WO2024088108A1 - 线圈模组及电子设备 - Google Patents

线圈模组及电子设备 Download PDF

Info

Publication number
WO2024088108A1
WO2024088108A1 PCT/CN2023/124963 CN2023124963W WO2024088108A1 WO 2024088108 A1 WO2024088108 A1 WO 2024088108A1 CN 2023124963 W CN2023124963 W CN 2023124963W WO 2024088108 A1 WO2024088108 A1 WO 2024088108A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
heat sink
heat
electronic device
mainboard
Prior art date
Application number
PCT/CN2023/124963
Other languages
English (en)
French (fr)
Inventor
王轲
赖俊华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024088108A1 publication Critical patent/WO2024088108A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils

Definitions

  • the embodiments of the present application relate to the technical field of electronic equipment, and specifically to a coil module and electronic equipment.
  • Electronic devices such as mobile phones, tablet computers, etc. generally include a housing, a motherboard disposed in the housing, and a coil module.
  • the coil module includes a coil and a heat sink.
  • the heat sink is attached to the motherboard.
  • the coil is disposed on the side of the heat sink away from the motherboard.
  • the coil is electrically connected to the motherboard. Wireless charging of the electronic device can be achieved through the coil.
  • the coil is disposed on the side of the heat sink away from the motherboard, resulting in a large thickness of the coil module in a direction perpendicular to the motherboard, and a large volume of the electronic device.
  • the embodiments of the present application provide a coil module and an electronic device, which can reduce the volume of the electronic device.
  • an embodiment of the present application provides a coil module, including: a first heat sink, a second heat sink and a first coil, the second heat sink and the first heat sink are stacked, the second heat sink is arranged on the side of the first heat sink facing the heat source, and the first heat sink and the second heat sink are used to dissipate heat from the heat source; the first coil is arranged on the same layer as the first heat sink, and the first coil is used for wireless charging.
  • the first heat sink is used to dissipate heat from the heat source
  • the first coil is arranged on the same layer as the first heat sink, and the first coil is used for wireless charging.
  • the first coil and the first heat sink are located in the same plane, which reduces the thickness of the coil module, thereby reducing the thickness of the electronic device and reducing the volume of the electronic device.
  • the coil module further includes a second coil, which is arranged on a side of the first coil away from the mainboard, and the second coil covers the first coil.
  • the first coil is electrically connected to the second coil, and such an arrangement can improve the wireless charging effect of the coil module.
  • the first coil and the second coil are connected in series. In this way, the first coil and the second coil can form a coil with more turns to increase the voltage of the induced alternating current.
  • the first coil may be connected in parallel with the second coil. Such a configuration may reduce the impedance of the coil module.
  • the coil module further includes a second coil, and the second coil is arranged in the same layer as the second heat sink.
  • the heat from the heat source can be transferred within the first heat sink and the second heat sink, thereby increasing the heat transfer speed and thus increasing the heat dissipation effect on the heat source.
  • the thickness of the coil module in a direction perpendicular to the mainboard can be further reduced, thereby reducing the thickness of the electronic device and further reducing the volume of the electronic device.
  • the coil module further includes a third coil, which is arranged on a side of the first coil away from the heat source, and the third coil covers the first coil.
  • the third coil is connected to the first coil, and such an arrangement can improve the wireless charging effect of the coil module.
  • the third coil may be connected in series with the first coil. Such an arrangement may increase the number of turns of the coil module to increase the voltage of the induced alternating current generated by the coil module.
  • the third coil may also be connected in parallel with the first coil. Such a configuration may reduce the impedance of the coil module.
  • the coil module may further include a third heat sink, which is disposed on a side of the second heat sink facing the heat source, and the third heat sink is in contact with the heat source.
  • the first heat sink, the second heat sink, and the third heat sink can all transfer the heat generated by the heat source in a direction away from the heat source, thereby increasing the speed of heat transfer in the direction away from the heat source and improving the heat dissipation effect on the heat source.
  • a relief structure is provided at one end of the first coil close to the first heat sink, and the relief structure is used to form a relief space extending toward the center line of the first coil, and the first heat sink extends into the relief space. In this way, the area of the first heat sink can be increased, thereby improving the heat dissipation effect on the mainboard.
  • the avoidance structure may include an opening, and a portion of the first heat sink is located in the opening. With such an arrangement, the structure is simple and easy to manufacture.
  • the first coil is surrounded by a receiving space connected to the opening
  • the first heat sink includes a body and an extension portion
  • the body covers the heat source
  • the extension portion is arranged in the opening.
  • the first heat sink also includes a filling portion located at an end of the extension portion away from the body, and the filling portion is arranged in the receiving space. In this way, the area of the first heat sink can be further increased, the speed of heat transfer to the housing can be further improved, and the heat dissipation effect on the heat source can be further improved.
  • there may be multiple openings the multiple openings are arranged around the center line of the first coil at intervals, there are multiple extensions, and each extension extends into an opening. That is, the body and the filling part are connected by multiple extensions to improve the heat transfer speed between the body and the filling part.
  • an embodiment of the present application further provides an electronic device, comprising: a housing, a heat source disposed on the housing, and the coil module as described above, wherein at least a portion of the first heat dissipation plate is bonded to the heat source.
  • the second heat sink in the electronic device is stacked with the first heat sink, the second heat sink is arranged on the side of the first heat sink facing the heat source, and the first heat sink and the second heat sink are used to dissipate heat from the heat source; the first coil is arranged on the same layer as the first heat sink, and the first coil is used for wireless charging.
  • the first coil and the first heat sink are located in the same plane, which reduces the thickness of the coil module, thereby reducing the thickness of the electronic device and reducing the volume of the electronic device.
  • the heat source includes a mainboard, and the first coil is electrically connected to the mainboard. This arrangement can reduce the thickness of the coil module while ensuring a good heat dissipation effect on the mainboard, and at the same time reduce the volume of the electronic device.
  • FIG1 is a schematic diagram of a structure of an electronic device in the related art
  • FIG2 is an exploded view of an electronic device provided in an embodiment of the present application.
  • FIG3 is a first structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a first coil in an electronic device provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of the structure of a coil in the related art
  • FIG6 is a schematic diagram of an electronic device provided in an embodiment of the present application when performing wireless charging
  • FIG7 is a second structural schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG8 is a cross-sectional view 1 of an electronic device provided in an embodiment of the present application.
  • FIG9 is a third structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG10 is a second cross-sectional view of the electronic device provided in an embodiment of the present application.
  • FIG11a is a second structural schematic diagram of an electronic device in the related art
  • FIG. 11 b is an exploded view of an electronic device in the related art
  • FIG12a is a cross-sectional view 1 of an electronic device in the related art
  • FIG12b is a second cross-sectional view of an electronic device in the related art.
  • FIG12c is a third cross-sectional view of the electronic device provided in an embodiment of the present application.
  • FIG13 is a first structural diagram of a first coil and a second coil in an electronic device provided in an embodiment of the present application;
  • FIG14 is a second structural schematic diagram of a first coil and a second coil in an electronic device provided in an embodiment of the present application.
  • FIG15 is a fourth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG16 is a first structural schematic diagram of a first coil, a second coil, and a third coil in an electronic device provided in an embodiment of the present application;
  • FIG17 is a second structural schematic diagram of a first coil, a second coil, and a third coil in an electronic device provided in an embodiment of the present application;
  • FIG18 is a third structural diagram of an electronic device in the related art.
  • FIG19a is a fifth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG19b is a sixth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG20a is a fourth structural diagram of an electronic device in the related art.
  • FIG20b is a fifth structural diagram of an electronic device in the related art.
  • FIG21 is a seventh structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG22 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • FIG23 is a third structural schematic diagram of the first coil, the second coil and the third coil in the electronic device provided in an embodiment of the present application;
  • FIG24 is a ninth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG25a is a first schematic diagram of cooperation between a first heat sink and a avoiding structure in an electronic device provided in an embodiment of the present application;
  • FIG25b is a second schematic diagram of cooperation between the first heat sink and the avoidance structure in the electronic device provided in an embodiment of the present application;
  • FIG25c is a third schematic diagram of cooperation between the first heat sink and the avoidance structure in the electronic device provided in an embodiment of the present application.
  • FIG26 is a third structural schematic diagram of a first coil and a second coil in an electronic device provided in an embodiment of the present application.
  • FIG27 is a first structural schematic diagram of a first heat sink and a second heat sink in an electronic device provided in an embodiment of the present application;
  • FIG28 is a fourth structural schematic diagram of a first coil and a second coil in an electronic device provided in an embodiment of the present application.
  • FIG29 is a second structural schematic diagram of a first heat sink and a second heat sink in an electronic device provided in an embodiment of the present application;
  • FIG30 is a fifth structural diagram of a first coil and a second coil in an electronic device provided in an embodiment of the present application.
  • FIG31 is a third schematic diagram of the structure of the first heat sink and the second heat sink in the electronic device provided in an embodiment of the present application.
  • Electronic devices such as mobile phones and tablet computers generally include a housing 10, a mainboard 20 disposed in the housing 10, and a coil module 30 disposed in the housing 10.
  • the mainboard 20 is used for data storage, calculation, etc., and accordingly, the mainboard 20 generates a large amount of heat.
  • the coil module 30 includes a coil 320 and a heat sink 310.
  • the heat sink 310 is attached to the surface of the mainboard 20.
  • the heat sink 310 can transfer the heat from the mainboard 20 to other locations in the housing 10, and then transfer the heat to the external environment through the housing 10 to achieve heat dissipation of the mainboard 20.
  • the coil 320 is disposed on the side of the heat sink 310 away from the mainboard 20, and the coil 320 is electrically connected to the mainboard 20 to achieve wireless charging of the electronic device through the coil 320.
  • the coil 320 is arranged on the side of the heat sink 310 away from the mainboard 20, resulting in a larger thickness of the coil module 30 along the direction perpendicular to the mainboard 20, which correspondingly results in a larger thickness of the electronic device along the direction perpendicular to the mainboard 20 and a larger volume of the electronic device.
  • an embodiment of the present application provides a coil module and an electronic device, wherein the coil and the heat sink are arranged on the same layer, that is, the plane where the heat sink and the coil are located are located in the same plane, thereby reducing the thickness of the coil module, reducing the thickness of the electronic device, and thereby reducing the volume of the electronic device.
  • the electronic device provided in the embodiment of the present application may include a mobile phone, a tablet computer, a smart watch, and a wearable device, etc., and the present embodiment does not limit the electronic device.
  • the present embodiment will take the mobile phone as an example for introduction of the electronic device, but it is understandable that the present embodiment is not limited to this, and the electronic device may also be other devices.
  • the electronic device includes a shell 10 and a display panel 103 arranged on the shell 10, wherein the shell 10 includes a middle frame 101 and a back cover 104, the middle frame 101 is surrounded by a receiving channel 102, the display panel 103 covers one end of the receiving channel 102, and the back cover 104 covers the other end of the receiving channel 102, so as to block the receiving channel 102 through the display panel 103 and the back cover 104.
  • the electronic device in this embodiment further includes a mainboard 20, a battery 105 and other components disposed in the accommodating channel 102.
  • a processor, a memory and other components may be disposed on the surface of the mainboard 20 to implement functions such as data calculation and storage through the mainboard 20.
  • the mainboard 20 may be disposed in parallel with the display panel 103, and the battery 105 may be disposed on the side of the display panel 103 facing the mainboard 103.
  • the battery 105 is electrically connected to the main board 20 to supply power to the main board 20 .
  • the electronic device further includes a coil module 30 disposed in the accommodating channel 102, the coil module 30 includes a first heat sink 311 and a first coil 321, at least part of the first heat sink 311 is in contact with a heat source in the electronic device to dissipate heat from the heat source.
  • the heat source is a device with a large heat generation in the accommodating channel 102, and illustratively, the heat source may include a mainboard 20 or a battery 105, etc.
  • the mainboard 20 can be located between the display panel 103 and the first heat sink 311.
  • the first heat sink 311 can be attached to the surface of the mainboard 20 that is away from the display panel 103, so that the heat emitted by devices such as the processor and the memory can be quickly transferred to the first heat sink 311, and then the heat is transferred in the first heat sink 311 along a direction parallel to the first heat sink 311 and away from the mainboard 20, so as to disperse the heat to other positions in the outer shell 10, and finally transferred to the external environment by the outer shell 10 (such as the middle frame 101 and the back cover 104) to achieve heat dissipation of the mainboard 20.
  • the first heat sink 311 is a thin plate with high thermal conductivity, so that heat can be quickly transferred in the first heat sink 311, and then the heat emitted by the mainboard 20 can be quickly transferred to other positions of the housing 10.
  • the material of the first heat sink 311 may include graphite, copper, etc.; in the implementation mode where the material of the first heat sink 311 is graphite, the material of the first heat sink 311 may be graphene, which has a high thermal conductivity.
  • the use of graphene can increase the thermal conductivity rate of the first heat sink 311, so as to increase the heat transfer speed in the first heat sink 311, thereby improving the heat dissipation effect on the mainboard 20; in addition, the density of graphene is small, and the use of graphene can also reduce the mass of the first heat sink 311, thereby reducing the mass of the electronic device.
  • the first coil 321 is disposed on the same layer as the first heat sink 311, that is, the first coil 321 and the first heat sink 311 are located in the same plane.
  • the surface of the first coil 321 facing the mainboard 20 may be located in the same plane as the surface of the first heat sink 311 facing the mainboard 20, and/or the surface of the first coil 321 facing away from the mainboard 20 may be located in the same plane as the surface of the first heat sink 311 facing away from the mainboard 20.
  • the first coil 321 may include a first wire 3211 wound in a spiral shape around the center, each turn of the first wire 3211 is located in the same plane, and the first heat sink 311 (as shown in FIG. 3 ) is arranged coplanar with the plane to ensure that the first coil 321 is in the same layer as the first heat sink 311; both ends of the first wire 3211 are electrically connected to the mainboard 20, so that when the first coil 321 is close to an external wireless charging device, the first coil 321 can charge the electronic device, thereby realizing wireless charging.
  • the coil module 30 may also include a soft magnetic material layer 330 covering the first wire 3211, and the soft magnetic material layer 330 is composed of a soft magnetic material (such as a nanocrystalline soft magnetic alloy, etc.); such a configuration can increase the magnetic flux density of the first coil 321, thereby increasing the voltage of the induced alternating current generated by the coil module 30.
  • a soft magnetic material such as a nanocrystalline soft magnetic alloy, etc.
  • the coil 320 for wireless charging in a device such as a stylus pen includes a ferrite rod 350 and a wire 340 wound around the ferrite rod 350, and each turn of the wire 340 is sequentially arranged along the center line direction of the ferrite rod 350.
  • each turn in the first coil 321 is located in the same plane, which can reduce the thickness of the first coil 321 in a direction perpendicular to the mainboard 20.
  • the wireless charging device 40 includes a charging coil 401, a frequency conversion circuit 402, and an AC/DC converter 403, wherein the input end of the frequency conversion circuit 402 is electrically connected to the AC/DC converter 403, and the output end of the frequency conversion circuit 402 is electrically connected to the charging coil 401.
  • the AC/DC converter 403 can be connected to the mains to transmit direct current to the frequency conversion circuit 402, and the frequency conversion circuit 402 processes the direct current to convert it into alternating current, and transmits the alternating current to the charging coil 401, so that the charging coil 401 generates an alternating magnetic field.
  • the first coil 321 When the electronic device is close to the charging coil 401, the first coil 321 is located in the alternating magnetic field generated by the charging coil 401, and then induced alternating current is generated on the first coil 321.
  • the mainboard 20 can be provided with a rectifier circuit 106 electrically connected to the first coil 321, and the rectifier circuit 106 processes the induced alternating current to form direct current, which can charge the battery 105 of the electronic device to achieve wireless charging.
  • the first heat sink 311 is used to dissipate heat from the heat source
  • the first coil 321 is arranged on the same layer as the first heat sink 311
  • the first coil 321 is used for wireless charging.
  • the first coil 321 is arranged on the same layer as the first heat sink 311, that is, the first coil 321 and the first heat sink 311 are located in the same plane, which reduces the thickness of the coil module 30, thereby reducing the thickness of the electronic device and reducing the volume of the electronic device.
  • the number of heat sinks in the coil module 30 may be one or more, and the number of coils may also be one or more. The following will be described in multiple scenarios:
  • the coil module 30 further includes a second heat sink 312, which is stacked with the first heat sink 311, and is disposed on the side of the first heat sink 311 facing the heat source (mainboard 20), that is, the second heat sink 312 is located between the first heat sink 311 and the mainboard 20.
  • the second heat sink 312 can be attached to the first heat sink 311, so that the heat from the mainboard 20 can be transferred within the first heat sink 311 and the second heat sink 312, thereby increasing the speed of heat transfer in a direction parallel to the mainboard 20, so as to improve the heat dissipation effect on the mainboard 20.
  • first heat sink 311 and the first coil 321 are arranged at the same layer, so the first heat sink 311 can only cover the area with higher heat generation on the mainboard 20, or the first heat sink 311 only covers the entire mainboard 20.
  • a portion of the second heat sink 312 can cover the entire mainboard 20, or a portion of the second heat sink 312 covers the area with higher heat generation in the mainboard 20, and another portion of the second heat sink 312 extends outside the mainboard 20.
  • the area of the second heat sink 312 can be increased, so that the heat in the second heat sink 312 can be dispersed to a larger area in the housing 10, thereby increasing the speed at which the heat is transferred from the second heat sink 312 to the housing 10, so as to improve the heat dissipation effect on the mainboard 20.
  • the projections of the first heat sink 311 and the first coil 321 in the plane where the mainboard 20 is located are located within the projection of the second heat sink 312 in the plane where the mainboard 20 is located, so that the second heat sink 312 has a sufficiently large heat dissipation area to improve the heat dissipation effect on the mainboard 20.
  • the first heat sink 311 and the second heat sink 312 may be connected via the first adhesive layer 301 .
  • the first coil 321 may also be connected to the second heat sink 312 via the first adhesive layer 301 .
  • the thickness of the first heat sink 311 and the first coil 321 may be different. Accordingly, the thickness of the first adhesive layer 301 between the first heat sink 311 and the second heat sink 312 and the first adhesive layer 301 between the first coil 321 and the second heat sink 312 may be different, so that the surface of the first heat sink 311 facing away from the main board 20 and the surface of the first coil 321 facing away from the main board 20 are located in the same plane.
  • the thickness of the first heat sink 311 when the thickness of the first heat sink 311 is greater than the thickness of the first coil 321, the thickness of the first adhesive layer 301 between the first heat sink 311 and the second heat sink 312 may be set to be less than the thickness of the first adhesive layer 301 between the first coil 321 and the second heat sink 312; or, when the thickness of the first heat sink 311 is less than the thickness of the first coil 321, the thickness of the first adhesive layer 301 between the first heat sink 311 and the second heat sink 312 may be set to be greater than the thickness of the first adhesive layer 301 between the first coil 321 and the second heat sink 312.
  • the coil module 30 further includes a second coil 322, which is disposed on a side of the first coil 321 away from the mainboard 20, and the second coil 322 covers the first coil 321.
  • the second coil 322 can be connected to the first coil 321 and the first heat sink 311 through a second adhesive layer 302.
  • the thickness of the second adhesive layer 302 between the first coil 321 and the second coil 322 can be made different from the thickness of the adhesive layer between the first heat sink 311 and the second coil 322 to ensure that the surface of the second adhesive layer 302 facing away from the mainboard 20 is a whole plane, so as to facilitate the bonding of the second coil 322 to the second adhesive layer 302.
  • the thickness of the second heat sink 312 may be 50 ⁇ m
  • the thickness of the first adhesive layer 301 may be 10 ⁇ m
  • the thickness of the first heat sink 311 may be 50 ⁇ m
  • the thickness of the first coil 321 and the second coil 322 may both be 65 ⁇ m.
  • the thickness of the second adhesive layer 302 between the first heat sink 311 and the second coil 322 may be set to 25 ⁇ m, and the thickness of the second adhesive layer 302 between the first coil 321 and the second coil 322 may be set to 10 ⁇ m, so that the surface of the second adhesive layer 302 away from the mainboard 20 is the entire plane, so as to facilitate the bonding between the second coil 322 and the second adhesive layer 302; of course, the thickness of the second adhesive layer 302 between the first heat sink 311 and the second coil 322 may be set to 20 ⁇ m, and the thickness of the second adhesive layer 302 between the first coil 321 and the second coil 322 may be set to 5 ⁇ m, or the surface of the second adhesive layer 302 away from the mainboard 20 may be the entire plane.
  • first coil 321 and the first heat sink 311 are arranged on the same layer, so that the area of the first coil 321 is limited, and the second coil 322 covers the first coil 321. At this time, the second coil 322 can also cover the first heat sink 311, thereby increasing the area of the second coil 322 and the number of turns of the second coil 322.
  • the coil module 30 includes a first heat sink 311, a second heat sink 312, a first coil 321, and a second coil 322, which are stacked, wherein the second heat sink 312 is attached to the main board 20, the first heat sink 311 is arranged between the first coil 321 and the second heat sink 312, and the second coil 322 is arranged on the side of the first coil 321 away from the main board 20.
  • the first heat sink 311 and the second heat sink 312 are connected by a first adhesive layer 301
  • the first heat sink 311 and the first coil 321 are connected by a second adhesive layer 302
  • the second coil 322 and the first coil 321 are connected by a second adhesive layer 303.
  • the thickness of the first heat sink 311 and the second heat sink 312 are both 50 ⁇ m
  • the thickness of the first adhesive layer 301, the second adhesive layer 302, and the third adhesive layer 303 are all 10 ⁇ m
  • the thickness of the first coil 321 and the second coil 322 are both 65 ⁇ m
  • the thickness of the coil module 30 is 260 ⁇ m.
  • the first coil 321 is arranged on the same layer as the first heat sink 311, the thickness of the second heat sink 312 is 50 ⁇ m, the thickness of the first adhesive layer 301 is 10 ⁇ m, the thickness of the first heat sink 311 is 50 ⁇ m, and the thickness of the first coil 321 and the second coil 322 are both 65 ⁇ m; in an implementation method in which the thickness of the second adhesive layer 302 between the first heat sink 311 and the second coil 322 is set to 25 ⁇ m and the thickness of the second adhesive layer 302 between the first coil 321 and the second coil 322 is set to 10 ⁇ m, the thickness of the coil module 30 is 185 ⁇ m; in an implementation method in which the thickness of the second adhesive layer 302 between the first heat sink 311 and the second coil 322 is set to 20 ⁇ m and the thickness of the second adhesive layer 302 between the first coil 321 and the second coil 322 is set to 5 ⁇ m, the thickness of the coil module 30 is 180 ⁇ m. It can be seen that the thickness of the coil
  • a magnetic conductive sheet 330 is arranged between the first coil 321 and the first heat sink 311.
  • the magnetic conductive sheet 330 is made of soft magnetic material (such as nanocrystalline soft magnetic alloy, etc.) to increase the magnetic flux density of the first coil 321 and the second coil 322, thereby increasing the voltage of the induced alternating current generated by the coil module 30.
  • a magnetic conductive sheet 330 may also be provided between the first coil 321 and the second heat sink 312 to increase the magnetic flux density of the first coil 321 and the second coil 322, thereby increasing the voltage of the induced alternating current generated by the coil module 30.
  • the number of magnetic conductive sheets 330 may be 2, 3, 4, etc.
  • the first coil 321 is electrically connected to the second coil 322 . Such an arrangement can improve the wireless charging effect of the coil module 30 .
  • the first coil 321 and the second coil 322 can be connected in series. With such an arrangement, the first coil 321 and the second coil 322 can form a coil with more turns to increase the voltage of the induced alternating current.
  • the first coil 321 includes a first wire 3211 extending in a spiral shape around the center
  • the second coil 322 includes a second wire 3221 extending in a spiral shape around the center
  • a first end 3212 of the first wire 3211 close to the center is electrically connected to a second end 3222 of the second wire 3221 close to the center
  • a third end 3213 of the first wire 3211 away from the center and a fourth end 3223 of the second wire 3221 away from the center are both electrically connected to the mainboard 20 (as shown in FIG. 10 ) to achieve the series connection between the first coil 321 and the second coil 322.
  • the first end 3212 and the second end 3222 may be electrically connected through a conductive hole, that is, a through hole is provided on the first end 3212, the through hole passes through the first end 3212, the second adhesive layer 302 and the second end 3222, and then a metal side wall is formed on the hole wall of the through hole, or a metal column is formed in the through hole, so as to realize the electrical connection between the first end 3212 and the second end 3222.
  • the third end 3213 and the fourth end 3223 may also be connected to the main board 20 through a conductive hole, or the third end 3213 and the fourth end 3223 may be connected to the main board 20 through a wire, and the present embodiment does not limit the connection method between the first coil 321 and the second coil 322 and the main board 20.
  • third end 3213 and the fourth end 3223 may be disposed close to the mainboard 20 to facilitate connection between the third end 3213 and the fourth end 3223 and the mainboard 20 .
  • the first coil 321 can be connected in parallel with the second coil 322.
  • the second coil 322 can include a third wire 3224, which extends in a spiral shape around the center, and each turn of the second coil 322 is located in the same plane parallel to the first heat sink 311 (shown in FIG. 10 ).
  • the first coil 321 includes a first conductive segment 3214 and a second conductive segment 3215, both of which are arc-shaped, and the centers of the first conductive segment 3214 and the second conductive segment 3215 are located at the same point, and the centers of the first conductive segment 3214 and the second conductive segment 3215 coincide with the center of the second coil 322.
  • the first conductive segment 3214 and the second conductive segment 3215 are arranged radially spaced apart, that is, the arc radii corresponding to the first conductive segment 3214 and the second conductive segment 3215 are not equal.
  • the first conductive segment 3214 is connected in parallel with one turn of the second coil 322, and the second conductive segment 3215 is connected in parallel with another turn of the second coil 322; referring to FIG.
  • the A of the first conductive segment 3214 is connected to the a of the third wire 3224
  • the B of the first conductive segment 3214 is connected to the b of the third wire 3224
  • the C of the second conductive segment 3215 is connected to the c of the third wire 3224
  • the D of the second conductive segment 3215 is connected to the d of the third wire 3224.
  • the first conductive segment 3214 can reduce the impedance of the turn of the second coil 322 connected in parallel with it
  • the second conductive segment 3215 can reduce the impedance of the turn of the second coil 322 connected in parallel with it, thereby reducing the impedance of the coil module 30.
  • the radius of the first conductive segment 3214 and the third conductive wire 3224 connected in parallel therewith are equal, and the radius of the second conductive segment 3215 and the third conductive wire 3224 connected in parallel therewith are equal.
  • the conductive via is connected to a turn of the third conductive wire 3224 , and both ends of the second conductive segment can also be connected to a turn of the third conductive wire 3224 through the conductive via.
  • the number of turns of the second coil 322 is 4.
  • the first coil 321 includes a first conductive segment 3214, a second conductive segment 3215, a third conductive segment 3216, a fourth conductive segment 3217, and a lead wire 3218.
  • the first conductive segment 3214, the second conductive segment 3215, the third conductive segment 3216, and the fourth conductive segment 3217 are all arc-shaped, and the centers of the circles corresponding to the first conductive segment 3214, the second conductive segment 3215, the third conductive segment 3216, and the fourth conductive segment 3217 coincide with the center of the second coil 322.
  • the radius of the first conductive segment 3214 is smaller than the radius of the second conductive segment 3215, the radius of the second conductive segment 3215 is smaller than the radius of the third conductive segment 3216, and the radius of the third conductive segment 3216 is smaller than the radius of the fourth conductive segment 3217.
  • the first conductive segment 3214, the second conductive segment 3215, the third conductive segment 3216, and the fourth conductive segment 3217 are respectively connected in parallel with one turn of the second coil 322.
  • the A of the first conductive segment 3214 is connected to the a of the third conductive wire 3224
  • the B of the first conductive segment 3214 is connected to the b of the third conductive wire 3224
  • the C of the second conductive segment 3215 is connected to the c of the third conductive wire 3224
  • the D of the second conductive segment 3215 is connected to the d of the third conductive wire 3224
  • the E of the third conductive segment 3216 is connected to the e of the third conductive wire 3224
  • the F of the third conductive segment 3216 is connected to the f of the third conductive wire 3224
  • the G of the fourth conductive segment 3217 is connected to the g of the third conductive wire 3224
  • the H of the fourth conductive segment 3217 is connected to the h of the third conductive wire 3224
  • the lead wire 3218 is electrically connected to an end of the third wire 3224 close to the center, and the lead wire 3218 and an end of the third wire 3224 away from the center are both electrically connected to the mainboard 20 to achieve connection between the coil module 30 and the mainboard 20.
  • the first coil 321 and the second coil 322 can be formed on a double-sided copper-clad laminate, that is, copper plates are formed on both sides of the second adhesive layer 302, and then some of the materials in the two copper plates are removed to form the first coil 321 on one copper plate and the second coil 322 on the other copper plate.
  • the first coil 321 and the second coil 322 both have 2 turns, and the first coil 321 and the second coil 322 are connected in series, so that the number of turns of the coil module is 4 turns; in FIG14 , the first coil 321 and the second coil 322 both have 4 turns, and the first coil 321 and the second coil 322 are connected in parallel, so that the number of turns of the coil module is also 4 turns. It can be seen that by adopting the schemes shown in FIG13 and FIG14 , the number of turns of the coil module is equal, which can ensure that the inductance value of the coil module is equal.
  • the coil module 30 further includes a third coil 323 .
  • the third coil 323 is disposed on a side of the first coil 321 away from the heat source, and the third coil 323 covers the first coil 321 .
  • the second coil 322 may be located between the first coil 321 and the third coil 323. Accordingly, the second coil 322 covers the first coil 321 and the first heat sink 311, and the third coil 323 covers the second coil 322.
  • the projection of the second coil 322 in a plane parallel to the mainboard 20 may completely overlap with the projection of the third coil 323 in a plane parallel to the mainboard 20.
  • the third coil 323 is connected to the first coil 321 . Such a configuration can improve the wireless charging effect of the coil module 30 .
  • the third coil 323 can also be connected in series with the first coil 321; that is, the first coil 321, the second coil 322 and the third coil 323 are connected in series.
  • Such an arrangement can further increase the number of turns of the coil module 30 to further increase the voltage of the induced alternating current generated by the coil module 30.
  • the first coil 321 includes a first wire 3211 extending spirally around the center
  • the second coil 322 includes a second wire 3221 extending spirally around the center
  • the third coil 323 includes a fourth wire 3231 extending spirally around the center.
  • the first end 3212 of the first wire 3211 near the center is electrically connected to the second end 3222 of the second wire 3221 near the center
  • the third end 3213 of the first wire 3211 away from the center is electrically connected to the main board 20
  • the fourth end 3223 of the second wire 3221 away from the center is electrically connected to the fifth end 3233 of the fourth wire 3231 away from the center
  • the sixth end 3232 of the fourth wire 3231 near the center is electrically connected to the main board 20, so as to realize the series connection between the first coil 321, the second coil 322 and the third coil 323.
  • the third coil 323 may also be connected in parallel with the first coil 321. Such an arrangement may further reduce the impedance of the coil module 30.
  • the third coil 323 includes a fourth wire 3231, which extends in a spiral shape around the center, and an end of the fourth wire 3231 close to the center is connected to an end of the third wire 3224 close to the center, and an end of the fourth wire 3231 away from the center is connected to an end of the third wire 3224 away from the center, so as to realize the parallel connection between the third coil 323 and the second coil 322; and the connection method between the second coil 322 and the first coil 321 may be the same as the connection method in scenario 1, which will not be described in detail here.
  • the coil module 30 includes a second heat sink disposed sequentially in a stacked manner in a direction away from the main board 20. 312, the first heat sink 311, the first coil 321, the second coil 322, and the third coil 323.
  • the first coil 321 and the first heat sink 311 are arranged on the same layer, which reduces the thickness of the coil module 30.
  • the coil module 30 may further include a third heat sink 313, which is arranged on the side of the second heat sink 312 facing the main board 20, and the third heat sink 313 is in contact with the main board 20.
  • the first heat sink 311, the second heat sink 312 and the third heat sink 313 can transfer the heat generated by the main board 20 in a direction parallel to the main board 20 and away from the main board 20, thereby increasing the speed of heat transfer in the direction away from the main board 20 and improving the heat dissipation effect on the main board 20.
  • the second heat sink 312 can be attached to both the third heat sink 313 and the first heat sink 311.
  • a fifth adhesive layer is provided between the third heat sink 313 and the second heat sink 312 to achieve connection between the third heat sink 313 and the second heat sink 312 through the fifth adhesive layer.
  • a portion of the third heat sink 313 is attached to the mainboard 20, and another portion of the third heat sink 313 extends outside the mainboard 20.
  • the projection of the first heat sink 311, the projection of the first coil 321, and the projection of the second heat sink 312 are all located in the projection of the third heat sink 313.
  • Such an arrangement can make the third heat sink 313 have a larger area. Accordingly, the projection of the second heat sink 312 in the plane parallel to the mainboard 20 can completely overlap with the projection of the third heat sink 313 in the plane parallel to the mainboard 20, so that the third heat sink 313 and the second heat sink 312 both have sufficient areas to increase the speed of heat transfer into the housing 10.
  • the second coil 322 is electrically connected to the first coil 321; the location of the second coil 322 and the connection method between the second coil 322 and the first coil 321 can be roughly the same as in scenario 1, and will not be repeated here.
  • Such a setting can improve the performance of the coil module 30.
  • the coil module 30 includes a third heat sink 313, a second heat sink 312, a first heat sink 311, a first coil 321, and a second coil 322 which are sequentially stacked in a direction away from the mainboard 20.
  • the first coil 321 is arranged in the same layer as the first heat sink 311, which reduces the thickness of the coil module 30, thereby reducing the thickness of the electronic device.
  • the coil module 30 may also include a third coil 323, and the third coil 323 is electrically connected to the first coil 321 and the second coil 322; wherein the setting position of the third coil 323 and the connection mode between the third coil 323 and the first coil 321 and the second coil 322 may be substantially the same as those in the second scenario, and will not be described in detail here. Such a setting may further improve the performance of the coil module 30.
  • the coil module 30 includes a third heat sink 313, a second heat sink 312, a first heat sink 311, a first coil 321, a second coil 322, and a third coil 323 which are sequentially stacked in a direction away from the mainboard 20.
  • the first coil 321 is arranged in the same layer as the first heat sink 311, which reduces the thickness of the coil module 30, thereby reducing the thickness of the electronic device.
  • the difference between this scenario and scenario 1 is that the second heat sink 312 is arranged on the side of the first heat sink 311 facing the mainboard 20, and the coil module further includes a second coil 322, which is arranged in the same layer as the second heat sink 312, that is, the second coil 322 and the second heat sink 312 are located in the same plane parallel to the mainboard 20.
  • the heat from the mainboard 20 can be transferred in the first heat sink 311 and the second heat sink 312, thereby increasing the heat transfer speed and thus increasing the heat dissipation effect on the mainboard 20.
  • the thickness of the coil module 30 in the direction perpendicular to the mainboard 20 can be further reduced, thereby reducing the thickness of the electronic device and further reducing the volume of the electronic device.
  • the projection of the second heat sink 312 in the plane parallel to the mainboard 20 may completely overlap with the projection of the first heat sink 311 in the plane parallel to the mainboard 20 .
  • the first coil 321 and the second coil 322 can be connected in series. In this way, the first coil 321 and the second coil 322 can form a coil with more turns to increase the voltage of the induced alternating current generated by the coil module 30.
  • the first coil 321 includes a first wire 3211, which extends in a spiral shape around the center, and each turn of the first coil 321 is located in the same plane parallel to the main board 20;
  • the second coil 322 includes a second wire 3221, which extends in a spiral shape around the center, and each turn of the second coil 322 is located in the same plane parallel to the main board 20.
  • First coil The first end 3212 of the first coil 321 close to the center can be electrically connected to the second end 3222 of the second coil 322 close to the center, and the third end 3213 of the first coil 321 away from the center and the fourth end 3223 of the second coil 322 away from the center are both electrically connected to the mainboard 20.
  • the first coil 321 and the second coil 322 can be connected in parallel. Such a configuration can reduce the impedance of the coil module 30.
  • the first coil 321 includes a first wire 3211, which extends in a spiral shape around the center, and each turn of the first coil 321 is located in the same plane parallel to the main board 20;
  • the second coil 322 includes a second wire 3221, which extends in a spiral shape around the center, and each turn of the second coil 322 is located in the same plane parallel to the main board 20.
  • the first end 3212 of the first coil 321 close to the center can be electrically connected to the second end 3222 of the second coil 322 close to the center, the third end 3213 of the first coil 321 away from the center and the fourth end 3223 of the second coil 322 away from the center are connected, and the first end 3212 and the second end 3222 of the first coil 321 are electrically connected to the main board 20 to achieve parallel connection between the first coil 321 and the second coil 322.
  • the coil module 30 may further include a third coil 323, which is disposed on a side of the first coil 321 away from the mainboard 20, and covers the first coil 321.
  • the third coil 323 is electrically connected to the first coil 321 to improve the performance of the coil module 30.
  • the third coil 323 can be connected in series with the first coil 321, that is, the first coil 321, the second coil 322, and the third coil 323 are connected in series, which can further increase the number of turns of the coil module 30 and further increase the voltage of the alternating current generated by the coil module 30. As shown in FIG.
  • the third coil 323 may include a fourth wire 3231, the fourth wire 3231 extends in a spiral shape around its center, and each turn of the fourth wire 3231 is located in the same plane parallel to the main board 20; the fifth end 3233 of the fourth wire 3231 away from the center is electrically connected to the fourth end 3223 of the second coil 322, and the sixth end 3232 of the fourth coil away from the center is electrically connected to the main board 20.
  • the third coil 323 can be connected in parallel with the first coil 321. That is, the first coil 321, the second coil 322 and the third coil 323 are connected in parallel. Such a configuration can further reduce the impedance of the coil module 30.
  • the third coil 323 may include a fourth wire 3231, which extends in a spiral shape around its center, and each turn of the fourth coil is located in the same plane parallel to the main board 20;
  • the first coil 321 includes a first conductive segment 3214 and a second conductive segment 3215, and the first conductive segment 3214 and the second conductive segment 3215 are both arc-shaped, and the centers of the first conductive segment 3214 and the second conductive segment 3215 are located at the same point, and the centers of the first conductive segment 3214 and the second conductive segment 3215 coincide with the center of the third coil 323.
  • the first conductive segment 3214 and the second conductive segment 3215 are arranged radially spaced apart, that is, the arc radii corresponding to the first conductive segment 3214 and the second conductive segment 3215 are not equal.
  • the first conductive segment 3214 is connected in parallel with one turn of the third coil 323, and the second conductive segment 3215 is connected in parallel with another turn of the third coil 323; with reference to FIG.
  • the A of the first conductive segment 3214 is connected to the i of the fourth wire 3231
  • the B of the first conductive segment 3214 is connected to the j of the fourth wire 3231
  • the C of the second conductive segment 3215 is connected to the k of the fourth wire 3231
  • the D of the second conductive segment 3215 is connected to the l of the fourth wire 3231.
  • the first conductive segment 3214 can reduce the impedance of the turn of the third coil 323 connected in parallel with it
  • the second conductive segment 3215 can reduce the impedance of the turn of the third coil 323 connected in parallel with it, thereby reducing the impedance of the coil module 30.
  • the structure of the second coil 322 may be similar to that of the first coil 321.
  • the second coil 322 includes a fifth conductive segment 3225 and a sixth conductive segment 3226.
  • the fifth conductive segment 3225 and the sixth conductive segment 3226 are both arc-shaped.
  • the centers of the fifth conductive segment 3225 and the sixth conductive segment 3226 are located at the same point, and the centers of the fifth conductive segment 3225 and the sixth conductive segment 3226 coincide with the center of the third coil 323.
  • the fifth conductive segment 3225 and the sixth conductive segment 3226 are arranged radially spaced apart, that is, the arc radii corresponding to the fifth conductive segment 3225 and the sixth conductive segment 3226 are not equal.
  • the fifth conductive segment 3225 is connected in parallel with the first conductive segment 3214, and the sixth conductive segment 3226 is connected in parallel with the second conductive segment 3215.
  • the A of the first conductive segment 3214 is connected to the I of the fifth conductive segment 3225
  • the B of the first conductive segment 3214 is connected to the J of the fifth conductive segment
  • the C of the second conductive segment 3215 is connected to the K of the sixth conductive segment 3226
  • the D of the second conductive segment 3215 is connected to the L of the sixth conductive segment 3226.
  • the first coil 321, the second coil 322, and the third coil 323 are connected in parallel.
  • the coil module 30 also includes a third heat sink 313, and the third heat sink 313 is arranged on the side of the second heat sink 312 facing the main board 20, and the third heat sink 313 is in contact with the main board 20.
  • the first heat sink 311, the second heat sink 312, and the third heat sink 313 can all transfer the heat generated by the main board 20 in a direction parallel to the main board 20 and away from the main board 20, thereby increasing the heat transfer speed in the direction away from the main board 20 and improving the heat dissipation effect on the main board 20.
  • a portion of the third heat sink 313 may be attached to the mainboard 20, and another portion of the third heat sink 313 may extend outside the mainboard 20.
  • the projection of the first heat sink 311, the projection of the first coil 321, and the projection of the second heat sink 312 are located in the projection of the third heat sink 313.
  • the projection of the second heat sink 312 may completely overlap with the projection of the first heat sink 311, and the projection of the first coil 321 may overlap with the projection of the second coil 322.
  • the third heat sink 313 may have a larger area, so that the third heat sink 313 and the third heat sink 313 have a sufficient area to increase the speed of heat transfer into the housing 10.
  • the coil module 30 includes a third heat sink 313, a second heat sink 312, a first heat sink 311, a first coil 321, a second coil 322, and a third coil 323, and the third heat sink 313, the second heat sink 312, the first heat sink 311, the first coil 321, the second coil 322, and the third coil 323 are sequentially stacked in a direction away from the mainboard 20.
  • the first heat sink 311 and the first coil 321 are arranged in the same layer
  • the second heat sink 312 and the second coil 322 are arranged in the same layer, which reduces the thickness of the coil module 30, thereby reducing the thickness of the electronic device.
  • a relief structure 3210 is provided at one end of the first coil 321 close to the first heat sink 311 (the top end in the figure), and the relief structure 3210 is used to form a relief space extending toward the center line of the first coil 321, and the first heat sink 311 extends into the relief space. In this way, the area of the first heat sink 311 can be increased, thereby improving the heat dissipation effect on the mainboard 20.
  • the first heat sink 311 is disposed close to the mainboard 20 , and accordingly, the avoidance structure 3210 is also disposed toward the mainboard 20 , so that the first heat sink 311 can extend into the avoidance space.
  • the avoidance structure 3210 may include an opening 3219, and part of the first heat sink 311 is located in the opening 3219. With such a configuration, the structure is simple and easy to manufacture. Of course, in other implementations, the avoidance structure 3210 may also be a groove formed by bending the first coil 321, and this embodiment is not limited to this.
  • the first coil 321 includes a first conductive segment 3214, a second conductive segment 3215, a third conductive segment 3216, a fourth conductive segment 3217 and a lead wire 3218
  • the A end, the B end, the C end, the D end, the E end, the F end, the G end and the H end form an opening 3219, and accordingly, the lead wire 3218 can be set in the opening 3219.
  • the magnetic conductive sheet 330 can be arranged between the first coil 321 and the first heat sink 311, and the portion of the magnetic conductive sheet 330 corresponding to the opening 3219 is embedded in the opening 3219, so that the first heat sink 311 corresponding to the opening 3219 can extend into the opening 3219.
  • the first coil 321 is surrounded by a receiving space 360 connected to the opening 3219.
  • the first heat sink 311 includes a body 3111 and an extension 3112.
  • the body 3111 covers the main board 20.
  • One end of the extension 3112 is connected to the main board 20, and the extension 3112 is disposed in the opening 3219.
  • the first heat sink 311 also includes a filling portion 3113 located at an end of the extension 3112 away from the body 3111, and the filling portion 3113 is disposed in the receiving space 360. In this way, the area of the first heat sink 311 can be further increased, the speed of heat transfer to the housing 10 can be further increased, and the heat dissipation effect on the main board 20 can be further improved.
  • the accommodation space 360 can be located in the middle of the first coil 321, that is, the first conductive segment 3214 is surrounded by the accommodation space, and the projection of the accommodation space on the main board 20 can be roughly circular.
  • the body 3111, the extension part 3112 and the filling part 3113 are all plate-shaped, and the body 3111, the extension part 3112 and the filling part 3113 are an integrated structure, so that heat can be transferred between the body 3111, the extension part 3112 and the filling part 3113.
  • the projection of the filling portion 3113 on the mainboard 20 may be circular, and the projection of the filling portion 3113 and the projection of the accommodating space 360 may overlap, so that the filling portion 3113 has a sufficiently large area, thereby improving the heat dissipation effect.
  • the projection of the filling portion 3113 on the mainboard 20 may also be rectangular, and this embodiment does not limit the shape of the projection of the filling portion 3113 on the mainboard 20.
  • multiple openings 3219 there may be two openings 3219, and the central angles corresponding to the two openings 3219 may be 45°, 60°, 90°, etc. It is understandable that the opening 3219 may be disposed close to the heat source, so that the heat of the heat source may be transferred to the filling portion 3113 through the extension portion 3112 in the opening 3219 close thereto.
  • the heat sink 311 may further include an extension portion 3114 located at one end of the filling portion 3113 away from the extension portion 3112, the extension portion 3112 is disposed in one opening 3219, the extension portion 3114 is disposed in another opening 3219, or the extension portion 3114 extends from another opening 3219 to the outside of the first coil 321. In this way, the area of the first heat sink 311 may be further increased to further improve the heat dissipation effect on the mainboard 20.
  • the first conductive segment 3214 , the second conductive segment 3215 , the third conductive segment 3216 , and the fourth conductive segment 3217 all include multiple segments spaced around the center of the circle, and each segment is connected in parallel with a corresponding turn of the second coil 322 .
  • connection should be understood in a broad sense, for example, it can be a fixed connection or an integral connection; it can also be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or an integral connection; it can also be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

本申请实施例属于电子设备技术领域,具体涉及一种线圈模组及电子设备。本申请实施例旨在解决电子设备的体积较大的问题。本实施例提供的线圈模组及电子设备,第一散热板用于对发热源进行散热,第一线圈与第一散热板同层设置,第一线圈用于进行无线充电。与线圈和散热板层叠设置相比,第一线圈与第一散热板位于同一平面内,减小了线圈模组的厚度,进而减小了电子设备的厚度,减小了电子设备的体积。

Description

线圈模组及电子设备
本申请要求于2022年10月28日提交国家知识产权局、申请号为202211333576.0、申请名称为“线圈模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子设备技术领域,具体涉及一种线圈模组及电子设备。
背景技术
电子设备(如手机、平板电脑等)一般包括外壳、设置在外壳内的主板以及线圈模组,线圈模组包括线圈以及散热板,散热板与主板贴合,线圈设置在散热板背离主板的一侧,线圈与主板电连接,通过线圈可以实现电子设备的无线充电。然而,线圈设置在散热板背离主板的一侧,导致线圈模组沿垂直于主板方向的厚度较大,电子设备的体积较大。
发明内容
本申请实施例提供一种线圈模组及电子设备,可以减小电子设备的体积。
第一方面,本申请实施例提供一种线圈模组,包括:第一散热板、第二散热板以及第一线圈,第二散热板与第一散热板层叠设置,第二散热板设置在第一散热板朝向发热源的一侧,第一散热板和第二散热板用于对发热源进行散热;第一线圈与第一散热板同层设置,第一线圈用于进行无线充电。
通过上述设置,第一散热板用于对发热源进行散热,第一线圈与第一散热板同层设置,第一线圈用于进行无线充电。与线圈和散热板层叠设置相比,第一线圈与第一散热板位于同一平面内,减小了线圈模组的厚度,进而减小了电子设备的厚度,减小了电子设备的体积。
在可以包括上述实施例的一些实施例中,线圈模组还包括第二线圈,第二线圈设置在第一线圈背离主板的一侧,第二线圈覆盖在第一线圈上。第一线圈与第二线圈电连接,如此设置,可以提高线圈模组的无线充电效果。
在可以包括上述实施例的一些实施例中,第一线圈与第二线圈之间串联。如此设置,第一线圈和第二线圈可以构成匝数更多的线圈,以提高感应交流电的电压。
在可以包括上述实施例的一些实施例中,第一线圈可以与第二线圈并联,如此设置,可以降低线圈模组的阻抗。
在可以包括上述实施例的一些实施例中,线圈模组还包括第二线圈,第二线圈与第二散热板同层设置。如此设置,来自发热源的热量,可以在第一散热板和第二散热板内传递,提高了热量的传递速度,进而提高了对发热源的散热效果。另外,与第二散热板和第二线圈沿垂直于主板的方向依次设置(第二散热板与第二线圈层叠设置)相比,可以进一步减小线圈模组沿垂直于主板方向的厚度,进而降低电子设备的厚度,进一步减小电子设备的体积。
在可以包括上述实施例的一些实施例中,线圈模组还包括第三线圈,第三线圈设置在第一线圈背离发热源的一侧,第三线圈覆盖在第一线圈上。第三线圈与第一线圈连接,如此设置可以提高线圈模组的无线充电效果。
在可以包括上述实施例的一些实施例中,第三线圈可以与第一线圈串联。如此设置可以增大线圈模组的匝数,以提高线圈模组产生的感应交流电的电压。
在可以包括上述实施例的一些实施例中,第三线圈也可以与第一线圈并联,如此设置,可以降低线圈模组的阻抗。
在可以包括上述实施例的一些实施例中,线圈模组还可以包括第三散热板,第三散热板设置在第二散热板朝向发热源的一侧,第三散热板与发热源贴合。如此设置,第一散热板、第二散热板和第三散热板均可以将发热源产生的热量向远离发热源的方向传递,进而提高了热量沿远离发热源方向的传递速度,提高了对发热源的散热效果。
在可以包括上述实施例的一些实施例中,第一线圈靠近第一散热板的一端设置有避让结构,避让结构用形成向第一线圈中心线延伸的避让空间,第一散热板延伸至避让空间内。如此设置,可以增大第一散热板的面积,进而提高对主板的散热效果。
在可以包括上述实施例的一些实施例中,避让结构可以包括开口,部分第一散热板位于开口内。如此设置,结构简单且便于制作。
在可以包括上述实施例的一些实施例中,第一线圈围设成与开口连通的容置空间,第一散热板包括本体以及延伸部,本体覆盖在发热源上,延伸部设置在开口内。第一散热板还包括位于延伸部背离本体一端的填充部,填充部设置在容置空间内。如此设置,可以进一步增大第一散热板的面积,进一步提高了热量向外壳的传递速度,进一步提高对发热源的散热效果。
在可以包括上述实施例的一些实施例中,开口可以为多个,多个开口环绕第一线圈的中心线间隔的设置,延伸部为多个,每一延伸部延伸至一个开口内。也就是说本体和填充部之间通过多个延伸部连接,以提高本体和填充部之间的热量传递速度。
第二方面,本申请实施例还提供一种电子设备,包括:外壳、以及设置在所述外壳上的发热源和如上所述的线圈模组,至少部分第一散热板与发热源贴合。
通过上述设置,电子设备中的第二散热板与第一散热板层叠设置,第二散热板设置在第一散热板朝向发热源的一侧,第一散热板和第二散热板用于对发热源进行散热;第一线圈与第一散热板同层设置,第一线圈用于进行无线充电。与线圈和散热板层叠设置相比,第一线圈与第一散热板位于同一平面内,减小了线圈模组的厚度,进而减小了电子设备的厚度,减小了电子设备的体积。
在可以包括上述实施例的一些实施例中,发热源包括主板,第一线圈与主板电连接。如此设置,可以在保证对主板的具有较好的散热效果的同时,减小了线圈模组的厚度,同时减小了电子设备的体积。
附图说明
图1为相关技术中电子设备的结构示意图一;
图2为本申请实施例提供的电子设备的爆炸图;
图3为本申请实施例提供的电子设备的结构示意图一;
图4为本申请实施例提供的电子设备中第一线圈的结构示意图;
图5为相关技术中线圈的结构示意图;
图6为本申请实施例提供的电子设备在进行无线充电时的示意图;
图7为本申请实施例提供的电子设备的结构示意图二;
图8为本申请实施例提供的电子设备的剖视图一;
图9为本申请实施例提供的电子设备的结构示意图三;
图10为本申请实施例提供的电子设备的剖视图二;
图11a为相关技术中电子设备的结构示意图二;
图11b为相关技术中电子设备的爆炸图;
图12a为相关技术中电子设备的剖视图一;
图12b为相关技术中电子设备的剖视图二;
图12c为本申请实施例提供的电子设备的剖视图三;
图13为本申请实施例提供的电子设备中第一线圈和第二线圈的结构示意图一;
图14为本申请实施例提供的电子设备中第一线圈和第二线圈的结构示意图二;
图15为本申请实施例提供的电子设备的结构示意图四;
图16为本申请实施例提供的电子设备中第一线圈、第二线圈和第三线圈的结构示意图一;
图17为本申请实施例提供的电子设备中第一线圈、第二线圈和第三线圈的结构示意图二;
图18为相关技术中电子设备的结构示意图三;
图19a为本申请实施例提供的电子设备的结构示意图五;
图19b为本申请实施例提供的电子设备的结构示意图六;
图20a为相关技术中电子设备的结构示意图四;
图20b为相关技术中电子设备的结构示意图五;
图21为本申请实施例提供的电子设备的结构示意图七;
图22为本申请实施例提供的电子设备的结构示意图八;
图23为本申请实施例提供的电子设备中第一线圈、第二线圈和第三线圈的结构示意图三;
图24为本申请实施例提供的电子设备的结构示意图九;
图25a为本申请实施例提供的电子设备中第一散热板与避让结构的配合示意图一;
图25b为本申请实施例提供的电子设备中第一散热板与避让结构的配合示意图二;
图25c为本申请实施例提供的电子设备中第一散热板与避让结构的配合示意图三;
图26为本申请实施例提供的电子设备中第一线圈和第二线圈的结构示意图三;
图27为本申请实施例提供的电子设备中第一散热板和第二散热板的结构示意图一;
图28为本申请实施例提供的电子设备中第一线圈和第二线圈的结构示意图四;
图29为本申请实施例提供的电子设备中第一散热板和第二散热板的结构示意图二;
图30为本申请实施例提供的电子设备中第一线圈和第二线圈的结构示意图五;
图31为本申请实施例提供的电子设备中第一散热板和第二散热板的结构示意图三。
附图标记说明:10:外壳;101:中框;102:容置通道;103:显示面板;104:后盖;105:电池;106:整流电路;20:主板;30:线圈模组;40:无线充电设备;401:充电线圈;402:变频电路;403:AC/DC转换器;301:第一粘结胶层;302:第二粘结胶层;303:第三粘结胶层;304:第四粘结胶层;310:散热板;311:第一散热板;312:第二散热板;313:第三散热板;321:第一线圈;320:线圈;322:第二线圈;323:第三线圈;330:导磁片;340:导线;350:铁氧体棒;3210:避让结构;3211:第一导线;3212:第一端;3213:第三端;3221:第二导线;3222:第二端;3223:第四端;3224:第三导线;3225:第五导电段;3226:第六导电段;3214:第一导电段;3215:第二导电段;3216:第三导电段;3217:第四导电段;3218:引出线;3219:开口;3231:第四导线;3232:第六端;3233:第五端;3111:本体;3112:延伸部;3113:填充部;3114:外延部。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,手机、平板电脑等电子设备一般包括外壳10、设置在外壳10内的主板20以及设置在外壳10内的线圈模组30,主板20用于进行数据的存储、运算等,相应的,主板20的发热量较大。线圈模组30包括线圈320以及散热板310,散热板310与主板20的表面贴合,散热板310可以将来自主板20的热量传递至外壳10内的其他位置,进而通过外壳10将热量传递至外界环境中,以实现对主板20的散热。线圈320设置在散热板310背离主板20的一侧,线圈320与主板20电连接,以通过线圈320实现电子设备的无线充电。
然而,线圈320设置在散热板310背离主板20的一侧,导致线圈模组30沿垂直于主板20方向的厚度较大,相应的导致电子设备沿垂直于主板20方向的厚度较大,电子设备的体积较大。
对此,本申请实施例提供一种线圈模组及电子设备,其中线圈和散热板同层设置,也就是说,散热板和线圈所在的平面位于同一平面内,进而减小了线圈模组的厚度,降低了电子设备的厚度,进而减小了电子设备的体积。
本申请实施例提供的电子设备,可以包括手机、平板电脑、智能手表、以及穿戴设备等,本实施例对电子设备不作限制。本实施例将以电子设备为手机为例进行介绍,可以理解的是,本实施例并不以此为限,电子设备还可以为其他的设备。
请参照图2,本实施例中电子设备包括外壳10以及设置在外壳10上的显示面板103,其中,外壳10包括中框101以及后盖104,中框101围设成容置通道102,显示面板103覆盖在容置通道102的一端,后盖104覆盖在容置通道102的另一端,以通过显示面板103和后盖104封堵容置通道102。
请参照图3,本实施例中的电子设备还包括设置在容置通道102内的主板20、电池105等器件,主板20的表面上可以设置有处理器、存储器等器件(未示出),以通过主板20实现数据的运算和存储等功能。主板20可以与显示面板103平行设置,电池105可以设置在显示面板103朝 向主板20的一侧,电池105与主板20电连接,以为主板20供电。
本实施例中,电子设备还包括设置在容置通道102内的线圈模组30,线圈模组30包括第一散热板311和第一线圈321,至少部分第一散热板311与电子设备中的发热源接触,以对发热源进行散热。可以理解的是,发热源为容置通道102内发热量较大的器件,示例性的,发热源可以包括主板20或者电池105等。
本实施例将以发热源为主板20为例进行介绍,主板20可以位于显示面板103和第一散热板311之间,第一散热板311可以与主板20中背离显示面板103的表面贴合,以使得处理器、存储器等器件发出的热量可以快速的传递至第一散热板311内,进而热量在第一散热板311内沿平行于第一散热板311、且远离主板20的方向传递,以将热量分散至外壳10内的其他位置,最后由外壳10(如中框101和后盖104)传递至外界环境中,以实现对主板20的散热。
可以理解的是,第一散热板311为导热率较高的薄板,以使得热量可以快速的在第一散热板311内传递,进而可以将主板20发出的热量快速的传递至外壳10的其他位置。示例性的,第一散热板311的材质可以包括石墨、铜等;在第一散热板311的材质为石墨的实现方式中,第一散热板311的材质可以为石墨烯,石墨烯的导热率较高,采用石墨烯,可以提高第一散热板311的导热速率,以提高热量在第一散热板311内的传递速度,进而提高了对主板20的散热效果;另外,石墨烯的密度小,采用石墨烯还可以降低第一散热板311的质量,进而减小了电子设备的质量。
第一线圈321与第一散热板311同层设置,也就是说,第一线圈321和第一散热板311位于同一平面中。示例性的,第一线圈321朝向主板20的表面可以与第一散热板311朝向主板20的表面位于同一平面内,和/或,第一线圈321背离主板20的表面与第一散热板311背离主板20的表面位于同一平面内。
请参照图4,第一线圈321可以包括环绕中心呈螺旋状缠绕的第一导线3211,第一导线3211的各匝均位于同一平面内,第一散热板311(如图3所示)与该平面共面设置,以保证第一线圈321与第一散热板311同层;第一导线3211的两端均与主板20电连接,以在第一线圈321靠近外界的无线充电设备时,第一线圈321可以为电子设备充电,进而实现无线充电。线圈模组30还可以包括覆盖在第一导线3211上的软磁材料层330,软磁材料层330由软磁材料(如纳米晶软磁合金等)构成;如此设置,可以提高第一线圈321的磁感线密度,进而提高线圈模组30产生的感应交流电的电压。
如图5所示的相关技术中,手写笔等设备中用于进行无线充电的线圈320包括铁氧体棒350以及缠绕在铁氧体棒350上的导线340,导线340的各匝沿铁氧体棒350的中心线方向依次设置。与此相比,本实施例中,如图4所示,第一线圈321中的各匝均位于同一平面内,可以缩小第一线圈321沿垂直于主板20方向的厚度。
可以理解的是,如图6所示,无线充电设备40包括充电线圈401、变频电路402、以及AC/DC转换器403,其中,变频电路402的输入端与AC/DC转换器403电连接,变频电路402的输出端与充电线圈401电连接。工作时,AC/DC转换器403可以与市电连接,以向变频电路402输送直流电,变频电路402对直流电进行处理,以转换成交流电,并将该交流电输送至充电线圈401,以使得充电线圈401产生交变磁场。在将电子设备靠近充电线圈401时,第一线圈321位于充电线圈401产生的交变磁场中,进而在第一线圈321上产生感应交流电,主板20上可以设置有与第一线圈321电连接的整流电路106,整流电路106对感应交流电进行处理,以形成直流电,该直流电既可以对电子设备的电池105充电,以实现无线充电。
继续参照图3,本实施例中的线圈模组30,第一散热板311用于对发热源进行散热,第一线圈321与第一散热板311同层设置,第一线圈321用于进行无线充电。与相关技术中线圈和散热板层叠设置相比,本实施中第一线圈321与第一散热板311同层设置,也就是说,第一线圈321与第一散热板311位于同一平面内,减小了线圈模组30的厚度,进而减小了电子设备的厚度,减小了电子设备的体积。
本申请实施例中,线圈模组30中的散热板的数量可以为一个或多个,线圈的数量也可以为一个或多个,下面将分多个场景进行介绍:
场景一
请参照图7,本场景中,线圈模组30还包括第二散热板312,第二散热板312与第一散热板311层叠设置,并且第二散热板312设置在第一散热板311朝向发热源(主板20)的一侧,也就是说,第二散热板312位于第一散热板311和主板20之间。第二散热板312可以与第一散热板311贴合,以使得来自主板20的热量可以在第一散热板311和第二散热板312内传递,进而提高了热量沿平行于主板20方向传递的速度,以提高对主板20的散热效果。
可以理解的是,第一散热板311与第一线圈321同层设置,因此第一散热板311可以仅覆盖在主板20上发热量较高的区域,或者第一散热板311仅覆盖整个主板20。第二散热板312中的一部分可以覆盖整个主板20、或者第二散热板312中的一部分覆盖主板20中发热量较高的区域,第二散热板312的另一部分延伸至主板20外,如此,可以增大第二散热板312的面积,以使得第二散热板312内的热量可以分散到外壳10内较大的区域中,进而提高了热量由第二散热板312传递至外壳10内的速度,以提高对主板20的散热效果。
在一些实现方式中,第一散热板311和第一线圈321在主板20所在的平面内的投影位于第二散热板312在主板20所在的平面的投影内,以使得第二散热板312具有足够大的散热面积,提高对主板20的散热效果。
请参照图8,示例性的,第一散热板311和第二散热板312之间可以通过第一粘结胶层301连接。相类似的,第一线圈321也可以通过第一粘结胶层301与第二散热板312之间连接。
可以理解的是,第一散热板311与第一线圈321的厚度可以不等,相应的,可以使第一散热板311和第二散热板312之间的部分第一粘结胶层301与第一线圈321和第二散热板312之间的部分第一粘结胶层301厚度不等,以使得第一散热板311背离主板20的表面与第一线圈321背离主板20的表面位于同一平面内。示例性的,在第一散热板311的厚度大于第一线圈321的厚度时,可以将第一散热板311与第二散热板312之间的第一粘结胶层301厚度设置的小于第一线圈321与第二散热板312之间的第一粘结胶层301厚度;或者,在第一散热板311的厚度小于第一线圈321的厚度时,可以将第一散热板311与第二散热板312之间的第一粘结胶层301厚度设置的大于第一线圈321与第二散热板312之间的第一粘结胶层301厚度。
请参照图9,本场景中,线圈模组30还包括第二线圈322,第二线圈322设置在第一线圈321背离主板20的一侧,第二线圈322覆盖在第一线圈321上。示例性的,如图10所示,第二线圈322与第一线圈321和第一散热板311之间可以通过第二粘结胶层302连接。
可以理解的是,在第一线圈321和第一散热板311的厚度不等的实现方式中,可以使第一线圈321和第二线圈322之间的第二粘结胶层302厚度与第一散热板311和第二线圈322之间的粘结胶层厚度不等,以保证第二粘结胶层302背离主板20的表面为整个平面,以便于第二线圈322与第二粘结胶层302粘接。
在一些实现方式中,第二散热板312的厚度可以为50μm,第一粘结胶层301的厚度为10μm,第一散热板311的厚度为50μm,第一线圈321和第二线圈322的厚度均为65μm。相应的,可以将第一散热板311和第二线圈322之间的第二粘结胶层302的厚度设置为25μm,第一线圈321与第二线圈322之间的第二粘结胶层302的厚度设置为10μm,以使得第二粘结胶层302背离主板20的表面为整个平面,以便于第二线圈322与第二粘结胶层302之间的粘结;当然,也可以将第一散热板311和第二线圈322之间的第二粘结胶层302的厚度设置为20μm,第一线圈321与第二线圈322之间的第二粘结胶层302的厚度设置为5μm,也可以使第二粘结胶层302背离主板20的表面为整个平面。
可以理解的是,第一线圈321与第一散热板311同层设置,使得第一线圈321的面积得到限制,第二线圈322覆盖在第一线圈321上,此时可以使第二线圈322还覆盖在第一散热板311上,进而增大第二线圈322的面积,可以增大第二线圈322的匝数。
如图11a和图11b所示的相关技术中,线圈模组30包括层叠设置的第一散热板311、第二散热板312、第一线圈321、第二线圈322,其中,第二散热板312与主板20贴合,第一散热板311设置在第一线圈321和第二散热板312之间,第二线圈322设置在第一线圈321背离主板20的一侧。请参照图12a,第一散热板311和第二散热板312之间通过第一粘结胶层301连接,第一散热板311和第一线圈321之间通过第二粘结胶层302连接,第二线圈322和第一线圈321之间的 通过第三粘结胶层303。相应的,第一散热板311和第二散热板312的厚度均为50μm,第一粘结胶层301、第二粘结胶层302、第三粘结胶层303的厚度均为10μm,第一线圈321和第二线圈322的厚度均为65μm,线圈模组30的厚度为260μm。与此相比,如图10所示,本实施例中,第一线圈321与第一散热板311同层设置,第二散热板312的厚度为50μm,第一粘结胶层301的厚度为10μm,第一散热板311的厚度为50μm,第一线圈321和第二线圈322的厚度均为65μm;在第一散热板311和第二线圈322之间的第二粘结胶层302的厚度设置为25μm,第一线圈321与第二线圈322之间的第二粘结胶层302的厚度设置为10μm的实现方式中,线圈模组30的厚度为185μm;在第一散热板311和第二线圈322之间的第二粘结胶层302的厚度设置为20μm,第一线圈321与第二线圈322之间的第二粘结胶层302的厚度设置为5μm的实现方式中,线圈模组30的厚度为180μm。可见本实施例中的线圈模组30厚度小于相关技术中的线圈模组30厚度。
在图12b所示的相关技术中,第一线圈321和第一散热板311之间设置有导磁片330,导磁片330由软磁材料(如纳米晶软磁合金等)构成,以提高第一线圈321和第二线圈322的磁感线密度,进而提高线圈模组30产生的感应交流电的电压。
如图12c所示,在本场景中,第一线圈321和第二散热板312之间也可以设置有导磁片330,以提高第一线圈321和第二线圈322的磁感线密度,进而提高线圈模组30产生的感应交流电的电压。其中,导磁片330可以为一个或多个,本实施例对导磁片330的数量不作限制,示例性的,导磁片330的数量可以为2个、3个、4个等。
第一线圈321与第二线圈322电连接,如此设置,可以提高线圈模组30的无线充电效果。
在一些实现方式中,如图13所示,第一线圈321与第二线圈322之间可以串联。如此设置,第一线圈321和第二线圈322可以构成匝数更多的线圈,以提高感应交流电的电压。示例性的,第一线圈321包括环绕中心呈螺旋状延伸的第一导线3211,第二线圈322包括环绕中心呈螺旋状延伸的第二导线3221,第一导线3211靠近中心的第一端3212与第二导线3221靠近中心的第二端3222电连接,第一导线3211远离中心的第三端3213和第二导线3221远离中心的第四端3223均与主板20(如图10所示)电连接,以实现第一线圈321和第二线圈322之间的串联。其中,第一端3212和第二端3222之间可以通过导电孔电连接,也就是说在第一端3212上设置通孔,通孔贯穿第一端3212、第二粘结胶层302以及第二端3222,之后在通孔的孔壁上形成金属侧壁、或者在通孔内形成金属柱,以实现第一端3212和第二端3222之间的电连接。相类似的,第三端3213和第四端3223也可以通过导电孔与主板20连接,或者,第三端3213和第四端3223通过导线与主板20连接,本实施例对第一线圈321和第二线圈322与主板20的之间的连接方式不作限制。
可以理解的是,第三端3213和第四端3223可以靠近主板20设置,以便于第三端3213和第四端3223与主板20之间连接。
在其他的实现方式中,如图14所示,第一线圈321可以与第二线圈322并联,如此设置,可以降低线圈模组30的阻抗。示例性的,第二线圈322可以包括第三导线3224,第三导线3224环绕中心呈螺旋状延伸,第二线圈322的各匝均位于同一平行于第一散热板311(图10所示)的平面内。第一线圈321包括第一导电段3214和第二导电段3215,第一导电段3214和第二导电段3215均呈弧形,第一导电段3214和第二导电段3215的圆心位于同一点上,并且第一导电段3214和第二导电段3215的圆心与第二线圈322的中心重合。
第一导电段3214和第二导电段3215沿径向间隔的设置,也就是说,第一导电段3214和第二导电段3215对应的圆弧半径不等。第一导电段3214与第二线圈322的一匝并联,第二导电段3215与第二线圈322的另一匝并联;请参照图14,第一导电段3214的A处与第三导线3224的a处连接,第一导电段3214的B处与第三导线3224的b处连接,第二导电段3215的C处与第三导线3224的c处连接,第二导电段3215的D处与第三导线3224的d处连接。如此设置,第一导电段3214可以减小第二线圈322中与其并联的一匝的阻抗,第二导电段3215可以减小第二线圈322与其并联的一匝的阻抗,进而降低了线圈模组30的阻抗。
在上述实现方式中,第一导电段3214和与其并联的一匝第三导线3224的半径相等,第二导电段3215和与其并联的一匝第三导线3224半径相等。相应的,第一导电段3214的两端可以通过 导电孔与第三导线3224的一匝连接,第二导段的两端也可以通过导电孔与第三导线3224的一匝连接。
在一些实施例中,继续参照图14,第二线圈322的匝数为4匝。相应的,第一线圈321包括第一导电段3214、第二导电段3215、第三导电段3216、第四导电段3217以及引出线3218,第一导电段3214、第二导电段3215、第三导电段3216以及第四导电段3217均呈弧形,并且第一导电段3214、第二导电段3215、第三导电段3216以及第四导电段3217对应的圆心均与第二线圈322的中心重合。第一导电段3214的半径小于第二导电段3215的半径,第二导电段3215的半径小于第三导电段3216的半径,第三导电段3216的半径小于第四导电段3217的半径。
第一导电段3214、第二导电段3215、第三导电段3216以及第四导电段3217分别与第二线圈322中的一匝并联。请参照图14,第一导电段3214的A处与第三导线3224的a处连接,第一导电段3214的B处与第三导线3224的b处连接,第二导电段3215的C处与第三导线3224的c处连接,第二导电段3215的D处与第三导线3224的d处连接,第三导电段3216的E处与第三导线3224的e处连接,第三导电段3216的F处与第三导线3224的f处连接,第四导电段3217的G处与第三导线3224的g处连接,第四导电段3217的H处与第三导线3224的h处连接。引出线3218与第三导线3224靠近中心的一端电连接,引出线3218以及第三导线3224远离中心的一端均与主板20电连接,以实现线圈模组30与主板20之间的连接。
在上述实现方式中,第一线圈321和第二线圈322可以在双面覆铜板上形成,也就是说,在第二粘结胶层302的两个侧面上均形成铜板,之后去除两个铜板中的部分拆料,进而在一个铜板上形成第一线圈321,在另一铜板上形成第二线圈322。
图13中的第一线圈321和第二线圈322均为2匝,并且第一线圈321和第二线圈322串联,使得线圈模组的匝数为4匝;图14中的第一线圈321和第二线圈322均为4匝,并且第一线圈321和第二线圈322并联,使得线圈模组的匝数也为4匝。由此可知,采用图13和图14所示的方案,线圈模组的匝数相等,可以保证线圈模组的电感值相等。
场景二
请参照图15,本场景与场景一的不同之处在于,线圈模组30还包括第三线圈323,第三线圈323设置在第一线圈321背离发热源的一侧,第三线圈323覆盖在第一线圈321上。
在线圈模组30包括第二线圈322的实现方式中,第二线圈322可以位于第一线圈321和第三线圈323之间,相应的,第二线圈322覆盖在第一线圈321和第一散热板311上,第三线圈323覆盖在第二线圈322上。第二线圈322在平行于主板20的平面内的投影可以与第三线圈323在平行于主板20的平面内的投影完全重合。
第三线圈323与第一线圈321连接,如此设置可以提高线圈模组30的无线充电效果。
在第一线圈321与第二线圈322串联的实现方式中,第三线圈323也可以与第一线圈321串联;也就是说第一线圈321、第二线圈322以及第三线圈323串联,如此设置可以进一步增大线圈模组30的匝数,以进一步提高线圈模组30产生的感应交流电的电压。
请参照图16,示例性的,第一线圈321包括环绕中心呈螺旋状延伸的第一导线3211,第二线圈322包括环绕中心呈螺旋状延伸的第二导线3221,第三线圈323包括环绕中心呈螺旋状延伸的第四导线3231,第一导线3211靠近中心的第一端3212与第二导线3221靠近中心的第二端3222电连接,第一导线3211远离中心的第三端3213主板20电连接,第二导线3221远离中心的第四端3223与第四导线3231远离中心的第五端3233电连接,第四导线3231靠近中心的第六端3232与主板20电连接,以实现第一线圈321、第二线圈322以及第三线圈323之间的串联。
请参照图17,在第一线圈321与第二线圈322并联的实现方式中,第三线圈323也可以与第一线圈321并联,如此设置,可以进一步降低线圈模组30的阻抗。示例性的,第三线圈323包括第四导线3231,第四导线3231环绕中心呈螺旋状延伸,第四导线3231靠近中心的一端与第三导线3224靠近中心的一端连接,第四导线3231远离中心的一端与第三导线3224远离中心的一端连接,以实现第三线圈323与第二线圈322之间的并联;而第二线圈322与第一线圈321之间的连接方式可以与场景一中的连接方式相同,在此不再赘述。
如图18所示的相关技术中,线圈模组30包括沿远离主板20方向依次层叠设置的第二散热板 312、第一散热板311、第一线圈321、第二线圈322、以及第三线圈323。与此相比,如图15所示,本实施例中,第一线圈321和第一散热板311同层设置,减小了线圈模组30的厚度。
场景三
请参照图19a,本场景与场景一和场景二的不同之处在于,线圈模组30还可以包括第三散热板313,第三散热板313设置在第二散热板312朝向主板20的一侧,第三散热板313与主板20贴合。如此设置,第一散热板311、第二散热板312和第三散热板313均可以将主板20产生的热量向平行于主板20、且远离主板20的方向传递,进而提高了热量沿远离主板20方向的传递速度,提高了对主板20的散热效果。
第二散热板312可以与第三散热板313和第一散热板311均贴合。示例性的,在第三散热板313和第二散热板312之间设置有第五粘结胶层,以通过第五粘结胶层实现第三散热板313与第二散热板312之间的连接。
在一些实现方式中,第三散热板313的一部分与主板20贴合,第三散热板313的另一部分向主板20外的延伸,在平行于主板20的平面的投影中,第一散热板311的投影、第一线圈321的投影以及第二散热板312的投影均位于第三散热板313的投影中,如此设置,可以使第三散热板313具有较大的面积。相应的,第二散热板312在平行于主板20的平面内的投影可以与第三散热板313在平行于主板20的平面内的投影完全重合,以使得第三散热板313和第二散热板312均具有足够的面积,以提高热量向外壳10内传递的速度。
本场景中,第二线圈322与第一线圈321电连接;其中第二线圈322的设置位置、以及第二线圈322与第一线圈321之间的连接方式可以与场景一大致相同,在此不再赘述。如此设置,可以提高线圈模组30的性能。
在图20a所示的相关技术中,线圈模组30包括沿远离主板20方向依次层叠设置的第三散热板313、第二散热板312、第一散热板311、第一线圈321以及第二线圈322。与此相比,如图19a所示,本实施例中,第一线圈321与第一散热板311同层设置,减小了线圈模组30的厚度,进而减小了电子设备的厚度。
请参照图19b,在线圈模组30包括第二线圈322的实现方式中,线圈模组30还可以包括第三线圈323,第三线圈323与第一线圈321和第二线圈322电连接;其中第三线圈323的设置位置、以及第三线圈323与第一线圈321和第二线圈322之间的连接方式可以与场景二中的大致相同,在此不再赘述。如此设置,可以进一步提高线圈模组30的性能。
在图20b所示的相关技术中,线圈模组30包括沿远离主板20方向依次层叠设置的第三散热板313、第二散热板312、第一散热板311、第一线圈321、第二线圈322以及第三线圈323。与此相比,如图19b所示,本实施例中,第一线圈321与第一散热板311同层设置,减小了线圈模组30的厚度,进而减小了电子设备的厚度。
场景四
如图21所示,本场景与场景一的不同之处在于,第二散热板312设置在第一散热板311朝向主板20的一侧,线圈模组还包括第二线圈322,第二线圈322与第二散热板312同层设置,也就是说,第二线圈322与第二散热板312位于同一平行于主板20的平面内。如此设置,来自主板20的热量,可以在第一散热板311和第二散热板312内传递,提高了热量的传递速度,进而提高了对主板20的散热效果。另外,与第二散热板312和第二线圈322沿垂直于主板20的方向依次设置(第二散热板312与第二线圈322层叠设置)相比,可以进一步减小线圈模组30沿垂直于主板20方向的厚度,进而降低电子设备的厚度,进一步减小电子设备的体积。
本场景中,第二散热板312在平行于主板20的平面内的投影可以与第一散热板311在平行于主板20的平面内的投影完全重合。
如图13所示,在一些实现方式中,第一线圈321和第二线圈322可以串联,如此设置,第一线圈321和第二线圈322可以构成匝数更多的线圈,以提高线圈模组30产生的感应交流电的电压。示例性的,第一线圈321包括第一导线3211,第一导线3211环绕中心呈螺旋状延伸,并且第一线圈321的各匝位于同一平行于主板20的平面内;第二线圈322包括第二导线3221,第二导线3221环绕中心呈螺旋状延伸,第二线圈322的各匝位于同一平行于主板20的平面内。第一线圈 321靠近中心的第一端3212可以与第二线圈322靠近中心的第二端3222电连接,第一线圈321远离中心的第三端3213以及第二线圈322远离中心的第四端3223均与主板20电连接。
在其他的实现方式中,第一线圈321和第二线圈322可以并联,如此设置,可以降低线圈模组30的阻抗。示例性的,第一线圈321包括第一导线3211,第一导线3211环绕中心呈螺旋状延伸,并且第一线圈321的各匝位于同一平行于主板20的平面内;第二线圈322包括第二导线3221,第二导线3221环绕中心呈螺旋状延伸,第二线圈322的各匝位于同一平行于主板20的平面内。第一线圈321靠近中心的第一端3212可以与第二线圈322靠近中心的第二端3222电连接,第一线圈321远离中心的第三端3213以及第二线圈322远离中心的第四端3223连接,第一线圈321的第一端3212和第二端3222与主板20电连接,以实现第一线圈321和第二线圈322之间的并联。
请参照图22,本场景中,线圈模组30还可以包括第三线圈323,第三线圈323设置在第一线圈321背离主板20的一侧,第三线圈323覆盖在第一线圈321上。第三线圈323与第一线圈321电连接,以提高线圈模组30的性能。
在第一线圈321和第二线圈322串联的实现方式中,第三线圈323可以与第一线圈321串联,也就是说第一线圈321、第二线圈322、以及第三线圈323串联,可以进一步增大线圈模组30的匝数,进一步提高线圈模组30产生的交流电的电压。如图16所示,示例性的,第三线圈323可以包括第四导线3231,第四导线3231环绕其中心呈螺旋状延伸,第四导线3231的各匝位于同一平行于主板20的平面内;第四导线3231远离中心的第五端3233与第二线圈322中的第四端3223电连接,第四线圈远离中心的第六端3232与主板20电连接。
请参照图23,在第一线圈321和第二线圈322并联的实现方式中,第三线圈323可以与第一线圈321并联,也就是说第一线圈321、第二线圈322以及第三线圈323并联,如此设置可以进一步降低线圈模组30的阻抗。
示例性的,第三线圈323可以包括第四导线3231,第四导线3231环绕其中心呈螺旋状延伸,第四线圈的各匝位于同一平行于主板20的平面内;第一线圈321包括第一导电段3214和第二导电段3215,第一导电段3214和第二导电段3215均呈弧形,第一导电段3214和第二导电段3215的圆心位于同一点上,并且第一导电段3214和第二导电段3215的圆心与第三线圈323的中心重合。
第一导电段3214和第二导电段3215沿径向间隔的设置,也就是说,第一导电段3214和第二导电段3215对应的圆弧半径不等。第一导电段3214与第三线圈323的一匝并联,第二导电段3215与第三线圈323的另一匝并联;继续参照图23,第一导电段3214的A处与第四导线3231的i处连接,第一导电段3214的B处与第四导线3231的j处连接,第二导电段3215的C处与第四导线3231的k处连接,第二导电段3215的D处与第四导线3231的l处连接。如此设置,第一导电段3214可以减小第三线圈323中与其并联的一匝的阻抗,第二导电段3215可以减小第三线圈323与其并联的一匝的阻抗,进而降低了线圈模组30的阻抗。
第二线圈322的结构可以与第一线圈321的结构类似,示例性的,第二线圈322包括第五导电段3225和第六导电段3226,第五导电段3225和第六导电段3226均呈弧形,第五导电段3225和第六导电段3226的圆心位于同一点上,并且第五导电段3225和第六导电段3226的圆心与第三线圈323的中心重合。第五导电段3225和第六导电段3226沿径向间隔的设置,也就是说,第五导电段3225和第六导电段3226对应的圆弧半径不等。第五导电段3225与第一导电段3214并联,第六导电段3226与第二导电段3215并联。请参照图23,第一导电段3214的A处与第五导电段3225的I处连接,第一导电段3214的B处与第五导段的J处连接,第二导电段3215的C处与第六导电段3226的K处连接,第二导电段3215的D处与第六导电段3226的L处连接。以实现第一线圈321、第二线圈322、以及第三线圈323之间的并联。
如图24所示,在一些实现方式中,线圈模组30还包括第三散热板313,第三散热板313设置在第二散热板312朝向主板20的一侧,第三散热板313与主板20贴合,如此设置,第一散热板311、第二散热板312、以及第三散热板313均可以将主板20产生的热量向平行于主板20、且远离主板20的方向传递,进而提高了热量沿远离主板20方向的传递速度,提高了对主板20的散热效果。
第三散热板313的一部分可以与主板20贴合,第三散热板313的另一部分向主板20外的延伸,在平行于主板20的平面的投影中,第一散热板311的投影、第一线圈321的投影以及第二散热板312的投影位于第三散热板313的投影中,第二散热板312的投影可以与第一散热板311的投影完全重合,第一线圈321的投影可以与第二线圈322的投影重合。如此设置,可以使第三散热板313具有较大的面积,以使得第三散热板313和具有足够的面积,以提高热量向外壳10内传递的速度。
在图20b所示的相关技术中,线圈模组30包括第三散热板313、第二散热板312、第一散热板311、第一线圈321、第二线圈322以及第三线圈323,第三散热板313、第二散热板312、第一散热板311、第一线圈321、第二线圈322以及第三线圈323沿远离主板20的方向依次层叠的设置。与此相比,如图24所示,本实施例中,第一散热板311与第一线圈321同层设置,第二散热板312与第二线圈322同层设置,减小了线圈模组30的厚度,进而降低了电子设备的厚度。
如图25a所示,在场景一至四中,第一线圈321靠近第一散热板311的一端(图示方位的顶端)设置有避让结构3210,避让结构3210用形成向第一线圈321中心线延伸的避让空间,第一散热板311延伸至避让空间内。如此设置,可以增大第一散热板311的面积,进而提高对主板20的散热效果。
可以理解的是,第一散热板311靠近主板20设置,相应的,避让结构3210也朝向主板20设置,以使得第一散热板311可以延伸至避让空间内。
示例性的,避让结构3210可以包括开口3219,部分第一散热板311位于开口3219内。如此设置,结构简单且便于制作。当然,在其他的实现方式中,避让结构3210也可以由第一线圈321弯曲后形成的槽,本实施例对此不作限制。
如图25b所示,在第一线圈321包括第一导电段3214、第二导电段3215、第三导电段3216、第四导电段3217以及引出线3218的实现方式中,A端、B端、C端、D端、E端、F端、G端、H端围成开口3219,相应的,引出线3218可以设置在开口3219内。
可以理解的是,请参照图25c,在线圈模组包括导磁片330的实现方式中,导磁片330可以设置在第一线圈321和第一散热板311之间,并且开口3219对应的部分导磁片330嵌入到开口3219内,以使得开口3219对应的第一散热板311能够伸入到开口3219内。
请参照图26和图27,在一些实现方式中,第一线圈321围设成与开口3219连通的容置空间360,第一散热板311包括本体3111以及延伸部3112,本体3111覆盖在主板20上,延伸部3112的一端与主板20连接,延伸部3112设置在开口3219内。第一散热板311还包括位于延伸部3112背离本体3111一端的填充部3113,填充部3113设置在容置空间360内。如此设置,可以进一步增大第一散热板311的面积,进一步提高了热量向外壳10的传递速度,进一步提高对主板20的散热效果。
可以理解的是,容置空间360可以位于第一线圈321的中部,也就是说,第一导电段3214围设成容置空间,容置空间在主板20上的投影可以大致呈圆形。本体3111、延伸部3112以及填充部3113均呈板状,并且本体3111、延伸部3112以及填充部3113为一体结构,以使得热量可以在本体3111、延伸部3112以及填充部3113之间传递。
填充部3113在主板20上的投影可以呈圆形,填充部3113的投影和容置空间360的投影可以重合,以使得填充部3113具有足够大的面积,进而提高散热效果。当然填充部3113在主板20上的投影也可以呈矩形,本实施例对填充部3113在主板20上的投影形状不作限制。
请参照图28和图29,在一些实施例中,开口3219可以为多个,多个开口3219环绕第一线圈321的中心线间隔的设置,延伸部3112为多个,每一延伸部3112延伸至一个开口3219内。也就是说本体3111和填充部3113之间通过多个延伸部3112连接,以提高本体3111和填充部3113之间的热量传递速度。
在开口3219为多个的实现方式中,开口3219可以为两个,两个开口3219对应的圆心角可以为45°、60°、90°等。可以理解的是,开口3219可以靠近发热源设置,以使得发热源的热量可以经靠近其的开口3219内的延伸部3112内,进而传递至填充部3113内。
请参照图30和图31,在一些实施例中,开口3219为两个,两个开口3219相对设置。第一 散热板311还可以包括位于填充部3113背离延伸部3112一端的外延部3114,延伸部3112设置在一个开口3219内,外延部3114设置在另一开口3219内、或者外延部3114由另一开口3219延伸至第一线圈321的外部。如此设置,可以进一步增大第一散热板311的面积,以进一步提高对主板20的散热效果。
可以理解的是,在开口3219为多个的实现方式中,相应的,第一导电段3214、第二导电段3215、第三导电段3216、以及第四导电段3217均包括环绕圆心间隔设置的多段,每一段均与对应的一匝第二线圈322并联。
需要说明的是,本申请实施例的描述中,除非另有明确的规定和限定,术语中“相连”、“连接”应做广义理解,例如,可以是固定连接,或一体地连接;也可以是机械连接,也可以是电连接;可以是直接的连接,也可以是通过中间媒介间接的连接,也可以是两个构件内部的连通。对于本领域技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其进行限制;尽管参照前述各实施例对本申请进行了详细说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中的部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种线圈模组,其特征在于,包括:
    第一散热板;
    第二散热板,所述第二散热板与所述第一散热板层叠设置,所述第二散热板设置在所述第一散热板朝向发热源的一侧,所述第一散热板和所述第二散热板用于对所述发热源进行散热;
    第一线圈,所述第一线圈与所述第一散热板同层设置。
  2. 根据权利要求1所述的线圈模组,其特征在于,所述线圈模组还包括第二线圈,所述第二线圈与所述第二散热板同层设置,所述第一线圈与所述第二线圈电连接。
  3. 根据权利要求1所述的线圈模组,其特征在于,所述线圈模组还包括第二线圈,所述第二线圈设置在所述第一线圈背离所述发热源的一侧,所述第二线圈覆盖在所述第一线圈上,所述第一线圈与所述第二线圈电连接。
  4. 根据权利要求2或3所述的线圈模组,其特征在于,所述第一线圈与所述第二线圈串联。
  5. 根据权利要求2或3所述的线圈模组,其特征在于,所述第一线圈与所述第二线圈并联。
  6. 根据权利要求1-5任一项所述的线圈模组,其特征在于,所述第一线圈靠近所述第一散热板的一端设置有避让结构,所述避让结构用形成向所述第一线圈中心线延伸的避让空间,所述第一散热板延伸至所述避让空间内。
  7. 根据权利要求6所述的线圈模组,其特征在于,所述避让结构包括开口。
  8. 根据权利要求7所述的线圈模组,其特征在于,所述第一线圈围设成容置空间,所述开口与所述容置空间连通;所述第一散热板包括本体、延伸部以及所述延伸部背离所述本体一端的填充部,所述延伸部延伸至所述开口内,所述填充部设置在所述容置空间内。
  9. 根据权利要求7或8所述的线圈模组,其特征在于,所述开口为多个,多个所述开口环绕所述第一线圈的中心线间隔的设置,所述延伸部为多个,每一所述延伸部延伸至一个所述开口内。
  10. 根据权利要求1-9任一项所述的线圈模组,其特征在于,所述线圈模组还包括第三线圈,所述第三线圈设置在所述第一线圈背离所述发热源的一侧,所述第三线圈覆盖在所述第一线圈上;所述第三线圈与所述第一线圈电连接。
  11. 根据权利要求10所述的线圈模组,其特征在于,所述第三线圈与所述第一线圈串联。
  12. 根据权利要求10所述的线圈模组,其特征在于,所述第三线圈与所述第一线圈并联。
  13. 根据权利要求1-12任一项所述的线圈模组,其特征在于,所述线圈模组还包括第三散热板,所述第三散热板设置在所述第二散热板朝向所述发热源的一侧,所述第三散热板用于与所述发热源贴合。
  14. 根据权利要求13所述的线圈模组,其特征在于,在平行于所述第一散热板的平面的投影中,所述第一散热板的投影、所述第一线圈的投影以及所述第二散热板的投影均位于所述第三散热板的投影中。
  15. 一种电子设备,其特征在于,包括:外壳、以及设置在所述外壳内的发热源和权利要求1-14任一项所述的线圈模组,至少部分所述第一散热板与所述发热源贴合。
  16. 根据权利要求15所述的电子设备,其特征在于,所述发热源包括主板,所述第一线圈与所述主板电连接。
PCT/CN2023/124963 2022-10-28 2023-10-17 线圈模组及电子设备 WO2024088108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211333576.0 2022-10-28
CN202211333576.0A CN117954206A (zh) 2022-10-28 2022-10-28 线圈模组及电子设备

Publications (1)

Publication Number Publication Date
WO2024088108A1 true WO2024088108A1 (zh) 2024-05-02

Family

ID=90800507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/124963 WO2024088108A1 (zh) 2022-10-28 2023-10-17 线圈模组及电子设备

Country Status (2)

Country Link
CN (1) CN117954206A (zh)
WO (1) WO2024088108A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207234480U (zh) * 2017-11-28 2018-04-13 深圳市蓝禾技术有限公司 无线充电装置
KR20190074767A (ko) * 2017-12-20 2019-06-28 엘지이노텍 주식회사 무선통신코일을 구비한 무선충전장치
CN210168099U (zh) * 2019-10-16 2020-03-20 覃涛 手机壳及手机充电组件
CN210725770U (zh) * 2019-02-20 2020-06-09 华为技术有限公司 一种电子设备散热组件及电子设备
CN212277969U (zh) * 2020-09-25 2021-01-01 太仓欣华盈电子有限公司 无线充电器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207234480U (zh) * 2017-11-28 2018-04-13 深圳市蓝禾技术有限公司 无线充电装置
KR20190074767A (ko) * 2017-12-20 2019-06-28 엘지이노텍 주식회사 무선통신코일을 구비한 무선충전장치
CN210725770U (zh) * 2019-02-20 2020-06-09 华为技术有限公司 一种电子设备散热组件及电子设备
CN210168099U (zh) * 2019-10-16 2020-03-20 覃涛 手机壳及手机充电组件
CN212277969U (zh) * 2020-09-25 2021-01-01 太仓欣华盈电子有限公司 无线充电器

Also Published As

Publication number Publication date
CN117954206A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
JP6172331B2 (ja) 電子機器の製造方法
JP4859700B2 (ja) コイルユニットおよび電子機器
CN103037291B (zh) 扬声器磁体热管理
WO2015050048A1 (ja) モバイル電子機器ケース
JP2015130472A (ja) コイル部品及びその実装基板
JP2009267077A (ja) コイルユニット及びそれを用いた電子機器
WO2021129492A1 (zh) 用于终端设备的电池组件和具有其的终端设备
KR20140134444A (ko) 자성시트 및 이를 이용한 비접촉형 충전 시스템
TW201527932A (zh) 移動終端
WO2024001097A1 (zh) 天线装置及终端
US9263180B2 (en) Coil component and board having the same
WO2024088108A1 (zh) 线圈模组及电子设备
CN110892493B (zh) 车辆用无线电力发射装置
WO2023093211A1 (zh) 芯片散热结构和电子设备
CN204497854U (zh) 无线电力传输系统
KR20190115322A (ko) 자성체 시트 및 전자기기
CN105375649A (zh) 一种具有无线电能接收结构的集成电路及集成方法
CN218300959U (zh) 一种无线充电器
CN218300961U (zh) 一种无线充电器
CN218514379U (zh) 无线传输模块
CN217643144U (zh) 一种电源适配器及电子设备
CN217790133U (zh) 磁吸式散热结构
CN218300960U (zh) 一种无线充电器
CN218161845U (zh) 一种无线充电器
WO2024007831A1 (zh) 天线组件和电子设备