンドリング性改善、高濃度化、高分散性で優れた溶解性により簡易溶解も可能である。

Description

油中水滴型エマルジョン紙力増強剤
本発明は、抄紙工程において使用する紙力増強剤及びそれを用いた紙力増強方法に関するものであり、詳しくは特定の単量体を必須成分として含有する単量体(混合物)を、特定の重合法により製造された水溶性高分子からなる紙力増強剤及びその使用方法に関するものである。
紙に強度を付与する紙力増強剤に関する研究は旧来より盛んに行われてきた。アクリルアミドを主成分とし、カチオン単量体、アニオン単量体、架橋性単量体等を共重合した両性PAM(ポリアクリルアミド)の技術は、公知技術として広範に活用されている。
両性PAMの紙力発現には、重合体中アミド基等の官能基とセルロース中水酸基間の水素結合の形成と、数100万台の高分子量化が必要と認識されている。高分子量化は紙力増強効果を高めるが、同時に製品粘度も向上することが、障壁となる。
現在市場における主流な紙力増強剤の製品形態は水溶液状である。ポリマー濃度(製品濃度)は15~20質量%なものが多く、B型粘度計測定による製品粘度は数千~数万mPa・sの高粘度を示す。この様な高粘度では製品移送時に高圧ポンプが必要になる他、紙料への製品添加時に希釈水への分散性が低下する等、取り扱い困難である。高分子量化による更なる紙力向上や、物流コスト削減目的の高濃度化も、水溶液形態では達成し難い。
一方、界面活性剤存在下、油中水滴型エマルジョン重合を用いると、分散性に優れた高濃度、低製品粘度の高分子分散液を得られることは知られている(特許文献1)。又、紙力増強剤の製造に関して、一般的な重合法の例として乳化重合の記載があるものはあるが、実際に油中水滴型エマルジョンの紙力増強剤として具体的に報告された例は見当たらない(特許文献2~5)。
界面活性剤存在下、油中水滴型エマルジョン重合を行う場合、界面活性剤や乳化手段の選定、適切な装置の準備等、目的とする製品を得るには特殊な装置が必要となる。特に工業的な製造を行う場合、特殊な装置を所有しない場合は実質上製造できない。そこで、実用的な油中水滴型エマルジョンの紙力増強剤の開発が要望されている。
特開2003-342305号公報 特開2003-166193号公報 特開2008ー297655号公報 特表2011-525572号公報 特表2019-518848号公報
本発明は、抄紙工程において紙に強度を付与する紙力増強剤に関するものであり、従来の紙力増強剤に比べて数100万の分子量に到達しても高濃度製品形態にすることが可能、かつ紙力増強効果が高く取り扱いも容易で、高い分散性と溶解性を有する紙力増強剤及びそれを用いた紙力増強方法も提供することを課題とする。
本発明者は上記課題を解決するため鋭意検討を行った結果、下記のような発明に達した。特定の単量体混合物水溶液を、界面活性剤存在下、油中水滴型エマルジョン重合して製造した水溶性高分子の油中水滴型エマルジョンを紙力増強剤として適用することで前記課題を解決できることを見出したものである。
 本発明における油中水滴型エマルジョン形態の製品は、高濃度でありながら製品粘度が低く、且つ分散性に優れる。紙力効果向上に必要な高分子量化が可能なだけでなく、物流コスト削減が達成できる。優れた分散性と溶解性を有するため、通常高濃度エマルジョン製品の溶解には溶解設備が一~複数個必要となるが、本発明品は簡易な溶解設備でも使用可能である。
 本発明における水溶性高分子としては、下記一般式(1)で表される三級アミノ基含有カチオン性単量体1~20モル%、四級アンモニウム基含有カチオン性単量体0~8モル%、下記一般式(2)で表されるアニオン性単量体0.1~10モル%及び非イオン性単量体62~98.9モル%を構成単位とする。
一般式(1)
は水素又はメチル基、R、Rは炭素数1~3のアルキルあるいはアルコキシ基、Rは水素、炭素数1~3のアルキルあるいはアルコキシ基、7~20のアルキル基あるいはアリール基、Aは酸素またはNH、Bは炭素数2~4のアルキレン基を表わす、X は陰イオンをそれぞれ表わす。
Figure JPOXMLDOC01-appb-I000004
一般式(2)
は水素、メチル基またはカルボキシメチル基、QはSO 、CHSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOO、Rは水素またはCOO 、YあるいはYは水素または陽イオンをそれぞれ表わす。
一般式(1)で表わされる三級アミノ基含有カチオン性単量体として、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド等が挙げられる。
一般式(1)で表される四級アンモニウム基含有カチオン性単量体として、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物等が挙げられる。これらを二種以上、組み合わせても差し支えない。一般式(1)で表わされる三級アミノ基含有カチオン性単量体3~18モル%、四級アンモニウム基含有カチオン性単量体0~5モル%含有することが好ましい。
一般式(2)で表されるアニオン性単量体としては、(メタ)アクリル酸、アクリルアミド-2-メチルプロパンスルホン酸、メタリルスルホン酸、イタコン酸あるいはこれらの塩等が挙げられる。これらを二種以上、組み合わせても差し支えない。一般式(2)で表されるアニオン性単量体0.5~8モル%含有することが好ましい。
 又、一般式(1)で表わされるカチオン性単量体のモル%をC、一般式(2)で表わされるアニオン性単量体のモル%をAとした時のC/A比が1.5~2.5の範囲が好ましく、1.7~2.3が特に好ましい。
本発明で使用する非イオン性単量体としては、(メタ)アクリルアミド、N,N’-ジメチルアクリルアミド、アクリロニトリル、(メタ)アクリル酸-2-ヒドロキシエチル、ジアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、アクリロイルモルホリン等が挙げられる。これらの中で(メタ)アクリルアミドが好ましい。これらを二種以上、組み合わせても差し支えない。
 本発明における水溶性高分子は油中水滴型エマルジョン重合により製造することができる。即ち、カチオン性単量体、アニオン性単量体、及び非イオン性単量体から選択される単量体を含有する単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水滴型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水滴型エマルジョンを形成させた後、重合する。又、単量体混合物を分割して連続的あるいは間歇的に添加し重合し製造しても良い。
分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類、ナフテン類、あるいは灯油、軽油、中油等の鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度等の特性を有する炭化水素系合成油、あるいはこれらの混合物が挙げられる。含有量としては、油中水滴型エマルジョン全量に対して20~50質量%の範囲であり、好ましくは20~35質量%の範囲である。
油中水滴型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤としては、HLBが8~15の高HLB界面活性剤を使用して乳化する。高HLB以外の界面活性剤を組み合わせても差し支えない。界面活性剤の例としてはノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレート、ソルビタンモノステアレート、ソルビタンモノパルミテート、ポリオキシエチレンソルビタントリオレート、ポリオキシエチレンノニルフェニルエーテル等が挙げられる。これらを二種以上、組み合わせても差し支えない。これら界面活性剤の添加率としては、油中水滴型エマルジョン全量に対して0.5~10質量%であり、好ましくは1~5質量%の範囲である。
  単量体混合物のpHは3~8に調整する。pH3.5~7.5が好ましい。pHの調整は酸又はアルカリで行なう。酸としては、塩酸、硫酸等の無機酸、ギ酸、酢酸、プロピオン酸、シュウ酸、アジピン酸、コハク酸、クエン酸等の有機酸、アルカリとしては、水酸化ナトリウム、水酸化カルシウム等が挙げられる。
単量体の重合時濃度は25~50質量%の範囲であり、単量体の組成、開始剤の選択によって適宜重合の濃度と温度を設定する。製品の高濃度化の観点から重合時濃度30~50質量%が好ましく、35~50質量%が更に好ましい。重合温度としては20~80℃、好ましくは20~60℃の範囲で行なう。重合開始はラジカル重合開始剤を使用する。これら開始剤は油溶性或いは水溶性のどちらでも良く、アゾ系、レドックス系、過酸化物系の何れでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’-アゾビスイソブチロニトリル、ジメチル-2、2’-アゾビスイソブチレート、1、1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2、2’-アゾビス(2-メチルブチロニトリル)、ジメチル-2、2’-アゾビス(2-メチルプロピオネート)、2、2’-アゾビス(4-メトキシ-2、4-ジメチルバレロニトリル)等が挙げられる。
水溶性アゾ系開始剤の例としては、2、2’-アゾビス(アミジノプロパン)二塩化水素化物、2、2’-アゾビス[2-(5-メチル-イミダゾリン-2-イル)プロパン]二塩化水素化物、4、4’-アゾビス(4-シアノ吉草酸)等が挙げられる。又、レドックス系の例としては、ペルオキソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン等との組み合わせが挙げられる。更に過酸化物系の例としては、ペルオキソ二硫酸アンモニウム或いはカリウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルヒドロペルオキシド等を挙げることができる。
本発明における油中水滴型エマルジョンを製造する際の重合時、イオン性高分子分散剤を添加して製造した油中水滴型エマルジョンは、製紙原料に添加した際の分散効果が高まり、紙の地合いを損なうことなく紙力効果が向上するため好ましい。イオン性高分子分散剤は、単量体混合物水溶液中に含有させて重合しても良いし、重合中に添加しても良い。イオン性高分子分散剤の製造は水溶液重合、乳化重合、分散重合、懸濁重合等の公知の方法で得ることができる。イオン性高分子分散剤の内、カチオン性高分子分散剤としては、カチオン性単量体として、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、ジメチルジアリルアンモニウム塩化物あるいはこれらの塩等を重合したもの、あるいはこれらカチオン性単量体と非イオン性単量体との共重合体も使用可能である。非イオン性単量体の例としては、アクリルアミド、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン、N、N’-ジメチルアクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。イオン性高分子分散剤の内、両性高分子分散剤として、前記カチオン性単量体、あるいは前記カチオン性単量体と前記非イオン性単量体とアニオン性単量体を共重合したものである。アニオン性単量体としては、(メタ)アクリル酸、アクリルアミド-2-メチルプロパンスルホン酸、メタリルスルホン酸、イタコン酸あるいはこれらの塩等が挙げられる。イオン性高分子分散剤の重量平均分子量としては、5000~50万、好ましくは1万~10万である。添加率は油中水滴型エマルジョン液量に対して0.1~10質量%が好ましく、0.5~10質量%が更に好ましい。
本発明における水溶性高分子を製造する際の重合時あるいは重合後、構造変性剤として架橋性単量体を使用すると、紙力増強効果が向上する傾向にあるため好ましい。使用する場合は、架橋性単量体を単量体総量に対し、0.0005~0.5質量%の範囲内で存在させる。0.001~0.1質量%が好ましい。架橋性単量体の例としては、N,N’-メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸-1,3-ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N-ビニル(メタ)アクリルアミド、N-メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシラン等が挙げられ、N,N’-メチレンビス(メタ)アクリルアミドが好ましい。
 又、重合度を調節する連鎖移動剤としてイソプロピルアルコールを対単量体0.1~5質量%併用、あるいはギ酸塩を対単量体0.01~0.5質量%や次亜リン酸塩を対単量体0.1~5質量%併用すると効果的である。重合時又は重合後に塩を添加して製品粘度を調整することができる。塩としては塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化リチウム、硫酸ナトリウム、硫酸アンモニウム、硫酸マグネシウム、炭酸ナトリウム、炭酸カルシウム等が挙げられる。これらを二種以上添加しても良い。
重合後は、必要に応じて転相剤と呼ばれる親水性界面活性剤を添加して油の膜で被われたエマルジョン粒子が水に馴染み易くし、中の水溶性高分子が溶解し易くする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9~15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエーテル系、ポリオキシエチレンアルコールエーテル系等が挙げられる。
本発明における水溶性高分子は、紙力増強剤として性能を発揮するには一定の分子量が必要である。分子量の指標として固有粘度がある。本発明における水溶性高分子の25℃で測定した1規定食塩水溶液中の固有粘度2~20dL/gが好ましく、3~15dL/gがより好ましく、5~15dL/gがより一層好ましい。2dL/gより低いと従来の水溶液重合体タイプの紙力増強剤よりも高い紙力増強効果が得られず、20dL/gより高いと凝集力が高くなりすぎ紙の地合いが損なわれるためである。固有粘度は、柴山科学機械製作所製自動粘度測定装置SS-120-L1型等の一般的な装置を使用して測定する。重量平均分子量としては200万~1000万が好ましい範囲である。
 本発明における油中水滴型エマルジョンの25℃で測定した製品粘度は1500mPa・s以下が好ましく、1000mPa・sが更に好ましい。1500mPa・s以下であると製品を移送時に費やされるエネルギーがより削減でき、使用時に水と希釈する際の分散性が優れ溶解トラブルが生じ難くなる。
従来の水溶液重合体では、製品粘度が数千~数万mPa・sであり、本発明における油中水滴型エマルジョンは、紙力効果は維持でき、且つ製品粘度が従来品より低く溶解性が優れる様に単量体組成、界面活性剤種と量、連鎖移動剤量等の各種重合条件を調整したものである。
本発明における油中水滴型エマルジョンの動的光散乱測定による粒径は、100~1000nmであることが好ましい。動的光散乱測定は、大塚電子社製ELS-Z(ゼータ電位・粒径測定システム)を使用し以下の様に行なう。0.01質量%のエマルジョン希釈液を調整し、光路長10mmプラスチックデポジットセル(材質:メタクリレート)に入れ、測定条件は、温度25℃、溶媒:4質量%ソルビタン脂肪酸エステル(HLB=4.0~5.0)含有ミネラルスピリット、屈折率1.438により測定し、Cumulant法にて解析し求める。尚、同じ測定原理のものであれば同様な粒子径測定装置が適宜に使用できる。
本発明の油中水滴型エマルジョンは、製造時に高HLB界面活性剤を使用して乳化する。その理由は以下の様である。油中水滴型エマルジョンは、製品の状態では粘性は低いが、水を加えて希釈すると高粘性のものとなる。しかし、本発明の油中水滴型エマルジョンは、製造乳化時に高HLB界面活性剤を使用しているため溶解性が優れており、速やかに希釈、溶解でき連続溶解に適している。
  本発明の油中水滴型エマルジョンを、通常高濃度エマルジョン製品の溶解の際に必要な攪拌機を有する溶解設備を用いなくても溶解できる。油中水滴型エマルジョンと水とを混合する手段を配管途中に連結し連続溶解した油中水滴型エマルジョンの希釈液を抄紙前の製紙原料中に添加することができる。油中水滴型エマルジョンと水とを混合する手段の例としてラインミキサーが挙げられる。ラインミキサーとしては、例えば、特開平7-328319号公報に開示されているもの等一般的なものが使用できる。連続溶解する場合は、製品原液の供給と希釈水の供給をタイミングよく行なわないと未溶解粒子が希釈液中に多量に発生し、薬剤が効率的に使用されなくなるばかりか、連続溶解そのものが運転停止に至ることになる。従来、一般的に薬剤として使用されている油中水滴型エマルジョン製品は、低HLB界面活性剤を水非混和性有機液体と単量体水溶液混合物に添加し、油中水滴型エマルジョンを調製し、重合した後、高HLB界面活性剤を加え、希釈水と混合した場合、水に馴染みやすく溶解しやすいように処理されている。
本発明の油中水滴型エマルジョンを水により希釈する場合、高HLBの適正な界面活性剤と量を選択することによって乳化時に水とのなじみが向上し、更に急激に粘性を帯びずに希釈液を調製することができる。これは、高HLB界面活性剤は親水性であり、油とは混じらず水に拡散していき、エマルジョン粒子表面から剥離していく油の膜を水中に分散させていくのを助ける。その結果、スムーズに希釈、溶解していくと考えられる。これに対し、低HLB界面活性剤(すなわち疎水性界面活性剤)により乳化し、重合した場合は、重合後高HLB界面活性剤を添加し、油中水滴型エマルジョンの溶解を助けている。高HLB界面活性剤は水中に拡散していくが、表面が疎水性乳化剤と油の膜で覆われたエマルジョン粒子が取り残される。水中には高HLB界面活性剤が存在するので油は、水中に乳化していくが、この高HLB界面活性剤の水中への拡散と、油中水滴型エマルジョン表面の油の水中への乳化のずれが、不溶解物の発生要因になっていると推測される。本発明における油中水滴型エマルジョンでは、高HLB界面活性剤の使用と適正な量により乳化、更に転相後の高分子がより溶解しやすい単量体組成によって、水中への溶解がよりスムーズに行われると考えられる。
本発明における紙力増強剤の添加場所としては、リファイナー、原料配合チェスト、ミキシングチェスト、マシンチェスト、種箱等、製紙工程上流のパルプ乾燥固形分濃度が2.0質量%以上の抄紙前の製紙原料に添加する。
又、製紙工程において上流からパルプ乾燥固形分濃度が2.0質量%以上で移送されてきた高濃度の製紙原料が抄紙機の直前では白水や清水等によりパルプ乾燥固形分濃度が2.0質量%より低い製紙原料に希釈されている。一般的には0.5~1.5質量%に希釈されており、これらはインレット原料やヘッドボックス原料と呼ばれており、これら原料(以下、インレット原料とする。)に対して添加することができる。この場合の工程の添加場所としては、せん断工程であるファンポンプ前後やスクリーン前後が適用される。
本発明における紙力増強剤を添加する紙の種類としては、紙力の付与がより要望されるライナーや中芯原紙の板紙が挙げられるが、新聞用紙、上質印刷用紙、中質印刷用紙、グラビア印刷用紙、PPC用紙、塗工原紙、微塗工紙、包装用紙等でも適用できる。
本発明における紙力増強剤は、水で0.01~10質量%に希釈溶解して使用することができる。溶解する水は、蒸留水、イオン交換水、水道水、工業用水等が使用できる。これらが混合されていても差し支えない。希釈溶解液を更に二次希釈、三次希釈しても差し支えない。又、希釈することなく原液のまま添加することもできる。
紙力増強剤の添加率は、紙料固形分濃度に対して0.001~3質量%(ポリマー純分)の範囲である。
本発明における紙力増強剤は、サイズ剤、凝結剤、硫酸バンド、歩留向上剤、濾水性向上剤等の製紙用薬品と併用することができる。
以下に本発明における紙力増強剤について具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 本発明における水溶性高分子の油中水滴型エマルジョンを製造する際に用いることができるイオン性高分子分散剤を下記の様に製造した。
(イオン性高分子分散剤の製造)
窒素導入管、攪拌機、温度計、酸素濃度計を装備した2000mL容量のステンレス製重合反応槽に、水溶性単量体としてジメチルアミノエチルメタクリレート(以下DAMと略記)200.0g、無水クエン酸81.6g、次亜リン酸ナトリウム4.0g、及び純水714.4gを順次投入し、単量体反応液を調製した。
次いで、単量体反応液に窒素ガスを吹き込み、重合反応槽の気液相部を窒素ガスで置換しながら、単量体反応液の溶液温度を48℃に調節した。窒素ガス吹き込み開始20分後、ラジカル開始剤として2質量%2,2’-アゾビス-[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液3.0gを単量体反応液に投入した。ついで、窒素ガスの吹き込みを停止し、窒素ガス雰囲気下で自己発熱による断熱重合により重合反応を行い、ポリジメチルアミノエチルメタクリレートを得た。これをイオン性高分子分散剤試料Aとする。この水溶液状重合体粘度は、600mPa・sであり、重量平均分子量5万であった。同様な製造方法によりポリアクリロイルオキシエチルトリメチルアンモニウム塩化物(イオン性高分子分散剤試料B、重合体粘度1129mPa・s、重量平均分子量8万)、ポリアクリロイルオキシエチルジメチルベンジルアンモニウム塩化物(イオン性高分子分散剤試料C、重合体粘度100mPa・s、重量平均分子量は3万)を製造した。
(実施例1~5、8)
攪拌機および温度制御装置を備えた反応槽に沸点190℃ないし230℃のイソパラフィン258gにポリオキシエチレンソルビタントリオレート(HLB4.3)15gとソルビタンモノオレート(HLB11.0)7.5gを仕込み溶解させた。別にジメチルアミノエチルメタクリレート(以下DAMと略記)59.4g、アクリルアミド(AAMと略記)50質量%水溶液587.8g、アクリル酸(AACと略記)80質量%水溶液17.0g、無水クエン酸24.2g、次亜リン酸ナトリウム0.66g(対単量体0.2質量%)、メチレンビスアクリルアミド0.007g(対単量体0.002質量%)、ポリジメチルアミノエチルメタクリレート20.0g(対液2質量%)、イオン交換水を採取し、混合し完全に溶解させた。その後油と水溶液を混合し、ホモジナイザーにて5000rpmで15分間攪拌乳化した。この時の単量体組成は、DAM/AAC/AAM=8/4/88(モル%)である。得られたエマルジョンを単量体溶液の温度を25~30℃に保ち、窒素置換を30分行なった後、2,2’ーアゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(富士フィルム和光純薬製V-70)0.055g(対単量体0.015質量%)を加え、重合反応を開始させた。反応温度を27±2℃で24時間重合させ反応を完結させた。重合後、生成した油中水滴型エマルジョンに転相剤としてHLB11.7のポリオキシエチレンポリオキシプロピレンアルキルエ-テル30.0g(対液3質量%)を添加混合し全量1kgの油中水滴型エマルジョンが得られた。油中水滴型エマルジョン粘度は、380mPa・sであり、固有粘度は7.8dL/gであった。これを実施例1とし、組成、物性を表1に示す。実施例1と単量体組成比、イオン性高分子分散剤の有無、種類、量を変更した他は実施例1と同様にして油中水滴型エマルジョンを製造した。これらを実施例2~5、8とし、これらの組成、物性を表1に示す。
(実施例6、7)
攪拌機および温度制御装置を備えた反応槽に沸点190℃ないし230℃のイソパラフィン258gにポリオキシエチレンソルビタントリオレート(HLB4.3)15gとソルビタンモノオレート(HLB11.0)7.5gを仕込み溶解させた。別にジメチルアミノエチルメタクリレート(以下DAMと略記)29.4g、アクリルアミド(AAMと略記)50質量%水溶液635.3g、メタリルスルホン酸ナトリウム(SMSと略記)3.0g、無水クエン酸12.0g、ポリジメチルアミノエチルメタクリレート20.0g(対液2質量%)、イオン交換水を採取し、混合し完全に溶解させた。その後油と水溶液を混合し、ホモジナイザーにて5000rpmで15分間攪拌乳化した。この時の単量体組成は、DAM/SMS/AAM=4/0.4/95.6(モル%)である。得られたエマルジョンを単量体溶液の温度を25~30℃に保ち、窒素置換を30分行なった後、2,2’ーアゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(富士フィルム和光純薬製V-70)0.053g(対単量体0.015質量%)を加え、重合反応を開始させた。反応温度を27±2℃で24時間重合させ反応を完結させた。重合後、生成した油中水滴型エマルジョンに転相剤としてHLB11.7のポリオキシエチレンポリオキシプロピレンアルキルエーテル30.0g(対液3質量%)を添加混合し全量1kgの油中水滴型エマルジョンを得た。油中水滴型エマルジョン粘度は、878mPa・sであり、固有粘度は14.3dL/gであった。これを実施例6とし、組成、物性を表1に示す。実施例6と単量体組成比、イオン性高分子分散剤を添加しない他は実施例6と同様にして油中水滴型エマルジョンを製造した。これを実施例7とし、その組成、物性を表1に示す。
(比較例1)
窒素導入管、攪拌機、温度計、酸素濃度計を装備した2000mL容量のステンレス製重合反応槽に、水溶性単量体としてジメチルアミノエチルメタクリレート(以下DAMと略記)32.12g、アクリルアミド(AAMと略記)50質量%水溶液317.71g、アクリル酸(AACと略記)80質量%水溶液9.21g、無水クエン酸13.10g、次亜リン酸ナトリウム2.00g(対単量体1質量%)、メチレンビスアクリルアミド0.004g(対単量体 0.002質量%)、イオン交換水624.20gを順次投入し、単量体反応液を調製した。この時の単量体組成は、DAM/AAC/AAM=8/4/88(モル%)である。
次いで、単量体反応液に窒素ガスを吹き込み、重合反応槽の気液相部を窒素ガスで置換しながら、単量体反応液の溶液温度を48℃に調節した。窒素ガス吹き込み開始20分後、ラジカル開始剤として2質量%2,2’-アゾビス-[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩水溶液0.2gを単量体反応液に投入した。次いで、窒素ガスの吹き込みを停止し、窒素ガス雰囲気下で自己発熱による断熱重合により重合反応を行い、水溶液状重合体を得た。水溶液状重合体粘度は、4350mPa・sであり、固有粘度は0.3dL/gであった。これを比較例1とし、この組成、物性を表1に示す。
(比較例2)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン258gにポリオキシエチレンソルビタントリオレート(HLB4.3)  7.5g、ポリヒドロキシステアリン酸/ポリエチレンオキシド/ポリヒドロキシステアリン酸ブロックコポリマー(HLB4.6)7.5g、ソルビタンモノオレート(HLB11.0)7.5gを仕込み溶解させた。別にジメチルアミノエチルメタクリレート(DAMと略記)13.7g、アクリルアミド(AAMと略記)50質量%水溶液538.5g、イタコン酸(IAと略記)11.3g、アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物(DMBZと略記)80質量%水溶液132.2g、塩酸35質量%水溶液9.08g、3-メルカプトプロピオン酸1.2g、メチレンビスアクリルアミド0.008g(対単量体20質量%)、イオン交換水を各々採取し、混合し完全に溶解させた。その後油と水溶液を混合し、ホモジナイザーにて5000rpmで15分間攪拌乳化した。この時の単量体組成は、DAM/DMBZ/IA/AAM=2/9/2/87(モル%)である。得られたエマルジョンを単量体溶液の温度を25~30℃に保ち、窒素置換を30分行なった後、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(富士フィルム和光純薬製V-70)0.053g(対単量体0.015質量%)を加え、重合反応を開始させた。反応温度を27±2℃で24時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてHLB11.7のポリオキシエチレンポリオキシプロピレンアルキルエーテル30.0g(対液3質量%)を添加混合し全量1kgの油中水滴型エマルジョンを得た。油中水滴型エマルジョン粘度は、381mPa・sであり、固有粘度は2.0dL/gであった。これを比較例2とし、表1に示す。
(比較例3、4)
 紙力増強剤として汎用されている市販品二種(両性ポリアクリルアミド、形態;水溶液重合体、製品濃度20質量%)を比較例3、4として準備した。これらの組成、物性を表1に示す。
(表1)
Figure JPOXMLDOC01-appb-I000005
単量体;DAM:ジメチルアミノエチルメタクリレート、
DMBZ:アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、AAC:アクリル酸、SMS:メタリルスルホン酸ナトリウム、
IA:イタコン酸、AAM:アクリルアミド
架橋性単量体;メチレンビスアクリルアミド、添加率(ppm):対単量体
連鎖移動剤;ジ亜リン酸ナトリウム、添加率(質量%):対単量体
イオン性高分子分散剤;添加率(質量%):対油中水滴型エマルジョン液量
A:ポリジメチルアミノエチルメタクリレート、
B:ポリアクリロイルオキシエチルトリメチルアンモニウム塩化物、
C:ポリアクリロイルオキシエチルジメチルベンジルアンモニウム塩化物
製品粘度:製品を25℃において測定した粘度。
固有粘度;水溶性高分子の25℃において測定した1規定食塩水溶液中の固有粘度。
(実施試験例1-1、紙質測定試験)
紙力増強剤の紙質測定試験を実施した。先ず、段ボール古紙をナイアガラ式ビーターで叩解し、叩解度350mLに調整した。これをパルプ濃度1質量%のパルプスラリー(pH6.4、電気伝導度17.1mS/m)として使用した。パルプスラリー所定量採取、パルプ固形分に対し硫酸バンド1.5質量%を添加し500rpmで30秒間撹拌後、表1の紙力増強剤試料実施例1をパルプ固形分に対し0.15質量%添加(ポリマー純分)し、500rpmで1分間撹拌した。TAPPIスタンダードシートマシンにて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型ドラムワイヤーを使用し105℃で3分間乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量100g/cmの紙を得た。得られた紙の破裂強度、圧縮強度を測定し、それぞれ比破裂強度、比圧縮強度で表した。破裂強度は、KRK破裂度試験機(高圧型、熊谷理機工業社製)を用いてJIS  P  8131、圧縮強度は、ショートスパン圧縮試験機(L&W社製、Compressive  Strength  Tester  STFI)を用いてJIS  P  8156に従い実施した。又、紙力増強剤試料実施例2~8についても同様な試験を実施した。これらの結果を表2に示す。
(比較試験例1-1、紙質測定試験)
 実施試験例1-1と同じ原料を用い、表1の紙力増強剤試料比較例を用いて実施試験例1-1と同様な試験を実施した。これらの結果を表2に示す。
(実施試験例1-2、濾水量測定試験)
カナディアンスタンダードフリーネステスターを用いて濾水量測定試験を実施した。実施試験例1-1のパルプスラリーを0.3質量%になる様に水で希釈したパルプスラリー1000mLを採取し、パルプ固形分に対し1.5質量%硫酸バンドを添加し上下転倒攪拌往復5回、次いで表1の紙力増強剤試料実施例1をパルプ固形分に対し0.3質量%添加(ポリマー純分)し、上下転倒攪拌往復10回実施した。その後カナディアンスタンダードフリーネステスターに投入し濾水量を測定した。又、紙力増強剤試料実施例2~8についても同様な試験を実施した。これらの結果を表2に示す。
(比較試験例1-2、濾水量測定試験)
実施試験例1-2と同じ原料を用い、表1の紙力増強剤試料比較例を用いて実施試験例1-2と同様な試験を実施した。これらの結果を表2に示す。
(表2)
Figure JPOXMLDOC01-appb-I000006
 本発明における油中水滴型エマルジョンを添加した実施例では、本発明の範囲外の紙力増強剤試料を添加した比較例に比べて紙力効果が向上した。又、濾水量も実用可能な範囲を示し、濾水性能も問題ないことを確認できた。
(実施試験例2-1、紙質測定試験)
板紙ライナー抄造用パルプスラリー(パルプ固形分濃度6200ppm、pH7.3、電気伝導度73.0mS/m)を試験に用いた。パルプスラリーを所定量採取、表1の紙力増強剤試料実施例1をパルプ固形分に対し0.72質量%添加(ポリマー純分)、800rpmで30秒間撹拌し、0.3質量%硫酸バンドを添加し800rpmで10秒間撹拌後、パルプ固形分に対しアニオン性歩留向上剤(市販品、アニオン性ポリアクリルアミド、形態;油中水滴型エマルジョン)を90ppm添加(ポリマー純分)し800rpmで30秒間撹拌した。TAPPIスタンダードシートマシンにて抄紙(80メッシュワイヤー使用)し、続いて圧力410kPaで5分間プレスし、さらに回転型ドラムワイヤーを使用し105℃で3分間乾燥した。温度23℃、湿度50%の条件下で24時間調湿して、坪量100g/cmの紙を得た。得られた紙の破裂強度、圧縮強度を測定し、それぞれ比破裂強度、比圧縮強度で表した。破裂強度は、KRK破裂度試験機(高圧型、熊谷理機工業社製)を用いてJIS  P  8131、圧縮強度は、ショートスパン圧縮試験機(L&W社製、Compressive  Strength  Tester  STFI)を用いてJIS  P  8156に従い実施した。又、紙力増強剤実施例試料4についても同様な試験を実施した。これらの結果を表3に示す。
(比較試験例2-1、紙質測定試験)
 実施試験例2-1と同じ原料を用い、表1の紙力増強剤試料比較例を用いて実施試験例2-1と同様な試験を実施した。これらの結果を表3に示す。
(実施試験例2-2、濾水量測定試験)
カナディアンスタンダードフリーネステスターを用いて濾水量測定試験を実施した。実施試験例2-1のパルプスラリーを0.3質量%になる様に水で希釈したパルプスラリー1000mLを採取し、表1の紙力増強剤試料実施例1をパルプ固形分に対し0.36質量%添加(ポリマー純分)し上下転倒攪拌往復10回、次いで0.3質量%硫酸バンドを添加し上下転倒攪拌往復5回、パルプ固形分に対しアニオン性歩留向上剤(市販品、アニオン性ポリアクリルアミド、形態;油中水滴型エマルジョン)を90ppm添加(ポリマー純分)し上下転倒攪拌往復10回攪拌した。その後カナディアンスタンダードフリーネステスターに投入し濾水量を測定した。又、紙力増強剤実施例試料4についても同様な試験を実施した。これらの結果を表3に示す。
(比較試験例2-2、濾水量測定試験)
実施試験例2-2と同じ原料を用い、表1の紙力増強剤試料比較例を用いて実施試験例2-2と同様な試験を実施した。これらの結果を表3に示す。
(表3)
Figure JPOXMLDOC01-appb-I000007
 本発明における油中水滴型エマルジョンを添加した実施例では、市販品の水溶液重合体タイプの紙力増強剤と比べても同程度あるいは同等以上の紙力効果並びに濾水性能を示し実紙料においても有効性が確認できた。
(実施試験例3、電気伝導度の測定試験)
電気伝導度は、液中に溶けている塩類(あるいはイオン)量の指標であり、油中水型エマルジョン溶解度の指標となる。溶解初期の電気伝導度は低いが溶解が進行するにつれ電気伝導度は高くなり略一定の電気伝導度に到達する。
500mLビーカーに脱塩水473.0g採取し、水中に電気伝導度計を設置した。マグネットスターラーで500rpmにて撹拌開始、表1の紙力増強剤試料実施例1を27.0g添加(2質量%濃度)、10秒攪拌後回転数を800rpmに上げ、電気伝導度値(mS/m)を20分間計測した。20分間撹拌後の電気伝導度の値を100とし、各分の測定値を%に変換した。紙力増強剤試料実施例4についても2質量%濃度にて同様な試験を実施した。これらの結果を表4に示す。
(比較試験例3、電気伝導度の測定試験)
実施試験例3と同様な試験を紙力増強剤試料比較例1あるいは比較例2について2質量%濃度にて同様な試験を実施した。これらの結果を表4に示す。
(表4)
Figure JPOXMLDOC01-appb-I000008
実施例1、4試料添加時では0.5分後には20分間攪拌後の電気伝導度値に対して50%を超えるのに比べて、比較例1の水溶液重合体試料添加時では50%を超えるには3分以上要し、水溶液重合体に比べて本発明における油中水滴型エマルジョンの溶解性に優れることが分かった。又、比較例2の油中水滴型エマルジョンは1分までの初期溶解性が実施例に比べて劣った。配管途中に連結したラインミキサーにより水と連続溶解して希釈する等の簡易溶解では、溶解液の配管内での滞留時間は1分以内と想定されることから、試験例3の場合では電気伝導度値が1分で平衡溶解に対して少なくとも70~80%程度の溶解が必要と推測される。このことから比較例2よりも本発明における油中水滴型エマルジョンでは簡易溶解に適していると考えられる。
(実施試験例4、紙質測定試験)
実施試験例3の様に1分間攪拌及び20分間攪拌溶解した紙力増強剤試料実施例1あるいは2を用いて、段ボール古紙パルプスラリー(濃度1質量%、pH6.9、電気伝導度41.8mS/m、叩解度350mL)を対象として実施試験例1-1と同様にして紙質測定試験を実施した。これらの結果を表5に示す。
(比較試験例4、紙質測定試験)
 実施試験例3の様に1分間攪拌及び20分間攪拌溶解した紙力増強剤試料比較例3を用いて、実施試験例4と同様な試験を実施した。これらの結果を表5に示す。
(表5)
Figure JPOXMLDOC01-appb-I000009
 紙力増強剤試料実施例を1分攪拌溶解し添加した場合は、比較例に比べて紙力向上効果が大きいことが分かり、短時間溶解でも紙力効果の発現が高いことが確認できた。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (5)

  1. 下記一般式(1)で表される三級アミノ基含有カチオン性単量体1~20モル%、四級アンモニウム基含有カチオン性単量体0~8モル%、下記一般式(2)で表されるアニオン性単量体0.1~10モル%及び非イオン性単量体62~98.9モル%を含有する単量体混合物水溶液を、界面活性剤存在下、油中水滴型エマルジョン重合して製造した水溶性高分子の油中水滴型エマルジョンからなることを特徴とする紙力増強剤。
    一般式(1)
    は水素又はメチル基、R、Rは炭素数1~3のアルキルあるいはアルコキシ基、Rは水素、炭素数1~3のアルキルあるいはアルコキシ基、7~20のアルキル基あるいはアリール基、Aは酸素またはNH、Bは炭素数2~4のアルキレン基を表わす、X は陰イオンをそれぞれ表わす。
    Figure JPOXMLDOC01-appb-I000002
    一般式(2)
    は水素、メチル基またはカルボキシメチル基、QはSO 、CHSO 、CSO 、CONHC(CHCHSO 、CCOOあるいはCOO、Rは水素またはCOO 、YあるいはYは水素または陽イオンをそれぞれ表わす。
  2. 前記単量体混合物の重合時濃度が、油中水滴型エマルジョン液量に対し25~50質量%であることを特徴とする請求項1に記載の紙力増強剤。
  3. 前記油中水滴型エマルジョンの25℃で測定した製品粘度が1500mPa・s以下であることを特徴とする請求項1あるいは2に記載の紙力増強剤。
  4. 前記水溶性高分子の25℃で測定した1規定食塩水溶液中の固有粘度2~20dL/gであることを特徴とする請求項1に記載の紙力増強剤。
  5. 請求項1あるいは2に記載の油中水滴型エマルジョンと水とを混合する手段を配管途中に連結し連続溶解した油中水滴型エマルジョンの希釈液を抄紙前の製紙原料中に添加することを特徴とする紙力増強方法。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2023/030428 2022-10-25 2023-08-24 油中水滴型エマルジョン紙力増強剤 WO2024089994A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022170496A JP2024062577A (ja) 2022-10-25 2022-10-25 油中水滴型エマルジョン紙力増強剤
JP2022-170496 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024089994A1 true WO2024089994A1 (ja) 2024-05-02

Family

ID=90830563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030428 WO2024089994A1 (ja) 2022-10-25 2023-08-24 油中水滴型エマルジョン紙力増強剤

Country Status (2)

Country Link
JP (1) JP2024062577A (ja)
WO (1) WO2024089994A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031245A1 (ja) * 2011-08-29 2013-03-07 ハイモ株式会社 粉末状親水性高分子及びその製造方法、及びそれを用いた凝集処理剤
CN108484830A (zh) * 2018-05-07 2018-09-04 东升新材料(山东)有限公司 一种采用反相乳液聚合制备两性干强剂的方法
CN109021153A (zh) * 2018-05-18 2018-12-18 金学芳 一种两步法制备速溶型阳离子高分子量聚丙烯酰胺的方法
JP2019502035A (ja) * 2015-12-31 2019-01-24 エコラブ ユーエスエイ インク 乾燥強度剤組成物及び紙の乾燥強度を向上させる方法
JP2020033480A (ja) * 2018-08-31 2020-03-05 ハイモ株式会社 溶解性且つ安定性に優れた油中水型分散液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031245A1 (ja) * 2011-08-29 2013-03-07 ハイモ株式会社 粉末状親水性高分子及びその製造方法、及びそれを用いた凝集処理剤
JP2019502035A (ja) * 2015-12-31 2019-01-24 エコラブ ユーエスエイ インク 乾燥強度剤組成物及び紙の乾燥強度を向上させる方法
CN108484830A (zh) * 2018-05-07 2018-09-04 东升新材料(山东)有限公司 一种采用反相乳液聚合制备两性干强剂的方法
CN109021153A (zh) * 2018-05-18 2018-12-18 金学芳 一种两步法制备速溶型阳离子高分子量聚丙烯酰胺的方法
JP2020033480A (ja) * 2018-08-31 2020-03-05 ハイモ株式会社 溶解性且つ安定性に優れた油中水型分散液

Also Published As

Publication number Publication date
JP2024062577A (ja) 2024-05-10

Similar Documents

Publication Publication Date Title
US8476391B2 (en) Anionic water-in-water polymer dispersion, method for the production thereof and its use
AU2008315917B2 (en) Inverse emulsion polymers containing a polymeric coagulant
WO2013183184A1 (ja) 凝集処理剤
WO2002100944A1 (en) Amphoteric water-soluble polymer dispersion and use thereof
JP2007023146A (ja) イオン性微粒子およびその用途
TWI791577B (zh) 疏水性之含乙烯胺之聚合物組合物及其於製紙應用之用途
JP4847833B2 (ja) 安定なエマルジョン組成物および汚泥脱水方法
WO1997023691A1 (fr) Procede de fabrication de papier
JP5088770B2 (ja) 抄紙用薬剤
JP3712190B2 (ja) 紙の製造方法
JP4167972B2 (ja) 有機汚泥の脱水方法
WO2024089994A1 (ja) 油中水滴型エマルジョン紙力増強剤
JP5753530B2 (ja) 抄紙用粘剤、その製造方法及びこの抄紙用粘剤を用いる抄紙方法
JP6362133B2 (ja) 水溶性重合体からなる分散液を用いた抄紙方法
JP2024062553A (ja) 歩留向上剤及びそれを用いた製紙原料の歩留向上方法
JP7489058B2 (ja) 油中水型エマルジョン型凝集処理剤及びその溶解方法
JP4522692B2 (ja) 抄紙用粘剤
JP5534304B2 (ja) サイズ剤の定着方法
JP5614832B2 (ja) 中性新聞用紙の抄紙方法
JP7300082B2 (ja) アニオン性歩留向上剤及びそれを用いた抄紙方法
JP2005126880A (ja) ノニオン性抄紙用粘剤
JP2022028126A (ja) アニオン性歩留向上剤及びそれを用いた歩留向上方法
JP2023161607A (ja) 歩留及び濾水性向上を図る抄紙方法
JP6037432B2 (ja) 製紙用添加剤およびそれを用いた製紙方法
JP5713389B2 (ja) 抄紙方法