WO2024088877A1 - Procédé et dispositif de détermination de la planéité d'une bande métallique - Google Patents

Procédé et dispositif de détermination de la planéité d'une bande métallique Download PDF

Info

Publication number
WO2024088877A1
WO2024088877A1 PCT/EP2023/079150 EP2023079150W WO2024088877A1 WO 2024088877 A1 WO2024088877 A1 WO 2024088877A1 EP 2023079150 W EP2023079150 W EP 2023079150W WO 2024088877 A1 WO2024088877 A1 WO 2024088877A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal strip
flatness
irradiated
reflection
section
Prior art date
Application number
PCT/EP2023/079150
Other languages
German (de)
English (en)
Inventor
Thomas Möller
Niklas Nowack
Ibrahim Ayadi
Original Assignee
Thyssenkrupp Steel Europe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag filed Critical Thyssenkrupp Steel Europe Ag
Publication of WO2024088877A1 publication Critical patent/WO2024088877A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • the invention relates to a method for determining the flatness of a metal strip, a corresponding device for carrying out the method and a use.
  • the flatness of the strip is an important factor for the further processing of the strip and for the subsequent final recycling.
  • the flatness of the strip is an important quality feature and has a decisive influence on productivity and scrap in almost all production processes in the metalworking industry.
  • Metallic strips with insufficient flatness can lead to significant production and quality problems in the production plants following the rolling process and during further processing.
  • the flatness of a metallic strip is significantly influenced during the rolling process, whereby a flat strip is created by a uniform elongation of the strip across the strip width.
  • EP 2 910 893 Bl EP 2 834 594 Bl and EP 3 487 642 Bl .
  • the object of the invention is to optimize or improve the sensitivity and reliability of existing flatness measuring devices and also to simplify them considerably, which can significantly reduce the costs of purchasing these systems.
  • the object is achieved by a method for determining the flatness of a metal strip having the features of claim 1 and by a device for carrying out the method having the features of claim 7.
  • a method for determining the flatness of a metal strip comprises the following steps: a) irradiating a section of a surface of the metal strip; b) detecting a reflection of the irradiated section; c) transforming the reflection into flatness information; d) repeating at least steps a) and b), the metal strip being moved in its longitudinal extension so that new sections of the surface of the metal strip are irradiated as a result of the movement; e) arranging the flatness information in order to determine the flatness of the metal strip at least over a partial length along its longitudinal extent, wherein the irradiation in step a) is carried out by means of at least one heat source (thermal) or a cold source.
  • metal strip includes metal strips made of any metallic material.
  • the metal strip can preferably be designed as a steel strip.
  • a section of a surface of the metal strip is irradiated, for example, with at least one heating element whose temperature differs from the ambient temperature and the temperature of the metal strip or the surface temperature, in particular by at least 20 K, preferably by at least 30 K, preferably by at least 50 K higher.
  • a heating wire is preferably used as the heating element, which is arranged above or below the section to be irradiated for thermal irradiation, in particular in relation to the plane (metal strip plane) of the movably guided metal strip.
  • a section of the surface of the metal strip can thus be (thermally) irradiated on its top or bottom.
  • the heat source is reflected in the metal surface. As a result, the thermal reflection on the surface of the metal strip caused by the heat source is recorded. This means that data from a momentary state is available, for example.
  • a cooling element in particular to thermally inspect hot surfaces, wherein the temperature of the cooling element or the cold source differs from the temperature of the metal strip or the surface temperature, in particular by at least 20 K, preferably by at least 30 K, preferably by at least 50 K lower.
  • the operating principle is similar to that described above.
  • the cold source is reflected in the metal surface. As a result, the thermal reflection caused by the cold source is recorded on the surface of the metal strip.
  • the thermal reflection can be recorded using a thermal imaging camera, for example.
  • the thermal radiation generated by the use of a heat source is recorded and reflected from the surface of the metal strip.
  • the thermal imaging camera sometimes also referred to as a thermography, thermal or infrared camera, is an imaging device that is based on the reception of infrared radiation.
  • the use of a thermal imaging camera has the particular advantage of producing a two-dimensional thermal image. Radiation can be detected.
  • the thermal imaging camera also offers the advantage of being able to provide the two-dimensional thermal radiation in real time if required.
  • the spatial resolution of the measurement data depends in particular on the type and attachment of the thermal imaging camera in relation to the moving metal strip.
  • Transforming the reflection(s) into flatness information or flatness information can be done, for example, using data processing software or programs.
  • data processing software or programs In other words, the data of the current state recorded by the thermal imaging camera is further processed to provide flatness information.
  • Such programs/software are commercially available.
  • a continuous flatness curve over a metal strip length can be visualized and/or documented.
  • the advantage of a continuous flatness curve is that the flatness can be determined using the available data over at least a partial length along the longitudinal extension of the metal strip, preferably along the entire length of the metal strip.
  • the main advantage of detecting thermal reflection is that the surface of the metal strip can be continuously monitored without contact and in real time. Another advantage is that it enables continuous monitoring of the irradiated section of the metal strip as it passes through.
  • the method according to the invention does not work with diffuse reflection, but with the much more sensitive specular reflection, which, in contrast to diffuse reflection, does not evaluate the surface itself, but rather the mirror image of the heating element or the cooling element.
  • a further advantage of the described method is that thermal imaging cameras are used as standard in currently common production plants, which on the one hand ensures comparatively inexpensive procurement and use and on the other hand the equipment and skills required for use are already available in many cases.
  • the thermal reflection is recorded in a wavelength range between 3 micrometers and 14 micrometers, in particular in a wavelength range between 7 micrometers and 14 micrometers.
  • the comparatively long-wave spectral range between 7 pm and 20 pm has the particular advantage that a large number of metals have a very low emissivity in this wavelength range, so that the thermal radiation or thermal reflection of the irradiated section is maximized. This achieves particularly good visibility of the thermal reflection recorded using the methods described, which still leads to reliably analyzable results even under unfavorable measurement conditions.
  • thermal imaging cameras cover a wavelength range of 7 micrometers to 14 micrometers, so the acquisition costs of such systems are moderate.
  • the irradiated section covers the entire width of the metal strip. This can ensure that new sections are successively irradiated as a result of the movement of the metal strip and thus a partial length up to the entire surface of the metal strip can be detected.
  • the arrangement of the section for irradiating or for detecting the thermal reflection can be provided in a rolling mill, preferably in a cold rolling mill, a surface finishing plant or an inspection plant.
  • the section and the detection can thus be provided in the running direction of the metal strip as it runs in and/or out.
  • a further embodiment of the method advantageously provides that steps a) to c) and e) are carried out continuously in-situ.
  • a second teaching of the invention provides a device for carrying out the method for determining the flatness of a metal strip, comprising: - at least one heat source or cold source for irradiating a portion of a surface of the metal strip; - at least one thermal imaging camera for detecting a thermal reflection of the irradiated section; - means for transforming the thermal reflection into flatness information; and - means for storing and/or displaying the flatness information obtained by stringing together the flatness information in order to determine the flatness of the metal strip at least over a partial length along its longitudinal extension.
  • a further, independent teaching of the invention provides for the use of the aforementioned device according to the invention or the method according to the invention for determining the flatness of a metal strip in a surface finishing system.
  • the surface finishing system can be designed as a hot-dip coating system.
  • the surface finishing system can be designed as an electrolytic coating system.
  • the systems mentioned are state of the art and are used to apply a metallic layer to the surface of the metal strip.
  • the surface finishing system can be designed as a strip coating system, which is also state of the art, in which one or more organic layers are usually applied to the surface of the metal strip.
  • a further, independent teaching of the invention provides for the use of the aforementioned device according to the invention or the method according to the invention for determining the flatness of a metal strip in a rolling mill.
  • the rolling mill can preferably be a conventional cold rolling mill.
  • Fig. 1 a schematic perspective view of an embodiment of a device according to the invention
  • Fig. 2 a snapshot from a thermal imaging camera
  • Fig. 3 a representation of a sequence of flatness information in a first display
  • Fig. 4 a representation of a sequence of flatness information in a second display.
  • FIG. 1 shows an embodiment of a device (10) according to the invention.
  • the device (10) comprises at least one heat source (2), for example in the form of a heating element, preferably in the form of a heating wire, which is arranged such that when a metal strip (1) is guided along, a section of a surface of the metal strip (1), preferably an entire width of the surface of the metal strip (1), can be irradiated.
  • the device (1) also comprises at least one thermal imaging camera (3), which is arranged such that it can record the thermal reflection of the section irradiated by the heat source (2) when the metal strip (1) is guided along.
  • a cold source can also be used if, for example, hot surfaces are to be inspected.
  • the device (10) according to the invention can be used within existing systems for processing metal strips, such as in rolling mills and/or surface finishing systems or inspection systems, in order to be able to determine or assess the flatness of the metal strip (1) sensitively and reliably.
  • Figure 2 shows a snapshot of the thermal imaging camera (3). It can be clearly seen that the thermal imaging camera (3) images the longitudinal edges of the metal strip (1) that is guided through the device (10) and moved, and thus also captures the two irradiated sections that run across the entire width of the metal strip (1), which are seen as thermal reflections, whereby the irradiated sections are caused by the irradiation.
  • the heat sources (2) are visible as brighter areas in the image.
  • the thermal imaging camera (3) is an example from Dias Infrared GmbH with the identification PYROVIEW 640L.
  • the steps of irradiating the sections of the surface of the metal product (1) and detecting the reflection(s) of the irradiated sections are repeated, the metal strip (1) being moved in its longitudinal extent so that, as a result of the movement, new sections of the surface of the metal strip (1) are irradiated, the reflection(s) being transformed by suitable means (4), for example by means of a program or software, for example “Pyrosoft Professional” from Dias Infrared GmbH, preferably which converts the images generated by the thermal imaging camera (3) into information that can be further processed, including into flatness information or into several flatness information items.
  • the flatness of the metal strip (1) can be determined at least over a partial length along its longitudinal extent, preferably over the entire length of the metal strip (1).
  • the sequence of the flatness information and thus the flatness of the metal strip (1) can preferably be determined in-situ and preferably output graphically via suitable means (5) either two-dimensionally, see Figure 3, or three-dimensionally, see Figure 4, for example on monitors in a control station.
  • suitable means (5) can thus be storage units and/or display units.
  • Figure 3 shows the flatness of a metal strip (1), which was determined by guiding the metal strip (1) along in the direction of the arrow, across the width and over the entire length of the metal strip (1).
  • Figure 4 shows the flatness of a metal strip (1), which was determined when the metal strip (1) was guided along in the direction of the arrow, across the width, here over a width of approx. 1225 mm, and over the entire length, here approx. 2000 m, of the metal strip (1).
  • Strip unevenness is more noticeable at the beginning and end of the strip, where so-called tack seam connections with leading and trailing strips are present in order to ensure continuous operation. This procedure is common practice in the metalworking industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un procédé de détermination de la planéité d'une bande métallique (1) et un dispositif (10) pour la mise en oeuvre du procédé.
PCT/EP2023/079150 2022-10-27 2023-10-19 Procédé et dispositif de détermination de la planéité d'une bande métallique WO2024088877A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022128499.9A DE102022128499B3 (de) 2022-10-27 2022-10-27 Verfahren und Vorrichtung zur Bestimmung der Planheit eines Metallbandes
DE102022128499.9 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024088877A1 true WO2024088877A1 (fr) 2024-05-02

Family

ID=88510630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/079150 WO2024088877A1 (fr) 2022-10-27 2023-10-19 Procédé et dispositif de détermination de la planéité d'une bande métallique

Country Status (2)

Country Link
DE (1) DE102022128499B3 (fr)
WO (1) WO2024088877A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864847A2 (fr) 1997-03-11 1998-09-16 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Système de mesure de la planéité d'une feuille métallique
JP2005156420A (ja) * 2003-11-27 2005-06-16 Nippon Steel Corp 表面凹凸の検査方法及び検査装置
US20060070417A1 (en) * 2004-07-16 2006-04-06 John Nieminen Flatness monitor
DE102008064104A1 (de) * 2008-12-19 2010-07-01 Afm Technology Gmbh Ost Vorrichtung und Verfahren zum dreidimensionalen optischen Vermessen von stark reflektierenden oder durchsichtigen Objekten
EP2910893B1 (fr) 2014-02-25 2020-01-08 VDEh-Betriebsforschungsinstitut GmbH Dispositif et procédé de détermination d'écarts de planéité lors du traitement d'un produit en forme de bande
EP3487642B1 (fr) 2017-04-25 2020-01-08 Muhr und Bender KG Procédé et dispositif permettant de déterminer la planéité d'un matériau en bande et installation de traitement dotée d'un tel dispositif
EP2834594B1 (fr) 2012-04-04 2020-06-03 Primetals Technologies Austria GmbH Méthode et dispositif de mesure de planéité d'un produit métallique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696373B2 (ja) 2010-05-11 2015-04-08 新日鐵住金株式会社 ストリップの形状制御方法および形状制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0864847A2 (fr) 1997-03-11 1998-09-16 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Système de mesure de la planéité d'une feuille métallique
EP1418400A2 (fr) 1997-03-11 2004-05-12 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Système de mesure de la planéité d' une feuille metallique
JP2005156420A (ja) * 2003-11-27 2005-06-16 Nippon Steel Corp 表面凹凸の検査方法及び検査装置
US20060070417A1 (en) * 2004-07-16 2006-04-06 John Nieminen Flatness monitor
DE102008064104A1 (de) * 2008-12-19 2010-07-01 Afm Technology Gmbh Ost Vorrichtung und Verfahren zum dreidimensionalen optischen Vermessen von stark reflektierenden oder durchsichtigen Objekten
EP2834594B1 (fr) 2012-04-04 2020-06-03 Primetals Technologies Austria GmbH Méthode et dispositif de mesure de planéité d'un produit métallique
EP2910893B1 (fr) 2014-02-25 2020-01-08 VDEh-Betriebsforschungsinstitut GmbH Dispositif et procédé de détermination d'écarts de planéité lors du traitement d'un produit en forme de bande
EP3487642B1 (fr) 2017-04-25 2020-01-08 Muhr und Bender KG Procédé et dispositif permettant de déterminer la planéité d'un matériau en bande et installation de traitement dotée d'un tel dispositif

Also Published As

Publication number Publication date
DE102022128499B3 (de) 2023-11-16

Similar Documents

Publication Publication Date Title
DE19849793C1 (de) Vorrichtung und Verfahren zur berührungslosen Erfassung von Unebenheiten in einer gewölbten Oberfläche
EP2375243B1 (fr) Procédé de contrôle thermographique et dispositif de contrôle pour l'exécution du procédé de contrôle
EP2150362A1 (fr) Procédé de reconnaissance et de classification de défauts de surface sur des brames coulées en continu
DE102013003760A1 (de) Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines generativen Lasersinter- und/oder Laserschmelzverfahrens hergestellten Bauteils
EP3314036B1 (fr) Procédé de revêtement d'une surface d'une bande métallique ainsi que dispositif de revêtement d'une bande métallique
EP2470858B1 (fr) Procédé et dispositif de contrôle de qualité d'un élément en matière thermoplastique renforcé par fibres, façonné
DE102006051538B4 (de) Verfahren und Vorrichtung zur Bestimmung der Waviness von Glasscheiben
EP1055905A2 (fr) Procédé pour déterminer la planéité d'une bande de matériau
DE102022128499B3 (de) Verfahren und Vorrichtung zur Bestimmung der Planheit eines Metallbandes
EP3047253B1 (fr) Procédé et dispositif pour détermination des caractéristiques d'usure d'un produit plat revêtu
DE202018103274U1 (de) Vorrichtung zur Oberflächeninspektion eines Kraftfahrzeugs
EP2183064B1 (fr) Cage de laminage a chaud comprenant un enrouleur et un dispositif pour déterminer une température d'un produit laminé à chaud, et procédé de commande et/ou de régulation d'une température d'un produit laminé à chaud
EP3657125B1 (fr) Dispositif et procédé de détermination d'écarts de planéité lors du traitement d'un produit en forme de bande
EP2863168A1 (fr) Procédé et dispositif de mesure destinés à évaluer les différences structurelles d'une surface réfléchissante
DE102018113919A1 (de) Vorrichtung zur Oberflächeninspektion eines Kraftfahrzeugs und Verfahren hierzu
DE19623159C2 (de) Verfahren und Einrichtung zur Beurteilung eines Körpers unter Erfassung eines Temperaturfeldes des Körpers
DE19941734B4 (de) Verfahren zur Prozessführung und Prozessoptimierung beim Beizen eines Stahlbandes
WO2019210911A1 (fr) Procédé et dispositif d'analyse à résolution temporelle de films de transfert
WO2006122817A1 (fr) Procede et dispositif pour produire une bande metallique
DE102017103037A1 (de) Verfahren zur zerstörungsfreien Untersuchung und Klassifizierung eines metallischen Werkstücks
DE19947572C2 (de) Verfahren zur Bestimmung der Planheit eines Materialbandes
DE19604440A1 (de) Verfahren und Vorrichtung zur Beurteilung eines Ziehsteins
EP4173741A1 (fr) Procédé et dispositif de surveillance d'un processus d'usinage laser par photométrie de speckle
DE10053980A1 (de) Verfahren und Vorrichtung zur berührungslosen Temperaturmessung eines bewegten, vorzugsweise rotierenden Körpers
DE10103391A1 (de) Verfahren und Vorrichtung zum Prüfen einer Oberfläche