WO2024087696A1 - 热管理控制方法、热管理控制设备和车辆 - Google Patents

热管理控制方法、热管理控制设备和车辆 Download PDF

Info

Publication number
WO2024087696A1
WO2024087696A1 PCT/CN2023/103268 CN2023103268W WO2024087696A1 WO 2024087696 A1 WO2024087696 A1 WO 2024087696A1 CN 2023103268 W CN2023103268 W CN 2023103268W WO 2024087696 A1 WO2024087696 A1 WO 2024087696A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
mode
heat pump
battery
passenger compartment
Prior art date
Application number
PCT/CN2023/103268
Other languages
English (en)
French (fr)
Inventor
张俊岩
谭廷帅
赵尚仲
唐一峰
王之鹏
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024087696A1 publication Critical patent/WO2024087696A1/zh

Links

Definitions

  • the present application relates to the field of vehicle technology, and in particular to a thermal management control method, a thermal management control device and a hybrid vehicle.
  • Hybrid vehicles in related technologies usually have a pure electric mode and a hybrid power mode.
  • the heating mode is the same, and the heat source cannot be reasonably utilized to achieve an economical and energy-saving heating effect, which needs to be improved.
  • the present application aims to solve one of the technical problems in the related art at least to some extent.
  • the present application proposes a thermal management control method for a vehicle, a computer-readable storage medium, a thermal management control device and a hybrid vehicle, which can select different heating modes according to different driving modes to rationally utilize heat sources and achieve economical and energy-saving heating effects.
  • the vehicle includes multiple driving modes and multiple passenger compartment heating modes, each of the driving modes corresponds to a corresponding judgment rule, and the judgment rule is used to select the corresponding passenger compartment heating mode.
  • the thermal management control method includes: obtaining the current driving mode; based on the obtained driving mode, entering the corresponding judgment rule; according to the judgment result of the judgment rule, entering the corresponding passenger compartment heating mode.
  • different heating modes can be selected according to different driving modes to reasonably utilize heat sources and achieve an economical and energy-saving heating effect.
  • the computer-readable storage medium stores a computer program, and the computer program is suitable for being executed by a processor to implement the thermal management control method according to an embodiment of the first aspect of the present application.
  • the thermal management control device includes a processor and a memory, and the processor and the memory are connected to each other; the memory is used to store a computer program, and the computer program includes program instructions, and the processor is configured to call the program instructions to execute the thermal management control method according to the first aspect of the present application.
  • the vehicle according to the fourth aspect of the present application comprises a thermal management control device according to the third aspect of the present application.
  • FIG1 is a schematic diagram of a thermal management control method for a vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a thermal management control system for a hybrid vehicle according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a thermal management control method for a hybrid vehicle according to an embodiment of the present invention.
  • FIG4 is a schematic diagram of a thermal management control method for a hybrid vehicle according to an embodiment of the present invention.
  • FIG5 is a schematic diagram of a thermal management control method for a hybrid vehicle according to an embodiment of the present invention.
  • FIG6 is a schematic diagram of a thermal management control method for a hybrid vehicle according to an embodiment of the present invention.
  • FIG7 is a block diagram of a thermal management control device according to an exemplary embodiment
  • Fig. 8 is a block diagram of a vehicle according to an exemplary embodiment.
  • thermal management control method for a vehicle according to an embodiment of the first aspect of the present invention is first described.
  • the vehicle is described by taking a hybrid vehicle as an example.
  • the hybrid vehicle includes multiple driving modes and multiple passenger compartment heating modes.
  • a hybrid vehicle may include an electric motor and an engine.
  • a hybrid vehicle may have at least two driving modes, namely a pure electric mode (EV mode for short, EV is the abbreviation of Electric vehicle) and a hybrid power mode (HEV mode for short, HEV is the abbreviation of Hybrid Electric Vehicle).
  • EV mode for short
  • HEV hybrid power mode
  • the pure electric mode the vehicle is driven by an electric motor
  • the hybrid power mode the vehicle is driven by a combination of an electric motor and an engine.
  • the passenger compartment heating mode can be divided into: heat pump heating mode using a compressor, and warm air heating mode not using a compressor.
  • the heat pump heating mode can be further divided into: heat pump air source heating mode using air as a heat source, and heat pump liquid source heating mode using a liquid circuit as a heat source.
  • the warm air heating mode can be divided into: engine warm air mode using an engine as a heat source, electric heating warm air mode using an electric heater as a heat source, and so on.
  • each driving mode corresponds to a corresponding judgment rule
  • the judgment rule is used to select a corresponding passenger compartment heating mode.
  • the thermal management control method may include: S1, obtaining the current driving mode; S2, based on the obtained driving mode, entering the corresponding judgment rule; S2, according to the judgment result of the judgment rule, entering the corresponding passenger compartment heating mode.
  • the appropriate passenger compartment heating mode corresponding to the current driving mode can be selected, so that the heating demand and the rational use of energy can be taken into account, and the purpose of economical, energy-saving and effective heating can be achieved.
  • different heating modes can be selected according to different driving modes to rationally use heat sources and achieve economical and energy-saving heating effects.
  • the multiple driving modes include an HEV mode
  • the multiple passenger compartment heating modes include: a first heat pump heating mode and a first warm air mode.
  • the first heat pump heating mode uses a heat pump circuit to exchange heat with a first liquid circuit that absorbs engine heat
  • the first warm air mode uses a warm air circuit that absorbs engine heat.
  • a heat pump circuit including a compressor 1 in a first heat pump heating mode (e.g., the heat pump liquid source large heating mode described herein), a heat pump circuit including a compressor 1 is operated, and the heat pump circuit may include a compressor 1, a condenser (e.g., the in-vehicle condenser 3 shown in FIG. 2 ), a throttling device (e.g., the third electronic expansion valve 17 shown in FIG. 2 ), and an evaporator (e.g., the liquid circuit heat exchanger 30 shown in FIG. 2 ), wherein the condenser (e.g., the in-vehicle condenser 3 shown in FIG.
  • a condenser e.g., the in-vehicle condenser 3 shown in FIG.
  • the evaporator e.g., the liquid circuit heat exchanger 30 shown in FIG. 2
  • a first liquid circuit e.g., the liquid circuit heat exchanger 30 shown in FIG. 2
  • the engine 26 and the engine circulating liquid pump 27 are used for heat exchange, and the heat of the engine is used as the heat source of the heat pump circuit.
  • a warm air circuit that does not include a compressor is operated.
  • the warm air circuit may include a warm air core 22, an engine 26 and an engine circulating fluid pump 27.
  • the engine circulating fluid pump 27 transfers the heat of the engine 26 to the warm air core 22, and the warm air core 22 uses the heat of the engine 26 to heat the passenger compartment.
  • the thermal management control method may include: S11, in HEV mode, obtaining the temperature of the first liquid circuit; S12, according to the interval in which the temperature of the first liquid circuit is located, selecting to enter the first heat pump heating mode or the first warm air mode. That is, when the current driving mode is obtained as the HEV mode, the judgment rule based on the HEV mode entry is: judging the interval in which the temperature of the first liquid circuit is located, and according to the interval in which the temperature of the first liquid circuit is located, selecting whether to enter the first heat pump heating mode or the first warm air mode.
  • “selecting to enter the first heat pump heating mode or the first warm air mode according to the temperature range of the first liquid circuit” may specifically include: when the temperature of the first liquid circuit is lower than the first set temperature (such as the first set temperature may be 60°C), entering the first heat pump heating mode; when the temperature of the first liquid circuit is higher than the first set temperature (such as the first set temperature may be 60°C), entering the first warm air mode.
  • the heat pump circuit using the compressor 1 can be used for heating, thereby ensuring the heating effect of the passenger compartment.
  • the warm air circuit without the compressor 1 can be used for heating, thereby achieving energy saving effect.
  • “selecting to enter the first heat pump heating mode or the first warm air mode according to the temperature range of the first liquid circuit” may further include: when the temperature of the first liquid circuit is lower than the second set temperature (such as the second set temperature may be 40°C), not entering the first heat pump heating mode and the first warm air mode.
  • the second set temperature is lower than the first set temperature.
  • the first heat pump heating mode when the temperature of the first liquid circuit is greater than the second set temperature (such as 40°C) and less than the first set temperature (such as 60°C), the first heat pump heating mode is entered, and when the temperature of the first liquid circuit is less than the second set temperature (such as 40°C), the first heat pump heating mode and the first warm air mode are not entered. In this way, the start-up preheating requirements of the engine 26 at low temperatures can be met, ensuring that the vehicle can run normally.
  • the second set temperature such as 40°C
  • the first set temperature such as 60°C
  • the temperature of the first liquid circuit when the temperature of the first liquid circuit is equal to the first set temperature, it can be set to enter the first heat pump heating mode, or it can also be set to enter the first warm air mode, without limitation.
  • the temperature of the first liquid circuit is equal to the second set temperature, it can be set to enter the first heat pump heating mode, or it can also be set not to enter the first heat pump heating mode, without limitation.
  • the multiple driving modes include an EV mode
  • the multiple passenger compartment heating modes include: a second heat pump heating mode, a third heat pump heating mode and a second warm air mode.
  • the second heat pump heating mode uses a heat pump circuit that exchanges heat with a second liquid circuit that absorbs heat from the motor.
  • the third heat pump heating mode uses a heat pump circuit that exchanges heat with an air heat source.
  • the second warm air mode uses a warm air circuit that absorbs heat from the electric heater 21.
  • a heat pump circuit including a compressor 1 is operated, and the heat pump circuit may include a compressor 1, a condenser (for example, the in-vehicle condenser 3 shown in Figure 2), a throttling device (for example, the third electronic expansion valve 17 shown in Figure 2) and an evaporator (for example, the liquid circuit heat exchanger 30 shown in Figure 2), wherein the condenser (for example, the in-vehicle condenser 3 shown in Figure 2) is used to heat the passenger compartment, and the evaporator (for example, the liquid circuit heat exchanger 30 shown in Figure 2) exchanges heat with the second liquid circuit that absorbs the heat of the motor (for example, the low-temperature circuit coolant pump 31 shown in Figure 2 and the liquid circuit where the motor and the electrical control system 29 are located), and the heat of the motor, etc. is used as the heat source of the heat pump circuit.
  • the condenser for example, the in-vehicle condenser 3 shown in Figure 2
  • a heat pump circuit including a compressor 1 is operated, and the heat pump circuit may include a compressor 1, a condenser (for example, the in-vehicle condenser 3 shown in FIG. 2 ), a throttling device (for example, the second electronic expansion valve 16 shown in FIG. 2 ), and an evaporator (for example, the evaporator 16 shown in FIG. 2 ).
  • An outdoor heat exchanger 11 wherein the condenser (such as the indoor condenser 3 shown in FIG. 2) is used to heat the passenger compartment, and the evaporator (such as the outdoor heat exchanger 11 shown in FIG. 2) exchanges heat with the outdoor air, and the heat of the air source is used as the heat source of the heat pump circuit.
  • a warm air circuit that does not include a compressor is operated.
  • the warm air circuit may include a warm air core 22, a heating circulating liquid pump 20 and an electric heater 21.
  • the heating circulating liquid pump 20 transfers the heat generated by the electric heater 21 to the warm air core 22, and the warm air core 22 uses the heat generated by the electric heater 21 to heat the passenger compartment.
  • the thermal management control method may include: S21, in EV mode, obtaining the temperature of the second fluid circuit and the temperature of the environment outside the vehicle; S22, according to the interval where the temperature of the second fluid circuit is located and the interval where the temperature of the environment outside the vehicle is located, selecting to enter one of the second heat pump heating mode, the third heat pump heating mode and the second warm air mode.
  • the judgment rule based on the EV mode entry is: judging the interval where the temperature of the second fluid circuit is located and the interval where the temperature of the environment outside the vehicle is located, and selecting which of the second heat pump heating mode, the third heat pump heating mode and the second warm air mode to enter according to the interval where the temperature of the second fluid circuit is located and the interval where the temperature of the environment outside the vehicle is located.
  • the second heat pump heating mode related to the heat of the electric motor can be selected for heating, or the third heat pump heating mode related to the heat of the air source can be used, or the second warm air mode using the electric heater 21 as the heat source can be used for heating, thereby achieving economical, energy-saving and effective heating effect.
  • "selecting to enter one of the second heat pump heating mode, the third heat pump heating mode, and the second warm air mode according to the temperature range of the second liquid circuit and the temperature range of the outside environment” may specifically include: when the temperature of the second liquid circuit is greater than the third set temperature (such as the third set temperature can be -10°C), entering the second heat pump heating mode; when the temperature of the second liquid circuit is less than the third set temperature (such as the third set temperature can be -10°C), entering the third heat pump heating mode or the second warm air mode.
  • the third set temperature such as the third set temperature can be -10°C
  • the second heat pump heating mode using the heat of the motor as the heat source can be used for heating, thereby achieving energy saving.
  • the third heat pump heating mode using the air source as the heat source or the second warm air mode using the electric heater 21 as the heat source can be used for heating, thereby ensuring the heating effect of the passenger compartment.
  • "when the temperature of the second liquid circuit is lower than the third set temperature, choose to enter the third heat pump heating mode or the second warm air mode” may further include: when the temperature of the outside environment is higher than the fourth set temperature (such as the fourth set temperature may be -10°C), enter the third heat pump heating mode; when the temperature of the outside environment is lower than the fourth set temperature, enter the second warm air mode.
  • the fourth set temperature such as the fourth set temperature may be -10°C
  • the third heat pump heating mode using the air source as the heat source can be used for heating, thereby achieving energy saving.
  • the second warm air mode using the electric heater 21 as the heat source is used for heating, thereby ensuring the heating effect of the passenger compartment.
  • the temperature of the second liquid circuit when the temperature of the second liquid circuit is equal to the third set temperature, it can be set to enter any one of the second heat pump heating mode, the third heat pump heating mode and the second warm air mode, without limitation.
  • the temperature of the environment outside the vehicle when the temperature of the environment outside the vehicle is equal to the fourth set temperature, it can be set to enter the third heat pump heating mode, or it can also be set to enter the second warm air mode, without limitation.
  • the multiple passenger compartment heating modes include at least one heat pump heating mode (such as the first heat pump heating mode, the second heat pump heating mode, the third heat pump heating mode, etc. described above, which are not repeated here), and the hybrid vehicle also includes a battery heat pump heating mode.
  • a heat pump circuit including a compressor 1 in the battery heat pump heating mode, a heat pump circuit including a compressor 1 is operated, and the heat pump circuit may include a compressor 1, a condenser (for example, the battery heat exchanger 37 shown in Figure 2), a throttling device (for example, the fourth electronic expansion valve 35 shown in Figure 2) and an evaporator (for example, the liquid path heat exchanger 30 shown in Figure 2), wherein the condenser (for example, the battery heat exchanger 37 shown in Figure 2) is used to heat the battery, and the evaporator (for example, the liquid path heat exchanger 30 shown in Figure 2) exchanges heat with the first liquid path (for example, the heating circulating liquid pump 20 and the liquid path where the electric heater 21 is located shown in Figure 2) that absorbs the heat of the electric heater 21, and the heat of the electric heater 21 is used as the heat source of the heat pump circuit.
  • the condenser for example, the battery heat exchanger 37 shown in Figure 2
  • a throttling device for example, the fourth electronic
  • the present invention is not limited to this.
  • the evaporator of the heat pump circuit in the battery heat pump heating mode (such as the liquid circuit heat exchanger 30 shown in Figure 2) can also absorb other heat, such as the heat of the second liquid circuit where the low-temperature circuit coolant pump 31 and the motor and electrical control system 29 are located as shown in Figure 2, etc., which will not be elaborated here.
  • the vehicle thermal management system of the disclosed embodiment can flexibly adjust the vehicle's thermal management working mode in combination with the driving conditions, ambient temperature, thermal management requirements, and temperature of the liquid cooling circuit in the whole vehicle of the new energy vehicle, optimize the energy management of the whole vehicle, and achieve energy saving.
  • HEV mode in combination with the ambient temperature, the temperature of the engine thermal management system, and the thermal management requirements, heat is taken from the engine first, while the heat dissipation of the engine and the heating of the passenger compartment are achieved. When the engine heat is insufficient, the compressor or electric heater is started for heating.
  • EV mode in combination with the temperature of the motor and its electrical control system, the working modes of the air source heat pump and the motor heat source heat pump are distinguished.
  • the hybrid vehicle includes a heating dual-on mode, in which the heat pump heating mode (such as one of the first heat pump heating mode, the second heat pump heating mode, and the third heat pump heating mode described above) and the battery heat pump heating mode are both performed simultaneously, and the heat pump circuits used by the two share the compressor 1.
  • the heat pump heating mode such as one of the first heat pump heating mode, the second heat pump heating mode, and the third heat pump heating mode described above
  • the battery heat pump heating mode are both performed simultaneously, and the heat pump circuits used by the two share the compressor 1.
  • the thermal management control method may include: S4, in the heating dual-on mode, obtaining at least one of the battery temperature, heating air outlet temperature and passenger compartment temperature of the hybrid vehicle; S5, according to the obtained temperature range, setting one of the heat pump heating mode and the battery heat pump heating mode as the first priority adjustment object; S6, according to the adjustment rules of the first priority adjustment object, adjusting the speed of the compressor 1.
  • the speed of the compressor 1 can be adjusted according to the priority level of the two, so that the speed of the compressor 1 can better coordinate the requirements of passenger compartment heating and battery heating.
  • the speed of compressor 1 is adjusted according to the adjustment rules of the heat pump heating mode, so that the heating effect of the passenger compartment is the main adjustment target, and the heating demand of the passenger compartment is better met.
  • the speed of compressor 1 is adjusted according to the adjustment rules of the battery heat pump heating mode, so that the battery heating effect is the main adjustment target, and the battery heating demand is better met.
  • “in the heating dual-on mode, obtain at least one of the battery temperature, heating air outlet temperature and passenger compartment temperature of the hybrid vehicle; according to the obtained temperature range, set one of the heat pump heating mode and the battery heat pump heating mode as the first priority adjustment object” may specifically include: obtaining the battery temperature; when the battery temperature is greater than the fifth set temperature (for example, the fifth set temperature may be 10°C), setting the heat pump heating mode as the first priority adjustment object.
  • the fifth set temperature for example, the fifth set temperature may be 10°C
  • the heating dual-on mode at least one of the battery temperature, the heating outlet temperature and the passenger compartment temperature of the hybrid vehicle is obtained; according to the obtained temperature range, one of the heat pump heating mode and the battery heat pump heating mode is set as the first priority adjustment object
  • the fifth set temperature for example, the fifth set temperature may be 10°C
  • the battery heat pump heating mode is set as the first priority adjustment object
  • the passenger compartment temperature when the battery temperature is less than the fifth set temperature
  • the battery heating effect can be used as the main adjustment target to better meet the battery heating requirements, ensure that the battery can work effectively, and meet the driving requirements.
  • “in the heating dual-on mode, obtaining at least one of the battery temperature, the heating outlet temperature and the passenger compartment temperature of the hybrid vehicle; setting one of the heat pump heating mode and the battery heat pump heating mode as the first priority adjustment object according to the obtained temperature range” may specifically include: obtaining the heating outlet temperature and the passenger compartment temperature; when the heating outlet temperature is greater than the target outlet temperature, and the passenger compartment temperature is greater than the target vehicle interior temperature, setting the battery heat pump heating mode to the first priority adjustment object; 1. Priority adjustment object. That is to say, when the passenger compartment temperature and the heating air outlet temperature are both sufficient, the battery heating effect can be used as the main adjustment target to better meet the battery heating needs, ensure that the battery can work effectively, and meet driving requirements.
  • “In the heating dual-on mode, obtain at least one of the battery temperature, heating air outlet temperature and passenger compartment temperature of the hybrid vehicle; according to the obtained temperature range, set one of the heat pump heating mode and the battery heat pump heating mode as the first priority adjustment object” may specifically include: obtaining the heating air outlet temperature, and when the heating air outlet temperature is lower than the target air outlet temperature, setting the heat pump heating mode as the first priority adjustment object; or obtaining the passenger compartment temperature, and when the passenger compartment temperature is lower than the target vehicle interior temperature, setting the heat pump heating mode as the first priority adjustment object.
  • the passenger compartment heating effect can be used as the main adjustment target to better meet the passenger compartment heating needs.
  • the first priority adjustment object is the adjustment rule of the heat pump heating mode, which may include: adjusting the speed of the compressor 1 according to the heating outlet air temperature. In this way, it can be ensured that the heating outlet air temperature meets the heating requirements.
  • the current heating air outlet temperature (such as foot temperature) is detected and compared with the target air outlet temperature. If the current heating air outlet temperature is greater than the target air outlet temperature, the speed of compressor 1 is reduced; if the current heating air outlet temperature is less than the target air outlet temperature, the speed of compressor 1 is increased; if the current heating air outlet temperature is equal to the target air outlet temperature, the current speed of compressor 1 is maintained.
  • the target air outlet temperature can be determined according to the user set temperature, the temperature inside the vehicle, the temperature outside the vehicle, and the solar radiation correction value to ensure the heating effect.
  • the first priority regulation object is the regulation rule of the heat pump heating mode, which may include: adjusting the opening of the throttling device (such as the second electronic expansion valve 16 or the third electronic expansion valve 17 shown in FIG. 2 ) in the heat pump circuit used in the heat pump heating mode according to the superheat of the suction port of the compressor. In this way, it can be ensured that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the throttling device such as the second electronic expansion valve 16 or the third electronic expansion valve 17 shown in FIG. 2
  • the current superheat of the suction port of the compressor 1 (or the outlet superheat of the liquid circuit heat exchanger 30) is calculated and compared with the target superheat. If the current superheat of the suction port of the compressor 1 is greater than the target superheat, the opening of the third electronic expansion valve 17 is increased (i.e., the valve adjustment direction is open); if the current superheat of the suction port of the compressor 1 is less than the target superheat, the opening of the third electronic expansion valve 17 is reduced (i.e., the valve adjustment direction is closed); if the current superheat of the suction port of the compressor 1 is equal to the target superheat, the current opening of the third electronic expansion valve 17 is maintained (i.e., no valve adjustment is required).
  • the target superheat can be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the superheat of the suction port of the compressor 1 is almost equal to the superheat of the outlet of the liquid heat exchanger 30.
  • the reason why the present invention calculates the superheat of the suction port of the current compressor 1 instead of calculating the superheat of the outlet of the liquid heat exchanger 30 is that in some systems, it is difficult to set a sensor at the outlet of the liquid heat exchanger 30.
  • the superheat of the suction port of the current compressor 1 can also be replaced by calculating the superheat of the outlet of the current liquid heat exchanger 30. There is no limitation here.
  • the regulation rule for the heat pump heating mode in which the first priority regulation object is adjusted, may include: adjusting the opening of the throttling device (e.g., the fourth electronic expansion valve 35 shown in FIG. 2 ) in the heat pump circuit used in the battery heat pump heating mode according to the heating air outlet temperature. In this way, the flow distribution can be ensured to meet the heating requirements of the passenger compartment.
  • the throttling device e.g., the fourth electronic expansion valve 35 shown in FIG. 2
  • adjusting the opening of the throttling device in the heat pump circuit used in the battery heat pump heating mode includes: if T5>T4+K5, increasing the opening of the throttling device in the refrigeration circuit used in the battery cooling mode; if T4-K4 ⁇ T5 ⁇ T4+K5, maintaining the opening of the throttling device in the refrigeration circuit used in the battery cooling mode; if T4-K5 ⁇ T5 ⁇ T4-K4, reducing the opening of the throttling device in the refrigeration circuit used in the battery cooling mode; if T5 ⁇ T4-K5, closing the throttling device in the refrigeration circuit used in the battery cooling mode, wherein T5 is the heating air outlet temperature, in degrees Celsius; T4 is the target air outlet temperature, in degrees Celsius; K4 and K5 are temperature compensation coefficients, in degrees Celsius, and K4 ⁇ K5. In this way, accurate flow distribution can be guaranteed, and the optimal heat distribution for battery heating can be achieved while giving priority to meeting the heating needs of the passenger
  • the current heating is not enough to meet the passenger compartment heating requirement, and the battery heat distribution is reduced; if the current heating outlet air temperature T5 is 52°C, the target outlet air temperature T4 is 50°C, T4-K4 (48°C) ⁇ T5 ⁇ T4+K5 (55°C), the fourth electronic expansion valve 35 maintains the current opening, indicating that the current heat distribution is relatively appropriate, and the valve opening can be maintained; if the current heating outlet air temperature T5 is 40°C, the target outlet air temperature T4 is 50°C, 40 ⁇ T4-K5 (45°C), the fourth electronic expansion valve 35 is closed to fully guarantee the passenger compartment heating requirement.
  • the first priority regulation object is the regulation rule of the battery heat pump heating mode, which includes: adjusting the speed of the compressor 1 according to the inlet temperature of the battery heat exchanger 37 in the heat pump circuit used in the battery heat pump heating mode. In this way, the heating demand of the battery can be better guaranteed, and the problem of the battery temperature being too high due to the battery heat exchanger 37 being too high can be avoided, thereby improving the working reliability and safety of the battery.
  • the current inlet temperature of the battery heat exchanger 37 is detected and compared with the target heating temperature. If the current inlet temperature of the battery heat exchanger 37 is greater than the target heating temperature, the speed of the compressor 1 is reduced; if the current inlet temperature of the battery heat exchanger 37 is less than the target heating temperature, the speed of the compressor 1 is increased; if the current inlet temperature of the battery heat exchanger 37 is equal to the target heating temperature, the current speed of the compressor 1 is maintained.
  • the refrigerant coming out of compressor 1 is in an overheated state, and the pressure and temperature do not correspond (in the overheated state, the temperature rises while the pressure remains unchanged), so the inlet pressure of the battery heat exchanger 37 is not measured, but the inlet temperature of the battery heat exchanger 37 is measured.
  • the first priority regulation object is the regulation rule of the battery heat pump heating mode, which includes: adjusting the opening of the throttling device (such as the fourth electronic expansion valve 35 shown in FIG. 2 ) in the heat pump circuit used in the battery heat pump heating mode according to the superheat of the suction port of the compressor. In this way, it can be ensured that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the throttling device such as the fourth electronic expansion valve 35 shown in FIG. 2
  • the current superheat of the suction port of the compressor 1 is calculated and compared with the target superheat. If the current superheat of the suction port of the compressor 1 is greater than the target superheat, the opening of the fourth electronic expansion valve 35 is increased (i.e., the valve adjustment direction is open); if the current superheat of the suction port of the compressor 1 is less than the target superheat, the opening of the fourth electronic expansion valve 35 is reduced (i.e., the valve adjustment direction is closed); if the current superheat of the suction port of the compressor 1 is equal to the target superheat, the current opening of the fourth electronic expansion valve 35 is maintained (i.e., no valve adjustment is required).
  • the target superheat can be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the superheat of the suction port of the compressor 1 is almost equal to the superheat of the outlet of the liquid heat exchanger 30.
  • the reason why the present invention calculates the superheat of the suction port of the current compressor 1 instead of calculating the superheat of the outlet of the liquid heat exchanger 30 is that in some systems, it is difficult to set a sensor at the outlet of the liquid heat exchanger 30. However, if it is convenient to set a sensor, of course, it is also possible to calculate the superheat of the outlet of the current liquid heat exchanger 30 instead of calculating the superheat of the suction port of the current compressor 1, and there is no limitation here.
  • the first priority regulation object is the regulation rule of the battery heat pump heating mode, which includes: the throttling device (such as the second electronic expansion valve 16 or the third electronic expansion valve 17 shown in FIG. 2 ) in the heat pump circuit used in the heat pump heating mode maintains the same opening degree.
  • the control can be simplified.
  • the hybrid vehicle further includes a passenger compartment cooling mode and a battery cooling mode.
  • a refrigeration circuit including a compressor 1 in the passenger compartment cooling mode, is operated, and the refrigeration circuit may include the compressor 1, a condenser (for example, the outdoor heat exchanger 11 shown in Figure 2), a throttling device (for example, the first electronic expansion valve 13 shown in Figure 2) and an evaporator (for example, the indoor evaporator 14 shown in Figure 2), wherein the evaporator (for example, the indoor evaporator 14 shown in Figure 2) is used to cool the passenger compartment.
  • a condenser for example, the outdoor heat exchanger 11 shown in Figure 2
  • a throttling device for example, the first electronic expansion valve 13 shown in Figure 2
  • an evaporator for example, the indoor evaporator 14 shown in Figure 2
  • a refrigeration circuit including a compressor 1 in the battery cooling mode, is operated, and the refrigeration circuit may include the compressor 1, a condenser (for example, the external heat exchanger 11 shown in Figure 2), a throttling device (for example, the fourth electronic expansion valve 35 shown in Figure 2) and an evaporator (for example, the battery heat exchanger 37 shown in Figure 2), wherein the evaporator (for example, the battery heat exchanger 37 shown in Figure 2) is used to cool the battery.
  • a condenser for example, the external heat exchanger 11 shown in Figure 2
  • a throttling device for example, the fourth electronic expansion valve 35 shown in Figure 2
  • an evaporator for example, the battery heat exchanger 37 shown in Figure 2
  • the hybrid vehicle includes a cooling dual-on mode, in which the passenger compartment is controlled to The cooling mode and the battery cooling mode are both performed at the same time, and the refrigeration circuits used by the two modes share the compressor 1.
  • the passenger compartment cooling and battery cooling can be achieved at the same time, and the same compressor 1 is used, which can simplify the thermal management system and reduce costs.
  • the thermal management control method includes: S7, in the cooling dual-on mode, obtaining at least one of the battery temperature, the heating air outlet temperature and the passenger compartment temperature of the hybrid vehicle; S8, according to the range of the obtained temperature, setting one of the passenger compartment cooling mode and the battery cooling mode as the second priority adjustment object; S9, according to the adjustment rule of the second priority adjustment object, adjusting the speed of the compressor.
  • the speed of the compressor 1 can be adjusted according to the priority level of the two, so that the speed of the compressor 1 can better coordinate the requirements of passenger compartment cooling and battery cooling.
  • the speed of the compressor 1 is adjusted according to the adjustment rules of the passenger compartment cooling mode, so that the passenger compartment cooling effect is the main adjustment target, and the passenger compartment cooling demand is better met.
  • the speed of the compressor 1 is adjusted according to the adjustment rules of the battery cooling mode, so that the battery cooling effect is the main adjustment target, and the battery cooling demand is better met.
  • “in the cooling dual-on mode, obtain at least one of the battery temperature, heating outlet temperature and passenger compartment temperature of the hybrid vehicle; according to the obtained temperature range, set one of the passenger compartment cooling mode and the battery cooling mode as the second priority adjustment object” may specifically include: obtaining the battery temperature; when the battery temperature is greater than the sixth set temperature (for example, the sixth set temperature may be 45°C), setting the battery cooling mode as the second priority adjustment object.
  • the battery cooling effect can be used as the main adjustment target to better meet the battery cooling requirements.
  • “in the cooling dual-on mode, obtain at least one of the battery temperature, heating outlet temperature and passenger compartment temperature of the hybrid vehicle; according to the obtained temperature range, set one of the passenger compartment cooling mode and the battery cooling mode as the second priority adjustment object” may further include: obtaining the passenger compartment temperature, when the battery temperature is less than the sixth set temperature, and the passenger compartment temperature is less than the target vehicle interior temperature, setting the battery cooling mode as the second priority adjustment object; or obtaining the cooling outlet temperature, when the battery temperature is less than the sixth set temperature, and the cooling outlet temperature is less than the target outlet temperature, setting the battery cooling mode as the second priority adjustment object.
  • the battery cooling effect can be used as the main adjustment target to better meet the battery cooling needs, ensure that the battery can work effectively, and meet the driving requirements.
  • the cooling dual-on mode at least one of the battery temperature, heating outlet temperature and passenger compartment temperature of the hybrid vehicle is obtained; according to the obtained temperature range, one of the passenger compartment cooling mode and the battery cooling mode is set as the second priority adjustment object
  • the passenger compartment cooling effect can be used as the main adjustment target to better meet the passenger compartment cooling needs.
  • the second priority adjustment object is the adjustment rule of the passenger compartment cooling mode, which includes: adjusting the rotation speed of the compressor 1 according to the cooling air outlet temperature. In this way, the passenger compartment cooling demand can be better met.
  • the current refrigeration air outlet temperature (such as the blowing surface temperature) is detected and compared with the target air outlet temperature. If the current refrigeration air outlet temperature is lower than the target air outlet temperature, the speed of the compressor 1 is reduced; if the current refrigeration air outlet temperature is higher than the target air outlet temperature, the speed of the compressor 1 is increased; if the current refrigeration air outlet temperature is equal to the first target air outlet temperature, the current speed of the compressor 1 is maintained.
  • the target air outlet temperature can be determined according to the user set temperature, the temperature inside the vehicle, the temperature outside the vehicle, and the solar radiation correction value to ensure the cooling effect.
  • the second priority regulation object is the regulation rule of the passenger compartment cooling mode, which includes: adjusting the throttling device (e.g., the first one shown in FIG. 2 ) in the refrigeration circuit used in the passenger compartment cooling mode according to the superheat degree of the suction port of the compressor.
  • the throttling device e.g., the first one shown in FIG. 2
  • the refrigerant sucked into the compressor 1 can be guaranteed to be in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the current outlet superheat of the in-vehicle evaporator 14 is calculated (almost equal to the inlet superheat of the compressor 1), and compared with the target superheat. If the current outlet superheat of the in-vehicle evaporator 14 is greater than the target superheat, the opening of the first electronic expansion valve 13 is increased (i.e., the valve adjustment direction is open); if the current outlet superheat of the in-vehicle evaporator 14 is less than the target superheat, the opening of the first electronic expansion valve 13 is reduced (i.e., the valve adjustment direction is closed); if the current outlet superheat of the in-vehicle evaporator 14 is equal to the target superheat, the current opening of the first electronic expansion valve 13 is maintained (i.e., no valve adjustment is required).
  • the target superheat can be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked by the compressor 1 is
  • the opening of the throttling device in the refrigeration circuit used in the battery cooling mode is adjusted according to the cooling air outlet temperature, thereby ensuring flow distribution and meeting the cooling requirements of the passenger compartment.
  • adjusting the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode according to the cooling air outlet temperature includes: if T2 ⁇ T1+K1, increasing the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode; if T1+K1 ⁇ T2 ⁇ T1+K2, maintaining the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode; if T1+K2 ⁇ T2 ⁇ T1+K3, reducing the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode; if T2>T1+K3, closing the throttling device in the refrigeration circuit adopted in the battery cooling mode, wherein T2 is the cooling air outlet temperature, in °C; T1 is the target cooling temperature, in °C; K1, K2, and K3 are temperature compensation coefficients, in °C, and K1 ⁇ K2 ⁇ K3.
  • the current outlet pressure of the battery heat exchanger 37 is detected and compared with the target pressure value. If the current outlet pressure of the battery heat exchanger 37 is greater than the target pressure value, the speed of the compressor 1 is reduced; if the current outlet pressure of the battery heat exchanger 37 is less than the target pressure value, the speed of the compressor 1 is increased; if the current outlet pressure of the battery heat exchanger 37 is equal to the target pressure value, the current speed of the compressor 1 is maintained.
  • the present invention measures the saturation state and overheat of the outlet refrigerant of the battery heat exchanger 37.
  • This saturation state corresponds to a saturation temperature, and the saturation temperature has a corresponding pressure (the pressure of the refrigerant is basically unchanged when the overheat state is greater than this saturation temperature). Therefore, the outlet pressure of the battery heat exchanger 37 is used as a target to adjust the speed of the compressor 1 to ensure that the refrigerant reaches saturation at a predetermined temperature, and then the opening of the fourth electronic expansion valve 35 is adjusted to adjust the overheat of the refrigerant to achieve the cooling effect on the battery.
  • the reasons for not directly detecting the temperature of the battery itself are, first, the battery temperature change is delayed, and second, the battery itself has a certain volume, but only one or more positions are detected, which cannot accurately reflect the battery temperature.
  • the second priority regulation object is the regulation rule of the battery cooling mode, including: adjusting the opening of the throttling device (such as the fourth electronic expansion valve 35 shown in FIG. 2 ) in the refrigeration circuit used in the battery cooling mode according to the superheat of the suction port of the compressor. In this way, it can be ensured that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the throttling device such as the fourth electronic expansion valve 35 shown in FIG. 2
  • the current outlet superheat of the battery heat exchanger 37 is calculated (almost equal to the suction port superheat of the compressor 1) and compared with the target superheat. If the current outlet superheat of the battery heat exchanger 37 is greater than the target superheat, the fourth electronic The opening of the expansion valve 35 (i.e., the valve adjustment direction is open); if the outlet superheat of the current vehicle battery heat exchanger 37 is less than the target superheat, reduce the opening of the fourth electronic expansion valve 35 (i.e., the valve adjustment direction is closed); if the outlet superheat of the current battery heat exchanger 37 is equal to the target superheat, maintain the current opening of the fourth electronic expansion valve 35 (i.e., no valve adjustment is required).
  • the target superheat can be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the second priority regulation object is the regulation rule of the battery cooling mode, including: the throttling device (such as the first electronic expansion valve 13 shown in FIG. 2 ) in the refrigeration circuit used in the passenger compartment cooling mode maintains the same opening degree.
  • the control can be simplified.
  • a hybrid vehicle includes an electric motor and an engine.
  • a hybrid vehicle has at least two driving modes, namely a pure electric mode (EV mode for short, EV is the abbreviation of Electric vehicle) and a hybrid power mode (HEV mode for short, HEV is the abbreviation of Hybrid Electric Vehicle).
  • EV mode for short
  • HEV hybrid power mode
  • the pure electric mode the vehicle is driven by the electric motor
  • the hybrid power mode the vehicle is driven by a combination of the electric motor and the engine.
  • the hybrid vehicle has a thermal management system, which may include: a compressor 1, a first pressure and temperature sensor 2, an in-vehicle condenser 3, a second pressure and temperature sensor 4, a first solenoid valve 5, a second solenoid valve 6, a third pressure and temperature sensor 7, a fourth solenoid valve 8, a third solenoid valve 9, a fourth pressure and temperature sensor 10, an external heat exchanger 11, a blower 12, a first electronic expansion valve 13, an in-vehicle evaporator 14, a fifth pressure and temperature sensor 15, a second electronic expansion valve 16, a third electronic expansion valve 17, a high-temperature radiator 18, a five-way valve 19, a heating circulation liquid pump 20, and an electric heater 21 (such as a PTC, Posit abbreviation of ive Temperature Coefficient, thermistor), heater core 22, high temperature radiator fan 23, high temperature circuit three-way valve 24, fifth solenoid valve 25, engine 26, engine circulating liquid pump 27, sixth solenoid valve 28, motor and electrical control system 29, liquid circuit heat exchanger 30,
  • the thermal management system may include a motor side fluid system, an engine side fluid system, a passenger compartment thermal management system, and a power battery thermal management system.
  • the motor side fluid system includes: a low-temperature radiator fan 40, a motor and an electrical control system 29, a low-temperature fluid circuit of a fluid circuit heat exchanger 30, a low-temperature circuit coolant pump 31, a water intercooler 32, a low-temperature circuit three-way valve 33, and a low-temperature radiator 34.
  • the engine side fluid system includes: a high-temperature radiator 18, a five-way valve 19, a heating circulation fluid pump 20, an electric heater 21, a warm air core 22, a high-temperature radiator fan 23, a high-temperature circuit three-way valve 24, an engine 26, an engine circulation fluid pump 27, and a high-temperature fluid circuit of a fluid circuit heat exchanger 30.
  • the thermal management system of this embodiment has at least eight working modes, which are described below respectively.
  • the refrigerant flows sequentially through: the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, the second solenoid valve 6, the third pressure and temperature sensor 7, the external heat exchanger 11, the first electronic expansion valve 13, the in-vehicle evaporator 14, the fifth pressure and temperature sensor 15, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant flows through the external heat exchanger 11, it dissipates heat to the outside of the vehicle, when it flows through the first electronic expansion valve 13, it is throttled, and when it flows through the in-vehicle evaporator 14, it absorbs heat to achieve cooling of the passenger compartment.
  • the regulation rules for the first electronic expansion valve 13 are as follows.
  • the outlet superheat of the current in-vehicle evaporator 14 (or the suction port superheat of the compressor 1) is calculated and compared with the target superheat (e.g., the first target superheat).
  • the opening of the first electronic expansion valve 13 is increased (i.e., the valve adjustment direction is open); if the outlet superheat of the current in-vehicle evaporator 14 is less than the first target superheat, the opening of the first electronic expansion valve 13 is reduced (i.e., the valve adjustment direction is closed); if the outlet superheat of the current in-vehicle evaporator 14 is equal to the first target superheat, the opening of the current first electronic expansion valve 13 is maintained (i.e., no valve adjustment is required).
  • the first target superheat degree may be a preset calibration value that does not change with any conditions, so as to ensure that the refrigerant sucked into the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1 .
  • the speed adjustment rules for compressor 1 are as follows.
  • the surface temperature is compared with the target outlet air temperature (for example, the first target outlet air temperature). If the current outlet air temperature is lower than the first target outlet air temperature, the speed of the compressor 1 is reduced; if the current outlet air temperature is higher than the first target outlet air temperature, the speed of the compressor 1 is increased; if the current outlet air temperature is equal to the first target outlet air temperature, the current speed of the compressor 1 is maintained.
  • the target outlet air temperature for example, the first target outlet air temperature
  • the first target air outlet temperature can be determined according to the user set temperature, the temperature inside the vehicle, the temperature outside the vehicle, and the solar radiation correction value to ensure the cooling effect.
  • Mode 2 Battery Cooling Mode
  • the refrigerant is discharged from the compressor 1, it flows through the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, the second solenoid valve 6, the third pressure and temperature sensor 7, the external heat exchanger 11, the one-way valve 41, the fifth solenoid valve 25, the fourth electronic expansion valve 35, the sixth pressure and temperature sensor 36, the battery heat exchanger 37, the seventh pressure and temperature sensor 38, the seventh solenoid valve 39, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant flows through the external heat exchanger 11, it dissipates heat to the outside of the vehicle, when it flows through the fourth electronic expansion valve 35, it is throttled, and when it flows through the battery heat exchanger 37, it absorbs heat to achieve cooling of the battery.
  • the regulation rules for the fourth electronic expansion valve 35 are as follows.
  • the outlet superheat of the current battery heat exchanger 37 (or the suction port superheat of the compressor 1) is calculated and compared with the target superheat (e.g., the second target superheat).
  • the opening of the fourth electronic expansion valve 35 is increased (i.e., the valve adjustment direction is open); if the outlet superheat of the current battery heat exchanger 37 is less than the second target superheat, the opening of the fourth electronic expansion valve 35 is reduced (i.e., the valve adjustment direction is closed); if the outlet superheat of the current battery heat exchanger 37 is equal to the second target superheat, the opening of the current fourth electronic expansion valve 35 is maintained (i.e., no valve adjustment is required).
  • the second target superheat degree may be a preset calibration value that does not change with any conditions, so as to ensure that the refrigerant sucked into the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1 .
  • the speed regulation rules for compressor 1 are as follows. Detect the current outlet pressure of the battery heat exchanger 37 and compare it with the target pressure value. If the current outlet pressure of the battery heat exchanger 37 is greater than the target pressure value, reduce the speed of compressor 1; if the current outlet pressure of the battery heat exchanger 37 is less than the target pressure value, increase the speed of compressor 1; if the current outlet pressure of the battery heat exchanger 37 is equal to the target pressure value, maintain the current speed of compressor 1.
  • the present invention measures the saturation state and overheat of the outlet refrigerant of the battery heat exchanger 37.
  • This saturation state corresponds to a saturation temperature, and the saturation temperature has a corresponding pressure (the pressure of the refrigerant is basically unchanged when the overheat state is greater than this saturation temperature). Therefore, the outlet pressure of the battery heat exchanger 37 is used as a target to adjust the speed of the compressor 1 to ensure that the refrigerant reaches saturation at a predetermined temperature, and then the opening of the fourth electronic expansion valve 35 is adjusted to adjust the overheat of the refrigerant to achieve the cooling effect on the battery.
  • the reasons for not directly detecting the temperature of the battery itself are, first, the battery temperature change is delayed, and second, the battery itself has a certain volume, but only one or more positions are detected, which cannot accurately reflect the battery temperature.
  • the refrigeration dual-opening mode is that the passenger compartment refrigeration mode and the battery cooling mode are carried out at the same time, and the refrigeration circuits used in the passenger compartment refrigeration mode and the battery cooling mode share the same compressor. Therefore, in the refrigeration dual-opening mode, after the refrigerant is discharged from the compressor 1, it flows through: the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, the second solenoid valve 6, the third pressure and temperature sensor 7, the outdoor heat exchanger 11, the one-way valve 41, and then is divided into the following two routes.
  • the refrigerant flows sequentially through the first electronic expansion valve 13, the in-vehicle evaporator 14, the fifth pressure and temperature sensor 15, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant is throttled when flowing through the first electronic expansion valve 13, and is cooled when flowing through the in-vehicle evaporator 14, so as to realize cooling of the passenger compartment.
  • the other path flows sequentially through the fifth solenoid valve 25, the fourth electronic expansion valve 35, the sixth pressure and temperature sensor 36, the battery heat exchanger 37, the seventh pressure and temperature sensor 38, the seventh solenoid valve 39, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant is throttled when flowing through the fourth electronic expansion valve 35, and is cooled when flowing through the battery heat exchanger 37, so as to cool the battery.
  • the battery temperature i.e., the cell temperature
  • the first target cell temperature e.g. 45°C
  • the battery cooling mode is adjusted first. If the current cell temperature is ⁇ the first target cell temperature, the cooling air outlet temperature is compared with the target air outlet temperature. If the current cooling air outlet temperature is ⁇ the target air outlet temperature and the current cell temperature is ⁇ the first target cell temperature, the passenger compartment cooling mode is adjusted first. If the current cooling air outlet temperature is ⁇ the target air outlet temperature and the current cell temperature is ⁇ the first target cell temperature, the battery cooling mode is adjusted first.
  • the opening of the first electronic expansion valve 13 is adjusted according to the outlet superheat of the vehicle evaporator 14, the speed of the compressor 1 is adjusted according to the cooling air outlet temperature, and the distribution flow of the fourth electronic expansion valve 35 is adjusted according to the cooling air outlet temperature to ensure that the passenger compartment cooling meets the requirements.
  • adjusting the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode according to the cooling air outlet temperature includes: if T2 ⁇ T1+K1, increasing the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode; if T1+K1 ⁇ T2 ⁇ T1+K2, maintaining the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode; if T1+K2 ⁇ T2 ⁇ T1+K3, reducing the opening of the throttling device in the refrigeration circuit adopted in the battery cooling mode; if T2>T1+K3, closing the throttling device in the refrigeration circuit adopted in the battery cooling mode, wherein T2 is the cooling air outlet temperature, unit °C; T1 is the target cooling temperature, unit °C; K1, K2, K3 are temperature compensation coefficients, unit °C, K1 ⁇ K2 ⁇ K3.
  • the fourth electronic expansion valve 35 is adjusted according to the outlet superheat of the battery heat exchanger 37, and the speed of the compressor 1 is adjusted according to the outlet pressure value of the battery heat exchanger 37. At the same time, the opening of the first electronic expansion valve 13 corresponding to the in-vehicle evaporator 14 is maintained unchanged.
  • Heat pump heating modes include: heat pump air source heating and heat pump liquid source heating.
  • heat pump liquid source heating includes heat pump liquid source large heating and heat pump liquid source small heating, which are introduced below.
  • the heat pump circuit absorbs heat from the air source.
  • the heat pump circuit can be: after the refrigerant is discharged from the compressor 1, it flows through: the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, the fourth solenoid valve 8, the second electronic expansion valve 16, the outside heat exchanger 11, the third solenoid valve 9, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant flows through the in-vehicle condenser 3, it condenses and releases heat to achieve heating of the passenger compartment, and when it flows through the second electronic expansion valve 16, it is throttled, and when it flows through the outside heat exchanger 11, it absorbs heat from the external ambient air source.
  • the regulation rules for the second electronic expansion valve 16 are as follows. Calculate the outlet superheat of the current external heat exchanger 11 (or the suction port superheat of the compressor 1) and compare it with the target superheat (for example, the third target superheat).
  • outlet superheat of the current external heat exchanger 11 is greater than the third target superheat, increase the opening of the second electronic expansion valve 16 (that is, the valve adjustment direction is open); if the outlet superheat of the current external heat exchanger 11 is less than the third target superheat, reduce the opening of the second electronic expansion valve 16 (that is, the valve adjustment direction is closed); if the outlet superheat of the current external heat exchanger 11 is equal to the third target superheat, maintain the current opening of the second electronic expansion valve 16 (that is, no valve adjustment is required).
  • the third target superheat degree may be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked into the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1 .
  • the speed adjustment rules for compressor 1 are as follows. Detect the current heating air outlet temperature (such as foot temperature) and compare it with the target air outlet temperature (such as the second target air outlet temperature). If the current heating air outlet temperature is greater than the second target air outlet temperature, reduce the speed of compressor 1; if the current heating air outlet temperature is less than the second target air outlet temperature, Increase the speed of compressor 1; if the current heating air outlet temperature is equal to the second target air outlet temperature, maintain the current speed of compressor 1.
  • the second target air outlet temperature can be determined according to the user set temperature, the temperature inside the vehicle, the temperature outside the vehicle, and the solar radiation correction value to ensure the heating effect.
  • the refrigerant In the heat pump liquid source heating mode, after the refrigerant is discharged from the compressor 1, it flows through the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, the fourth solenoid valve 8, the third electronic expansion valve 17, the sixth solenoid valve 28, the refrigerant flow path of the liquid heat exchanger 30, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant flows through the in-vehicle condenser 3, it releases heat to achieve heating of the passenger compartment, when it flows through the third electronic expansion valve 17, it is throttled, and when it flows through the liquid heat exchanger 30, it absorbs liquid source heat from the liquid path flowing through the liquid heat exchanger 30.
  • the liquid heat exchanger 30 has a refrigerant flow path and a liquid path, and the liquid path can flow through a coolant such as a coolant.
  • the liquid heat exchanger 30 can have two liquid paths or one liquid path.
  • the two liquid paths are a high-temperature liquid path (connected to the engine side liquid path system) and a low-temperature liquid path (connected to the motor side liquid path system); and when there is one liquid path (this example is not shown in the figure), the liquid path can be used as both a high-temperature liquid path and a low-temperature liquid path (at this time, the engine side liquid path system and the motor side liquid path system can be changed to a series relationship).
  • the liquid source heat flowing through the liquid path heat exchanger 30 comes from the low-temperature liquid path, and the low-temperature loop coolant pump 31 runs to enable the liquid path heat exchanger 30 to absorb the residual heat on the motor side through the low-temperature liquid path.
  • the speed of the low-temperature circuit coolant pump 31 can be maintained at the maximum speed or rated speed to ensure the heat absorption demand of the heat pump circuit from the liquid circuit heat exchanger 30.
  • the liquid source heat flowing through the liquid path heat exchanger 30 comes from the high-temperature liquid path.
  • the engine 26 is working and the engine circulating liquid pump 27 is running so that the liquid path heat exchanger 30 absorbs the heat of the engine 26 through the high-temperature liquid path.
  • the speed of the engine circulating liquid pump 27 is maintained at the maximum speed or the rated speed to ensure the heat absorption demand of the heat pump circuit from the liquid circuit heat exchanger 30.
  • the low-temperature circuit coolant pump 31 can also be turned on so that the liquid source heat of the liquid circuit heat exchanger 30 can come from both the high-temperature liquid circuit and the low-temperature liquid circuit.
  • the opening adjustment rules for the third electronic expansion valve 17 are as follows. Calculate the current superheat of the suction port of the compressor 1 (or the outlet superheat of the liquid circuit heat exchanger 30) and compare it with the target superheat (such as the fourth target superheat).
  • the current superheat of the suction port of the compressor 1 is greater than the fourth target superheat, increase the opening of the third electronic expansion valve 17 (that is, the valve adjustment direction is open); if the current superheat of the suction port of the compressor 1 is less than the fourth target superheat, reduce the opening of the third electronic expansion valve 17 (that is, the valve adjustment direction is closed); if the current superheat of the suction port of the compressor 1 is equal to the fourth target superheat, maintain the current opening of the third electronic expansion valve 17 (that is, no valve adjustment is required).
  • the fourth target superheat can be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked by the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the superheat of the suction port of the compressor 1 is almost equal to the superheat of the outlet of the liquid heat exchanger 30.
  • the reason why the present invention calculates the superheat of the suction port of the current compressor 1 instead of calculating the superheat of the outlet of the liquid heat exchanger 30 is that in some systems, it is difficult to set a sensor at the outlet of the liquid heat exchanger 30.
  • the superheat of the outlet of the current liquid heat exchanger 30 can also be calculated instead of calculating the superheat of the suction port of the current compressor 1, and there is no limitation here.
  • the speed adjustment rules for compressor 1 are as follows. Detect the current heating air outlet temperature (such as foot temperature) and compare it with the target air outlet temperature (such as the third target air outlet temperature). If the current heating air outlet temperature is greater than the third target air outlet temperature, reduce the speed of compressor 1; if the current heating air outlet temperature is less than the third target air outlet temperature, increase the speed of compressor 1; if the current heating air outlet temperature is equal to the third target air outlet temperature, maintain the current speed of compressor 1.
  • the third target air outlet temperature can be determined according to the user set temperature, the temperature inside the vehicle, the temperature outside the vehicle, and the solar radiation correction value to ensure the heating effect.
  • Mode 5 Passenger compartment heating mode - warm air heating mode
  • the warm air heating mode can include the engine warm air mode and the electric warm air mode, which are introduced below respectively.
  • the heat pump circuit including the compressor 1 does not work, the engine side liquid system circulates, and the refrigerant flows out from the engine circulating liquid pump 27, flows through the engine 26, the high-temperature circuit three-way valve 24, the five-way valve 19, the electric heater 21, the heater core 22, the five-way valve 19, and then returns to the engine circulating liquid pump 27.
  • the engine 26 works to heat the refrigerant, and the refrigerant absorbs the high-temperature heat of the engine and blows hot air to the passenger compartment through the heater core 22 to achieve heating.
  • the speed of the engine circulating fluid pump 27 can be adjusted according to the heating air outlet temperature to meet the heating demand.
  • the heat pump circuit including the compressor 1 does not work, the engine side liquid system circulates, the refrigerant flows out from the heating circulation liquid pump 20, flows through the electric heater 21, the heater core 22, the five-way valve 19, the engine circulation liquid pump 27, the engine 26, the high-temperature circuit three-way valve 24, the five-way valve 19, and then returns to the heating circulation liquid pump 20.
  • the engine 26 does not work, the electric heater 21 works to heat the refrigerant, and the refrigerant blows hot air into the passenger compartment through the heater core 22 to achieve heating.
  • the heating circulating liquid pump 20 can maintain the maximum speed or the rated speed, and the heating power of the electric heater 21 can be adjusted according to the air outlet temperature of the passenger compartment to meet the heating needs and reduce energy consumption.
  • heat pump air source heating mode i.e., opening the second electronic expansion valve 16 corresponding to the outdoor heat exchanger 11 and throttling to absorb heat from the air source
  • heat pump liquid source small heating mode opening the third electronic expansion valve 17 corresponding to the liquid circuit heat exchanger 30 and throttling, the liquid circuit heat exchanger 30 absorbs heat from the low-temperature liquid circuit
  • heat pump liquid source large heating mode opening the third electronic expansion valve 17 corresponding to the liquid circuit heat exchanger 30 and throttling, the engine 26 is started, and the liquid circuit heat exchanger 30 absorbs heat from the high-temperature liquid circuit of the engine 26
  • engine warm air mode compressor 1 does not work, the liquid circuit absorbs the high-temperature heat of the engine 26, and blows hot air directly through the warm air core 22
  • electric heating warm air mode compressor 1 does not work, the electric heater 21 heats the liquid circuit, and blows hot air directly through the warm air core 22.
  • the engine 26 In EV mode, the engine 26 is not started, and the low-temperature liquid path temperature flowing through the liquid path heat exchanger 30 is preferentially determined. If the low-temperature liquid path temperature is in the first liquid temperature range (eg greater than -10°C), the heat pump liquid source small heating mode is entered.
  • the first liquid temperature range eg greater than -10°C
  • the engine 26 In EV mode, the engine 26 is not started. If the temperature of the low-temperature liquid path flowing through the liquid path heat exchanger 30 exceeds the first liquid temperature range (such as less than -10°C), the ambient temperature is further judged. If the ambient temperature is in the first air temperature range (such as -25°C to -10°C), the electric heating warm air mode is entered; if the ambient temperature is in the second air temperature range (such as greater than -10°C), the heat pump air source heating mode is entered.
  • the first liquid temperature range such as less than -10°C
  • the engine 26 is started, and the high-temperature liquid path temperature flowing through the liquid path heat exchanger 30 is determined. If the high-temperature liquid path temperature is in the second liquid temperature range (such as 40°C to 60°C), the heat pump liquid source large heating mode is entered. If the high-temperature liquid path temperature is in the third liquid temperature range (such as greater than 60°C), the engine warm air mode is entered. If the high-temperature liquid path temperature is less than the second liquid temperature range (such as less than 40°C), the heating is not started to avoid affecting the warm-up of the engine 26. After the engine 26 is started, the high-temperature liquid path temperature is less than 40°C for a short time, which does not affect the subsequent heating.
  • the second liquid temperature range such as 40°C to 60°C
  • the heat pump liquid source large heating mode is entered.
  • the high-temperature liquid path temperature is in the third liquid temperature range (such as greater than 60°C)
  • the engine warm air mode is entered. If the high-temperature liquid path temperature is less than
  • the refrigerant In the battery heat pump heating mode, after the refrigerant is discharged from the compressor 1, it flows through the first pressure and temperature sensor 2, the first solenoid valve 5, the seventh pressure and temperature sensor 38, the battery heat exchanger 37, the sixth pressure and temperature sensor 36, the fourth electronic expansion valve 35, the sixth solenoid valve 28, the liquid circuit heat exchanger 30, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the refrigerant flows through the battery heat exchanger 37, it heats the battery, when it flows through the fourth electronic expansion valve 35 (bidirectional electronic expansion valve), it is throttled, and when it flows through the liquid circuit heat exchanger 30, it absorbs the heat of the liquid source.
  • the heating circulation liquid pump 20 and the electric heater 21 can be turned on to provide heat for the liquid source flowing through the liquid path heat exchanger 30, etc., thereby avoiding the problem of low ambient temperature and insufficient air source heat.
  • the opening adjustment rules for the fourth electronic expansion valve 35 are as follows. Calculate the current superheat of the suction port of the compressor 1 and compare it with the target superheat (such as the fifth target superheat). If the current superheat of the suction port of the compressor 1 is greater than the fifth target superheat, increase the opening of the fourth electronic expansion valve 35 (that is, the valve adjustment direction is open); if the current superheat of the suction port of the compressor 1 is less than the fifth target superheat, reduce the opening of the fourth electronic expansion valve 35 (that is, adjust the valve direction to open); If the current superheat of the suction port of the compressor 1 is equal to the fifth target superheat, the current opening of the fourth electronic expansion valve 35 is maintained (ie, no valve adjustment is required).
  • the target superheat such as the fifth target superheat
  • the fifth target superheat can be a preset calibration value, which does not change with any conditions, so as to ensure that the refrigerant sucked into the compressor 1 is in a superheated gas state, thereby ensuring the safety of the compressor 1.
  • the current superheat of the suction port of the compressor 1 is almost equal to the outlet superheat of the liquid heat exchanger 30.
  • the reason for calculating the current superheat of the suction port of the compressor 1 instead of calculating the outlet superheat of the liquid heat exchanger 30 is that in some systems, it is difficult to set a sensor at the outlet of the liquid heat exchanger 30. However, if it is convenient to set a sensor, of course, the current outlet superheat of the liquid heat exchanger 30 can also be calculated instead of calculating the current suction port superheat of the compressor 1, and there is no limitation here.
  • the speed regulation rules for compressor 1 are as follows. Detect the current inlet temperature of the battery heat exchanger 37 and compare it with the target heating temperature. If the current inlet temperature of the battery heat exchanger 37 is greater than the target heating temperature, reduce the speed of compressor 1; if the current inlet temperature of the battery heat exchanger 37 is less than the target heating temperature, increase the speed of compressor 1; if the current inlet temperature of the battery heat exchanger 37 is equal to the target heating temperature, maintain the current speed of compressor 1.
  • the refrigerant coming out of compressor 1 is in an overheated state, and the pressure and temperature do not correspond (in the overheated state, the temperature rises while the pressure remains unchanged), so the inlet pressure of the battery heat exchanger 37 is not measured, but the inlet temperature of the battery heat exchanger 37 is measured.
  • the speed control of the compressor 1 is based on the outlet pressure of the battery heat exchanger 37
  • the speed control of the compressor 1 in the battery heat pump heating mode is based on the inlet temperature of the battery heat exchanger 37, for at least the following reasons.
  • the inlet temperature of the battery heat exchanger 37 is detected instead of the outlet temperature of the battery heat exchanger 37.
  • the refrigerant coming out of the battery heat exchanger 37 is in liquid state, so the outlet pressure of the battery heat exchanger 37 is not detected.
  • Mode 7 Heating and cooling dual-opening mode
  • the heating dual-on mode is that both the heat pump heating mode and the battery heat pump heating mode are carried out at the same time, and the heat pump circuits used by the heat pump heating mode and the battery heat pump heating mode share a common compressor.
  • the warm air heating mode and the battery heat pump heating mode are superimposed in combination, since the common compressor 1 is not involved, the warm air heating mode and the battery heat pump heating mode are adjusted separately without affecting each other.
  • the heating dual-opening mode is a superposition combination of the heat pump heating mode and the battery heat pump heating mode. Therefore, in the heating dual-opening mode, it is necessary to set the priority adjustment level of the heat pump heating mode and the battery heat pump heating mode.
  • the current heating air outlet temperature can be detected and compared with the target air outlet temperature. If the current heating air outlet temperature ⁇ the target air outlet temperature, and the current in-car temperature ⁇ the in-car set temperature, the battery heat pump heating mode is adjusted first. If the current heating air outlet temperature ⁇ the target air outlet temperature, or the current in-car temperature ⁇ the in-car set temperature, the heat pump heating mode is adjusted first.
  • the battery temperature (such as the battery cell temperature) can be detected and compared with the second target battery cell temperature (for example, 10°C). If the current battery cell temperature ⁇ the second target battery cell temperature, the heat pump heating mode is adjusted first. If the current battery cell temperature ⁇ the second target battery cell temperature, and the current in-vehicle temperature > the in-vehicle set temperature, the battery heat pump heating mode is adjusted first.
  • the second aspect can be judged first.
  • priority adjustment is given: according to the superheat of the suction port of the compressor 1, the opening of the electronic expansion valve (such as the second electronic expansion valve 16 or the third electronic expansion valve 17) corresponding to the current heat pump heating mode is adjusted, and the speed of the compressor 1 is adjusted according to the heating air outlet temperature, and the distribution flow of the fourth electronic expansion valve 35 is adjusted according to the heating air outlet temperature to ensure that the heating requirements of the passenger compartment are met.
  • the opening of the electronic expansion valve such as the second electronic expansion valve 16 or the third electronic expansion valve 17
  • adjusting the opening of the throttling device in the heat pump circuit used in the battery heat pump heating mode according to the heating air outlet temperature includes: if T5>T4+K5, increasing the opening of the throttling device in the refrigeration circuit used in the battery cooling mode; if T4-K4 ⁇ T5 ⁇ T4+K5, maintaining the opening of the throttling device in the refrigeration circuit used in the battery cooling mode; if T4-K5 ⁇ T5 ⁇ T4-K4, reducing the opening of the throttling device in the refrigeration circuit used in the battery cooling mode; if T5 ⁇ T4-K5, closing the throttling device in the refrigeration circuit used in the battery cooling mode, wherein T5 is the heating air outlet temperature, unit °C; T4 is the target air outlet temperature, unit °C; K4 and K5 are temperature compensation coefficients, unit °C, K4 ⁇ K5. Therefore, It can ensure accurate flow distribution, giving priority to the heating needs of the passenger compartment while achieving optimal heat distribution for battery heating.
  • the current heating is not enough to meet the heating demand of the passenger compartment, and the battery heat distribution is reduced; if the current heating outlet temperature T5 is 52°C, the target outlet temperature T4 is 50°C, T4-K4 (48°C) ⁇ T5 ⁇ T4+K5 (55°C), the fourth electronic expansion valve 35 maintains the current opening, indicating that the current heat distribution is relatively appropriate, and the valve opening can be maintained; if the current heating outlet temperature T5 is 40°C, the target outlet temperature T4 is 50°C, 40 ⁇ T4-K5 (45°C), the fourth electronic expansion valve 35 is closed, and the heating demand of the passenger compartment is fully guaranteed.
  • the fourth electronic expansion valve 35 is adjusted according to the superheat of the suction port of the compressor 1, and the speed of the compressor 1 is adjusted according to the inlet temperature of the battery heat exchanger 37.
  • the opening of the electronic expansion valve (such as the second electronic expansion valve 16 or the third electronic expansion valve 17) corresponding to the current heat pump heating mode remains unchanged.
  • the heat pump dehumidification mode may include a first dehumidification mode and a second dehumidification mode.
  • the first dehumidification mode after the refrigerant is discharged from the compressor 1, it flows through the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, the fourth solenoid valve 8, the first electronic expansion valve 13, the in-vehicle evaporator 14, the fifth pressure and temperature sensor 15, the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the first dehumidification mode can be enabled when the ambient temperature is greater than the dehumidification threshold (for example, -5°C).
  • the refrigerant is discharged from the compressor 1, it flows through the first pressure and temperature sensor 2, the in-vehicle condenser 3, the second pressure and temperature sensor 4, and the fourth solenoid valve 8 in sequence, and then is divided into two paths, one path flows through the first electronic expansion valve 13, the in-vehicle evaporator 14, the fifth pressure and temperature sensor 15, and the fourth pressure and temperature sensor 10, and then returns to the compressor 1; the other path flows through the second electronic expansion valve 16, the external heat exchanger 11, the third pressure and temperature sensor 7, the third solenoid valve 9, and the fourth pressure and temperature sensor 10, and then returns to the compressor 1.
  • the second dehumidification mode can be enabled when the ambient temperature is less than or equal to the dehumidification threshold (for example, -5°C).
  • the opening adjustment of the electronic expansion valve can refer to the control of the opening of the electronic expansion valve in other modes above, and the speed adjustment of the compressor 1 can refer to the control of the speed of the compressor 1 in other modes above, which will not be repeated here.
  • thermal management systems of hybrid vehicles in the related art have the following disadvantages.
  • the thermal management system of some hybrid vehicles in the related art lacks exhaust pressure and temperature sensors.
  • the control system cannot control the compressor workload through the pressure and temperature feedback signal, causing the compressor to overload and easily damage.
  • it is unable to output the corresponding duty cycle according to the system high pressure change for efficient and energy-saving operation.
  • the thermal management systems of some hybrid vehicles in the related art lack an intake pressure temperature sensor.
  • the control system cannot control the compression ratio of the compressor for normal operation through the intake pressure and temperature feedback signal, resulting in the compressor operating at no load and the dynamic and static scrolls being easily damaged by wear.
  • the thermal management system of some hybrid vehicles in the related art lacks an evaporator outlet pressure temperature sensor in the vehicle.
  • the flow of the electronic expansion valve cannot be controlled through the sensor feedback signal, resulting in poor cooling effect of the whole vehicle.
  • the present invention also proposes a computer-readable storage medium, which stores a computer program, and the computer program is suitable for being executed by a processor to implement the thermal management control method according to an embodiment of the present invention.
  • the technical effect is consistent with the thermal management control method of the embodiment of the present invention, and will not be repeated here.
  • the present invention further proposes a thermal management control device 401 including a processor 4011 and a memory 4012 .
  • the thermal management control device 401 may also include a thermal management system 4013 .
  • the processor 4011 is used to control the overall operation of the thermal management control device 401 to complete all or part of the steps in the thermal management control method provided in the above method embodiment.
  • the memory 4012 is used to store various types of data to support the operation of the thermal management control device 401, and these data may include, for example, instructions for any application or method for operating on the thermal management control device 401.
  • the memory 4012 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, disk or optical disk.
  • the thermal management system 4013 may include the thermal management control system shown in FIG. 1 .
  • the thermal management control device 401 can be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable gate arrays (FPGA), controllers, microcontrollers, microprocessors or other electronic components to execute the data relay method provided in the above method embodiments.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to execute the data relay method provided in the above method embodiments.
  • the present invention also provides a vehicle 300, including a thermal management control device 401 according to an embodiment of the present invention.
  • a vehicle 300 including a thermal management control device 401 according to an embodiment of the present invention.
  • the technical effect is consistent with the thermal management control method according to the embodiment of the present invention, and will not be described in detail here.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.

Abstract

一种热管理控制方法、热管理控制设备和混合动力车辆,混合动力车辆包括多种驱动模式和多种乘员舱采暖模式,各驱动模式分别对应相应的判断规则,判断规则用于选取相应的乘员舱采暖模式,热管理控制方法包括:获取当前的驱动模式;基于获取的驱动模式,进入相应的判断规则;根据判断规则的判断结果,进入相应的乘员舱采暖模式,以合理利用热源,达到经济节能的采暖效果。

Description

热管理控制方法、热管理控制设备和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2022年10月26日提交的、名称为“热管理控制方法、热管理控制设备和混合动力车辆”的、中国专利申请号“202211320913.2”的优先权。
技术领域
本申请涉及车辆技术领域,具体涉及一种热管理控制方法、热管理控制设备和混合动力车辆。
背景技术
相关技术中的混合动力汽车,通常具备纯电模式和混合动力模式,但是,在两种模式下,制热模式都是相同的,无法合理利用热源,达到经济节能的制热效果,有待改进。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种用于车辆的热管理控制方法、计算机可读存储介质和热管理控制设备和混合动力车辆,能够根据驱动模式的不同选用不同的采暖模式,以合理利用热源,达到经济节能的采暖效果。
根据本申请第一方面实施例的用于车辆的热管理控制方法,所述车辆包括多种驱动模式和多种乘员舱采暖模式,各所述驱动模式分别对应相应的判断规则,所述判断规则用于选取相应的乘员舱采暖模式,所述热管理控制方法包括:获取当前的驱动模式;基于获取的驱动模式,进入相应的判断规则;根据判断规则的判断结果,进入相应的乘员舱采暖模式。根据本发明的用于混合动力车辆的热管理控制方法,能够根据驱动模式的不同选用不同的采暖模式,以合理利用热源,达到经济节能的采暖效果。
根据本申请第二方面实施例的计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于被处理器执行以实现根据本发明第一方面实施例的热管理控制方法。
根据本申请第三方面实施例的热管理控制设备,其特征在于,包括处理器和存储器,所述处理器和存储器相互连接;所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置为用于调用所述程序指令,执行根据本发明第一方面实施例的所述的热管理控制方法。
根据本申请第四方面实施例的车辆,包括根据本发明第三方面实施例的热管理控制设备。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本发明一个实施例的用于车辆的热管理控制方法的原理图;
图2是根据本发明一个实施例的混合动力车辆的热管理控制系统的示意图;
图3是根据本发明一个实施例的用于混合动力车辆的热管理控制方法的原理图;
图4是根据本发明一个实施例的用于混合动力车辆的热管理控制方法的原理图;
图5是根据本发明一个实施例的用于混合动力车辆的热管理控制方法的原理图;
图6是根据本发明一个实施例的用于混合动力车辆的热管理控制方法的原理图;
图7是根据一示例性实施例示出的一种热管理控制设备的框图;
图8是根据一示例性实施例示出的一种车辆的框图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,首先描述根据本发明第一方面实施例的用于车辆的热管理控制方法。
在本发明的实施例中,车辆以混合动力车辆为例描述,混合动力车辆包括多种驱动模式和多种乘员舱采暖模式。
例如,混合动力车辆可以包括电动机和发动机,混合动力车辆可以至少具有两种驱动模式,分别为纯电模式(简称EV模式,EV为Electric vehicle的缩写)和混合动力模式(简称HEV模式,HEV为Hybrid Electric Vehicle的缩写),在纯电模式下,采用电动机驱动车辆行驶;在混合动力模式下,采用电动机和发动机混合驱动车辆行驶。
例如,乘员舱采暖模式可以分为:利用压缩机的热泵采暖模式、不利用压缩机的暖风采暖模式。其中,热泵采暖模式又可以分为:采用空气作为热源的热泵空气源采暖模式、利用液路作为热源的热泵液源采暖模式。暖风采暖模式可以分为:采用发动机作为热源的发动机暖风模式、利用电加热器作为热源的电加热暖风模式,等等。
在本发明的实施例中,各驱动模式分别对应相应的判断规则,判断规则用于选取相应的乘员舱采暖模式。结合图2,热管理控制方法可以包括:S1、获取当前的驱动模式;S2、基于获取的驱动模式,进入相应的判断规则;S2、根据判断规则的判断结果,进入相应的乘员舱采暖模式。
这样,可以通过针对不同的驱动模式设定相应的判断规则,根据判断规则的判断结果,选取当前驱动模式对应的适宜的乘员舱采暖模式,从而可以兼顾采暖需求和能源合理利用,达到经济节能且有效的采暖目的。简言之,根据本发明的用于混合动力车辆的热管理控制方法,能够根据驱动模式的不同选用不同的采暖模式,以合理利用热源,达到经济节能的采暖效果。
在一些实施例中,多种驱动模式包括HEV模式,多种乘员舱采暖模式包括:第一热泵采暖模式和第一暖风模式,第一热泵采暖模式采用的热泵回路与吸收发动机热量的第一液路换热,第一暖风模式采用的暖风回路吸收发动机的热量。
例如结合图2,在第一热泵采暖模式(例如本文所述的热泵液源大采暖模式)下,运行包括压缩机1的热泵回路,该热泵回路可以包括压缩机1、冷凝器(例如图2中所示的车内冷凝器3)、节流装置(例如图2中所示的第三电子膨胀阀17)和蒸发器(例如图2中所示的液路换热器30),其中,冷凝器(例如图2中所示的车内冷凝器3)用于为乘员舱采暖,蒸发器(例如图2中所示的液路换热器30)与吸收发动机热量的第一液路(例如图2中所示 的发动机26和发动机循环液泵27所在液路)换热,采用发动机的热量作为该热泵回路的热源。
例如结合图2,在第一暖风模式(例如本文所述的发动机暖风模式)下,运行不包括压缩机的暖风回路,该暖风回路可以包括暖风芯体22、发动机26和发动机循环液泵27,发动机循环液泵27将发动机26的热量传递给暖风芯体22,暖风芯体22采用发动机26的热量为乘员舱采暖。
在本发明的实施例中,结合图3,热管理控制方法可以包括:S11、在HEV模式下,获取第一液路的温度;S12、根据第一液路的温度所在区间,选择进入第一热泵采暖模式或第一暖风模式。即获取到当前的驱动模式为HEV模式时,基于HEV模式进入的判断规则为:判断第一液路的温度所在区间,根据第一液路的温度所在区间,选择是进入第一热泵采暖模式、还是进入第一暖风模式。
基于上述方案,在HEV模式下,由于发动机26是工作的,从而可以根据发动机26的热量情况,选择是采用与发动机26热量相关的第一热泵采暖模式,还是采用与发动机26热量相关的第一暖风模式,从而达到经济节能且有效的采暖效果。
例如,“根据第一液路的温度所在区间,选择进入第一热泵采暖模式或第一暖风模式”具体可以包括:当第一液路温度小于第一设定温度(如第一设定温度可以为60℃)时,进入第一热泵采暖模式;当第一液路温度大于第一设定温度(如第一设定温度可以为60℃)时,进入第一暖风模式。
即当第一液路的温度不足时,可以采用利用压缩机1的热泵回路进行采暖,从而保证乘员舱的采暖效果。而当第一液路的温度足够时,可以采用不利用压缩机1的暖风回路进行采暖,从而实现节能的效果。
例如,“根据第一液路的温度所在区间,选择进入第一热泵采暖模式或第一暖风模式”进一步可以包括:当第一液路的温度小于第二设定温度(如第二设定温度可以为40℃)时,不进入第一热泵采暖模式和第一暖风模式。其中,第二设定温度小于第一设定温度。
也就是说,当第一液路的温度大于第二设定温度(如40℃)且小于第一设定温度(如60℃)时,进入第一热泵采暖模式,而当第一液路的温度小于第二设定温度(如40℃)时,不进入第一热泵采暖模式、也不进入第一暖风模式。由此,可以满足发动机26在低温下的启动预热需求,保证车辆可以正常行驶工作。
需要说明的是,当第一液路的温度等于第一设定温度时,可以设定为进入第一热泵采暖模式,或者也可以设定为进入第一暖风模式,这里不作限制。当第一液路的温度等于第二设定温度时,可以设定为进入第一热泵采暖模式,或者也可以设定为不进入第一热泵采暖模式,这里不作限制。
在一些实施例中,多种驱动模式包括EV模式,多种乘员舱采暖模式包括:第二热泵采暖模式、第三热泵采暖模式和第二暖风模式,第二热泵采暖模式采用的热泵回路与吸收电动机热量的第二液路换热,第三热泵采暖模式采用的热泵回路与空气热源换热,第二暖风模式采用的暖风回路吸收电加热器21的热量。
例如结合图2,在第二热泵采暖模式(例如本文所述的热泵液源小采暖模式)下,运行包括压缩机1的热泵回路,该热泵回路可以包括压缩机1、冷凝器(例如图2中所示的车内冷凝器3)、节流装置(例如图2中所示的第三电子膨胀阀17)和蒸发器(例如图2中所示的液路换热器30),其中,冷凝器(例如图2中所示的车内冷凝器3)用于为乘员舱采暖,蒸发器(例如图2中所示的液路换热器30)与吸收电动机热量的第二液路(例如图2中所示的低温回路冷却液泵31和电动机及电控制系统29所在液路)换热,采用电动机等的热量作为该热泵回路的热源。
例如结合图2,在第三热泵采暖模式(例如本文所述的热泵空气源采暖模式)下,运行包括压缩机1的热泵回路,该热泵回路可以包括压缩机1、冷凝器(例如图2中所示的车内冷凝器3)、节流装置(例如图2中所示的第二电子膨胀阀16)和蒸发器(例如图2中所示的 车外换热器11),其中,冷凝器(例如图2中所示的车内冷凝器3)用于为乘员舱采暖,蒸发器(例如图2中所示的车外换热器11)与车外空气换热,采用空气源的热量作为该热泵回路的热源。
例如结合图2,在第二暖风模式(例如本文所述的电加热暖风模式)下,运行不包括压缩机的暖风回路,该暖风回路可以包括暖风芯体22、采暖循环液泵20和电加热器21,采暖循环液泵20将电加热器21产生的热量传递给暖风芯体22,暖风芯体22采用电加热器21产生的热量为乘员舱采暖。
在本发明的实施例中,结合图4,热管理控制方法可以包括:S21、在EV模式下,获取第二液路的温度和车外环境的温度;S22、根据第二液路的温度所在区间以及车外环境的温度所在区间,选择进入第二热泵采暖模式、第三热泵采暖模式和第二暖风模式中的一个。即获取到当前的驱动模式为EV模式时,基于EV模式进入的判断规则为:判断第二液路的温度所在区间和车外环境的温度所在区间,根据第二液路的温度所在区间和车外环境的温度所在区间,选择是进入第二热泵采暖模式、第三热泵采暖模式和第二暖风模式中的哪一个。
基于上述方案,在EV模式下,由于电动机是工作的、发动机26是不工作的,从而可以选择与电动机的热量相关的第二热泵采暖模式采暖,还是采用与空气源热量相关的第三热泵采暖模式,或是采用电加热器21作为热源的第二暖风模式采暖,从而达到经济节能且有效的采暖效果。
例如,“根据第二液路的温度所在区间以及车外环境的温度所在区间,选择进入第二热泵采暖模式、第三热泵采暖模式和第二暖风模式中的一个”具体可以包括:当第二液路的温度大于第三设定温度(如第三设定温度可以为-10℃)时,进入第二热泵采暖模式;当第二液路的温度小于第三设定温度(如第三设定温度可以为-10℃)时,进入第三热泵采暖模式或第二暖风模式。
即当第二液路的温度足够时,可以采用电动机的热量作为热源的第二热泵采暖模式采暖,从而实现节能的效果。而当第二液路的温度不足时,可以采用以空气源作为热源的第三热泵采暖模式进行采暖、或者采用以电加热器21作为热源的第二暖风模式采暖,从而保证乘员舱的采暖效果。
例如,“当第二液路的温度小于第三设定温度时,选择进入第三热泵采暖模式或第二暖风模式”进一步可以包括:当车外环境的温度大于第四设定温度(如第四设定温度可以为-10℃)时,进入第三热泵采暖模式;当车外环境的温度小于第四设定温度时,进入第二暖风模式。
即当车外环境的温度足够时,可以采用以空气源作为热源的第三热泵采暖模式进行采暖,从而实现节能的效果。而当车外环境的温度不足时,采用以电加热器21作为热源的第二暖风模式采暖,从而保证乘员舱的采暖效果。
需要说明的是,当第二液路的温度等于第三设定温度时,可以设定为进入第二热泵采暖模式、第三热泵采暖模式和第二暖风模式中的任一个,这里不作限制。当车外环境的温度等于第四设定温度时,可以设定为进入第三热泵采暖模式,或者也可以设定为进入第二暖风模式,这里不作限制。
在一些实施例中,多种乘员舱采暖模式包括至少一种热泵采暖模式(例如上文所述的第一热泵采暖模式、第二热泵采暖模式、第三热泵采暖模式等,这里不作赘述),混合动力车辆还包括电池热泵加热模式。
例如结合图2,在电池热泵加热模式下,运行包括压缩机1的热泵回路,该热泵回路可以包括压缩机1、冷凝器(例如图2中所示的电池换热器37)、节流装置(例如图2中所示的第四电子膨胀阀35)和蒸发器(例如图2中所示的液路换热器30),其中,冷凝器(例如图2中所示的电池换热器37)用于为电池加热,蒸发器(例如图2中所示的液路换热器30)与吸收电加热器21热量的第一液路(例如图2中所示的采暖循环液泵20和电加热器21所在液路)换热,采用电加热器21的热量作为该热泵回路的热源。
当然,本发明不限于此,在本发明的其他实施例中,电池热泵加热模式中的热泵回路的蒸发器(例如图2中所示的液路换热器30)还可以吸收其他热量,例如图2中所示的低温回路冷却液泵31和电动机及电控制系统29所在第二液路的热量等,这里不作赘述。
综上所述,本公开实施例的车辆热管理系统,可以结合新能源车的驱动工况、环境温度、热量管理需求、整车中液冷回路的温度,灵活的调整车辆的热管理工作模式,实现整车能量管理的优化,达到节能的目的,例如在HEV模式下,结合环境温度、发动机热管理系统的温度和热量管理需求,优先从发动机取热,同时实现了发动机的散热和乘员舱的加热,在发动机热量不足时,才启动压缩机或者电加热器加热。在EV模式下,结合电动机及其电控制系统的温度,区分空气源热泵和电动机热源热泵的工作模式。
在一些实施例中,混合动力车辆包括制热双开模式,在制热双开模式下,热泵采暖模式(例如上文所述的第一热泵采暖模式、第二热泵采暖模式、第三热泵采暖模式其中一种)和电池热泵加热模式两者同时进行且两者各自采用的热泵回路共用压缩机1。由此,可以同时实现乘员舱采暖和电池加热,并采用同一个压缩机1,可以简化热管理系统,降低成本。
在一些实施例中,结合图5,热管理控制方法可以包括:S4、在制热双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;S5、根据获取的温度所在区间,将热泵采暖模式和电池热泵加热模式中一个设定为第一优先调节对象;S6、根据第一优先调节对象的调节规则,对压缩机1的转速进行调节。
由于在制热双开模式下,热泵采暖模式和电池热泵加热模式两者同时进行且两者各自采用的热泵回路共用压缩机1,因此,基于本发明的控制方法,可以根据两者的优先等级对压缩机1的转速进行,从而使得压缩机1的转速可以更好地协调乘员舱采暖和电池加热两方面要求。
例如,当将热泵采暖模式设定为第一优先调节对象时,根据热泵采暖模式的调节规则,对压缩机1的转速进行调节,以使乘员舱采暖效果作为主要调节目标,较好地满足乘员舱采暖需求。例如,当将电池热泵加热模式设定为第一优先调节对象时,根据电池热泵加热模式的调节规则,对压缩机1的转速进行调节,以使电池加热效果作为主要调节目标,较好地满足电池加热需求。
例如,“在制热双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将热泵采暖模式和电池热泵加热模式中一个设定为第一优先调节对象”具体可以包括:获取电池温度;当电池温度大于第五设定温度(例如第五设定温度可以为10℃)时,将热泵采暖模式设定为第一优先调节对象。也就是说,在电池温度足够时,可以使乘员舱采暖效果作为主要调节目标,较好地满足乘员舱采暖需求。
例如,“在制热双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将热泵采暖模式和电池热泵加热模式中一个设定为第一优先调节对象”进一步可以包括:当电池温度小于第五设定温度(例如第五设定温度可以为10℃)时,将电池热泵加热模式设定为第一优先调节对象;或者,获取乘员舱温度,当电池温度小于第五设定温度,且乘员舱温度大于目标车内温度时,将电池热泵加热模式设定为第一优先调节对象;或者,获取采暖出风温度,当电池温度小于第五设定温度,且采暖出风温度大于目标出风温度时,将电池热泵加热模式设定为第一优先调节对象。也就是说,在电池温度不足时,或者,在电池温度不足、但乘员舱温度(或采暖出风温度)足够时,可以使电池加热效果作为主要调节目标,较好地满足电池加热需求,保证电池可以有效工作,满足行车要求。
例如,“在制热双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将热泵采暖模式和电池热泵加热模式中一个设定为第一优先调节对象”具体可以包括:获取采暖出风温度和乘员舱温度;当采暖出风温度大于目标出风温度,且乘员舱温度大于目标车内温度时,将电池热泵加热模式设定为第 一优先调节对象。也就是说,在乘员舱温度和采暖出风温度均足够时,可以使电池加热效果作为主要调节目标,较好地满足电池加热需求,保证电池可以有效工作,满足行车要求。
例如,“在制热双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将热泵采暖模式和电池热泵加热模式中一个设定为第一优先调节对象”具体可以包括:获取采暖出风温度,当采暖出风温度小于目标出风温度时,将热泵采暖模式设定为第一优先调节对象;或者,获取乘员舱温度,当乘员舱温度小于目标车内温度时,将热泵采暖模式设定为第一优先调节对象。也就是说,在乘员舱温度或采暖出风温度不足时,可以使乘员舱采暖效果作为主要调节目标,较好地满足乘员舱采暖需求。
在一些实施例中,第一优先调节对象为热泵采暖模式的调节规则可以包括:根据采暖出风温度调节压缩机1的转速。由此,可以保证采暖出风温度满足采暖要求。
例如,检测当前采暖出风温度(如吹脚温度),与目标出风温度比较。如果当前采暖出风温度大于目标出风温度,降低压缩机1的转速;如果当前采暖出风温度小于目标出风温度,增大压缩机1的转速;如果当前采暖出风温度等于目标出风温度,维持当前压缩机1的转速。其中,目标出风温度可以根据用户设定温度、车内温度、车外温度、太阳光辐射修正值而确定,以保证采暖效果。
在一些实施例中,第一优先调节对象为热泵采暖模式的调节规则可以包括:根据压缩机的吸入口过热度,调节热泵采暖模式采用的热泵回路中的节流装置(例如图2中所示的第二电子膨胀阀16或第三电子膨胀阀17)的开度。由此,可以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
例如,计算当前压缩机1的吸入口过热度(或液路换热器30的出口过热度),与目标过热度比较。如果当前压缩机1的吸入口过热度大于目标过热度,增大第三电子膨胀阀17的开度(即调阀方向为开阀);如果当前压缩机1的吸入口过热度小于目标过热度,减小第三电子膨胀阀17的开度(即调阀方向为关阀);如果当前压缩机1的吸入口过热度等于目标过热度,维持当前第三电子膨胀阀17的开度(即无需调阀)。其中,目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
另外,在上述实施例中,压缩机1的吸入口过热度与液路换热器30的出口过热度几乎相等,本发明计算当前压缩机1的吸入口过热度,而非计算液路换热器30的出口过热度的原因在于,有些系统中,液路换热器30的出口难以设置传感器,当然,如果方便设置传感器的话,也可以通过计算当前液路换热器30的出口过热度代替计算当前压缩机1的吸入口过热度,这里不作限制。
在一些实施例中,第一优先调节对象为热泵采暖模式的调节规则可以包括:根据采暖出风温度,调节电池热泵加热模式采用的热泵回路中的节流装置(例如图2中所示的第四电子膨胀阀35)的开度。由此,可以保证流量分配,满足乘员舱采暖需求。
在一些实施例中,根据所述采暖出风温度,调节所述电池热泵加热模式采用的热泵回路中的节流装置的开度包括:若T5>T4+K5,增大所述电池冷却模式采用的制冷回路中的节流装置的开度;若T4-K4≤T5≤T4+K5,维持所述电池冷却模式采用的制冷回路中的节流装置的开度;若T4-K5≤T5<T4-K4,减小所述电池冷却模式采用的制冷回路中的节流装置的开度;若T5<T4-K5,关闭所述电池冷却模式采用的制冷回路中的节流装置,其中,T5为采暖出风温度,单位℃;T4为目标出风温度,单位℃;K4、K5为温度补偿系数,单位℃,K4<K5。由此,可以保证精准的流量分配,优先满足乘员舱采暖需求的同时,实现对电池加热的最优热量分配。
例如,“根据采暖出风温度,调节电池热泵加热模式采用的热泵回路中的节流装置”的具体方法可以为:假设:K4=2℃、K5=5℃,若当前采暖出风温度T5为56℃,目标出风温度T4为50℃,T5>T4+5(55℃),将第四电子膨胀阀35的开度增大,表示当前采暖出风温度 满足了乘员舱采暖,可以适当调大电池侧的热量分配;若当前采暖出风温度T5为46℃,目标出风温度T4为50℃,T4-K5(45℃)≤T5<T4-K4(48℃),将第四电子膨胀阀35的开度减小,此时当前采暖不足以满足乘员舱加热需求,减少电池热量分配;若当前采暖出风温度T5为52℃,目标出风温度T4为50℃,T4-K4(48℃)≤T5≤T4+K5(55℃),第四电子膨胀阀35维持当前开度,说明当前热量分配比较合适,保持阀的开度即可;若当前采暖出风温度T5为40℃,目标出风温度T4为50℃,40<T4-K5(45℃),关闭第四电子膨胀阀35,全力保证乘员舱加热需求。
在一些实施例中,第一优先调节对象为电池热泵加热模式的调节规则包括:根据电池热泵加热模式采用的热泵回路中的电池换热器37的入口温度,调节压缩机1的转速。由此,可以较好地保证电池的加热需求,而且可以避免电池换热器37的温度过高导致电池温度过高的问题,提高电池的工作可靠性和安全性。
例如,检测当前电池换热器37的入口温度,与目标加热温度比较。如果当前电池换热器37的入口温度大于目标加热温度,降低压缩机1的转速;如果当前电池换热器37的入口温度小于目标加热温度,增大压缩机1的转速;如果当前电池换热器37的入口温度等于目标加热温度,维持当前压缩机1的转速。
需要说明的是,在电池热泵加热模式下,从压缩机1出来的冷媒是过热状态,压力和温度不对应(过热状态下,温度升高而压力不变),所以不是测电池换热器37的入口压力,而是测电池换热器37的入口温度。
在一些实施例中,第一优先调节对象为电池热泵加热模式的调节规则包括:根据压缩机的吸入口过热度,调节电池热泵加热模式采用的热泵回路中的节流装置(例如图2中所示的第四电子膨胀阀35)的开度。由此,可以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
例如,计算当前压缩机1的吸入口过热度,与目标过热度比较。如果当前压缩机1的吸入口过热度大于目标过热度,增大第四电子膨胀阀35的开度(即调阀方向为开阀);如果当前压缩机1的吸入口过热度小于目标过热度,减小第四电子膨胀阀35的开度(即调阀方向为关阀);如果当前压缩机1的吸入口过热度等于目标过热度,维持当前第四电子膨胀阀35的开度(即无需调阀)。其中,目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
此外,在上述实施例中,压缩机1的吸入口过热度与液路换热器30的出口过热度几乎相等,本发明计算当前压缩机1的吸入口过热度,而非计算液路换热器30的出口过热度的原因在于,有些系统中,液路换热器30的出口难以设置传感器,但是,如果方便设置传感器的话,当然,也可以通过计算当前液路换热器30的出口过热度代替计算当前压缩机1的吸入口过热度,这里不作限制。
在一些实施例中,第一优先调节对象为电池热泵加热模式的调节规则包括:热泵采暖模式采用的热泵回路中的节流装置(例如图2中所示的第二电子膨胀阀16或第三电子膨胀阀17)维持开度不变。由此,可以简化控制。
在一些实施例中,混合动力车辆还包括乘员舱制冷模式和电池冷却模式。
例如结合图2,在乘员舱制冷模式下,运行包括压缩机1的制冷回路,该制冷回路可以包括压缩机1、冷凝器(例如图2中所示的车外换热器11)、节流装置(例如图2中所示的第一电子膨胀阀13)和蒸发器(例如图2中所示的车内蒸发器14),其中,蒸发器(例如图2中所示的车内蒸发器14)用于为乘员舱制冷。
例如结合图2,在电池冷却模式下,运行包括压缩机1的制冷回路,该制冷回路可以包括压缩机1、冷凝器(例如图2中所示的车外换热器11)、节流装置(例如图2中所示的第四电子膨胀阀35)和蒸发器(例如图2中所示的电池换热器37),其中,蒸发器(例如图2中所示的电池换热器37)用于为电池冷却。
在一些实施例中,混合动力车辆包括制冷双开模式,在制冷双开模式下,控制乘员舱制 冷模式和电池冷却模式两者同时进行且两者各自采用的制冷回路共用压缩机1。由此,可以同时实现乘员舱制冷和电池冷却,并采用同一个压缩机1,可以简化热管理系统,降低成本在一些实施例中,结合图6,热管理控制方法包括:S7、在制冷双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;S8、根据获取的温度所在区间,将乘员舱制冷模式和电池冷却模式中一个设定为第二优先调节对象;S9、根据第二优先调节对象的调节规则,对压缩机的转速进行调节。
由于在制冷双开模式下,乘员舱制冷模式和电池冷却模式两者同时进行且两者各自采用的制冷回路共用压缩机1,因此,基于本发明的控制方法,可以根据两者的优先等级对压缩机1的转速进行,从而使得压缩机1的转速可以更好地协调乘员舱制冷和电池冷却两方面要求。
例如,当将乘员舱制冷模式设定为第二优先调节对象时,根据乘员舱制冷模式的调节规则,对压缩机1的转速进行调节,以使乘员舱制冷效果作为主要调节目标,较好地满足乘员舱制冷需求。例如,当将电池冷却模式设定为第二优先调节对象时,根据电池冷却模式的调节规则,对压缩机1的转速进行调节,以使电池冷却效果作为主要调节目标,较好地满足电池冷却需求。
例如,“在制冷双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将乘员舱制冷模式和电池冷却模式中一个设定为第二优先调节对象”具体可以包括:获取电池温度;当电池温度大于第六设定温度(例如第六设定温度可以为45℃)时,将电池冷却模式设定为第二优先调节对象。也就是说,在电池温度较高时,可以使电池冷却效果作为主要调节目标,较好地满足电池冷却需求。
例如,“在制冷双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将乘员舱制冷模式和电池冷却模式中一个设定为第二优先调节对象”进一步可以包括:获取乘员舱温度,当电池温度小于第六设定温度,且乘员舱温度小于目标车内温度时,将电池冷却模式设定为第二优先调节对象;或者,获取制冷出风温度,当电池温度小于第六设定温度,且制冷出风温度小于目标出风温度时,将电池冷却模式设定为第二优先调节对象。也就是说,在电池温度较低、且乘员舱温度(或制冷出风温度)较低时,可以使电池冷却效果作为主要调节目标,较好地满足电池冷却需求,保证电池可以有效工作,满足行车要求。
例如,“在制冷双开模式下,获取混合动力车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;根据获取的温度所在区间,将乘员舱制冷模式和电池冷却模式中一个设定为第二优先调节对象”具体可以包括:当电池温度小于第六设定温度时,将乘员舱制冷模式设定为第二优先调节对象;或者,获取乘员舱温度,当电池温度小于第六设定温度,且乘员舱温度大于目标车内温度时,将乘员舱制冷模式设定为第二优先调节对象;或者,获取制冷出风温度,当电池温度小于第六设定温度,且制冷出风温度大于目标出风温度时,将乘员舱制冷模式设定为第二优先调节对象。也就是说,在电池温度较低时,或者在电池温度较低、且制冷出风温度(或乘员舱温度)较高时,可以使乘员舱制冷效果作为主要调节目标,较好地满足乘员舱制冷需求。
在一些实施例中,第二优先调节对象为乘员舱制冷模式的调节规则包括:根据制冷出风温度调节压缩机1的转速。由此,可以较好地满足乘员舱制冷需求。
例如,检测当前制冷出风温度(如吹面温度),与目标出风温度比较。如果当前制冷出风温度小于目标出风温度,降低压缩机1的转速;如果当前制冷出风温度大于目标出风温度,增大压缩机1的转速;如果当前制冷出风温度等于第一目标出风温度,维持当前压缩机1的转速。其中,目标出风温度可以根据用户设定温度、车内温度、车外温度、太阳光辐射修正值而确定,以保证制冷效果。
在一些实施例中,第二优先调节对象为乘员舱制冷模式的调节规则包括:根据压缩机的吸入口过热度,调节乘员舱制冷模式采用的制冷回路中的节流装置(例如图2中所示的第 一电子膨胀阀13)的开度。由此,可以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
例如,计算当前车内蒸发器14的出口过热度(与压缩机1的吸入口过热度几乎相等),与目标过热度进行比较。如果当前车内蒸发器14的出口过热度大于目标过热度,增大第一电子膨胀阀13的开度(即调阀方向为开阀);如果当前车内蒸发器14的出口过热度小于目标过热度,减小第一电子膨胀阀13的开度(即调阀方向为关阀);如果当前车内蒸发器14的出口过热度等于目标过热度,维持当前第一电子膨胀阀13的开度(即无需调阀)。其中,目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
在一些实施例中,根据制冷出风温度,调节电池冷却模式采用的制冷回路中的节流装置的开度。由此,可以保证流量分配,满足乘员舱制冷需求。
具体而言:所述根据所述制冷出风温度,调节所述电池冷却模式采用的制冷回路中的节流装置的开度包括:若T2<T1+K1,增大所述电池冷却模式采用的制冷回路中的节流装置的开度;若T1+K1≤T2≤T1+K2,维持所述电池冷却模式采用的制冷回路中的节流装置的开度;若T1+K2<T2≤T1+K3,减小所述电池冷却模式采用的制冷回路中的节流装置的开度;若T2>T1+K3,关闭所述电池冷却模式采用的制冷回路中的节流装置,其中,T2为制冷出风温度,单位℃;T1为目标制冷温度,单位℃;K1、K2、K3为温度补偿系数,单位℃,K1<K2<K3。
例如,“根据制冷出风温度,调节电池冷却模式采用的制冷回路中的节流装置的开度”的具体方法可以为:假设:K1=2℃、K2=3℃、K3=7℃,若当前制冷出风温度T2为5℃,目标制冷温度为T1为4℃,如果T2<T1+K1,将第四电子膨胀阀35的开度增大,表示当前制冷出风温度满足了乘员舱制冷,可以适当调大电池侧的制冷分配;若当前制冷出风温度T2为8℃,目标制冷温度为T1为4℃,T2≤T1+7,将第四电子膨胀阀35的开度减小,表示当前乘员舱制冷不足,减少电池制冷分配;若当前制冷出风温度T2为6℃,目标制冷温度为T1为4℃,T1+2≤T2≤T1+3,第四电子膨胀阀35维持当前开度,说明当前制冷分配比较合适,保持阀的开度即可;若当前制冷出风温度T2为15℃,目标制冷温度为T1为4℃,T2>T1+7,关闭第四电子膨胀阀35,全力保证乘员舱制冷需求。在一些实施例中,第二优先调节对象为电池冷却模式的调节规则包括:根据电池冷却模式采用的制冷回路中的电池换热器37的出口压力,调节压缩机转速。由此,可以满足电池冷却需求。
例如,检测当前电池换热器37的出口压力,与目标压力值比较。如果当前电池换热器37的出口压力大于目标压力值,降低压缩机1的转速;如果当前电池换热器37的出口压力小于目标压力值,增大压缩机1的转速;如果当前电池换热器37的出口压力等于目标压力值,维持当前压缩机1的转速。
其中,为保证对电池的冷却效果,本发明以电池换热器37的出口冷媒的饱和状态和过热度进行衡量,这个饱和状态对应有饱和温度,同时饱和温度有对应的压力(冷媒在大于这个饱和温度的过热状态下压力基本不变),因此这里通过电池换热器37的出口压力作为目标来调整压缩机1的转速,以保证冷媒在预定温度下达到饱和,再通过调整第四电子膨胀阀35的开度来调节冷媒的过热度以达到对电池的冷却效果。不直接检测电池本身温度的原因,一是电池温度变化有延迟,二是电池本身具有一定体积,但检测的只是某个或多个位置,无法准确反映电池温度。
在一些实施例中,第二优先调节对象为电池冷却模式的调节规则包括:根据压缩机的吸入口过热度,调节电池冷却模式采用的制冷回路中的节流装置(例如图2中所示的第四电子膨胀阀35)的开度。由此,可以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
例如,计算当前电池换热器37的出口过热度(与压缩机1的吸入口过热度几乎相等),与目标过热度比较。如果当前电池换热器37的出口过热度大于目标过热度,增大第四电子 膨胀阀35的开度(即调阀方向为开阀);如果当前车电池换热器37的出口过热度小于目标过热度,减小第四电子膨胀阀35的开度(即调阀方向为关阀);如果当前电池换热器37的出口过热度等于目标过热度,维持当前第四电子膨胀阀35的开度(即无需调阀)。其中,目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
在一些实施例中,第二优先调节对象为电池冷却模式的调节规则包括:乘员舱制冷模式采用的制冷回路中的节流装置(例如图2中所示的第一电子膨胀阀13)维持开度不变。由此,可以简化控制。
下面,描述根据本发明一个具体实施例的混合动力车辆的热管理控制方法。
混合动力车辆包括电动机和发动机,混合动力车辆具有至少两种驱动模式,分别为纯电模式(简称EV模式,EV为Electric vehicle的缩写)和混合动力模式(简称HEV模式,HEV为Hybrid ElectricVehicle的缩写),在纯电模式下,采用电动机驱动车辆行驶;在混合动力模式下,采用电动机和发动机混合驱动车辆行驶。
如图2所示,混合动力车辆具有热管理系统,热管理系统可以包括:压缩机1、第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第一电磁阀5、第二电磁阀6、第三压力温度传感器7、第四电磁阀8、第三电磁阀9、第四压力温度传感器10、车外换热器11、鼓风机12、第一电子膨胀阀13、车内蒸发器14、第五压力温度传感器15、第二电子膨胀阀16、第三电子膨胀阀17、高温散热器18、五通阀19、采暖循环液泵20、电加热器21(如PTC,Positive Temperature Coefficient的缩写,热敏电阻)、暖风芯体22、高温散热器风扇23、高温回路三通阀24、第五电磁阀25、发动机26、发动机循环液泵27、第六电磁阀28、电动机及电控制系统29、液路换热器30、低温回路冷却液泵31、水中冷器32、低温回路三通阀33、低温散热器34、第四电子膨胀阀35、第六压力温度传感器36、电池换热器37、第七压力温度传感器38、第七电磁阀39、低温散热器风扇40、单向阀41等。
由此,热管理系统可以包括电动机侧液路系统、发动机侧液路系统、乘员舱热管理系统、动力电池热管理系统。其中,电动机侧液路系统包括:低温散热器风扇40、电动机及电控制系统29、液路换热器30的低温液路、低温回路冷却液泵31、水中冷器32、低温回路三通阀33、低温散热器34。其中,发动机侧液路系统包括:高温散热器18、五通阀19、采暖循环液泵20、电加热器21、暖风芯体22、高温散热器风扇23、高温回路三通阀24、发动机26、发动机循环液泵27、液路换热器30的高温液路。各系统中部件的连接关系可以参考图2所示,这里不作赘述。
本实施例的热管理系统,至少具备八种工作模式,下面分别描述。
模式一、乘员舱制冷模式
在乘员舱制冷模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第二电磁阀6、第三压力温度传感器7、车外换热器11、第一电子膨胀阀13、车内蒸发器14、第五压力温度传感器15、第四压力温度传感器10,然后回到压缩机1。其中,当冷媒流经车外换热器11时向车外散热,流经第一电子膨胀阀13时被节流,流经车内蒸发器14时吸热,以实现对乘员舱的制冷。
在乘员舱制冷模式下,对第一电子膨胀阀13的调节规则如下。计算当前车内蒸发器14的出口过热度(或压缩机1的吸入口过热度),与目标过热度(例如第一目标过热度)进行比较。如果当前车内蒸发器14的出口过热度大于第一目标过热度,增大第一电子膨胀阀13的开度(即调阀方向为开阀);如果当前车内蒸发器14的出口过热度小于第一目标过热度,减小第一电子膨胀阀13的开度(即调阀方向为关阀);如果当前车内蒸发器14的出口过热度等于第一目标过热度,维持当前第一电子膨胀阀13的开度(即无需调阀)。
其中,第一目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
在乘员舱制冷模式下,对压缩机1的转速调节规则如下。检测当前制冷出风温度、如吹 面温度,与目标出风温度(例如第一目标出风温度)比较。如果当前制冷出风温度小于第一目标出风温度,降低压缩机1的转速;如果当前制冷出风温度大于第一目标出风温度,增大压缩机1的转速;如果当前制冷出风温度等于第一目标出风温度,维持当前压缩机1的转速。
其中,第一目标出风温度可以根据用户设定温度、车内温度、车外温度、太阳光辐射修正值而确定,以保证制冷效果。
模式二、电池冷却模式
在电池冷却模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第二电磁阀6、第三压力温度传感器7、车外换热器11、单向阀41、第五电磁阀25、第四电子膨胀阀35、第六压力温度传感器36、电池换热器37、第七压力温度传感器38、第七电磁阀39、第四压力温度传感器10,然后回到压缩机1。其中,当冷媒流经车外换热器11时向车外散热,流经第四电子膨胀阀35时被节流,流经电池换热器37时吸热,以实现对电池的冷却。
在电池冷却模式下,对第四电子膨胀阀35的调节规则如下。计算当前电池换热器37的出口过热度(或压缩机1的吸入口过热度),与目标过热度(例如第二目标过热度)比较。如果当前电池换热器37的出口过热度大于第二目标过热度,增大第四电子膨胀阀35的开度(即调阀方向为开阀);如果当前车电池换热器37的出口过热度小于第二目标过热度,减小第四电子膨胀阀35的开度(即调阀方向为关阀);如果当前电池换热器37的出口过热度等于第二目标过热度,维持当前第四电子膨胀阀35的开度(即无需调阀)。
其中,第二目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
在电池冷却模式下,对压缩机1的转速调节规则如下。检测当前电池换热器37的出口压力,与目标压力值比较。如果当前电池换热器37的出口压力大于目标压力值,降低压缩机1的转速;如果当前电池换热器37的出口压力小于目标压力值,增大压缩机1的转速;如果当前电池换热器37的出口压力等于目标压力值,维持当前压缩机1的转速。
其中,为保证对电池的冷却效果,本发明以电池换热器37的出口冷媒的饱和状态和过热度进行衡量,这个饱和状态对应有饱和温度,同时饱和温度有对应的压力(冷媒在大于这个饱和温度的过热状态下压力基本不变),因此这里通过电池换热器37的出口压力作为目标来调整压缩机1的转速,以保证冷媒在预定温度下达到饱和,再通过调整第四电子膨胀阀35的开度来调节冷媒的过热度以达到对电池的冷却效果。不直接检测电池本身温度的原因,一是电池温度变化有延迟,二是电池本身具有一定体积,但检测的只是某个或多个位置,无法准确反映电池温度。
模式三、制冷双开模式
制冷双开模式是乘员舱制冷模式和电池冷却模式同时进行,且乘员舱制冷模式和电池冷却模式各自采用的制冷回路共用压缩机。由此,在制冷双开模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第二电磁阀6、第三压力温度传感器7、车外换热器11、单向阀41,然后分成以下两路。
一路依次流经,第一电子膨胀阀13、车内蒸发器14、第五压力温度传感器15、第四压力温度传感器10,然后回到压缩机1。其中,冷媒流经第一电子膨胀阀13时被节流,流经车内蒸发器14时放冷,以实现对乘员舱的制冷。
另一路依次流经,第五电磁阀25、第四电子膨胀阀35、第六压力温度传感器36、电池换热器37、第七压力温度传感器38、第七电磁阀39、第四压力温度传感器10,然后回到压缩机1。其中,冷媒流经第四电子膨胀阀35时被节流,流经电池换热器37时放冷,以实现对电池的冷却。
在制冷双开模式下,设定乘员舱制冷模式和电池冷却模式的优先调节等级。
首先进行电池温度(即电芯温度)与第一目标电芯温度(例如45℃)的比较。如果当前 电芯温度≥第一目标电芯温度,则电池冷却模式优先调节。如果当前电芯温度<第一目标电芯温度,再进行制冷出风温度与目标出风温度比较,如果当前制冷出风温度≥目标出风温度,且当前电芯温度<第一目标电芯温度,则乘员舱制冷模式优先调节,如果当前制冷出风温度<目标出风温度,且当前电芯温度<第一目标电芯温度,则电池冷却模式优先调节。
若为乘员舱制冷模式优先调节:根据车内蒸发器14的出口过热度调节第一电子膨胀阀13的开度,并根据制冷出风温度调节压缩机1的转速,并根据制冷出风温度调节第四电子膨胀阀35的分配流量,以保证乘员舱制冷满足要求。
其中根据所述制冷出风温度,调节所述电池冷却模式采用的制冷回路中的节流装置的开度包括:若T2<T1+K1,增大所述电池冷却模式采用的制冷回路中的节流装置的开度;若T1+K1≤T2≤T1+K2,维持所述电池冷却模式采用的制冷回路中的节流装置的开度;若T1+K2<T2≤T1+K3,减小所述电池冷却模式采用的制冷回路中的节流装置的开度;若T2>T1+K3,关闭所述电池冷却模式采用的制冷回路中的节流装置,其中,T2为制冷出风温度,单位℃;T1为目标制冷温度,单位℃;K1、K2、K3为温度补偿系数,单位℃,K1<K2<K3。
例如,“根据制冷出风温度,调节电池冷却模式采用的制冷回路中的节流装置的开度”的具体方法可以为:假设:K1=2℃、K2=3℃、K3=7℃,若当前制冷出风温度T2为5℃,目标制冷温度为T1为4℃,如果T2<T1+K1,将第四电子膨胀阀35的开度增大,表示当前制冷出风温度满足了乘员舱制冷,可以适当调大电池侧的制冷分配;若当前制冷出风温度T2为8℃,目标制冷温度为T1为4℃,T2≤T1+7,将第四电子膨胀阀35的开度减小,表示当前乘员舱制冷不足,减少电池制冷分配;若当前制冷出风温度T2为6℃,目标制冷温度为T1为4℃,T1+2≤T2≤T1+3,第四电子膨胀阀35维持当前开度,说明当前制冷分配比较合适,保持阀的开度即可;若当前制冷出风温度T2为15℃,目标制冷温度为T1为4℃,T2>T1+7,关闭第四电子膨胀阀35,全力保证乘员舱制冷需求。
若为电池冷却模式优先调节,根据电池换热器37的出口过热度调节第四电子膨胀阀35,并根据电池换热器37的出口压力值调节压缩机1的转速,同时对于车内蒸发器14对应的第一电子膨胀阀13,维持开度不变。
模式四、乘员舱采暖模式之热泵采暖模式
热泵采暖模式包括:热泵空气源采暖和热泵液源采暖,其中,热泵液源采暖包括热泵液源大采暖和热泵液源小采暖,下面分别介绍。
在热泵空气源采暖模式下,热泵回路从空气源吸热。具体地,热泵回路可以为:冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第四电磁阀8、第二电子膨胀阀16、车外换热器11、第三电磁阀9、第四压力温度传感器10,然后回到压缩机1。其中,当冷媒流经车内冷凝器3时冷凝放热,以实现对乘员舱的制热采暖,流经第二电子膨胀阀16时被节流,流经车外换热器11时从外界环境空气源吸热。
在热泵空气源采暖模式下,对第二电子膨胀阀16的调节规则如下。计算当前车外换热器11的出口过热度(或压缩机1的吸入口过热度),与目标过热度(例如第三目标过热度)比较。如果当前车外换热器11的出口过热度大于第三目标过热度,增大第二电子膨胀阀16的开度(即调阀方向为开阀);如果当前车外换热器11的出口过热度小于第三目标过热度,减小第二电子膨胀阀16的开度(即调阀方向为关阀);如果当前车外换热器11的出口过热度等于第三目标过热度,维持当前第二电子膨胀阀16的开度(即无需调阀)。
其中,第三目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。
在热泵空气源采暖模式下,对压缩机1的转速调节规则如下。检测当前采暖出风温度(如吹脚温度),与目标出风温度(如第二目标出风温度)比较。如果当前采暖出风温度大于第二目标出风温度,降低压缩机1的转速;如果当前采暖出风温度小于第二目标出风温度, 增大压缩机1的转速;如果当前采暖出风温度等于第二目标出风温度,维持当前压缩机1的转速。
其中,第二目标出风温度可以根据用户设定温度、车内温度、车外温度、太阳光辐射修正值而确定,以保证制热效果。
在热泵液源采暖模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第四电磁阀8、第三电子膨胀阀17、第六电磁阀28、液路换热器30的冷媒流路、第四压力温度传感器10,然后回到压缩机1。其中,当冷媒流经车内冷凝器3时放热,以实现对乘员舱的制热采暖,流经第三电子膨胀阀17时被节流,流经液路换热器30时,从流经液路换热器30的液路吸收液源热量。
值得说明的是,液路换热器30内具有冷媒流路和液路,液路可以流经冷却液等载冷剂。其中,液路换热器30可以具有两条液路,也可以具有一条液路。当具有两条液路时(如图2所示),两条液路分别为高温液路(连通发动机侧液路系统)和低温液路(连通电动机侧液路系统);而当具有一条液路时(图未示出该示例),该液路既可以作为高温液路、又可以作为低温液路(此时发动机侧液路系统与电动机侧液路系统可以改为串联关系)。
在热泵液源小采暖模式下,流经液路换热器30的液源热量来源于低温液路,低温回路冷却液泵31运行,以使液路换热器30通过低温液路吸收电动机侧余热。
其中,在热泵液源小采暖模式下,低温回路冷却液泵31的转速可以维持在最大转速或额定转速,以保证热泵回路从液路换热器30的吸热需求。
在热泵液源大采暖模式下,流经液路换热器30的液源热量来源于高温液路,发动机26工作,发动机循环液泵27运行,以使液路换热器30通过高温液路吸收发动机26的热量。
其中,在热泵液源大采暖模式下,发动机循环液泵27的转速维持在最大转速或额定转速,以保证热泵回路从液路换热器30的吸热需求。
在热泵液源大采暖模式下,如果电动机也工作且需要冷却,也可以打开低温回路冷却液泵31,使得液路换热器30的液源热量可以同时来源于高温液路和低温液路。
在热泵液源采暖下(包括热泵液源大采暖和热泵液源小采暖),对第三电子膨胀阀17的开度调节规则如下。计算当前压缩机1的吸入口过热度(或液路换热器30的出口过热度),与目标过热度(如第四目标过热度)比较。如果当前压缩机1的吸入口过热度大于第四目标过热度,增大第三电子膨胀阀17的开度(即调阀方向为开阀);如果当前压缩机1的吸入口过热度小于第四目标过热度,减小第三电子膨胀阀17的开度(即调阀方向为关阀);如果当前压缩机1的吸入口过热度等于第四目标过热度,维持当前第三电子膨胀阀17的开度(即无需调阀)。
其中,第四目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。另外,在上述实施例中,压缩机1的吸入口过热度与液路换热器30的出口过热度几乎相等,本发明计算当前压缩机1的吸入口过热度,而非计算液路换热器30的出口过热度的原因在于,有些系统中,液路换热器30的出口难以设置传感器,当然,如果方便设置传感器的话,也可以通过计算当前液路换热器30的出口过热度代替计算当前压缩机1的吸入口过热度,这里不作限制。
在热泵液源采暖下(包括热泵液源大采暖和热泵液源小采暖),对压缩机1的转速调节规则如下。检测当前采暖出风温度(如吹脚温度),与目标出风温度(如第三目标出风温度)比较。如果当前采暖出风温度大于第三目标出风温度,降低压缩机1的转速;如果当前采暖出风温度小于第三目标出风温度,增大压缩机1的转速;如果当前采暖出风温度等于第三目标出风温度,维持当前压缩机1的转速。
其中,第三目标出风温度可以根据用户设定温度、车内温度、车外温度、太阳光辐射修正值而确定,以保证采暖效果。
模式五、乘员舱采暖模式之暖风采暖模式
暖风采暖模式可以包括发动机暖风模式和电加热暖风模式,下面分别介绍。
在发动机暖风模式下,包含压缩机1的热泵回路不工作,发动机侧液路系统循环,载冷剂从发动机循环液泵27流出,依次流经发动机26、高温回路三通阀24、五通阀19,电加热器21、暖风芯体22、五通阀19、再回到发动机循环液泵27,发动机26工作加热载冷剂,载冷剂吸收发动机高温热量,通过暖风芯体22向乘员舱吹热风实现采暖。
其中,在发动机暖风模式下,可以根据采暖出风温度调节发动机循环液泵27的转速,以满足采暖需求。
在电加热暖风模式下,包含压缩机1的热泵回路不工作,发动机侧液路系统循环,载冷剂从采暖循环液泵20流出,依次流经电加热器21、暖风芯体22、五通阀19、发动机循环液泵27、发动机26、高温回路三通阀24、五通阀19,再回到采暖循环液泵20,发动机26不工作,电加热器21工作加热载冷剂,载冷剂通过暖风芯体22乘员舱吹热风实现采暖。
其中,在电加热暖风模式下,采暖循环液泵20可以维持最大转速或额定转速,并且,可以根据乘员舱的出风温度调节电加热器21的加热功率,以满足采暖需求,并降低能耗。
如上文所述,当乘员舱需要采暖时,可以选择以上:热泵空气源采暖模式(即打开车外换热器11对应的第二电子膨胀阀16并节流,吸收空气源热量)、热泵液源小采暖模式(打开液路换热器30对应的第三电子膨胀阀17并节流,液路换热器30从低温液路吸收热量)、热泵液源大采暖模式(打开液路换热器30对应的第三电子膨胀阀17并节流,发动机26启动,液路换热器30从高温液路吸收发动机26的热量)、发动机暖风模式(压缩机1不工作,液路吸收发动机26高温热量,直接通过暖风芯体22吹热风)、电加热暖风模式(压缩机1不工作,电加热器21加热液路,直接通过暖风芯体22吹热风)五种采暖模式,下面介绍如何根据情况选择以上五种采暖模式。
在EV模式下,发动机26不启动,优先判断流经液路换热器30的低温液路温度,如果低温液路温度处于第一液温区间(如大于-10℃),则进入热泵液源小采暖模式。
在EV模式下,发动机26不启动,如果流经液路换热器30的低温液路温度超出第一液温区间(如小于-10℃),则进一步判断环境温度,如果环境温度处于第一空温区间(如-25℃~-10℃),则进入电加热暖风模式;如果环境温度处于第二空温区间(如大于-10℃),则进入热泵空气源采暖模式。
值得说明的是,在热泵液源小采暖模式下,如果车辆停止,液路换热器30得不到补充,即使环境温度为-10℃以上,若持续进行热泵液源小采暖模式也可能使低温液路温度降至-10℃以下,这时则进入热泵空气源采暖模式。
在HEV模式下,发动机26启动,判断流经液路换热器30的高温液路温度,如果高温液路温度处于第二液温区间(如40℃~60℃),则进入热泵液源大采暖模式。如果高温液路温度处于第三液温区间(如大于60℃),则进入发动机暖风模式。如果高温液路温度小于第二液温区间(如小于40℃),不启动采暖,以避免影响发动机26的暖机,而且发动机26启动后,高温液路温度小于40℃的时间较短,不影响后续的采暖。
模式六、电池热泵加热模式
在电池热泵加热模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、第一电磁阀5、第七压力温度传感器38、电池换热器37、第六压力温度传感器36、第四电子膨胀阀35、第六电磁阀28、液路换热器30、第四压力温度传感器10,然后回到压缩机1。其中,当冷媒流经电池换热器37时对电池加热,流经第四电子膨胀阀35(双向电子膨胀阀)时被节流,流经液路换热器30时吸收液源热量。
例如,可以打开采暖循环液泵20和电加热器21,为流经液路换热器30的液源提供热量等等,由此,可以避免环境温度较低、空气源热量不足的问题。
在电池热泵加热模式下,对第四电子膨胀阀35的开度调节规则如下。计算当前压缩机1的吸入口过热度,与目标过热度(如第五目标过热度)比较。如果当前压缩机1的吸入口过热度大于第五目标过热度,增大第四电子膨胀阀35的开度(即调阀方向为开阀);如果当前压缩机1的吸入口过热度小于第五目标过热度,减小第四电子膨胀阀35的开度(即调 阀方向为关阀);如果当前压缩机1的吸入口过热度等于第五目标过热度,维持当前第四电子膨胀阀35的开度(即无需调阀)。
其中,第五目标过热度可以为预设标定值,不随任何条件改变,以保证被压缩机1吸入的冷媒为过热气态,保证压缩机1的安全。此外,在该模式下,当前压缩机1的吸入口过热度与液路换热器30的出口过热度几乎相等,在上述实施例中,计算当前压缩机1的吸入口过热度,而非计算液路换热器30的出口过热度的原因在于,有些系统中,液路换热器30的出口难以设置传感器,但是,如果方便设置传感器的话,当然,也可以通过计算当前液路换热器30的出口过热度代替计算当前压缩机1的吸入口过热度,这里不作限制。
在电池热泵加热模式下,对压缩机1的转速调节规则如下。检测当前电池换热器37的入口温度,与目标加热温度比较。如果当前电池换热器37的入口温度大于目标加热温度,降低压缩机1的转速;如果当前电池换热器37的入口温度小于目标加热温度,增大压缩机1的转速;如果当前电池换热器37的入口温度等于目标加热温度,维持当前压缩机1的转速。
需要说明的是,在电池热泵加热模式下,从压缩机1出来的冷媒是过热状态,压力和温度不对应(过热状态下,温度升高而压力不变),所以不是测电池换热器37的入口压力,而是测电池换热器37的入口温度。
此外,如上文所述,在电池冷却模式下,压缩机1的转速控制是根据电池换热器37的出口压力,而电池热泵加热模式下的压缩机1的转速控制是根据电池换热器37的入口温度,原因在于至少以下几点。第一、在电池热泵加热模式下,由于从压缩机1出来的冷媒温度较高,需要避免温度过高的冷媒损伤电池,因而要检测电池换热器37的入口温度,而不是测电池换热器37的出口温度。第二、在电池热泵加热模式下,从电池换热器37出来的冷媒是液态,所以不是检测电池换热器37的出口压力。
模式七、制热双开模式
制热双开模式是热泵采暖模式和电池热泵加热模式两者同时进行,且热泵采暖模式和电池热泵加热模式各自采用的热泵回路共用压缩机。
此外,当采用暖风采暖模式与电池热泵加热模式叠加组合时,由于不涉及共用的压缩机1,因此,暖风采暖模式与电池热泵加热模式分别单独调节,互不影响。
而制热双开模式是将热泵采暖模式与电池热泵加热模式叠加组合,因此,在制热双开模式下,需要设定热泵采暖模式与电池热泵加热模式的优先调节等级。
第一方面,可以检测当前采暖出风温度与目标出风温度比较。如果当前采暖出风温度≥目标出风温度,且当前车内温度≥车内设定温度,则电池热泵加热模式优先调节。如果当前采暖出风温度<目标出风温度,或当前车内温度<车内设定温度,则热泵采暖模式优先调节。
第二方面,可以检测电池温度(如电芯温度)与第二目标电芯温度(例如10℃)比较。如果当前电芯温度≥第二目标电芯温度,则热泵采暖模式优先调节。如果当前电芯温度<第二目标电芯温度,且当前车内温度>车内设定温度,则电池热泵加热模式优先调节。
在一些示例中,如果上述两方面判断同时存在,可以优先判断第二方面。
若为热泵采暖模式优先调节:根据压缩机1的吸入口的过热度,调节当前热泵采暖模式对应的电子膨胀阀(如第二电子膨胀阀16或第三电子膨胀阀17)的开度,并根据采暖出风温度调节压缩机1的转速,并根据采暖出风温度调节第四电子膨胀阀35的分配流量,以保证乘员舱采暖满足要求。
其中,根据所述采暖出风温度,调节所述电池热泵加热模式采用的热泵回路中的节流装置的开度包括:若T5>T4+K5,增大所述电池冷却模式采用的制冷回路中的节流装置的开度;若T4-K4≤T5≤T4+K5,维持所述电池冷却模式采用的制冷回路中的节流装置的开度;若T4-K5≤T5<T4-K4,减小所述电池冷却模式采用的制冷回路中的节流装置的开度;若T5<T4-K5,关闭所述电池冷却模式采用的制冷回路中的节流装置,其中,T5为采暖出风温度,单位℃;T4为目标出风温度,单位℃;K4、K5为温度补偿系数,单位℃,K4<K5。由此, 可以保证精准的流量分配,优先满足乘员舱采暖需求的同时,实现对电池加热的最优热量分配。
例如,“根据采暖出风温度,调节电池热泵加热模式采用的热泵回路中的节流装置”的具体方法可以为:假设:K4=2℃、K5=5℃,若当前采暖出风温度T5为56℃,目标出风温度T4为50℃,T5>T4+5(55℃),将第四电子膨胀阀35的开度增大,表示当前采暖出风温度满足了乘员舱采暖,可以适当调大电池侧的热量分配;若当前采暖出风温度T5为46℃,目标出风温度T4为50℃,T4-K5(45℃)≤T5<T4-K4(48℃),将第四电子膨胀阀35的开度减小,此时当前采暖不足以满足乘员舱加热需求,减少电池热量分配;若当前采暖出风温度T5为52℃,目标出风温度T4为50℃,T4-K4(48℃)≤T5≤T4+K5(55℃),第四电子膨胀阀35维持当前开度,说明当前热量分配比较合适,保持阀的开度即可;若当前采暖出风温度T5为40℃,目标出风温度T4为50℃,40<T4-K5(45℃),关闭第四电子膨胀阀35,全力保证乘员舱加热需求。若为电池热泵加热模式优先调节,根据压缩机1的吸入口过热度调节第四电子膨胀阀35,并根据电池换热器37的入口温度调节压缩机1的转速,同时当前热泵采暖模式对应的电子膨胀阀(如第二电子膨胀阀16或第三电子膨胀阀17)的开度维持不变。
模式八、热泵除湿模式
热泵除湿模式可以包括第一除湿模式和第二除湿模式。
在第一除湿模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第四电磁阀8、第一电子膨胀阀13、车内蒸发器14、第五压力温度传感器15、第四压力温度传感器10,然后回到压缩机1。其中,当内循环车内的空气流经车内冷凝器3时被加热,再流经车内蒸发器14时被冷却,从而实现对空气中水分除湿的效果。例如可以在环境温度大于除湿阈值(例如-5℃)时启用第一除湿模式。
在第二除湿模式下,冷媒从压缩机1排出后,依次流经:第一压力温度传感器2、车内冷凝器3、第二压力温度传感器4、第四电磁阀8,之后分成两路,一路流经第一电子膨胀阀13、车内蒸发器14、第五压力温度传感器15、第四压力温度传感器10,然后回到压缩机1;另一路流经第二电子膨胀阀16、车外换热器11、第三压力温度传感器7、第三电磁阀9、第四压力温度传感器10,然后回到压缩机1。其中,当内循环车内的空气流经车内冷凝器3时被加热,再流经车内蒸发器14时被冷却,从而实现对空气中水分除湿的效果。例如可以在环境温度小于或等于除湿阈值(例如-5℃)时启用该第二除湿模式。
在除湿模式下,电子膨胀阀的开度调节可以参考上文其他模式对电子膨胀阀开度的控制,压缩机1的转速调节可以参考上文其他模式对压缩机1的转速的调节,这里不作赘述。
相关技术中一些混合动力汽车的热管理系统与本发明的混合动力车辆的热管理系统相比,具有如下劣势。
第一、相关技术中一些混合动力汽车的热管理系统,缺少排气压力温度传感器,当压缩机排气压力、温度大于正常的工作范围时,控制系统无法通过压力温度反馈信号控制压缩机工作负荷,致使压缩机过载工作,容易损坏。并且无法根据系统高压变化输出相应的占空比进行高效节能运行。
第二、相关技术中一些混合动力汽车的热管理系统,缺少吸气压力温度传感器,当压缩机吸气压力、温度小于正常的工作范围时,控制系统无法通过吸气压力温度反馈信号控制压缩机正常工作的压缩比,导致压缩机空载工作,动静涡旋盘容易磨损坏。
第三、相关技术中一些混合动力汽车的热管理系统,缺少车内蒸发器出口压力温度传感器,在制冷模式下,无法通过该传感器反馈信号控制电子膨胀阀的流量,导致整车制冷效果较差。
在本发明的描述中,需要理解的是,指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,本发明还提出了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序适于被处理器执行以实现根据本发明实施例的热管理控制方法。技术效果与本发明实施例的热管理控制方法一致,这里不作赘述。
如图7所示,此外,本发明还提出了一种热管理控制设备401包括处理器4011,存储器4012。该热管理控制设备401还可以包括热管理系统4013。
其中,处理器4011用于控制该热管理控制设备401的整体操作,以完成上述方法实施例提供的热管理控制方法中的全部或部分步骤。存储器4012用于存储各种类型的数据以支持在该热管理控制设备401的操作,这些数据例如可以包括用于在该热管理控制设备401上操作的任何应用程序或方法的指令。该存储器4012可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM),只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。热管理系统4013可以包括图1所示的热管理控制系统。
在一示例性实施例中,热管理控制设备401可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法实施例提供的数据接力方法。
此外,如图8所示,本发明还提出了一种车辆300,包括本发明实施例的热管理控制设备401。技术效果与本发明实施例的热管理控制方法一致,这里不作赘述。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种用于车辆的热管理控制方法,其中,所述车辆包括多种驱动模式和多种乘员舱采暖模式,各所述驱动模式分别对应相应的判断规则,所述判断规则用于选取相应的乘员舱采暖模式,所述热管理控制方法包括:
    获取当前的驱动模式;
    基于获取的驱动模式,进入相应的判断规则;
    根据判断规则的判断结果,进入相应的乘员舱采暖模式。
  2. 根据权利要求1所述的热管理控制方法,其中,所述多种驱动模式包括HEV模式,所述多种乘员舱采暖模式包括:第一热泵采暖模式和第一暖风模式,所述第一热泵采暖模式采用的热泵回路与吸收发动机热量的第一液路换热,所述第一暖风模式采用的暖风回路吸收发动机的热量,所述热管理控制方法包括:
    在HEV模式下,获取所述第一液路的温度;
    根据所述第一液路的温度所在区间,选择进入所述第一热泵采暖模式或所述第一暖风模式;
    当所述第一液路温度小于第一设定温度时,进入所述第一热泵采暖模式;
    当所述第一液路温度大于所述第一设定温度时,进入所述第一暖风模式。
  3. 根据权利要求2所述的热管理控制方法,其中,包括:
    当所述第一液路的温度小于第二设定温度时,不进入所述第一热泵采暖模式和所述第一暖风模式;其中,所述第二设定温度小于所述第一设定温度。
  4. 根据权利要求1-3中任一项所述的热管理控制方法,其中,所述多种驱动模式包括EV模式,所述多种乘员舱采暖模式包括:第二热泵采暖模式、第三热泵采暖模式和第二暖风模式,所述第二热泵采暖模式采用的热泵回路与吸收电动机热量的第二液路换热,所述第三热泵采暖模式采用的热泵回路与空气热源换热,所述第二暖风模式采用的暖风回路吸收电加热器的热量,所述热管理控制方法包括:
    在EV模式下,获取所述第二液路的温度和车外环境的温度;
    根据所述第二液路的温度所在区间以及所述车外环境的温度所在区间,选择进入所述第二热泵采暖模式、所述第三热泵采暖模式和所述第二暖风模式中的一个;
    当所述第二液路的温度大于第三设定温度时,进入所述第二热泵采暖模式;
    当所述第二液路的温度小于所述第三设定温度时,选择进入所述第三热泵采暖模式或所述第二暖风模式。
  5. 根据权利要求4所述的热管理控制方法,其中,包括:
    当所述车外环境的温度大于第四设定温度时,进入所述第三热泵采暖模式;
    当所述车外环境的温度小于所述第四设定温度时,进入所述第二暖风模式。
  6. 根据权利要求1-5中任一项所述的热管理控制方法,其中,所述多种乘员舱采暖模式包括至少一种热泵采暖模式,所述车辆还包括电池热泵加热模式,所述车辆包括制热双开模式,在所述制热双开模式下,控制所述热泵采暖模式和所述电池热泵加热模式两者同时进行且两者各自采用的热泵回路共用压缩机。
  7. 根据权利要求6所述的热管理控制方法,其中,所述热管理控制方法包括:
    在所述制热双开模式下,获取所述车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;
    根据获取的温度所在区间,将所述热泵采暖模式和所述电池热泵加热模式中一个设定为第一优先调节对象;
    根据所述第一优先调节对象的调节规则,对所述压缩机的转速进行调节。
  8. 根据权利要求7所述的热管理控制方法,其中,包括:
    获取所述电池温度;
    当所述电池温度大于第五设定温度时,将所述热泵采暖模式设定为所述第一优先调节对象;
    所述的热管理控制方法还包括:
    当所述电池温度小于所述第五设定温度时,将所述电池热泵加热模式设定为所述第一优先调节对象;
    或者,获取所述乘员舱温度,当所述电池温度小于所述第五设定温度,且所述乘员舱温度大于目标车内温度时,将所述电池热泵加热模式设定为所述第一优先调节对象;
    或者,获取所述采暖出风温度,当所述电池温度小于所述第五设定温度,且所述采暖出风温度大于目标出风温度时,将所述电池热泵加热模式设定为所述第一优先调节对象。
  9. 根据权利要求7所述的热管理控制方法,其中,包括:
    获取所述采暖出风温度和所述乘员舱温度;
    当所述采暖出风温度大于目标出风温度,且所述乘员舱温度大于目标车内温度时,将所述电池热泵加热模式设定为所述第一优先调节对象;
    或者,获取所述采暖出风温度,当所述采暖出风温度小于目标出风温度时,将所述热泵采暖模式设定为所述第一优先调节对象;
    或者,获取所述乘员舱温度,当所述乘员舱温度小于目标车内温度时,将所述热泵采暖模式设定为所述第一优先调节对象。
  10. 根据权利要求9所述的热管理控制方法,其中,所述第一优先调节对象为所述热泵 采暖模式的调节规则包括:
    根据采暖出风温度调节所述压缩机的转速;和/或
    根据所述压缩机的吸入口过热度,调节所述热泵采暖模式采用的热泵回路中的节流装置的开度;和/或
    根据所述采暖出风温度,调节所述电池热泵加热模式采用的热泵回路中的节流装置的开度。
  11. 根据权利要求9所述的热管理控制方法,其中,所述第一优先调节对象为所述电池热泵加热模式的调节规则包括:
    根据所述电池热泵加热模式采用的热泵回路中的电池换热器的入口温度,调节所述压缩机转速;和/或
    根据所述压缩机的吸入口过热度,调节所述电池热泵加热模式采用的热泵回路中的节流装置的开度;和/或
    所述热泵采暖模式采用的热泵回路中的节流装置维持开度不变。
  12. 根据权利要求1-11中任一项所述的热管理控制方法,其中,所述车辆还包括乘员舱制冷模式和电池冷却模式,所述车辆包括制冷双开模式,所述热管理控制方法包括:
    在所述制冷双开模式下,控制所述乘员舱制冷模式和所述电池冷却模式两者同时进行且两者各自采用的制冷回路共用压缩机。
  13. 根据权利要求12所述的热管理控制方法,其中,所述热管理控制方法包括:
    在所述制冷双开模式下,获取所述车辆的电池温度、采暖出风温度和乘员舱温度中的至少一个;
    根据获取的温度所在区间,将所述乘员舱制冷模式和所述电池冷却模式中一个设定为第二优先调节对象;
    根据所述第二优先调节对象的调节规则,对所述压缩机的转速进行调节。
  14. 根据权利要求13所述的热管理控制方法,其中,包括:
    获取所述电池温度;
    当所述电池温度大于第六设定温度时,将所述电池冷却模式设定为所述第二优先调节对象。
  15. 根据权利要求14所述的热管理控制方法,其中,包括:
    获取所述乘员舱温度,当所述电池温度小于所述第六设定温度,且所述乘员舱温度小于目标车内温度时,将所述电池冷却模式设定为所述第二优先调节对象;
    或者,获取所述制冷出风温度,当所述电池温度小于所述第六设定温度,且所述制冷出风温度小于目标出风温度时,将所述电池冷却模式设定为所述第二优先调节对象;
    或者,当所述电池温度小于所述第六设定温度时,将所述乘员舱制冷模式设定为所述第二优先调节对象;
    或者,获取所述乘员舱温度,当所述电池温度小于所述第六设定温度,且所述乘员舱温度大于目标车内温度时,将所述乘员舱制冷模式设定为所述第二优先调节对象;
    或者,获取所述制冷出风温度,当所述电池温度小于所述第六设定温度,且所述制冷出风温度大于目标出风温度时,将所述乘员舱制冷模式设定为所述第二优先调节对象。
  16. 根据权利要求13所述的热管理控制方法,其中,所述第二优先调节对象为所述乘员舱制冷模式的调节规则包括:
    根据制冷出风温度调节所述压缩机的转速;和/或
    根据所述压缩机的吸入口过热度,调节所述乘员舱制冷模式采用的制冷回路中的节流装置的开度;和/或
    根据所述制冷出风温度,调节所述电池冷却模式采用的制冷回路中的节流装置的开度。
  17. 根据权利要求13所述的热管理控制方法,所述第二优先调节对象为所述电池冷却模式的调节规则包括:
    根据所述电池冷却模式采用的制冷回路中的电池换热器的出口压力,调节所述压缩机转速;和/或
    根据所述压缩机的吸入口过热度,调节所述电池冷却模式采用的制冷回路中的节流装置的开度;和/或
    所述乘员舱制冷模式采用的制冷回路中的节流装置维持开度不变。
  18. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于被处理器执行以实现权利要求1-17中任一项所述的热管理控制方法。
  19. 一种热管理控制设备,其中,包括处理器和存储器,所述处理器和存储器相互连接;所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置为用于调用所述程序指令,执行如权利要求1-17中任一项所述的热管理控制方法。
  20. 一种车辆,其中,包括根据权利要求19所述的热管理控制设备。
PCT/CN2023/103268 2022-10-26 2023-06-28 热管理控制方法、热管理控制设备和车辆 WO2024087696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211320913.2A CN117962555A (zh) 2022-10-26 2022-10-26 热管理控制方法、热管理控制设备和混合动力车辆
CN202211320913.2 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024087696A1 true WO2024087696A1 (zh) 2024-05-02

Family

ID=90829921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103268 WO2024087696A1 (zh) 2022-10-26 2023-06-28 热管理控制方法、热管理控制设备和车辆

Country Status (2)

Country Link
CN (1) CN117962555A (zh)
WO (1) WO2024087696A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206664207U (zh) * 2017-03-13 2017-11-24 广州汽车集团股份有限公司 一种车辆冷暖循环系统及汽车
CN208290900U (zh) * 2018-04-03 2018-12-28 宝沃汽车(中国)有限公司 车辆的热管理系统及车辆
CN110792502A (zh) * 2018-08-01 2020-02-14 现代自动车株式会社 车辆冷却系统的控制方法
CN111231620A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
CN111497555A (zh) * 2020-04-24 2020-08-07 重庆长安汽车股份有限公司 汽车空调采暖方法
CN112572095A (zh) * 2020-12-14 2021-03-30 吉林大学 一种电动汽车集成化热管理系统模式切换方法
CN113682106A (zh) * 2021-09-01 2021-11-23 东风柳州汽车有限公司 车辆热管理控制方法以及装置
US20210402869A1 (en) * 2020-06-24 2021-12-30 Honda Motor Co., Ltd. Thermal management system for a vehicle
CN113968211A (zh) * 2020-07-22 2022-01-25 北京福田康明斯发动机有限公司 混合动力车辆热管理方法、存储介质以及车辆
CN114590239A (zh) * 2022-02-25 2022-06-07 武汉理工大学 混合动力车辆热管理系统控制方法、装置及存储介质
CN217455584U (zh) * 2022-05-17 2022-09-20 北汽福田汽车股份有限公司 暖风芯体、车辆热管理系统及车辆

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206664207U (zh) * 2017-03-13 2017-11-24 广州汽车集团股份有限公司 一种车辆冷暖循环系统及汽车
CN208290900U (zh) * 2018-04-03 2018-12-28 宝沃汽车(中国)有限公司 车辆的热管理系统及车辆
CN110792502A (zh) * 2018-08-01 2020-02-14 现代自动车株式会社 车辆冷却系统的控制方法
CN111231620A (zh) * 2018-11-29 2020-06-05 比亚迪股份有限公司 车辆热管理系统及其控制方法、车辆
CN111497555A (zh) * 2020-04-24 2020-08-07 重庆长安汽车股份有限公司 汽车空调采暖方法
US20210402869A1 (en) * 2020-06-24 2021-12-30 Honda Motor Co., Ltd. Thermal management system for a vehicle
CN113968211A (zh) * 2020-07-22 2022-01-25 北京福田康明斯发动机有限公司 混合动力车辆热管理方法、存储介质以及车辆
CN112572095A (zh) * 2020-12-14 2021-03-30 吉林大学 一种电动汽车集成化热管理系统模式切换方法
CN113682106A (zh) * 2021-09-01 2021-11-23 东风柳州汽车有限公司 车辆热管理控制方法以及装置
CN114590239A (zh) * 2022-02-25 2022-06-07 武汉理工大学 混合动力车辆热管理系统控制方法、装置及存储介质
CN217455584U (zh) * 2022-05-17 2022-09-20 北汽福田汽车股份有限公司 暖风芯体、车辆热管理系统及车辆

Also Published As

Publication number Publication date
CN117962555A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
KR100597145B1 (ko) 공기 조화 장치
JP6230956B2 (ja) 車両用エアコンシステムの制御方法
JPH05223357A (ja) 空調装置
JP2004076689A (ja) 内燃機関の冷却系の異常診断装置
KR20080009953A (ko) 코제너레이션 및 그 제어 방법
EP4043253B1 (en) Thermal management system, method for controlling thermal management system, and electric vehicle
KR102406231B1 (ko) 차량 내 배터리의 온도 조절 시스템
JP2003214705A (ja) コージェネレーションシステム
JP6079006B2 (ja) 燃料電池車両用空調装置
JP4535933B2 (ja) 空気調和装置
US20200011579A1 (en) Variable speed blower control for hvac systems
WO2024087696A1 (zh) 热管理控制方法、热管理控制设备和车辆
JP4208792B2 (ja) コージェネレーションシステム
US11933529B2 (en) Method for controlling a thermal management device of a motor vehicle
JP2011230659A (ja) 車両用空調システム及びその制御方法
CN113251474A (zh) 双压缩机空调器
CN113465021A (zh) 用于双压缩机空调器的控制方法
JP2001246925A (ja) 車両用空調装置
CN117922244A (zh) 热管理控制方法、热管理控制设备和车辆
JP3963601B2 (ja) 貯湯式の給湯熱源装置
JP4169453B2 (ja) 貯湯式の給湯熱源装置
KR20200134039A (ko) 차량의 열관리 시스템
CN112339521B (zh) 热管理系统及热管理系统的控制方法
CN117962559A (zh) 热管理控制方法、热管理控制设备和车辆
CN114734782B (zh) 热管理系统的控制方法