WO2024088295A1 - 一种α-烯烃聚合物及其制备方法和应用 - Google Patents

一种α-烯烃聚合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024088295A1
WO2024088295A1 PCT/CN2023/126413 CN2023126413W WO2024088295A1 WO 2024088295 A1 WO2024088295 A1 WO 2024088295A1 CN 2023126413 W CN2023126413 W CN 2023126413W WO 2024088295 A1 WO2024088295 A1 WO 2024088295A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
substituted
polymer
olefin polymer
reaction
Prior art date
Application number
PCT/CN2023/126413
Other languages
English (en)
French (fr)
Inventor
赖菁菁
郭子芳
苟清强
高榕
王莹
张然荻
安京燕
乐强
宋至慧
李昕阳
顾元宁
Original Assignee
中国石油化工股份有限公司
中石化(北京)化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211308644.8A external-priority patent/CN117964822A/zh
Priority claimed from CN202211309110.7A external-priority patent/CN117964865A/zh
Priority claimed from CN202211308376.XA external-priority patent/CN117964821A/zh
Application filed by 中国石油化工股份有限公司, 中石化(北京)化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024088295A1 publication Critical patent/WO2024088295A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof

Definitions

  • the present invention relates to the technical field of olefin polymerization, and in particular to an alpha-olefin polymer and a preparation method and application thereof.
  • lubricating oil usually needs to be added with additives, such as detergent dispersants, viscosity index improvers, antioxidants, etc., to improve the various properties of the oil.
  • additives such as detergent dispersants, viscosity index improvers, antioxidants, etc.
  • viscosity index improvers are a very important additive.
  • the viscosity of lubricating oil changes significantly with temperature.
  • the viscosity increases at low temperatures, but decreases at higher temperatures, resulting in poor lubrication.
  • the addition of viscosity index improvers can effectively improve lubrication efficiency at high temperatures, thereby improving the viscosity-temperature properties of lubricating oil.
  • OCPs olefin copolymer viscosity index improvers
  • Olefin copolymer viscosity index improvers usually use ethylene as the main constituent monomer, and the problem is that it is difficult to simultaneously have good thickening ability, solubility and system stability at low temperatures.
  • ⁇ -olefins such as propylene and ethylene are usually copolymerized to increase the branch content of polyolefins.
  • the branch content increases, although the solubility and low-temperature stability are greatly improved, the thickening ability will be significantly reduced at the same time. In order to ensure sufficient thickening efficiency, the branch content cannot be too high.
  • the propylene unit content in the polymer is usually not more than 50%. Therefore, in the traditional preparation method, the amount of ⁇ -olefin used as a comonomer is strictly limited. Further, generally speaking, if ⁇ -olefins (especially long-chain ⁇ -olefins) are used as the main polymerization monomers, because of their excessively high branch content, their viscosity will be low, thus having poor thickening efficiency.
  • the purpose of the present invention is to overcome the problems in the prior art that the amount of ⁇ -olefin used in preparing olefin copolymer viscosity index improvers is strictly limited, and the olefin polymer prepared by using ⁇ -olefin as the main polymerization monomer has poor thickening efficiency, and to provide an ⁇ -olefin polymer and its preparation method and application.
  • the ⁇ -olefin polymer according to the present invention is obtained by polymerizing one ⁇ -olefin or two or more ⁇ -olefins, and the ⁇ -olefin polymer has excellent thickening efficiency when used as a viscosity index improver for lubricating oil.
  • the first aspect of the present invention provides an ⁇ -olefin polymer, which is formed by polymerizing at least one ⁇ -olefin monomer CH 2 ⁇ CHR, wherein the carbon atoms in the main chain of the ⁇ -olefin polymer account for 58-87% of all carbon atoms, wherein R is a linear or branched alkyl group with a carbon number of ⁇ 2; the weight average molecular weight of the ⁇ -olefin polymer is 10,000-250,000, preferably 25,000-150,000, more preferably 30,000-120,000; and the molecular weight distribution PDI of the ⁇ -olefin polymer is ⁇ 3, preferably ⁇ 2.
  • the second aspect of the present invention provides a method for preparing the ⁇ -olefin polymer described above, the method comprising: polymerizing an ⁇ -olefin monomer having a carbon number of not less than 4 in the presence of a main catalyst, a co-catalyst, an optional reversible chain transfer agent and an optional solvent, wherein the main catalyst is a late transition metal catalyst with a diimine as a ligand.
  • the third aspect of the present invention provides use of the ⁇ -olefin polymer described above as a viscosity index improver.
  • a fourth aspect of the present invention provides a lubricating oil comprising a base oil and the ⁇ -olefin polymer described above.
  • the ⁇ -olefin polymer has good thickening efficiency, which overcomes the technical problem that the ⁇ -olefin polymer has poor performance as a viscosity index improver due to excessive branched carbon in the prior art.
  • the present invention uses ⁇ -olefin polymer as a viscosity index improver, further broadening the optional types of viscosity index improvers. Whether from the practical aspect or the technical research direction, the poly ⁇ -olefin viscosity index improver of the present invention has extremely high value.
  • R is a linear or branched alkyl group with carbon atoms ⁇ 2.
  • carbon atoms in the main chain account for 58-87% of all carbon atoms, preferably 60-85%, more preferably 63-82%.
  • the ⁇ -olefin polymer comprises a first unit -(CH 2 )-, a second unit -CH(CH 3 )- and a third unit -CH(R)-, and based on the total number of carbon atoms in the main chain of the ⁇ -olefin polymer, the first unit is present in an amount of 77% or more, and the third unit is present in an amount of 18% or less.
  • the first unit is present in an amount of 80-95%
  • the second unit is present in an amount of 1-10%
  • the third unit is present in an amount of 2-12%.
  • the third unit is a unit obtained by ⁇ -olefin monomer without "chain walking".
  • the weight average molecular weight of the ⁇ -olefin polymer is 10,000-250,000, preferably 25,000-150,000, and more preferably 30,000-120,000.
  • the molecular weight distribution PDI of the ⁇ -olefin polymer is less than 3, preferably ⁇ 2, and more preferably 1.01-2.
  • the weight average molecular weight Mw and molecular weight distribution PDI of the ⁇ -olefin polymer are measured by gel permeation chromatography-infrared detector (GPC-IR).
  • the ⁇ -olefin polymer is obtained by homopolymerization of an ⁇ -olefin monomer, has a weight average molecular weight of 20,000-250,000 (preferably 30,000-150,000), and a molecular weight distribution PDI ⁇ 3 (preferably ⁇ 2).
  • the ⁇ -olefin polymer is a diblock polymer A-B or a triblock polymer A-B-A, wherein the branching degree of the A block is greater than the branching degree of the B block.
  • the ⁇ -olefin polymer according to this preferred embodiment has better thickening efficiency.
  • the branching degree refers to the number of branches contained in every 1000 carbon atoms, and the branching degree is measured by gel permeation chromatography-infrared detector (GPC-IR).
  • the ⁇ -olefin polymer is a diblock polymer or a triblock polymer
  • the ⁇ -olefin polymer is obtained by continuous homopolymerization of an ⁇ -olefin monomer in at least two stages.
  • a diblock polymer or a triblock polymer having two or more blocks with different degrees of branching is formed by controlling the reaction temperature and/or the concentration of the ⁇ -olefin monomer in different reaction stages.
  • the weight average molecular weight of the ⁇ -olefin polymer is 22,000-180,000 (preferably 32,000-160,000), and the molecular weight distribution PDI is less than 3 (preferably ⁇ 2).
  • the ⁇ -olefin polymer is a diblock polymer
  • the ⁇ -olefin polymer is obtained by continuous homopolymerization of two ⁇ -olefin monomers in two stages, wherein one ⁇ -olefin monomer is used in each stage.
  • the weight average molecular weight of the ⁇ -olefin polymer is 10,000-250,000 (preferably 25,000-150,000), and the molecular weight distribution PDI is less than 3 (preferably ⁇ 2).
  • the degree of polymerization reaction in the reaction stage is controlled so that the A block is amorphous (i.e., non-crystalline) and the B block has a certain degree of crystallinity.
  • the B block in the block polymer has a melting point, and the A block does not have a melting point. More preferably, the melting point of the block polymer is -50°C to 80°C.
  • the ⁇ -olefin monomer is a linear or branched ⁇ -olefin having 4 to 20 carbon atoms (preferably 4 to 12, specifically, for example, 4, 5, 6, 7, 8, 9, 10, 11 or 12).
  • the ⁇ -olefin monomer is selected from at least one of 1-butene, 2-methyl-1-butene, 3,3-dimethyl-1-butene, 1-pentene, 1-pentene substituted with one or more methyl, ethyl, propyl groups, 1-hexene, 1-hexene substituted with one or more methyl, ethyl, propyl groups, 1-heptene, 1-heptene substituted with one or more methyl, ethyl, propyl groups, 1-octene substituted with one or more methyl, ethyl, propyl groups, 1-nonene, 1-decene and 1-dodecene.
  • the ⁇ -olefin monomer is selected from at least one of 1-butene, 2-methyl-1-butene, 3,3-dimethyl-1-butene, 1-pentene, 1-pentene substituted with one or more methyl, ethyl, propyl groups, 1-hexene, 1-hexene substituted with one or more methyl, ethyl, propyl groups, 1-heptene and 1-heptene substituted with one or more methyl, ethyl, propyl groups, that is, preferably an ⁇ -olefin monomer having less than 8 carbon atoms.
  • the preparation method of the ⁇ -olefin polymer described in the present invention comprises: in the presence of a main catalyst, a co-catalyst, an optional reversible chain transfer agent and an optional solvent, polymerizing an ⁇ -olefin monomer having a carbon number of not less than 4, wherein the main catalyst is a late transition metal catalyst with a diimine as a ligand.
  • the branching degree of the ⁇ -olefin polymer can be greatly reduced, so that the prepared ⁇ -olefin polymer shows good thickening efficiency when used as a viscosity index improver for lubricating oil. Its thickening efficiency is significantly improved compared with conventional ⁇ -olefin polymers, breaking the ratio limit of traditional ⁇ -olefins when used as viscosity index improvers.
  • the polymerization process may include only one reaction stage or at least two reaction stages.
  • the polymerization process includes only one reaction stage, and only one ⁇ -olefin monomer is used in the polymerization process.
  • the polymerization process includes at least two reaction stages, and the ⁇ -olefin monomers used in each reaction stage are the same.
  • a diblock polymer A-B or a triblock polymer A-B-A is formed by controlling the reaction temperature and/or the concentration of the ⁇ -olefin monomers in different reaction stages, wherein the branching degree of the A block is greater than the branching degree of the B block.
  • controlling the reaction temperature of different reaction stages includes: making the absolute value of the difference between the polymerization reaction temperatures of two adjacent reaction stages not less than 10°C, preferably not less than 20°C.
  • controlling the concentration of the ⁇ -olefin monomer in different reaction stages includes: making the ratio of the concentration of the ⁇ -olefin monomer in two adjacent reaction stages greater than 3.
  • the polymerization process includes at least two reaction stages, and the ⁇ -olefin monomers used in each reaction stage are different, that is, by controlling the types of ⁇ -olefin monomers in different reaction stages, a diblock polymer A-B or a triblock polymer A-B-A is formed, wherein the degree of branching of block A is greater than that of block B.
  • the number of carbon atoms of the ⁇ -olefin monomer added in the latter reaction stage is less than the number of carbon atoms of the ⁇ -olefin monomer added in the previous reaction stage.
  • the reaction temperature of the polymerization reaction may be -40°C to 100°C, preferably 0°C to 70°C.
  • the reaction time of the polymerization reaction can be 5 min-48 h, preferably 10 min-24 h.
  • the concentration of ⁇ -olefin monomers can be above 0.05 mol/L.
  • the concentration range of ⁇ -olefin monomers is different.
  • the concentration of ⁇ -olefin monomers with 6 carbon atoms can be below 8.15 mol/L
  • the concentration of ⁇ -olefin monomers with 14 carbon atoms can be below 3.9 mol/L.
  • the polymerization reaction process includes two reaction stages, and a diblock polymer is formed by controlling the reaction temperature of different reaction stages.
  • the reaction temperature of one reaction stage is -20°C to 30°C, preferably 0°C to 30°C, and the corresponding reaction time is 5min-48h, preferably 10min-18h;
  • the reaction temperature of the other reaction stage is 0°C to 80°C, preferably 25°C to 55°C, and the corresponding reaction time is 5min-24h, preferably 5min-4h, and more preferably 5min-2h.
  • the polymerization process includes at least two reaction stages, and the diblock polymer is formed by controlling the concentration of ⁇ -olefin monomers in different reaction stages.
  • the ratio of the concentration of ⁇ -olefin monomers in two adjacent reaction stages is greater than 3, preferably greater than 8, and in the reaction stage with a lower monomer concentration, the concentration of ⁇ -olefin monomers is 0.1-2 mol/L, preferably 0.2-1 mol/L.
  • the reaction time of the reaction stage with a lower monomer concentration in the adjacent reaction stages is 30 min-18 h, and the reaction time of the reaction stage with a higher monomer concentration is 3 min-40 min.
  • the main catalyst can be selected from conventional late transition metal catalysts.
  • the main catalyst is a metal complex represented by formula (I),
  • M is a Group VIII metal.
  • M is selected from nickel and palladium.
  • R1 and R4 may be the same or different, and each is independently selected from a C1-C30 hydrocarbon group or a heterohydrocarbon group, and R1 and R4 may optionally form a ring with each other.
  • the C1-C30 hydrocarbon group may be selected from a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C2-C30 alkenyl group, a substituted or unsubstituted C2-C30 alkynyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C7-C30 aralkyl group, and a substituted or unsubstituted C7-C30 alkaryl group;
  • the C1-C30 heterohydrocarbon group may be selected from a substituted or unsubstituted C1-C30 alkoxy group, a substituted or unsubstituted C2-C
  • R 1 and R 4 are each independently selected from substituted or unsubstituted C1-C20 alkyl and substituted or unsubstituted C6-C20 aryl. Further preferably, R 1 and R 4 are each independently selected from substituted or unsubstituted C1-C10 alkyl and substituted or unsubstituted C6-C15 aryl.
  • R 1 and R 4 are each a group represented by formula II,
  • R 1 -R 5 may be the same or different, and each is independently selected from hydrogen, halogen, hydroxyl, and substituted or unsubstituted C1-C30 hydrocarbon or heterohydrocarbon groups, and R 1 -R 5 may optionally form a ring with each other.
  • the C1-C30 hydrocarbon group may be selected from substituted or unsubstituted C1-C30 alkyl, substituted or unsubstituted C2-C30 alkenyl, substituted or unsubstituted C2-C30 alkynyl, substituted or unsubstituted C6-C30 aryl, substituted or unsubstituted C7-C30 aralkyl, and substituted or unsubstituted C7-C30 alkaryl;
  • the C1-C30 heterohydrocarbon group may be selected from substituted or unsubstituted C1-C30 alkoxy, substituted or unsubstituted C2-C30 alkenyloxy, and substituted or unsubstituted C2-C30 alkynyloxy.
  • R1 and R3 are each independently selected from substituted or unsubstituted C3-C10 alkyl or heteroalkyl.
  • C3-C10 alkyl can be n-propyl, isopropyl, n-butyl, isobutyl, pentyl, heptyl, octyl, etc.
  • C3-C10 heteroalkyl can be selected from substituted or unsubstituted C3-C10 alkoxy, substituted or unsubstituted C3-C10 alkenyloxy and substituted or unsubstituted C3-C10 alkynyloxy.
  • R2 and R3 may be the same or different, and are independently selected from hydrogen, halogen (especially chlorine atom) and C1-C20 hydrocarbon group or heterohydrocarbon group, and R2 and R3 may optionally form a ring with each other.
  • the C1-C20 hydrocarbon group may be selected from substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C2-C20 alkenyl group, substituted or unsubstituted C2-C20 alkynyl group, substituted or unsubstituted C6-C20 aryl group, substituted or unsubstituted C7-C20 aralkyl group and substituted or unsubstituted C7-C20 alkylaryl group;
  • the C1-C20 heterohydrocarbon group may be selected from substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C2-C20 alkenyloxy group and substituted or unsubstituted C2-C20 alkynyloxy group.
  • R 2 and R 3 are each independently selected from substituted or unsubstituted C6-C20 aryl, substituted or unsubstituted C7-C20 aralkyl and substituted or unsubstituted C7-C20 alkylaryl, or R 2 and R 3 are cyclized to form an aralkylene group.
  • -Ln means that n L groups are connected to the metal M.
  • the n L groups may be the same or different and each may be selected from halogen, C1-C10 hydrocarbon group and C1-C10 hydrocarbonoxy group; n is an integer satisfying the valence state of M.
  • the C1-C10 hydrocarbon group may be selected from substituted or unsubstituted C1-C10 alkyl group, substituted or unsubstituted C2-C10 alkenyl group, substituted or unsubstituted C2-C10 alkynyl group, substituted or unsubstituted C6-C10 aryl group, substituted or unsubstituted C7-C10 aralkyl group and substituted or unsubstituted C7-C10 alkylaryl group;
  • the C1-C10 hydrocarbonoxy group may be selected from substituted or unsubstituted C1-C10 alkoxy group, substituted or unsubstituted C2-C10 alkenyloxy group and substituted or unsubstituted C2-C10 alkynyloxy group.
  • the halogen here may be selected from fluorine, chlorine, bromine and iodine, and bromine is most preferred.
  • the alkyl group may be a straight chain alkyl group, a branched chain alkyl group or a cycloalkyl group.
  • the alkoxy group may be a straight chain alkoxy group, a branched chain alkoxy group or a cycloalkoxy group.
  • the "substituted" in “substituted or unsubstituted” refers to containing substituents, and the substituents here can be selected from, for example, halogen, hydroxyl, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • the alkyl group (such as C1-16 alkyl, C1-C20 alkyl or C1-C30 alkyl) can be selected from, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, isohexyl and 3,3-dimethylbutyl.
  • the alkoxy group (such as C1-C10 alkoxy, C1-C20 alkoxy, C1-C30 alkoxy) can be selected from, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, isopentoxy, n-hexoxy, isohexoxy and 3,3-dimethylbutoxy.
  • the aryl group (such as C6-C10 aryl group, C6-C20 aryl group, C6-C30 aryl group) can be selected from, for example, phenyl group, 4-methylphenyl group, 4-ethylphenyl group, dimethylphenyl group and vinylphenyl group.
  • the halogen is selected from fluorine, chlorine, bromine and iodine.
  • the above-mentioned late transition metal catalyst can be commercially available or prepared according to conventional methods in the art.
  • the specific preparation method can refer to the methods disclosed in patent applications CN111116787A, CN112745362A, CN114478868A and documents Polymers 2018, 10, 2073-4360, Macromolecules 2014, 47, 3325-3331, Angew. Chem., Int. Ed. 2004, 43, 1821-1825, J. Am. Chem. Soc. 2014, 136, 7213 7216, etc.
  • the relevant contents disclosed in the above-mentioned documents can all be introduced into the present invention as a reference and will not be repeated here.
  • the co-catalyst can be selected from a wide range.
  • the co-catalyst is selected from at least one of an organoaluminum compound and an organoboron compound.
  • the organoaluminum compound may be selected from one or more of alkylaluminumoxane, alkylaluminum and alkylaluminum halide.
  • Specific examples of the organoaluminum compound may be selected from, but not limited to, at least one of trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, trioctylaluminum, diethylaluminum monohydrogen, diisobutylaluminum monohydrogen, diethylaluminum monochloride, diisobutylaluminum monochloride, sesquiethylaluminum chloride, ethylaluminum dichloride, methylaluminumoxane (MAO) and modified methylaluminumoxane (MMAO).
  • the organoaluminum compound is at least one of MAO, MMAO, diethyla
  • the organic boron compound can be selected from at least one of aromatic boron and borate.
  • Specific examples of the organic boron compound can be selected from but not limited to at least one of trispentafluorophenyl boron, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and triphenylmethyl tetrakis(pentafluorophenyl)borate.
  • the reversible chain transfer agent may be dialkyl zinc.
  • Specific examples of the dialkyl zinc may be selected from but not limited to at least one of diethyl zinc, di(n-propyl) zinc and di(n-octyl) zinc.
  • dialkyl zinc particularly diethyl zinc
  • the thickening efficiency of the prepared ⁇ -olefin polymer can be further improved.
  • the polymerization reaction time of each reaction stage can be appropriately adjusted according to the catalyst system used.
  • the cocatalyst is methylaluminoxane (MAO), modified methylaluminoxane (MMAO), sesquiethylaluminum chloride, arylboron, etc.
  • the reaction time is preferably 5min-2h, more preferably 10min-1h; in the high concentration or high temperature reaction stage, the reaction time is preferably 3min-1h, more preferably 5min-30min.
  • the reaction time is preferably 10min-48h, more preferably 30min-18h; in the high concentration or high temperature reaction stage, the reaction time is preferably 10min-24h, more preferably 20min-2h.
  • the molar ratio of aluminum in the co-catalyst to M in the main catalyst may be (10-10 7 ):1, (e.g., 10:1, 20:1, 50:1, 100:1, 200:1, 300:1, 500:1, 700:1, 800:1, 1000:1, 2000:1, 3000:1, 5000:1, 10000:1, 1000000:1, 10000000:1 and any value therebetween), preferably (10-100000):1, and more preferably (100-10000):1.
  • the co-catalyst is an organic boron compound and an organic aluminum compound
  • the molar ratio of boron in the co-catalyst to M in the main catalyst can be (0.1-1000):1, (for example, 0.1:1, 0.2:1, 0.5:1, 1:1, 2:1, 3:1, 5:1, 8:1, 10:1, 20:1, 50:1, 100:1, 200:1, 300:1, 500:1, 700:1, 800:1, 1000:1 and any value therebetween, preferably (0.1-500):1.
  • the molar ratio of organic aluminum to M in the main catalyst can be (10-10 5 ):1, for example, 10:1, 20:1, 50:1, 100:1, 200:1, 300:1, 400:1, 500:1, 600:1, 700:1, 800:1, 1000:1, 2000:1, 3000:1, 5000:1, 100000:1 and any value therebetween), preferably (10-5000):1, more preferably (10-1000):1.
  • the molar amount of ⁇ -olefin monomer relative to 1 mole of the main catalyst has a wide selection range.
  • the molar amount of ⁇ -olefin monomer relative to 1 mole of the main catalyst can be 100-30000 moles, and specifically can be 100, 500, 1000, 5000, 10000, 20000 or 30000 moles.
  • the polymerization reaction can be completed in an inert solvent, or bulk polymerization can be directly carried out in an olefin without using an inert solvent.
  • the solvent is preferably at least one of unsubstituted or halogen-substituted aromatic hydrocarbons (such as toluene, xylene, chlorobenzene), unsubstituted or halogen-substituted C5-C20 saturated hydrocarbons (such as n-butane, isobutane, n-pentane, n-hexane, cyclohexane, n-heptane, octane, decane, heptane dichloromethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane). More preferably, the solvent contains unsubstituted or halogen-substituted aromatic hydrocarbons, and most preferably contains
  • an additional solvent may be added or not (i.e., the amount of the solvent is 0).
  • the added ⁇ -olefin monomer itself can act as a solvent.
  • the volume amount of the solvent relative to 1 volume of the ⁇ -olefin monomer has a wide selection range.
  • the volume amount of the solvent relative to 1 volume of the ⁇ -olefin monomer is 0-200 volumes, preferably 0-100 volumes, and more preferably 0.5-50 volumes.
  • the carbon number of the ⁇ -olefin monomer can be 4-20, preferably 4-12.
  • the ⁇ -olefin monomer can be a linear or branched ⁇ -olefin.
  • the ⁇ -olefin monomer is selected from 1-butene, 2-methyl-1-butene, 3,3-dimethyl-1-butene, 1-pentene, 1-pentene substituted with one or more methyl, ethyl, propyl, 1-hexene, 1-hexene substituted with one or more methyl, ethyl, propyl, 1-heptene, 1-heptene substituted with one or more methyl, ethyl, propyl, 1-octene substituted with one or more methyl, ethyl, propyl, 1-nonene, 1-decene and 1-dodecene.
  • the ⁇ -olefin monomer is selected from at least one of 1-butene, 2-methyl-1-butene, 3,3-dimethyl-1-butene, 1-pentene, 1-pentene substituted with one or more methyl, ethyl, propyl groups, 1-hexene, 1-hexene substituted with one or more methyl, ethyl, propyl groups, 1-heptene and 1-heptene substituted with one or more methyl, ethyl, propyl groups, that is, preferably an ⁇ -olefin monomer having less than 8 carbon atoms.
  • the polymer solution obtained after the polymerization reaction can be post-treated.
  • the post-treatment can be carried out by conventional means in the art.
  • the post-treatment includes: adding an ethanol-hydrochloric acid solution to the polymer solution to deactivate the active center.
  • the present invention also provides the use of the above-mentioned ⁇ -olefin polymer as a viscosity index improver, especially as a viscosity index improver for lubricating oil.
  • the ⁇ -olefin polymer is used as a viscosity index improver, compared with the existing olefin polymers, the ⁇ -olefin polymer of the present invention has a significantly higher thickening efficiency.
  • the thickening efficiency of the ⁇ -olefin polymer of the present invention is 2-15 mm 2 /s, preferably 3-10 mm 2 /s.
  • the present invention provides a lubricating oil, which contains a base oil and the ⁇ -olefin polymer described above.
  • the ⁇ -olefin polymer is used as a viscosity index improver.
  • the content of the ⁇ -olefin polymer can be determined according to the content of the viscosity index improver in conventional lubricating oils.
  • the content of the ⁇ -olefin polymer is 0.01-20 wt.%, preferably 0.5-10 wt.%, based on the total weight of the lubricating oil.
  • the method of applying the ⁇ -olefin polymer to lubricating oil can be a conventional method in the art. Generally, a certain proportion of the ⁇ -olefin polymer is mixed with a lubricating base oil. The mixing temperature and heating time can be adjusted according to the specific mixing conditions, generally 110-130° C., and stirred for 3-4 hours.
  • the base oil may be a conventional lubricating base oil in the art, and may generally be one or more of the base oils of Groups I, II, III, IV and V in the American Petroleum Institute API classification.
  • ⁇ -olefin polymer and its preparation method and application of the present invention are further illustrated by examples.
  • the examples are implemented based on the technical solution of the present invention, and detailed implementation methods and specific operation processes are given, but the protection scope of the present invention is not limited to the following examples.
  • the weight average molecular weight Mw and molecular weight distribution PDI of the olefin polymers were measured by gel permeation chromatography-infrared detector (GPC-IR);
  • the degree of branching of olefin polymers was determined by gel permeation chromatography-infrared detector (GPC-IR);
  • the amount of each unit present (molar percentage) and the main chain carbon ratio are detected and calculated based on the NMR carbon spectrum;
  • the melting points of olefin polymers were determined by differential scanning calorimetry (DSC).
  • the thickening efficiency of olefin polymers used as viscosity index improvers for lubricating oils was determined according to the method in Appendix A of SH/T 0622-2007, wherein the polymer concentration was 1%, the base oil used had a kinematic viscosity of 5.8912 mm 2 /s at 100°C, and a kinematic viscosity of 29.6238 mm 2 /s at 40°C.
  • the viscosity index is calculated according to GB/T1995-1998.
  • the complex shown in formula A is prepared by the following process:
  • the complex shown in formula B is prepared by the following process:
  • the mixed materials A and B were immediately mixed with material C through a T-type mixer 2 placed in a 0°C oil bath, wherein material C was injected into the pipeline at a flow rate of 0.5 mL/min.
  • the mixed solution of materials A, B and C then entered the pipeline placed in a 0°C oil bath, with a length of 28.7 m.
  • the reactant at the outlet of the pipeline was dripped into a 10% volume concentration of hydrochloric acid ethanol solution, precipitated and washed with ethanol, and vacuum dried to obtain a polymer product.
  • the pipelines used are all polytetrafluoroethylene (PTFE) pipelines with an inner diameter of 2 mm.
  • the mixed materials A and B were immediately mixed with material C through a T-type mixer 2 placed in an oil bath at 30°C, wherein material C was injected into the pipeline at a flow rate of 1.333 mL/min.
  • the mixed solution of materials A, B, and C then enters pipeline T1 placed in an oil bath at 30°C, with a length of 30m; then flows into pipeline T2 placed in an oil bath at 55°C, with a length of 20m; the reactants at the outlet of T2 are dripped into a 10% volume concentration hydrochloric acid ethanol solution, precipitated and washed with ethanol, and vacuum dried to obtain a polymer product.
  • the pipelines used are all PTFE pipelines with an inner diameter of 1mm.
  • the branching degree of the polymer is 72, the polymer is a diblock polymer, and the melting point is 55.4°C.
  • the mixed solution of materials A and B then entered the pipeline T1 placed in an oil bath at 15°C, and the length of T1 was 20.5 m; then, it was mixed with material C through a T-type mixer 2 placed in an oil bath at 15°C, wherein material C was injected into the pipeline at a flow rate of 0.358 mL/min.
  • the mixed solution of materials A, B, and C then enters pipeline T2 placed in an oil bath at 15°C, and the length of T2 is 5.7m; the reactants at the outlet of T2 are dripped into a 10% volume concentration hydrochloric acid ethanol solution, precipitated and washed with ethanol, and vacuum dried to obtain a polymer product.
  • the pipelines used are all PTFE pipelines with an inner diameter of 1mm.
  • the branching degree of the polymer is 61, and the polymer is a diblock polymer.
  • the length of T1 was 21.9 m, and the tube was filled with an SK-type spiral mixing core; then, it was mixed with material C through a T-type mixer 2 placed in an oil bath at 15°C, wherein material C was injected into the pipeline at a flow rate of 0.383 mL/min.
  • the mixed solution of materials A, B, and C then enters pipeline T2 placed in an oil bath at 15°C.
  • the length of T2 is 6.1m and the tube is filled with an SK-type spiral mixing core.
  • the reactants at the outlet of T2 are dripped into a 10% volume concentration hydrochloric acid ethanol solution, precipitated and washed with ethanol, and vacuum dried to obtain a polymer product.
  • the pipelines used are all stainless steel pipelines with an inner diameter of 1mm.
  • the branching degree of the polymer is 71, the polymer is a diblock polymer, and the melting point is 45.3°C.
  • the reaction bottle transfers the reaction bottle to a 55 ° C environment and continue the reaction for 20 minutes.
  • the polymer is a diblock polymer with a melting point of -22 ° C.
  • a small amount of sample is drawn with a syringe, added to ethanol for precipitation to obtain a polymer sample for characterization, and the branching degree of this sample is 111. Then add 40 mL of toluene and continue the reaction for 60 minutes. Use a 10% volume concentration of hydrochloric acid ethanol solution to quench the reaction, use ethanol to precipitate and wash, and after vacuum drying, obtain a polymer product with a branching degree of 86.
  • the polymer is a diblock polymer.
  • the polymer is a diblock polymer with a melting point of 54.4°C.
  • a 100 mL reaction bottle was heated and dried at 100°C for 2 hours, and then evacuated while hot and replaced with nitrogen three times. 10 mg of metallocene catalyst Ph2C (Cp) (Flu) ZrCl2 was added, and then 15 mL of 1-hexene and 2 mL of 1.53 mol/L methylaluminoxane toluene solution were added with a syringe. The reaction was carried out at 25°C for 2 hours, and a 10% volume concentration of hydrochloric acid ethanol solution was used to quench the reaction. The reaction was precipitated and washed with ethanol, and the polymer product was obtained after vacuum drying.
  • a 100 mL reaction bottle was heated and dried at 100°C for 2 hours, and then evacuated while hot and replaced with nitrogen three times. 10 mg of metallocene catalyst Ph2C (Cp) (Flu) ZrCl2 was added, and then 15 mL of 1-hexene and 2 mL of 1.53 mol/L methylaluminoxane toluene solution were added with a syringe. The reaction was carried out at 25°C for 1 hour, and the temperature was raised to 55°C. The reaction was continued for 1 hour. The reaction was quenched with a 10% volume concentration of hydrochloric acid ethanol solution, precipitated and washed with ethanol, and a polymer product was obtained after vacuum drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及烯烃聚合技术领域,公开了一种α-烯烃聚合物及其制备方法和应用。该α-烯烃聚合物由至少一种α-烯烃单体CH2=CHR聚合形成,在所述α-烯烃聚合物中,位于主链中的碳原子占所有碳原子数量的58-87%,其中,R为碳原子数≥2的线性或带有支链的烷基;所述α-烯烃聚合物的重均分子量为10,000-250,000;所述α-烯烃聚合物的分子量分布PDI<3。本发明的α-烯烃聚合物用作润滑油的粘度指数改进剂具有优异的增稠效率。

Description

一种α-烯烃聚合物及其制备方法和应用
相关申请的交叉引用
本申请要求2022年10月25日提交的中国专利申请202211308644.8、2022年10月25日提交的中国专利申请202211308376.X和2022年10月25日提交的中国专利申请202211309110.7的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及烯烃聚合技术领域,具体涉及一种α-烯烃聚合物及其制备方法和应用。
背景技术
润滑油在实际使用中通常需要加入添加剂,如清净分散剂、粘度指数改进剂、抗氧剂等,用于改善油品的各项性能。其中,粘度指数改进剂是十分重要的一种添加剂。
润滑油的粘度随温度变化显著,低温时粘度升高,而温度升高时粘度下降,润滑效果变差,粘度指数改进剂的加入可以有效的提升高温时的润滑效率,从而改善润滑油的粘温性能。其中,烯烃共聚物类粘度指数改进剂(OCP)具有较为合适的增稠能力和剪切稳定性,价格适中,是使用最广泛的一种粘度指数改进剂。
烯烃共聚物类粘度指数改进剂通常采用乙烯作为主要的构成单体,其存在的问题是,难以同时兼容良好增稠能力、溶解性以及低温时的体系稳定性。为了保证其在基础油中溶解能力、并低温下保持体系稳定,通常采用丙烯等α-烯烃和乙烯进行共聚,以增加聚烯烃的支链含量。然而,α-烯烃共聚比例增加、即支链含量的增加时,虽然溶解性和低温稳定性得到极大提升,但同时将显著的降低增稠能力,为了保证足够的增稠效率,支链含量不能过高,例如,采用乙烯丙烯共聚制备粘度指数改进剂时,聚合物中的丙烯单元含量通常不超过50%。因此,在传统的制备方法中,作为共聚单体的α-烯烃的用量受到严格的限制。进一步的,通常来说,若使用α-烯烃(尤其是长链α-烯烃)作为主要聚合单体,因为其过高的支链含量将导致其粘度较低,从而具有很差的增稠效率。
发明内容
本发明的目的是为了克服现有技术存在的制备烯烃共聚物类粘度指数改进剂时α-烯烃的用量受到严格限制,以及采用α-烯烃作为主要聚合单体制备的烯烃聚合物的增稠效率较差的问题,提供一种α-烯烃聚合物及其制备方法和应用。按照本发明的α-烯烃聚合物全部由一种α-烯烃或两种以上α-烯烃聚合得到,且该α-烯烃聚合物用作润滑油的粘度指数改进剂具有优异的增稠效率。
为了实现上述目的,本发明第一方面提供了一种α-烯烃聚合物,该α-烯烃聚合物由至少一种α-烯烃单体CH2=CHR聚合形成,在所述α-烯烃聚合物中,位于主链中的碳原子占所有碳原子数量的58-87%,其中,R为碳原子数≥2的线性或带有支链的烷基;所述α-烯烃聚合物的重均分子量为10,000-250,000,优选为25,000-150,000,更优选为30,000-120,000;所述α-烯烃聚合物的分子量分布PDI<3,优选≤2。
本发明第二方面提供了一种制备前文所述的α-烯烃聚合物的方法,该方法包括:在主催化剂、助催化剂、可选的可逆链转移剂和可选的溶剂的存在下,将碳原子数不小于4的α-烯烃单体进行聚合反应,其中,所述主催化剂为二亚胺为配体的后过渡金属催化剂。
本发明第三方面提供了前文所述的α-烯烃聚合物作为粘度指数改进剂的应用。
本发明第四方面提供了一种润滑油,该润滑油含有基础油和前文所述的α-烯烃聚合物。
按照本发明的技术方案,所述α-烯烃聚合物具有较好的增稠效率,克服了现有技术中一直存在的由于α-烯烃聚合物含有过多的支链碳而使得α-烯烃聚合物作为粘度指数改进剂时性能较差的技术难题。
而且,本发明将α-烯烃聚合物作为粘度指数改进剂,进一步拓宽了粘度指数改进剂的可选种类,不论从实用方面还是技术研究方向方面,本发明的聚α-烯烃型粘度指数改进剂均具有极高的价值。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明所述的α-烯烃聚合物由至少一种α-烯烃单体CH2=CHR聚合形成,其中,R为碳原子数≥2的线性或带有支链的烷基。在所述α-烯烃聚合物中,位于主链中的碳原子占所有碳原子数量的58-87%,优选为60-85%,更优选为63-82%。
在所述α-烯烃聚合物中,所述α-烯烃聚合物包含第一单元-(CH2)-、第二单元-CH(CH3)-和第三单元-CH(R)-,以所述α-烯烃聚合物中主链碳原子总数为基准,所述第一单元的存在数量为77%以上,第三单元的存在数量为18%以下。在优选情况下,以所述α-烯烃聚合物中主链碳原子总数为基准,所述第一单元的存在数量为80-95%,所述第二单元的存在数量为1-10%,所述第三单元的存在量为2-12%。在本发明中,所述第三单元为α-烯烃单体未经“链行走”而得到的单元。
在本发明中,所述α-烯烃聚合物的重均分子量为10,000-250,000,优选为25,000-150,000,更优选为30,000-120,000。
在本发明中,所述α-烯烃聚合物的分子量分布PDI<3,优选≤2,更优选为1.01-2。
在本发明中,所述α-烯烃聚合物的重均分子量Mw和分子量分布PDI通过凝胶渗透色谱法-红外检测器(GPC-IR)进行测定。
在一些实施方式中,所述α-烯烃聚合物为一种α-烯烃单体经过一次均聚聚合得到,其重均分子量为20,000-250,000(优选为30,000-150,000),分子量分布PDI<3(优选≤2)。
在较优选的实施方式中,所述α-烯烃聚合物为双嵌段聚合物A-B或三嵌段聚合物A-B-A,其中,A嵌段的支化度大于B嵌段的支化度。按照该优选实施的α-烯烃聚合物具有更好的增稠效率。在本发明中,支化度是指每1000个碳原子中所包含的支链数量,所述支化度由凝胶渗透色谱-红外检测器(GPC-IR)进行测定。
当所述α-烯烃聚合物为双嵌段聚合物或三嵌段聚合物时,在一些实施方式中,所述α-烯烃聚合物由一种α-烯烃单体通过至少两个阶段的连续均聚聚合得到。在至少两个阶段的连续均聚聚合反应中,通过控制不同反应阶段的反应温度和/或α-烯烃单体浓度形成具有两个以上的支化度不同的嵌段的双嵌段聚合物或三嵌段聚合物。在该实施方式中,所述α-烯烃聚合物的重均分子量为22,000-180,000(优选为32,000-160,000),分子量分布PDI<3(优选为≤2)。
当所述α-烯烃聚合物为双嵌段聚合物时,在另一些实施方式中,所述α-烯烃聚合物由两种α-烯烃单体通过两个阶段的连续均聚聚合得到,其中,每个阶段使用一种α-烯烃单体。在该实施方式中,所述α-烯烃聚合物的重均分子量为10,000-250,000(优选为25,000-150,000),分子量分布PDI<3(优选≤2)。
在本发明中,当所述α-烯烃聚合物为双嵌段聚合物A-B或三嵌段聚合物A-B-A时,在优选情况下,通过控制反应阶段的聚合反应的程度,使A嵌段为无定型(即非晶),B嵌段具有一定结晶度。在这种情况下,嵌段聚合物中的B嵌段具有熔点,A嵌段不具有熔点。更优选地,嵌段聚合物的熔点为-50℃至80℃。
在本发明中,所述α-烯烃单体为碳原子数为4-20(优选为4-12,具体地,例如可以为4、5、6、7、8、9、10、11或12)的线性或支化α-烯烃。在优选情况下,所述α-烯烃单体选自1-丁烯,2-甲基-1-丁烯,3,3-二甲基1-丁烯,1-戊烯,具有一个或多个甲基、乙基、丙基取代的1-戊烯,1-己烯,具有一个或多个甲基、乙基、丙基取代的1-己烯,1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-辛烯,1-壬烯,1-癸烯和1-十二烯中的至少一种。更优选的,所述α-烯烃单体选自1-丁烯,2-甲基-1-丁烯,3,3-二甲基1-丁烯,1-戊烯,具有一个或多个甲基、乙基、丙基取代的1-戊烯,1-己烯,具有一个或多个甲基、乙基、丙基取代的1-己烯,1-庚烯以及具有一个或多个甲基、乙基、丙基取代的1-庚烯中的至少一种,也即优选碳原子数小于8的α-烯烃单体。
本发明所述的α-烯烃聚合物的制备方法包括:在主催化剂、助催化剂、可选的可逆链转移剂和可选的溶剂的存在下,将碳原子数不小于4的α-烯烃单体进行聚合反应,其中,所述主催化剂为二亚胺为配体的后过渡金属催化剂。
按照本发明所述的α-烯烃聚合物的制备方法,通过使用二亚胺为配体的后过渡金属催化剂,可以大幅降低α-烯烃聚合物的支化度,使得制备的α-烯烃聚合物用作润滑油的粘度指数改进剂时表现出较好的增稠效率,其增稠效率与常规的α-烯烃聚合物相比得到了显著提升,打破了传统α-烯烃用于粘度指数改进剂时的比例限制。
在本发明所述的方法中,所述聚合反应的过程可以仅包括一个反应阶段,也可以包括至少两个反应阶段。
在一些实施方式中,所述聚合反应的过程仅包括一个反应阶段,且聚合反应过程中进使用一种α-烯烃单体。
在另一些实施方式中,所述聚合反应的过程包括至少两个反应阶段,且各个反应阶段所使用的α-烯烃单体相同。在该实施方式中,通过控制不同反应阶段的反应温度和/或α-烯烃单体浓度形成双嵌段聚合物A-B或三嵌段聚合物A-B-A,其中,A嵌段的支化度大于B嵌段的支化度。
在上述实施方式中,控制不同反应阶段的反应温度包括:使相邻两个反应阶段的聚合反应温度的差值的绝对值不小于10℃,优选不小于20℃。
在上述实施方式中,控制不同反应阶段的α-烯烃单体浓度包括:使相邻两个反应阶段的α-烯烃单体浓度的比值大于3。
在另一些实施方式中,所述聚合反应的过程包括至少两个反应阶段,且各个反应阶段所使用的α-烯烃单体不同,也即通过控制不同反应阶段的α-烯烃单体种类形成双嵌段聚合物A-B或三嵌段聚合物A-B-A,其中,A嵌段的支化度大于B嵌段的支化度。在该实施方式中,优选地,在相邻两个反应阶段中,后一个反应阶段加入的α-烯烃单体的碳原子数小于前一个反应阶段中加入的α-烯烃单体的碳原子数。
在本发明所述的方法中,所述聚合反应的反应温度可以为-40℃至100℃,优选为0℃至70℃。
在本发明所述的方法中,所述聚合反应的的反应时间可以为5min-48h,优选10min-24h。
在本发明所述的方法中,α-烯烃单体浓度可以为0.05mol/L以上。对于不同种类的α-烯烃单体,α-烯烃单体浓度范围不同,例如,碳原子数为6的α-烯烃单体的浓度可以为8.15mol/L以下,碳原子数为14的α-烯烃单体的浓度可以为3.9mol/L以下。
在一些实施方式中,所述聚合反应的过程包括两个反应阶段,且通过控制不同反应阶段的反应温度形成双嵌段聚合物,具体的,其中一个反应阶段的反应温度为-20℃至30℃,优选为0℃至30℃,对应的反应时间为5min-48h,优选为10min-18h;另一个反应阶段的反应温度为0℃至80℃,优选为25℃至55℃,对应的反应时间为5min-24h,优选为5min-4h,更优选为5min-2h。
在另一些实施方式中,所述聚合反应的过程包括至少两个反应阶段,且通过控制不同反应阶段的α-烯烃单体浓度形成双嵌段聚合物,具体的,使相邻两个反应阶段的α-烯烃单体浓度的比值大于3,优选大于8,且在具有较低单体浓度的反应阶段,α-烯烃单体浓度为0.1-2mol/L,优选为0.2-1mol/L。进一步优选地,相邻反应阶段中具有较低单体浓度的反应阶段的反应时间为30min-18h,具有较高单体浓度的反应阶段的反应时间为3min-40min。
在本发明中,所述主催化剂可以在常规的后过渡金属催化剂中选择。在较优选的实施方式中,所述主催化剂为式(I)所示的金属配合物,
在式(I)中,M为VIII族金属。在优选情况下,M选自镍和钯。
在式(I)中,R1和R4可以相同或不同,各自独立地选自C1 C30烃基或杂烃基,且R1和R4可任选地相互成环。在这里,C1 C30烃基可以选自取代或未取代的C1-C30烷基、取代或未取代的C2-C30烯基、取代或未取代的C2-C30炔基、取代或未取代的C6-C30芳基、取代或未取代的C7-C30芳烷基以及取代或未取代的C7-C30烷芳基;C1 C30杂烃基可以选自取代或未取代的C1-C30烷氧基、取代或未取代的C2-C30烯氧基以及取代或未取代的C2-C30炔氧基。
在优选情况下,R1和R4各自独立地选自取代或未取代的C1-C20烷基以及取代或未取代的C6-C20芳基。进一步优选地,R1和R4各自独立地选自取代或未取代的C1-C10烷基以及取代或未取代的C6-C15芳基。
在最优选的实施方式中,R1和R4各自为式II所示的基团,
在式(II)中,R1-R5可以相同或不同,各自独立地选自氢、卤素、羟基以及取代或未取代的C1-C30的烃基或杂烃基,且R1-R5可任选地相互成环。在这里,C1 C30烃基可以选自取代或未取代的C1-C30烷基、取代或未取代的C2-C30烯基、取代或未取代的C2-C30炔基、取代或未取代的C6-C30芳基、取代或未取代的C7-C30芳烷基以及取代或未取代的C7-C30烷芳基;C1 C30杂烃基可以选自取代或未取代的C1-C30烷氧基、取代或未取代的C2-C30烯氧基以及取代或未取代的C2-C30炔氧基。
在优选情况下,R1和R3各自独立地选自取代或未取代的C3-C10烷基或杂烃基。在这里,C3-C10烷基可以是正丙基、异丙基、正丁基、异丁基、戊基、庚基、辛基等;C3-C10杂烃基可以选自取代或未取代的C3-C10烷氧基、取代或未取代的C3-C10烯氧基以及取代或未取代的C3-C10炔氧基。
在式(I)中,R2和R3可以相同或不同,各自独立地选自氢、卤素(特别是氯原子)以及C1 C20的烃基或杂烃基,且R2和R3可任选地相互成环。在这里,C1 C20的烃基可以选自取代或未取代的C1-C20烷基、取代或未取代的C2-C20烯基、取代或未取代的C2-C20炔基、取代或未取代的C6-C20芳基、取代或未取代的C7-C20芳烷基以及取代或未取代的C7-C20烷芳基;C1 C20杂烃基可以选自取代或未取代的C1-C20烷氧基、取代或未取代的C2-C20烯氧基以及取代或未取代的C2-C20炔氧基。
在优选情况下,R2和R3各自独立地选自取代或未取代的C6-C20芳基、取代或未取代的C7-C20芳烷基以及取代或未取代的C7-C20烷芳基,或者R2与R3相互成环后形成亚芳烷基。
在式(I)中,-Ln表示有n个L基团与金属M连接。n个L之间可以相同或不同,各自可以选自卤素、C1-C10烃基以及C1-C10烃氧基;n为满足M价态的整数。在这里,C1-C10烃基可以选自取代或未取代的C1-C10烷基、取代或未取代的C2-C10烯基、取代或未取代的C2-C10炔基、取代或未取代的C6-C10芳基、取代或未取代的C7-C10芳烷基以及取代或未取代的C7-C10烷芳基;C1 C10烃氧基可以选自取代或未取代的C1-C10烷氧基、取代或未取代的C2-C10烯氧基以及取代或未取代的C2-C10炔氧基。这里的卤素可以选自氟、氯、溴和碘,最优选为溴。
在本发明中,所述烷基可以是直链烷基、支链烷基或环烷基。所述烷氧基可以是直链烷氧基、支链烷氧基或环烷氧基。
在本发明中,“取代或未取代的”中的“取代”是指含有取代基,这里的取代基例如可以选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。
在本发明中,烷基(如C1-16烷基、C1-C20烷基或C1-C30烷基)例如可以选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基。
在本发明中,烷氧基(如C1-C10烷氧基、C1-C20烷氧基、C1-C30烷氧基)例如可以选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
在本发明中,芳基(如C6-C10芳基、C6-C20芳基、C6-C30芳基)例如可以选自苯基、4-甲基苯基、4-乙基苯基、二甲基苯基和乙烯基苯基。
在本发明中,所述卤素选自氟、氯、溴和碘。
上述后过渡金属催化剂可以商购得到,也可以按照本领域常规的方法制备,具体的制备方法可以参照专利申请CN111116787A、CN112745362A、CN114478868A以及文献Polymers 2018,10,2073-4360、Macromolecules 2014,47,3325-3331、Angew.Chem.,Int.Ed.2004,43,1821-1825、J.Am.Chem.Soc.2014,136,7213 7216等所公开的方法。上述文献公开的相关内容可全部引入本发明作为参考,在此不再赘述。
在本发明中,所述助催化剂可以在较宽的范围内选择。在本发明的优选实施方式中,所述助催化剂选自有机铝化合物和有机硼化合物中的至少一种。
在本发明中,所述有机铝化合物可以选自烷基铝氧烷、烷基铝和烷基铝卤化物中的一种或多种。所述有机铝化合物的具体实例可以选自但不仅限于三甲基铝、三乙基铝、三异丁基铝、三正己基铝、三辛基铝、一氢二乙基铝、一氢二异丁基铝、一氯二乙基铝、一氯二异丁基铝、倍半乙基氯化铝、二氯乙基铝、甲基铝氧烷(MAO)和改性甲基铝氧烷(MMAO)中的至少一种。在较优选的实施方式中,所述有机铝化合物为MAO、MMAO、一氯二乙基铝、二氯乙基铝和倍半乙基氯化铝中的至少一种。
在本发明中,所述有机硼化合物可以选自芳烃基硼和硼酸盐中的至少一种。所述有机硼化合物的具体实例可以选自但不仅限于三五氟苯基硼、N,N二甲基苯铵四(五氟苯基)硼酸盐和四(五氟苯基)硼酸三苯基甲基盐中的至少一种。
在本发明中,所述可逆链转移剂可以为二烷基锌。所述二烷基锌的具体实例可以选自但不仅限于二乙基锌、二(正丙基)锌和二(正辛基)锌中的至少一种。当反应过程中加入作为可逆链转移剂的二烷基锌(特别是二乙基锌)时,所制备的α-烯烃聚合物的增稠效率可以进一步得到提升。
在一些优选的实施方式中,当所述聚合反应的过程包括两个反应阶段,且两个反应阶段的反应温度和/或α-烯烃单体浓度不同时,每个反应阶段的聚合反应时间可以根据所采用的催化剂体系进行适当调整。例如,当助催化剂为甲基铝氧烷(MAO)、改性甲基铝氧烷(MMAO)、倍半乙基氯化铝、芳基硼等时,在低浓度或低温反应阶段,反应时间优选为5min-2h,更优选为10min-1h;在高浓度或高温反应阶段,反应时间优选为3min-1h,更优选5min-30min。当助催化剂为三甲基铝、三乙基铝、三异丁基铝、三正己基铝、三辛基铝、一氢二乙基铝、一氢二异丁基铝、一氯二乙基铝、一氯二异丁基铝、二氯乙基铝等时,在低浓度或低温反应阶段,反应时间优选为10min-48h,更优选为30min-18h;在高浓度或高温反应阶段,反应时间优选为10min-24h,更优选为20min-2h。
在本发明中,当所述助催化剂为有机铝化合物时,所述助催化剂中铝与所述主催化剂中M的摩尔比可以为(10-107):1,(例如,10:1、20:1、50:1、100:1、200:1、300:1、500:1、700:1、800:1、1000:1、2000:1、3000:1、5000:1、10000:1、100000:1、1000000:1、10000000:1以及它们之间的任意值),优选为(10-100000):1,更优选为(100-10000):1。
在本发明中,当所述助催化剂为有机硼化合物和有机铝化合物时,所述助催化剂中硼与所述主催化剂中M的摩尔比可以为(0.1-1000):1,(例如,0.1:1、0.2:1、0.5:1、1:1、2:1、3:1、5:1、8:1、10:1、20:1、50:1、100:1、200:1、300:1、500:1、700:1、800:1、1000:1以及它们之间的任意值,优选为(0.1-500):1。有机铝与所述主催化剂中M的摩尔比可以为(10-105):1,例如,10:1、20:1、50:1、100:1、200:1、300:1、400:1、500:1、600:1、700:1、800:1、1000:1、2000:1、3000:1、5000:1、10000:1、100000:1以及它们之间的任意值),优选为(10-5000):1,更优选为(10-1000):1。
在本发明中,相对于1摩尔用量的所述主催化剂,α-烯烃单体的摩尔用量具有较宽的选择范围,在较优选的实施方式中,相对于1摩尔用量的所述主催化剂,α-烯烃单体的摩尔用量可以为100-30000摩尔,具体的例如可以为100、500、1000、5000、10000、20000或30000摩尔。
在本发明中,所述聚合反应可在惰性溶剂中完成,也可以不使用惰性溶剂而直接在烯烃中进行本体聚合。在使用溶剂的情况下,所述溶剂优选为未取代或卤素取代的芳香烃(例如甲苯、二甲苯、氯苯)、未取代或卤素取代的C5-C20饱和烃(例如正丁烷、异丁烷、正戊烷、正己烷、环己烷、正庚烷、辛烷、癸烷、庚烷二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷)中的至少一种。更优选地,所述溶剂含有未取代或卤素取代的芳香烃,最优选含有甲苯、二甲苯和氯苯中的至少一种。
在本发明中,可以添加额外的溶剂也可以不添加额外的溶剂(即溶剂的用量为0)。在不添加额外的溶剂的情况下,所加入的α-烯烃单体自身可以作为起到溶剂的作用。在本发明中,相对于1体积用量的α-烯烃单体,所述溶剂的体积用量具有较宽的选择范围,在较优选的实施方式中,相对于1体积用量的α-烯烃单体,所述溶剂的体积用量为0-200体积,优选为0-100体积,更优选为0.5-50体积。
在本发明中,所述α-烯烃单体的碳原子数可以为4-20,优选为4-12。所述α-烯烃单体可以为线性或支化α-烯烃。在优选情况下,所述α-烯烃单体选自1-丁烯,2-甲基-1-丁烯,3,3-二甲基1-丁烯,1-戊烯,具有一个或多个甲基、乙基、丙基取代的1-戊烯,1-己烯,具有一个或多个甲基、乙基、丙基取代的1-己烯,1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-辛烯,1-壬烯,1-癸烯和1-十二烯中的至少一种。更优选的,所述α-烯烃单体选自1-丁烯,2-甲基-1-丁烯,3,3-二甲基1-丁烯,1-戊烯,具有一个或多个甲基、乙基、丙基取代的1-戊烯,1-己烯,具有一个或多个甲基、乙基、丙基取代的1-己烯,1-庚烯以及具有一个或多个甲基、乙基、丙基取代的1-庚烯中的至少一种,也即优选碳原子数小于8的α-烯烃单体。
在本发明所述的α-烯烃聚合物的制备方法中,可以对聚合反应后得到的聚合物溶液进行后处理。所述后处理的方式可以本领域的常规手段进行。在一些实施方式中,所述后处理的方式包括:在聚合物溶液中加入乙醇-盐酸溶液,使活性中心失活。
本发明还提供了前文所述的α-烯烃聚合物作为粘度指数改进剂的应用,特别是作为润滑油的粘度指数改进剂的应用。当所述α-烯烃聚合物用作粘度指数改进剂时,与现有的烯烃聚合物相比,本发明的α-烯烃聚合物具有明显较高的增稠效率。具体的,按照SH/T 0622-2007附录A的方法进行测定,本发明的α-烯烃聚合物的增稠效率为2-15mm2/s,优选为3-10mm2/s。
本发明提供了一种润滑油,该润滑油含有基础油和前文所述的α-烯烃聚合物。在所述润滑油中,所述α-烯烃聚合物用作粘度指数改进剂。
在所述润滑油中,所述α-烯烃聚合物的含量可以根据常规的润滑油中粘度指数改进剂的含量确定。在优选情况下,以所述润滑油的总重量为基准,所述α-烯烃聚合物的含量为0.01-20wt.%,优选为0.5-10wt.%。
将所述α-烯烃聚合物应用于润滑油中的方法可以为本领域的常规方法。一般地,将一定比例的所述α-烯烃聚合物与润滑油基础油进行混合。混合的温度和加热时间可以根据具体的混合情况进行调整,一般为110-130℃,搅拌3-4小时。
在本发明中,所述基础油可以为本领域常规的润滑油基础油,通常可以为美国石油学会API分类中的I、II、III、IV和V类基础油中的一种或多种。
下面通过实施例来进一步说明本发明所述的α-烯烃聚合物及其制备方法和应用。实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述实施例。
以下实施例中的实验方法,如无特殊说明,均为本领域常规方法。下述实施例中所用的实验材料,如无特殊说明,均可商购得到。
在以下实施例和对比例中,烯烃聚合物的重均分子量Mw和分子量分布PDI通过凝胶渗透色谱法-红外检测器(GPC-IR)进行测定;
烯烃聚合物的支化度由凝胶渗透色谱-红外检测器(GPC-IR)进行测定;
各个单元的存在量(摩尔百分含量)以及主链碳占比根据核磁碳谱进行检测并计算得到;
烯烃聚合物的熔点通过差示扫描量热法(DSC)进行测定。
烯烃聚合物用作润滑油的粘度指数改进剂时的增稠效率按照SH/T 0622-2007附录A的方法进行测定,其中,聚合物的浓度为1%,所采用的基础油100℃运动粘度为5.8912mm2/s,40℃运动粘度为29.6238mm2/s。
烯烃聚合物用作润滑油的粘度指数改进剂时的粘度指数按照GB/T1995-1998进行计算得到。
制备例1
制备式A所示的配合物,制备过程为:
以对甲苯磺酸为催化剂,将0.87g的苊醌和1.9mL的2,6-二异丙基苯胺,在100mL甲苯中回流24小时,冷却至室温,真空脱去溶剂,产物经柱层色谱分离,得到配体LA
将含有0.23g的(DME)NiBr2的二氯甲烷溶液缓慢滴加到含有0.50g配体LA的二氯甲烷溶液中,室温条件下搅拌6小时,加入无水乙醚沉淀。过滤后用无水乙醚洗涤滤饼,真空干燥,得到式A所示的配合物。
制备例2
制备式B所示的配合物,制备过程为:
以对甲苯磺酸为催化剂,将1.14g的9,10-二氢-9,10-乙撑蒽-11,12-二酮和1.9mL的2,6-二异丙基苯胺,在100mL甲苯中回流24小时,冷却至室温,真空脱去溶剂,产物经柱层色谱分离,得到配体LB
将含有0.23g的(DME)NiBr2的二氯甲烷溶液缓慢滴加到含有0.45g配体LB的二氯甲烷溶液中,室温条件下搅拌6小时,加入无水乙醚沉淀。过滤后用无水乙醚洗涤滤饼,真空干燥,得到式B所示的配合物。
制备例3
制备式C所示的配合物,制备过程为:
将含有0.23g的(DME)NiBr2的乙醇溶液缓慢滴加到含有0.50g配体LA的二氯甲烷溶液中,室温条件下搅拌6小时,加入无水乙醚沉淀。过滤后用无水乙醚洗涤滤饼,真空干燥,得到式C所示的配合物。
制备例4
制备式D所示的配合物,制备过程为:
将3.0g化合物D(下式所示)和4mL的2,6-二异丙基苯胺,对甲苯磺酸为催化剂,在100mL甲苯中回流24小时,过滤后除去溶剂,剩余物用二氯甲烷溶解,过碱性氧化铝柱子,用石油醚/乙酸乙酯(20:1)淋洗,第二流分为产物,除去溶剂,得到配体LD
将含有0.50g的(DME)NiBr2的二氯甲烷溶液滴加到10ml含有1.05g配体LD的二氯甲烷溶液中,室温搅拌6小时,析出沉淀,过滤用乙醚洗涤后干燥,得到式D所示的配合物。
实施例1
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入30mL甲苯,充分搅拌溶解,加入10mL 1-己烯,再加入1.8mL的浓度为1.53mol/L的甲基铝氧烷甲苯溶液,随后加入2mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在30℃聚合反应60min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后并洗涤,经真空干燥后得到聚合物产物。
实施例2
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入20mL甲苯,充分搅拌溶解,加入20mL 1-己烯,再加入3mL的浓度为0.4mol/L的倍半乙基氯化铝己烷溶液,随后加入0.5mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在30℃聚合反应20min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后并洗涤,经过真空干燥后得到聚合物产物。
实施例3
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入20mL甲苯,充分搅拌溶解,加入7mL 1-己烯,再加入3mL的浓度为0.4mol/L的倍半乙基氯化铝己烷溶液,将反应温度维持在30℃聚合反应10min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
实施例4
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入30mL二氯甲烷,充分搅拌溶解,加入20mL 1-己烯,再加入2mL浓度为0.4mol/L的倍半乙基氯化铝的己烷溶液,25mg三(五氟苯基)硼烷,随后加入0.2mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在30℃聚合反应10min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后并洗涤,经过真空干燥后得到聚合物产物。
实施例5
将24mg式B所示的配合物和39mL氯苯作为物料A;30mL 1-己烯、6mL浓度为1.53mol/L的甲基铝氧烷甲苯溶液和3mL氯苯作为物料B;0.8mL浓度为1.0mol/L的二乙基锌己烷溶液、30mL的1-己烯和47.2mL氯苯作为物料C;将物料A、B分别以0.25mL/min流速注入两条使用氮气充分吹扫的管线,经过置于0℃油浴的T型混合器1混合,混合后的物料A、B立刻通过置于0℃油浴的T型混合器2与物料C混合,其中,物料C以0.5mL/min的流速注入管线。物料A、B、C的混合溶液随后进入置于0℃油浴的管线,管长为28.7m。将管线出口的反应物滴入10%体积浓度的盐酸乙醇溶液,使用乙醇沉淀并洗涤,经过真空干燥后,得到聚合物产物。采用的管线均是内径为2mm的聚四氟乙烯(PTFE)管线。
实施例6
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入15mL甲苯,5mL己烷,充分搅拌溶解,加入11mL 1-戊烯,再加入3mL的浓度为0.4mol/L的倍半乙基氯化铝己烷溶液,随后加入0.5mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在20℃聚合反应30min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
实施例7
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入20mL甲苯,充分搅拌溶解,加入13.5mL 1-己烯,再加入3mL的浓度为0.4mol/L的倍半乙基氯化铝己烷溶液,随后加入0.25mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在50℃聚合反应20min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
实施例8
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入10mL甲苯,充分搅拌溶解,加入30mL 1-辛烯,再加入5mL的浓度为0.4mol/L的倍半乙基氯化铝己烷溶液,随后加入0.5mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在50℃聚合反应10min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
实施例9
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入30mL甲苯,充分搅拌溶解,加入14mL 1-癸烯,再加入2mL的浓度为1.53mol/L的甲基铝氧烷甲苯溶液,随后加入0.2mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在55℃聚合反应10min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
实施例10
将22.5mL的1-辛烯和7.5mL的0.4mol/L倍半乙基氯化铝己烷溶液作为物料A;50mg式C所示的配合物、22.5mL甲苯和7.5mL的1-辛烯作为物料B;0.5mL的1.0mol/L的二乙基锌己烷溶液、26.5mL 1-辛烯和32mL甲苯作为物料C。将物料A、B分别以0.666mL/min流速注入两条使用氮气充分吹扫的管线,经过置于30℃油浴的T型混合器1混合,混合后的物料A、B立刻通过置于30℃油浴的T型混合器2与物料C混合,其中,物料C以1.333mL/min的流速注入管线。物料A、B、C的混合溶液随后进入置于30℃油浴的管线T1,T1管长为30m;随后流入置于55℃油浴的管线T2,T2管长为20m;将T2出口的反应物滴入10%体积浓度的盐酸乙醇溶液,使用乙醇沉淀并洗涤,经过真空干燥后,得到聚合物产物。采用的管线均是内径为1mm的PTFE管线。该聚合物的支化度为72,该聚合物为双嵌段聚合物,熔点为55.4℃。
实施例11
将7mg式A所示的配合物和15mL甲苯作为物料A;6.3mL 1-癸烯、3mL的0.4mol/L倍半乙基氯化铝己烷溶液和5.7mL甲苯作为物料B;20mL的1-癸烯作为物料C。将物料A、B分别以0.268mL/min流速注入两条使用氮气充分吹扫的管线,经过置于15℃油浴的T型混合器1混合,混合后的物料A、B的混合溶液随后进入置于15℃油浴的管线T1,T1管长为20.5m;随后,通过置于15℃油浴的T型混合器2与物料C混合,其中,物料C以0.358mL/min的流速注入管线。物料A、B、C的混合溶液随后进入置于15℃油浴的管线T2,T2管长为5.7m;将T2出口的反应物滴入10%体积浓度的盐酸乙醇溶液,使用乙醇沉淀并洗涤,经过真空干燥后,得到聚合物产物。采用的管线均是内径为1mm的PTFE管线。该聚合物的支化度为61,该聚合物为双嵌段聚合物。
实施例12
将9mg式D所示的配合物和30mL甲苯作为物料A;12.6mL1-癸烯、6mL浓度为0.4mol/L倍半乙基氯化铝己烷溶液和11.4mL甲苯作为物料B;40mL 1-己烯作为物料C。将物料A、B分别以0.287mL/min流速注入两条使用氮气充分吹扫的管线,经过置于15℃油浴的T型混合器1混合,混合后的物料A、B的混合溶液随后进入置于15℃油浴的管线T1,T1管长为21.9m,管内填充有SK型螺旋混合芯;随后,通过置于15℃油浴的T型混合器2与物料C混合,其中,物料C以0.383mL/min的流速注入管线。物料A、B、C的混合溶液随后进入置于15℃油浴的管线T2,T2管长为6.1m,管内填充有SK型螺旋混合芯;将T2出口的反应物滴入10%体积浓度的盐酸乙醇溶液,使用乙醇沉淀并洗涤,经过真空干燥后,得到聚合物产物。采用的管线均是内径为1mm的不锈钢管线。该聚合物的支化度为71,该聚合物为双嵌段聚合物,熔点为45.3℃。
实施例13
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入20mL甲苯,充分搅拌溶解,加入7.5mL 1-己烯,再加入3mL的浓度为0.4mol/L的倍半乙基氯化铝己烷溶液,随后加入0.3mL浓度为1.0mol/L的二乙基锌己烷溶液,将反应温度维持在30℃聚合反应30min后,用针管抽取少量样品,加入乙醇中沉淀得到聚合物样品进行表征,其支化度为110。将反应瓶转移到55℃环境中继续反应20min。使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物,其支化度为95,该聚合物为双嵌段聚合物,熔点为-22℃。
实施例14
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入15mL甲苯,充分搅拌溶解,加入6mL 1-己烯,再加入3mL的浓度为1.53mol/L的甲基铝氧烷甲苯溶液,随后加入0.3mL浓度为1mol/L的二乙基锌己烷溶液,将反应温度维持在35℃聚合反应20min后,用针管抽取少量样品,加入乙醇中沉淀得到聚合物样品进行表征,此样品支化度为111。之后加入40mL甲苯,继续反应60min。使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物,其支化度为86,该聚合物为双嵌段聚合物。
实施例15
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入10mL甲苯,充分搅拌溶解,加入10mL 1-辛烯,再加入1mL的浓度为2mol/L的一氯二乙基铝己烷溶液,将反应温度维持在25℃聚合反应10min后,用针管抽取少量样品,加入乙醇中沉淀得到聚合物样品进行表征,其支化度为74。将反应瓶转移到50℃环境中继续反应10min。使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物,其支化度为64,该聚合物为双嵌段聚合物,熔点为54.4℃。
实施例16
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入15mL甲苯,充分搅拌溶解,加入6mL的1-己烯,再再加入3mL的浓度为1.53mol/L的甲基铝氧烷甲苯溶液,随后加入0.3mL浓度为1mol/L的二乙基锌己烷溶液,将反应温度维持在35℃聚合反应15min,之后加入40mL甲苯,继续反应60min;随后加入18mL的1-己烯,继续反应15分钟。使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。该聚合物为三嵌段聚合物。
对比例1
将100mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入10mg茂金属催化剂Ph2C(Cp)(Flu)ZrCl2(购自APAC Pharmaceutical),然后用注射器加入15mL的1-己烯,2mL浓度为1.53mol/L的甲基铝氧烷甲苯溶液,在25℃反应1小时,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
对比例2
将100mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入10mg茂金属催化剂Ph2C(Cp)(Flu)ZrCl2,然后用注射器加入15mL的1-己烯,2mL浓度为1.53mol/L的甲基铝氧烷甲苯溶液,在25℃反应2小时,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
对比例3
将100mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入10mg茂金属催化剂Ph2C(Cp)(Flu)ZrCl2,然后用注射器加入15mL的1-己烯,2mL浓度为1.53mol/L的甲基铝氧烷甲苯溶液,在25℃反应1小时,升温至55℃,继续反应1小时,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
对比例4
将100mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入10mg茂金属催化剂Ph2C(Cp)(Flu)ZrCl2,然后用注射器加入15mL的1-己烯,2mL浓度为1.53mol/L的甲基铝氧烷甲苯溶液,在25℃反应1小时,加入5mL的1-癸烯,继续反应1小时。使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
对比例5
将250mL反应瓶在100℃加热干燥2小时,趁热抽真空,并通入氮气置换三次,加入7mg式A所示的配合物,然后用注射器加入30mL甲苯,充分搅拌溶解,加入10mL 1-己烯,再加入2.8mL的浓度为1.53mol/L的甲基铝氧烷甲苯溶液,将反应温度维持在-10℃聚合反应40min后,使用10%体积浓度的盐酸乙醇溶液淬灭反应,使用乙醇沉淀并洗涤,经过真空干燥后得到聚合物产物。
应用实施例1-16和应用对比例1-5
将上述实施例和对比例中制备的烯烃聚合物加到润滑油基础油150SN中,在120℃下搅拌约2小时至完全溶解,然后检测增稠效率,结果如下表1所示。
表1

通过表1的结果可以看出,本发明的α-烯烃聚合物用作润滑油的粘度指数改进剂具有优异的增稠效率。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (19)

  1. 一种α-烯烃聚合物,该α-烯烃聚合物由至少一种α-烯烃单体CH2=CHR聚合形成,其特征在于,在所述α-烯烃聚合物中,位于主链中的碳原子占所有碳原子数量的58-87%,其中,R为碳原子数≥2的线性或带有支链的烷基;
    所述α-烯烃聚合物的重均分子量为10,000-250,000,优选为25,000-150,000,更优选为30,000-120,000;
    所述α-烯烃聚合物的分子量分布PDI<3,优选≤2。
  2. 根据权利要求1所述的α-烯烃聚合物,其特征在于,所述α-烯烃聚合物包含第一单元-(CH2)-、第二单元-CH(CH3)-和第三单元-CH(R)-,以所述α-烯烃聚合物中主链碳原子总数为基准,所述第一单元的存在数量为77%以上,第三单元的存在数量为18%以下。
  3. 根据权利要求1或2所述的α-烯烃聚合物,其特征在于,位于主链中的碳原子占所有碳原子数量的63-82%。
  4. 根据权利要求3所述的α-烯烃聚合物,其特征在于,以所述α-烯烃聚合物中主链碳原子总数为基准,所述第一单元的存在数量为80-95%,所述第二单元的存在数量为1-10%,所述第三单元的存在量为2-12%。
  5. 根据权利要求1-4中任意一项所述的α-烯烃聚合物,其特征在于,所述α-烯烃聚合物为双嵌段聚合物A-B或三嵌段聚合物A-B-A,其中,A嵌段的支化度大于B嵌段的支化度。
  6. 根据权利要求1-5中任意一项所述的α-烯烃聚合物,其特征在于,所述α-烯烃单体为碳原子数为4-20的线性或支化α-烯烃;
    优选地,所述α-烯烃单体选自1-丁烯,2-甲基-1-丁烯,3,3-二甲基1-丁烯,1-戊烯,具有一个或多个甲基、乙基、丙基取代的1-戊烯,1-己烯,具有一个或多个甲基、乙基、丙基取代的1-己烯,1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-辛烯,1-壬烯,1-癸烯和1-十二烯中的至少一种。
  7. 一种制备权利要求1所述的α-烯烃聚合物的方法,其特征在于,该方法包括:在主催化剂、助催化剂、可选的可逆链转移剂和可选的溶剂的存在下,将碳原子数不小于4的α-烯烃单体进行聚合反应,其中,所述主催化剂为二亚胺为配体的后过渡金属催化剂。
  8. 根据权利要求7所述的方法,其特征在于,所述聚合反应的过程包括至少两个反应阶段。
  9. 根据权利要求8所述的方法,其特征在于,通过控制不同反应阶段的反应温度和/或α-烯烃单体浓度形成双嵌段聚合物A-B或三嵌段聚合物A-B-A,其中,A嵌段的支化度大于B嵌段的支化度;
    优选地,控制不同反应阶段的反应温度包括:使相邻两个反应阶段的聚合反应温度的差值的绝对值不小于10℃,优选不小于20℃;
    优选地,控制不同反应阶段的α-烯烃单体浓度包括:使相邻两个反应阶段的α-烯烃单体浓度的比值大于3。
  10. 根据权利要求8所述的方法,其特征在于,通过控制不同反应阶段的α-烯烃单体种类形成双嵌段聚合物A-B或三嵌段聚合物A-B-A,其中,A嵌段的支化度大于B嵌段的支化度;
    优选地,在相邻两个反应阶段中,后一个反应阶段加入的α-烯烃单体的碳原子数小于前一个反应阶段中加入的α-烯烃单体的碳原子数。
  11. 根据权利要求7-10中任意一项所述的方法,其特征在于,所述聚合反应的反应温度为-40℃至100℃,优选为0℃至70℃;α-烯烃单体浓度为0.05mol/L以上。
  12. 根据权利要求7-11中任意一项所述的方法,其特征在于,所述主催化剂为式(I)所示的金属配合物,
    其中,M为VIII族金属;R1和R4相同或不同,各自独立地选自C1C30烃基或杂烃基,且R1和R4任选地相互成环;R2和R3相同或不同,各自独立地选自氢、卤素以及C1C20的烃基或杂烃基,且R2和R3任选地相互成环;n个L之间相同或不同,各自选自卤素、C1-C10烃基以及C1-C10烃氧基;n为满足M价态的整数;
    优选地,M选自镍和钯;
    优选地,R1和R4各自独立地选自取代或未取代的C1-C20烷基以及取代或未取代的C6-C20芳基;更优选地,R1和R4各自为式II所示的基团,
    在式(II)中,R1-R5相同或不同,各自独立地选自氢、卤素、羟基以及取代或未取代的C1-C30的烃基或杂烃基,且R1-R5任选地相互成环;更优选地,在式(II)中,R1和R3各自独立地选自取代或未取代的C3-C10烷基或杂烃基。
  13. 根据权利要求7-12中任意一项所述的方法,其特征在于,所述助催化剂选自有机铝化合物和有机硼化合物中的至少一种;
    优选地,所述有机铝化合物选自烷基铝氧烷、烷基铝和烷基铝卤化物中的一种或多种;
    优选地,所述有机硼化合物选自芳烃基硼和硼酸盐中的至少一种。
  14. 根据权利要求7所述的方法,其特征在于,所述可逆链转移剂为二烷基锌;
    优选地,所述二烷基锌选自二乙基锌、二(正丙基)锌和二(正辛基)锌中的至少一种。
  15. 根据权利要求7-14中任意一项所述的方法,其特征在于,
    当所述助催化剂为有机铝化合物时,所述助催化剂中铝与所述主催化剂中M的摩尔比为(10-107):1,优选为(10-100000):1,更优选为(100-10000):1;
    当所述助催化剂为有机硼化合物和有机铝化合物时,所述助催化剂中硼与所述主催化剂中M的摩尔比为(0.1-1000):1,优选为(0.1-500):1;有机铝与所述主催化剂中M的摩尔比为(10-105):1,优选为(10-5000):1,更优选为(10-1000):1;
    优选地,相对于1摩尔用量的所述主催化剂,α-烯烃单体的摩尔用量为100-30000摩尔;
    优选地,相对于1体积用量的α-烯烃单体,所述溶剂的体积用量为0-200体积,优选为0-100体积,更优选为0.5-50体积。
  16. 根据权利要求7-15中任意一项所述的方法,其特征在于,所述溶剂选自未取代或卤素取代的芳香烃以及未取代或卤素取代的C5-C20饱和烃中的至少一种,优选含有未取代或卤素取代的芳香烃,更优选含有甲苯、二甲苯和氯苯中的至少一种。
  17. 根据权利要求7-16中任意一项所述的方法,其特征在于,所述α-烯烃单体的碳原子数为4-20,优选为4-12;
    优选地,所述α-烯烃单体为线性或支化α-烯烃;
    更优选地,所述α-烯烃单体选自1-丁烯,2-甲基-1-丁烯,3,3-二甲基1-丁烯,1-戊烯,具有一个或多个甲基、乙基、丙基取代的1-戊烯,1-己烯,具有一个或多个甲基、乙基、丙基取代的1-己烯,1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-庚烯,具有一个或多个甲基、乙基、丙基取代的1-辛烯,1-壬烯,1-癸烯和1-十二烯中的至少一种。
  18. 权利要求1-6中任意一项所述的α-烯烃聚合物作为粘度指数改进剂的应用。
  19. 一种润滑油,该润滑油含有基础油和权利要求1-6中任意一项所述的α-烯烃聚合物;
    优选地,以所述润滑油的总重量为基准,所述α-烯烃聚合物的含量为0.01-20wt.%,优选为0.5-10wt.%。
PCT/CN2023/126413 2022-10-25 2023-10-25 一种α-烯烃聚合物及其制备方法和应用 WO2024088295A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211308644.8A CN117964822A (zh) 2022-10-25 2022-10-25 润滑油粘度指数改进剂及其制备方法和应用
CN202211309110.7 2022-10-25
CN202211309110.7A CN117964865A (zh) 2022-10-25 2022-10-25 一种嵌段共聚合物型润滑油粘度指数改进剂及其制备方法和应用
CN202211308376.XA CN117964821A (zh) 2022-10-25 2022-10-25 α-烯烃聚合物型粘度指数改进剂及其制备方法和应用
CN202211308644.8 2022-10-25
CN202211308376.X 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024088295A1 true WO2024088295A1 (zh) 2024-05-02

Family

ID=90830057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126413 WO2024088295A1 (zh) 2022-10-25 2023-10-25 一种α-烯烃聚合物及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024088295A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016426A1 (en) * 1997-12-19 2002-02-07 Eilerts Nancy W. Polymerization catalysts and processes therefor
CN107663247A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663251A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663257A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663249A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663253A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663250A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663255A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663254A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663246A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663248A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663252A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
US20200071428A1 (en) * 2017-03-15 2020-03-05 Dow Global Technologies Llc Catalyst system for multi-block coploymer formation
US20220056164A1 (en) * 2018-12-21 2022-02-24 Dow Global Technologies Llc Heterocycle-heterocycle-based group iv transition metal catalysts for olefin polymerization

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016426A1 (en) * 1997-12-19 2002-02-07 Eilerts Nancy W. Polymerization catalysts and processes therefor
CN107663247A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663251A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663257A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663249A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663253A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663250A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663255A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663254A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663246A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663248A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
CN107663252A (zh) * 2016-07-28 2018-02-06 中国石油化工股份有限公司 一种用于长链α‑烯烃聚合的催化剂组合物及其催化长链α‑烯烃聚合的方法
US20200071428A1 (en) * 2017-03-15 2020-03-05 Dow Global Technologies Llc Catalyst system for multi-block coploymer formation
US20220056164A1 (en) * 2018-12-21 2022-02-24 Dow Global Technologies Llc Heterocycle-heterocycle-based group iv transition metal catalysts for olefin polymerization

Similar Documents

Publication Publication Date Title
CN106661160B (zh) 具有优异加工性的乙烯/α-烯烃共聚物
CA2469985C (en) Process for the oligomerization of .alpha.-olefins having low unsaturation, the resulting polymers, and lubricants containing same
EP2243795B1 (en) Copolymer production process
EP1529067A1 (en) PROCESS FOR THE OLIGOMERIZATION OF a-OLEFINS HAVING LOW UNSATURATION
JPH0580492B2 (zh)
JP6482564B2 (ja) 加工性に優れたエチレン/アルファ−オレフィン共重合体
JP7238135B2 (ja) オレフィン重合用触媒およびこれを用いて調製されたオレフィン系重合体
RU2020116986A (ru) Полимер на основе этилена, обладающий превосходными характеристиками длительного сопротивления при сжатии, и труба, в которой он применяется
US11732069B2 (en) Polypropylene and method for preparing the same
CN111116783A (zh) 一种烯烃聚合物及其制备方法
CN112745359B (zh) 一种二亚胺金属配合物及其制备方法和应用
JP6862548B2 (ja) オレフィン重合体、その製造方法、そしてこれを利用したフィルム
CN112745363B (zh) 胺基亚胺金属配合物及其制备方法和应用
WO2024088295A1 (zh) 一种α-烯烃聚合物及其制备方法和应用
CN114507311B (zh) 乙烯聚合物及其制备方法
NZ234816A (en) Process for preparing a vanadium-based ziegler-natta type catalyst for polymerising olefins, a process using the catalyst and elastomeric polymers
CN111116790A (zh) 一种丙烯聚合物及其制备方法和应用
WO2022161399A1 (zh) 超高分子量聚乙烯及其制备方法
CN112745361B (zh) 一种二亚胺类配合物及其制备方法和应用
CN112745411B (zh) 支化聚乙烯及其制备方法和一种润滑油粘度指数改进剂
WO2021083330A1 (zh) 胺基亚胺金属配合物及其制备方法和应用
JP2720392B2 (ja) オレフィン重合用触媒およびオレフィンの重合方法
JP2001002720A (ja) オレフィン重合用触媒及びそれを用いたオレフィン重合体の製造方法
WO2022227924A1 (zh) 支化烯烃聚合物及其制备方法和应用
JPH0832733B2 (ja) オレフインの重合方法