WO2024087693A1 - 一种耐辐射玻璃材料及其制备方法与应用 - Google Patents

一种耐辐射玻璃材料及其制备方法与应用 Download PDF

Info

Publication number
WO2024087693A1
WO2024087693A1 PCT/CN2023/103156 CN2023103156W WO2024087693A1 WO 2024087693 A1 WO2024087693 A1 WO 2024087693A1 CN 2023103156 W CN2023103156 W CN 2023103156W WO 2024087693 A1 WO2024087693 A1 WO 2024087693A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
radiation
glass material
resistant glass
silicon dioxide
Prior art date
Application number
PCT/CN2023/103156
Other languages
English (en)
French (fr)
Inventor
黄松林
张焱
季鹏
黄三喜
祖群
Original Assignee
南京玻璃纤维研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京玻璃纤维研究设计院有限公司 filed Critical 南京玻璃纤维研究设计院有限公司
Publication of WO2024087693A1 publication Critical patent/WO2024087693A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories

Definitions

  • the present invention relates to the field of glass technology, and in particular to a radiation-resistant glass material and a preparation method and application thereof.
  • optical glass materials and glass fiber reinforced composite materials are widely used in medical equipment such as chest X-ray, irradiation sterilization, radiotherapy, high-energy large devices such as fusion reactors and fission reactors, as well as aerospace, shipbuilding, new energy, electronic communications and other fields.
  • medical equipment such as chest X-ray, irradiation sterilization, radiotherapy, high-energy large devices such as fusion reactors and fission reactors, as well as aerospace, shipbuilding, new energy, electronic communications and other fields.
  • the internal structure of ordinary glass and its composite materials will change in the irradiation environment, resulting in electronic defects and impurity atoms, which will affect their performance and service life.
  • the existing radiation-resistant glass materials have radiation resistance, their radiation resistance is still poor under high-dose radiation, and their mechanical properties and temperature resistance will also be lost. Therefore, it is necessary to develop a radiation-resistant glass material that can withstand high-dose radiation intensity to meet the mechanical and thermal stability requirements such as shielding, insulation, and heat insulation in high-energy
  • the embodiment of the present invention provides a radiation-resistant glass material and a preparation method and application thereof.
  • the radiation-resistant glass material has excellent resistance to high-dose radiation, and also has excellent mechanical properties, good corrosion resistance and temperature resistance.
  • the present invention provides a radiation-resistant glass material, comprising the following components in molar percentage: 58-67% silicon dioxide, 4-8% aluminum oxide, 12-18% calcium oxide, 7-18% magnesium oxide, 0.5-1.2% barium oxide, 0.1-0.8% tin oxide, 0.5-1.2% zirconium oxide, and 0.1-0.7% network modifier; wherein the network modifier is at least one compound formed by combining an element having a neutron capture reaction cross section of not less than 100b and an oxygen element.
  • the network modifier includes at least one of boron oxide, cadmium oxide and gadolinium oxide.
  • the network modifier consists of cadmium oxide and gadolinium oxide.
  • the molar ratio of cadmium oxide to gadolinium oxide in the network modifier is not greater than 1:1.
  • the molar ratio of cadmium oxide to gadolinium oxide in the network modifier is 1:1.
  • the radiation-resistant glass material comprises the following components in molar percentage: 58-67% silicon dioxide, 4-8% aluminum oxide, 12-18% calcium oxide, 7-18% magnesium oxide, 0.5-1.2% barium oxide, 0.1-0.8% tin oxide, 0.5-1.2% zirconium oxide, 0-0.7% cadmium oxide, and 0.1-0.6% gadolinium oxide.
  • the radiation-resistant glass material comprises the following components in molar percentage: 60-65% silicon dioxide, 5-7% aluminum oxide, 14-16% calcium oxide, 10-15% magnesium oxide, 0.8-1.0% barium oxide, 0.3-0.5% tin oxide, 0.5-1.0% zirconium oxide, and 0.2-0.5% of the network modifier.
  • the radiation-resistant glass material comprises the following components in molar percentage: 65.6% silicon dioxide, 4.8% aluminum oxide, 15.4% calcium oxide, 12.3% magnesium oxide, 0.8% barium oxide, 0.2% tin oxide, 0.5% zirconium oxide, and 0.34% gadolinium oxide.
  • the comprehensive neutron capture reaction cross section of the radiation-resistant glass material is 10 to 180 b.
  • the present invention further provides a method for preparing the radiation-resistant glass material provided in the first aspect, the preparation method comprising the following steps:
  • the radiation-resistant glass material is obtained by mixing 58-67% silicon dioxide, 4-8% aluminum oxide, 12-18% calcium oxide, 7-18% magnesium oxide, 0.5-1.2% barium oxide, 0.1-0.8% tin oxide, 0.5-1.2% zirconium oxide and 0.1-0.7% of the network modifier in molar percentage.
  • the radiation resistant glass material is glass fiber.
  • the diameter of the glass fiber is 8-22 ⁇ m.
  • the melting temperature is 1500-1600°C.
  • the present invention provides an application of a radiation resistant glass material, which is applied to the field of radiation resistant materials.
  • the radiation-resistant glass material is used as an insulating material for a magnetic field coil of a thermonuclear fusion reactor.
  • the present invention has at least the following beneficial effects:
  • the present invention is based on the neutron capture reaction cross section of elements.
  • oxides with a high neutron capture reaction cross section into radiation-resistant glass materials, the deceleration and absorption of irradiated particles can be effectively achieved, the intrinsic structure of the glass can be protected, the radiation resistance of the glass material can be improved, and the resistance of the glass to high-dose radiation can be achieved.
  • the oxides with a high neutron capture reaction cross section can be used as network modifiers, so that the prepared radiation-resistant glass material can still have excellent mechanical properties, good environmental corrosion resistance and temperature resistance, and good process performance.
  • the radiation-resistant glass material prepared by the present invention such as glass fiber, does not produce obvious embrittlement, shrinkage, powdering and increase in thermal conductivity after being irradiated with a gamma ray dose of 1.02 ⁇ 10 7 Gy, and the prepared glass fiber still has good mechanical properties. Moreover, the radiation-resistant glass material prepared by the present invention can withstand high-dose cumulative radiation for a long time in a space environment, and can meet the requirement of a service life of more than 10 years.
  • FIG. 1 is a graph showing the absorption attenuation rate of the radiation-resistant glass material provided by Examples 1 to 3 of the present invention before and after irradiation.
  • An embodiment of the present invention provides a radiation-resistant glass material, comprising the following components in molar percentage: 58-67% of silicon dioxide (for example, 58%, 58.5%, 59%, 60%, 60.5%, 61%, 62%, 63%, 65%, 66% or 67%), 4-8% of aluminum oxide (for example, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5% or 8%), 12-18% of calcium oxide (for example, 12-18%).
  • silicon dioxide for example, 58%, 58.5%, 59%, 60%, 60.5%, 61%, 62%, 63%, 65%, 66% or 67%)
  • 4-8% of aluminum oxide for example, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5% or 8%
  • 12-18% of calcium oxide for example, 12-18%).
  • magnesium oxide 7-18% (for example, it can be 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 15%, 16%, 16.5%, 17%, 17.5% or 18%), magnesium oxide 7-18% (for example, it can be 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 15%, 16%, 16.5%, 17%, 17.5% or 18%), Barium 0.5-1.2% (for example, 0.5%, 0.55%, 0.6%, 0.65%, 0.7%, 0.75%, 0.8%, 0.9%, 1.0%, 1.05%, 1.1%, 1.15% or 1.2%), tin oxide 0.1-0.8% (for example, 0.1%, 0.15%,
  • zirconium oxide 0.5-1.2% for example, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.05%, 1.1%, 1.15% or 1.2%), network modifier 0.1-0.7% (for example, 0.1%, 0.15%, 0.2%, 0.3%, 0.4%, 0.5%, 0.55%, 0.6%, 0.65% or 0.7%); wherein the network modifier is at least one A compound formed by the combination of an element with a neutron capture reaction cross section of not less than 100b and oxygen.
  • the element can be a Cd element with a neutron capture reaction cross section of 2450b, or a Gd element with a neutron capture reaction cross section of 49000b.
  • the network modifier is at least one oxide that meets the above conditions.
  • the radiation-resistant glass material further includes inevitable impurities, and the molar percentage of the impurities in the radiation-resistant glass material is less than 0.5%.
  • the impurities include Fe 2 O 3 , Na 2 O, K 2 O, and the like.
  • silicon dioxide is a network former of the glass structure, providing a basis for the mechanical properties, chemical stability and radiation performance of the glass material.
  • the content of silicon dioxide needs to be regulated according to the performance design.
  • the silicon dioxide content is too low, the glass network former is less, and its radiation resistance and mechanical properties will be reduced; but if the silicon dioxide content is too high, the glass viscosity will be too high, making it difficult to melt, and the glass melt will be easy to crystallize, which is not conducive to the subsequent glass fiber forming. Therefore, the present invention selects a silicon dioxide content of 58 to 67% by mole.
  • alumina exists in the glass structure as a network former, and enters the glass network structure as [AlO 4 ] tetrahedron, which can enhance the densification of the glass network structure, reduce the phase separation tendency of the glass, inhibit the formation of crystal nuclei to improve the subsequent forming process performance of the glass fiber, and improve the mechanical strength, modulus and chemical corrosion resistance of the glass fiber.
  • the present invention selects the content of alumina to be 4 to 8% by mole.
  • calcium oxide and magnesium oxide are external bodies of the glass network structure, and mainly provide free oxygen in the glass components to promote the intermediate to form a tetrahedral structure to enhance the network density of the glass material; at the same time, the high-temperature viscosity of the glass is reduced, the crystallization tendency is improved, and the mechanical properties and forming process performance of the glass material are improved. Therefore, the present invention selects the content of calcium oxide to be 12-18% by mole, and the content of magnesium oxide to be 7-18% by mole.
  • the neutron capture reaction cross section of Si element is 0.171b; the neutron capture reaction cross section of Al element is 0.232b; the neutron capture reaction cross section of Mg element is 0.063b; the neutron capture reaction cross section of Ca element is 0.43b; the neutron capture reaction cross section of Ba element is 1.3b; the neutron capture reaction cross section of Sn element is 0.626b; the neutron capture reaction cross section of Zr ...
  • the reaction cross section is 0.184b.
  • the non-oxygen elements in silicon dioxide, aluminum oxide, calcium oxide and magnesium oxide all have a small neutron capture reaction cross section.
  • the collision probability of irradiation rays or photons can be effectively reduced, the radiation resistance performance can be improved, and the damage to the glass structure can be reduced.
  • calcium oxide and magnesium oxide are alkaline earth metal oxides, and Ca and Mg are light elements at the front of the periodic table and have radiation resistance.
  • the introduction of calcium oxide and magnesium oxide can further improve the chemical stability and radiation resistance of the glass material.
  • barium oxide is an outer body of the glass network structure in the glass structure, which can provide free oxygen, promote glass melting and improve glass fiber drawing.
  • the radius of Ba2 + ions is large, and the neutron capture reaction cross section of Ba is 1.3b, which is the heavy metal element with the largest neutron capture reaction cross section among alkaline earth metal elements. It has a good deceleration effect on irradiated ions and a high ray capture ability. Through collision with high-energy particles or photons, it can effectively reduce the kinetic energy of the rays, thereby reducing the probability of the glass structure being destroyed, and further improving the radiation resistance.
  • the present invention selects the content of barium oxide to be 0.5-1.2% by mole.
  • tin oxide is a network modifier in the glass structure, and its bond energy is 192.6 kJ/mol. It can make the glass liquid have a good clarifying effect at a temperature above 1560°C, and can be used as a clarifying agent during glass melting. At the same time, tin oxide has good electrical conductivity and the characteristics of reflecting infrared radiation. During the irradiation process, it is beneficial to protect the main structure of the glass material and improve the temperature resistance of the glass material. Therefore, the tin oxide content selected by the present invention is 0.1-0.5% by mole.
  • zirconium oxide is an outer body of the glass network structure in the glass structure, which can increase the high-temperature viscosity of the glass, reduce the thermal expansion coefficient, and significantly improve the alkali resistance of the glass material.
  • the Zr 4+ ion radius is large, and it can also decelerate the radiation particles, that is, slow down the particles, and reduce the radiation damage to the main structure of the glass material. Therefore, in order to ensure that zirconium oxide fully exerts its effect, the zirconium oxide content selected by the present invention is 0.5-1.2% by mole.
  • the present invention adopts at least one compound formed by combining an element with a neutron capture reaction cross section of not less than 100b and an oxygen element as a network modifier, and fills the network modifier in the gaps of the glass network structure.
  • the neutron capture reaction cross section of the element contained in the network modifier is not less than 100b, the probability of collision with the irradiated particles is higher, that is, the probability of nuclear reaction is higher, and the reaction activity is higher, so that the network modifier can achieve deceleration and absorption of the irradiated particles, reducing The damage of the irradiated particles to the glass network structure is reduced or even avoided, thereby significantly improving the radiation resistance of the radiation-resistant glass material.
  • the comprehensive neutron capture reaction cross section of the prepared radiation-resistant glass material is 10-180b, that is, it has excellent radiation resistance, and experiments have confirmed that the larger the comprehensive neutron capture reaction cross section, the better the radiation resistance.
  • the elements contained in the network modifier have a high neutron capture reaction cross section
  • the irradiated particles can be collided with and absorbed by them to consume the irradiated particles, thereby realizing a specific design of the radiation resistance of the radiation-resistant glass material according to actual use requirements.
  • the network modifier includes at least one of boron oxide, cadmium oxide, and gadolinium oxide.
  • At least one is any one or a mixture of any several in any proportion.
  • the network modifier consists of cadmium oxide and gadolinium oxide.
  • the molar ratio of cadmium oxide to gadolinium oxide in the network modifier is not greater than 1:1 (for example, it may be 1:1, 0.9:1, 0.8:1, 0.7:1 or 0.6:1, etc.).
  • the molar ratio of cadmium oxide to gadolinium oxide in the network modifier is 1:1.
  • the radiation-resistant glass material includes the following components in molar percentage: 58-67% silicon dioxide, 4-8% aluminum oxide, 12-18% calcium oxide, 7-18% magnesium oxide, 0.5-1.2% barium oxide, 0.1-0.8% tin oxide, 0.5-1.2% zirconium oxide, 0-0.7% cadmium oxide, and 0.1-0.6% gadolinium oxide.
  • the molar percentage of cadmium oxide is 0 to 0.7%, for example, it can be 0%, 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4%, 0.45%, 0.5%, 0.55%, 0.6%, 0.65% or 0.7%.
  • the molar percentage of gadolinium oxide is 0.1-0.6%, for example, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%, 0.4%, 0.45%, 0.5%, 0.55% or 0.6%.
  • cadmium oxide acts as a network modifier in the glass structure, filling the gaps in the network structure, with a single bond energy of 83.7 kJ/mol, which can significantly increase the density of the glass material.
  • the neutron capture reaction cross section is 2450b.
  • the probability of collision with irradiated particles is extremely high, which plays a role in decelerating or absorbing irradiated particles, thereby protecting the network structure of the glass. Since it is a network changer, the damage to the glass structure after the collision is very small.
  • the cadmium oxide content selected by the present invention is 0-0.7% by mole.
  • gadolinium oxide is used as a network modifier in the glass structure.
  • Gd has one electron in each of its seven electron orbits, which is the largest number of unpaired electrons among rare earth elements.
  • Gd has the highest neutron capture reaction cross section of 49000b, and has the highest probability of colliding with particles during irradiation, and has the most significant effect on particle deceleration and absorption, thus providing excellent protection for the network structure of the glass.
  • the gadolinium oxide content selected in the present invention is 0.1-0.6% by mole.
  • the radiation-resistant glass material includes the following components in mole percentage: 60-65% of silicon dioxide (for example, 60%, 60.5%, 61%, 61.5%, 62%, 62.5%, 63%, 63.5%, 64%, 64.5% or 65%), 5-7% of aluminum oxide (for example, 5%, 5.5%, 6%, 6.5% or 7%), 14-16% of calcium oxide (for example, 14%, 14.5%, 15%, 15.5% or 16%), 10-15% of magnesium oxide (for example, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, 13.5%, 14%, 14.5%).
  • 60-65% of silicon dioxide for example, 60%, 60.5%, 61%, 61.5%, 62%, 62.5%, 63%, 63.5%, 64%, 64.5% or 65%
  • 5-7% of aluminum oxide for example, 5%, 5.5%, 6%, 6.5% or 7%
  • 14-16% of calcium oxide for example, 14%, 14.5%, 15%, 15.5% or 16%)
  • barium oxide 0.8-1.0% for example, 0.8%, 0.85%, 0.9%, 0.95% or 1.0%)
  • tin oxide 0.3-0.5% for example, 0.3%, 0.35%, 0.4%, 0.45% or 0.5%)
  • zirconium oxide 0.5-1.0% for example, 0.5%, 0.55%, 0.6%, 0.65%, 0.7%, 0.75%, 0.79%, 0.85%, 0.9%, 0.95% or 0.99%
  • network modifier 0.2-0.5% for example, 0.21%, 0.25%, 0.29%, 0.35%, 0.4%, 0.45% or 0.5%).
  • the radiation-resistant glass material includes the following components in mole percentage: 65.6% silicon dioxide, 4.8% aluminum oxide, 15.4% calcium oxide, 12.3% magnesium oxide, 0.8% barium oxide, 0.2% tin oxide, 0.5% zirconium oxide, and 0.34% gadolinium oxide.
  • the comprehensive neutron capture reaction cross section of the radiation-resistant glass material is 10 to 180 b.
  • the comprehensive neutron capture reaction cross section is calculated by the following formula using the additive property of glass properties:
  • F is used to characterize the comprehensive neutron capture reaction cross section
  • k is used to characterize the radiation-resistant glass material
  • n is used to characterize the total number of component types in the radiation-resistant glass material
  • Ak is used to characterize the molar percentage of the kth component
  • ⁇ k is used to characterize the neutron capture reaction cross section of the non-oxygen element in the kth component.
  • the present invention also provides a method for preparing a radiation-resistant glass material, the method comprising the following steps:
  • the radiation resistant glass material is glass fiber.
  • full oxygen combustion, full electric melting or a combination of heat and electricity can be used for kiln melting to form homogeneous glass.
  • the kiln for melting glass can be a melting furnace composed of refractory materials that are resistant to high temperatures and erosion by glass liquid, such as fused high zirconium bricks, dense zirconium bricks, fused mullite bricks, etc.
  • the diameter of the glass fiber is 8 to 22 ⁇ m (for example, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m or 22 ⁇ m).
  • the melting temperature is 1500-1600° C. (for example, 1500° C., 1520° C., 1550° C., 1580° C., 1590° C. or 1600° C.).
  • the invention also provides an application of the radiation resistant glass material, which is applied to the field of radiation resistant materials.
  • the radiation resistant glass material is used as an insulation material for a magnetic field coil of a thermonuclear fusion reactor.
  • the particle size of each component raw material used in the following examples is less than 200 mesh, and the final preparation is There are inevitable impurities in the radiation-resistant glass materials obtained.
  • the radiation-resistant glass material includes the following components in molar percentage: 65.54% silicon dioxide, 4.83% aluminum oxide, 15.38% calcium oxide, 12.31% magnesium oxide, 0.8% barium oxide, 0.2% tin oxide, 0.5% zirconium oxide, and 0.34% gadolinium oxide.
  • Embodiment 2 is substantially the same as Embodiment 1, except that:
  • the radiation-resistant glass material includes the following components in molar percentage: 65.60% silicon dioxide, 4.82% aluminum oxide, 15.38% calcium oxide, 12.30% magnesium oxide, 0.8% barium oxide, 0.2% tin oxide, 0.5% zirconium oxide, 0.23% cadmium oxide, and 0.17% gadolinium oxide.
  • Embodiment 3 is substantially the same as Embodiment 1, except that:
  • the radiation-resistant glass material includes the following components in molar percentage: 65.56% silicon dioxide, 4.82% aluminum oxide, 15.37% calcium oxide, 12.29% magnesium oxide, 0.8% barium oxide, 0.2% tin oxide, 0.5% zirconium oxide, and 0.45% cadmium oxide.
  • Embodiment 4 is substantially the same as Embodiment 1, except that:
  • the radiation-resistant glass material includes the following components in molar percentage: 64.99% silicon dioxide, 4.78% aluminum oxide, 13.06% calcium oxide, 15.23% magnesium oxide, 0.79% barium oxide, 0.2% tin oxide, 0.49% zirconium oxide, and 0.45% cadmium oxide.
  • Embodiment 5 is substantially the same as Embodiment 1, except that:
  • Embodiment 6 is substantially the same as Embodiment 1, except that:
  • Silicon dioxide 65.54%, aluminum oxide 4.83%, calcium oxide 15.38%, magnesium oxide 12.31%, barium oxide 0.8%, tin oxide 0.2%, zirconium oxide 0.5%, and gadolinium oxide 0.1%.
  • Embodiment 7 is substantially the same as Embodiment 1, except that:
  • Silicon dioxide 67%, aluminum oxide 4%, calcium oxide 12%, magnesium oxide 15%, barium oxide 0.5%, tin oxide 0.1%, zirconium oxide 0.9%, gadolinium oxide 0.34%.
  • Comparative Example 1 is substantially the same as Example 1, except that:
  • the radiation-resistant glass material includes the following components in molar percentage: 63.89% silicon dioxide, 4.70% aluminum oxide, 14.97% calcium oxide, 14.97% magnesium oxide, 0.78% barium oxide, 0.2% tin oxide, and 0.49% zirconium oxide.
  • Comparative Example 2 is substantially the same as Example 1, except that:
  • the radiation-resistant glass material includes the following components in molar percentage: 63.35% silicon dioxide, 4.66% aluminum oxide, 12.73% calcium oxide, 17.82% magnesium oxide, 0.77% barium oxide, 0.2% tin oxide, and 0.48% zirconium oxide.
  • the radiation-resistant glass materials prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were used as samples for mechanical property tests, ⁇ -ray irradiation tests, crystallization upper limit temperatures and high-temperature viscosity tests, and the comprehensive neutron capture reaction cross sections of the samples were calculated according to the above formulas.
  • the test results are shown in Table 1.
  • the test conditions for the ⁇ -ray irradiation test are: cobalt source activity of about 90,000 Curies, dose rate of 11034 Gy/h, and total irradiation dose of 1.02 ⁇ 10 7 Gy; a gradient crystallization temperature test furnace was used to test the crystallization upper limit temperature of the glass; and the high-temperature viscosity was measured using an American BROOKFIELD high-temperature viscometer.
  • the elastic modulus was calculated using a dynamic method by testing the propagation speed of ultrasonic waves or sound waves in the sample to obtain the elastic modulus of the material.
  • the absorption attenuation rate i.e. ( ⁇ before - ⁇ after )/ ⁇ before , ⁇ before and ⁇ after are the absorption coefficients of the glass sheet before and after irradiation, respectively.
  • the absorption attenuation rate versus wavelength curve is a method of characterizing the quality of the radiation resistance of the glass material. The lower the peak value, the better the radiation resistance, and vice versa.
  • the radiation resistance of the radiation-resistant glass material prepared in Example 1 is the best, which is consistent with the design concept of the present invention, that is, by introducing oxides with high neutron capture reaction cross sections, slowing down or absorbing irradiated particles, the network structure of the glass can be better protected.
  • Table 1 and Figure 1 it is further confirmed that the larger the comprehensive neutron capture reaction cross section of the radiation-resistant glass material calculated by the method of the present invention, the better its radiation resistance.
  • the radiation-resistant glass materials prepared in Examples 1 to 7 of the present invention do not produce obvious embrittlement, shrinkage, powdering, and increased thermal conductivity of the glass fibers, and the prepared glass fibers still have good mechanical properties. Moreover, the radiation-resistant glass materials prepared in the present invention can withstand high-dose cumulative irradiation for a long time in a space environment, and can meet the requirement of a service life of more than 10 years.
  • the radiation-resistant glass material prepared in the embodiment of the present invention is resistant to high-dose radiation, It has both high strength and high modulus.
  • the present invention improves the fiber forming process performance, reduces the production difficulty, and is more adaptable to industrial continuous production. It can be seen from Example 3 and Example 4 that the forming temperature difference is relatively large due to the change in the content of calcium oxide and magnesium oxide.
  • the radiation-resistant glass material prepared by the present invention can be used in an environment of 800-900°C (for example, it can be 800°C, 820°C, 850°C, 880°C or 900°C), and has excellent temperature resistance; and the tensile strength of the glass fiber is about 3000MPa. Therefore, the radiation-resistant glass fiber prepared according to the ratio of each component and its dosage of the present invention not only has excellent high-dose irradiation resistance, but also has excellent mechanical properties and temperature resistance. It can be used as an insulating material for the magnetic field coil of a thermonuclear fusion reactor, and can also be used in aerospace, deep space exploration and other fields involving particle radiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供了一种耐辐射玻璃材料及其制备方法与应用,涉及玻璃技术领域,所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%,网络改变体0.1~0.7%;其中,所述网络改变体为至少一种由中子俘获反应截面不小于100b的元素和氧元素结合形成的化合物。本发明提供的耐辐射玻璃材料具有优异的耐高剂量辐照性能,且兼具优异的力学性能、耐腐蚀性。

Description

一种耐辐射玻璃材料及其制备方法与应用 技术领域
本发明涉及玻璃技术领域,特别涉及一种耐辐射玻璃材料及其制备方法与应用。
背景技术
随着科学技术的不断发展,光学玻璃材料及玻璃纤维增强复合材料的应用范围随之扩增,其在胸透、辐照灭菌、放射治疗仪等医疗设备、聚变堆与裂变堆等高能大装置,以及航天航空、船舶、新能源、电子通讯等领域广泛应用。但普通玻璃及其复合材料在辐照环境中内部结构会发生变化,产生电子缺陷和杂质原子,影响其性能和使用寿命。现有的耐辐照玻璃材料虽然具有耐辐射性能,但在高剂量的辐射下其耐辐照性仍较差,且其力学性能和耐温性也会有所损失。因此有必要研发一种耐高剂量辐射强度的耐辐射玻璃材料,满足高能辐照环境下的屏蔽、绝缘、隔热等机械和热稳定性要求。
发明内容
本发明实施例提供了一种耐辐射玻璃材料及其制备方法与应用,该耐辐射玻璃材料具有优异的耐高剂量辐照性能,且兼具优异的力学性能,耐腐蚀性和耐温性好。
第一方面,本发明提供了一种耐辐射玻璃材料,包括以摩尔百分比计的如下组分:二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%,网络改变体0.1~0.7%;其中,所述网络改变体为至少一种由中子俘获反应截面不小于100b的元素和氧元素结合形成的化合物。
优选地,所述网络改变体包括氧化硼、氧化镉、氧化钆中的至少一种。
优选地,所述网络改变体由氧化镉和氧化钆组成。
更优选地,所述网络改变体中氧化镉和氧化钆的摩尔比不大于1:1。
更优选地,所述网络改变体中氧化镉和氧化钆的摩尔比为1:1。
优选地,所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%,氧化镉0~0.7%,氧化钆0.1~0.6%。
优选地,所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅60~65%,氧化铝5~7%,氧化钙14~16%,氧化镁10~15%,氧化钡0.8~1.0%,氧化锡0.3~0.5%,氧化锆0.5~1.0%,所述网络改变体0.2~0.5%。
优选地,所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅65.6%,氧化铝4.8%,氧化钙15.4%,氧化镁12.3%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%,氧化钆0.34%。
优选地,所述耐辐射玻璃材料的综合中子俘获反应截面为10~180b。
第二方面,本发明还提供了基于上述第一方面提供的耐辐射玻璃材料的制备方法,所述制备方法包括如下步骤:
将以摩尔百分比计的二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%和所述网络改变体0.1~0.7%进行混匀,经熔制、成形得到所述耐辐射玻璃材料。
优选地,耐辐射玻璃材料为玻璃纤维。
更优选地,所述玻璃纤维的直径为8~22μm。
所述熔制的温度为1500~1600℃。
第三方面,本发明提供了一种耐辐射玻璃材料的应用,应用于耐辐射材料领域。
优选地,将所述耐辐射玻璃材料用作热核融合反应堆的磁场线圈的绝缘材料。
本发明与现有技术相比至少具有如下有益效果:
本发明以元素的中子俘获反应截面为基础,通过在耐辐射玻璃材料中加入具有高中子俘获反应截面的氧化物,能有效实现对辐照粒子的减速和吸收,保护玻璃的本征结构,提高玻璃材料的耐辐照性能,进而实现玻璃的耐高剂量辐照;同时该类具有高中子俘获反应截面的氧化物作为网络改变体,仍能使制备的耐辐射玻璃材料兼具优异的力学性能、良好的耐环境腐蚀性和耐温性能,且工艺性能良好。
本发明制备得到的耐辐射玻璃材料,如玻璃纤维,在经γ射线辐照剂量1.02×107Gy辐照后,玻璃纤维均未产生明显的脆化、收缩、粉化和导热系数增加的现象,制备的玻璃纤维仍具有良好的机械性能。而且本发明制备的耐辐射玻璃材料能够在太空环境中长期耐受高剂量累计辐照,可满足其在10年以上使用寿命的要求。
附图说明
图1是本发明实施例1至3所提供的耐辐射玻璃材料在辐照前后的吸收衰减率曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例和附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种耐辐射玻璃材料,包括以摩尔百分比计的如下组分:二氧化硅58~67%(例如,可以为58%、58.5%、59%、60%、60.5%、61%、62%、63%、65%、66%或67%),氧化铝4~8%(例如,可以为4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%或8%),氧化钙12~18%(例如,可以为12%、12.5%、13%、13.5%、14%、15%、16%、16.5%、17%、17.5%或18%),氧化镁7~18%(例如,可以为7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、15%、16%、16.5%、17%、17.5%或18%),氧化钡0.5~1.2%(例如,可以为0.5%、0.55%、0.6%、0.65%、0.7%、0.75%、0.8%、0.9%、1.0%、1.05%、1.1%、1.15%或1.2%),氧化锡0.1~0.8%(例如,可以为0.1%、0.15%、0.2%、0.25%、0.3%、0.4%、0.5%、0.55%、0.6%、0.65%、0.7%、0.75%或0.8%),氧化锆0.5~1.2%(例如,可以为0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.05%、1.1%、1.15%或1.2%),网络改变体0.1~0.7%(例如,可以为0.1%、0.15%、0.2%、0.3%、0.4%、0.5%、0.55%、0.6%、0.65%或0.7%);其中,网络改变体为至少一 种由中子俘获反应截面不小于100b的元素和氧元素结合形成的化合物。
需要说明的是,本领域技术人员可以直接获取到中子俘获反应截面不小于100b的元素,例如,该元素可以为中子俘获反应截面为2450b的Cd元素,也可以为中子俘获反应截面为49000b的Gd元素。网络改变体即为至少一种符合上述条件的氧化物。
具体地,在本发明中,耐辐射玻璃材料还包括不可避免的杂质,杂质在该耐辐射玻璃材料中的摩尔百分比小于0.5%。该杂质包括Fe2O3、Na2O、K2O等。
在本发明中,二氧化硅是玻璃结构的网络形成体,为玻璃材料的力学性能、耐化学稳定性以及辐照性能提供基础。但是二氧化硅的含量需要根据性能设计进行调控,当二氧化硅含量过低时,玻璃网络形成体较少,其耐辐照性能、力学性能均会降低;但是若二氧化硅含量过高,又会导致玻璃粘度太大,熔制困难,同时玻璃熔体易析晶,不利于后续玻璃纤维成形。因此本发明选择二氧化硅的含量为58~67%摩尔百分比。
在本发明中,氧化铝在玻璃结构中以网络形成体存在,以[AlO4]四面体进入玻璃网络结构,能增强玻璃网络结构致密化,降低玻璃的分相倾向,抑制晶核形成以提高后续玻璃纤维的成形工艺性能,同时提高玻璃纤维的机械强度、模量以及耐化学腐蚀性,但是引入量过高则会导致出现大量的网络外体,导致玻璃熔制温度过高,析晶倾向增强。因此本发明选择氧化铝的含量为4~8%摩尔百分比。
在本发明中,氧化钙和氧化镁属于玻璃网络结构外体,在玻璃组分中主要提供游离氧来促进中间体形成四面体结构以增强玻璃材料的网络致密度;同时降低玻璃的高温粘度,改善析晶倾向,从而提升玻璃材料的力学性能和成形工艺性能。因此本发明选择氧化钙的含量为12~18%摩尔百分比,氧化镁的含量为7~18%摩尔百分比。
需要说明的是,本领域技术人员所公知的,Si元素的中子俘获反应截面为0.171b;Al元素的中子俘获反应截面为0.232b;Mg元素的中子俘获反应截面为0.063b;Ca元素的中子俘获反应截面为0.43b;Ba元素的中子俘获反应截面为1.3b;Sn元素的中子俘获反应截面为0.626b;Zr元素的中子俘获 反应截面为0.184b。
在本发明中,二氧化硅、氧化铝、氧化钙和氧化镁中的非氧元素都具有较小的中子俘获反应截面,在辐照过程中,由于原子半径小,能有效降低辐照射线或光子的碰撞几率,提高耐辐照性能,减少玻璃结构的破坏。而且氧化钙和氧化镁属于碱土金属氧化物,Ca、Mg在元素周期表中靠前属于轻元素,具有耐辐照的性能;同时氧化钙和氧化镁的引入能进一步改善玻璃材料的化学稳定性和耐辐照性能。
在本发明中,氧化钡在玻璃结构中属于玻璃网络结构外体,能够提供游离氧,促进玻璃熔制和改善玻璃纤维拉丝,同时Ba2+离子半径大,Ba的中子俘获反应截面为1.3b,是碱土金属元素里中子俘获反应截面最大的重金属元素,对辐照离子有较好的减速作用和较高的射线捕获能力,通过与高能粒子或光子之间的碰撞,能有效降低射线的动能,从而降低玻璃结构被破坏的概率,进一步提高耐辐照性能。本发明选择氧化钡的含量为0.5~1.2%摩尔百分比。
在本发明中,氧化锡在玻璃结构中属于网络改变体,其键能为192.6kJ/mol,在高于1560℃以上能使玻璃液有较好的澄清效果,能作为玻璃熔制时的澄清剂使用。同时氧化锡具有较好的导电性和反射红外线辐射的特性,在辐照过程中,有利于保护玻璃材料的本体结构,提高玻璃材料的耐温性能。因此本发明选择的氧化锡含量为0.1~0.5%摩尔百分比。
在本发明中,氧化锆在玻璃结构中属于玻璃网络结构外体,能够增加玻璃的高温粘度,降低热膨胀系数,显著提高玻璃材料的耐碱性。Zr4+离子半径大,也能使辐射粒子减速,也就是使粒子慢化,降低玻璃材料本体结构的辐照损伤。因此,为了确保氧化锆充分发挥其作用,本发明选择的氧化锆含量为0.5~1.2%摩尔百分比。
本发明所采用至少一种由中子俘获反应截面不小于100b的元素和氧元素结合形成的化合物作为网络改变体,并将该网络改变体填充在玻璃网络结构的间隙中,在辐照过程中,由于其所包含的元素中子俘获反应截面不小于100b,因而与辐照粒子发生碰撞的几率更高,即核反应发生的几率更高,反应活性更高,从而使得该类网络改变体能实现对辐照粒子的减速和吸收,减 少甚至避免辐照粒子对玻璃网络结构的破坏,进而显著提高耐辐射玻璃材料的耐辐照性能。经实验证实,当网络改变体含量为0.1~0.7%摩尔百分比时,所制备得到的耐辐射玻璃材料的综合中子俘获反应截面为10~180b,即具有优异的耐辐照性能,且经实验证实该综合中子俘获反应截面越大其耐辐照性能越优异。
在本发明中,由于网络改变体所包含的元素具有高中子俘获反应截面,因此通过选择不同高中子俘获反应截面的元素形成的氧化物并控制其摩尔百分比,借助其对辐照粒子的碰撞和吸收消耗辐照粒子,能根据实际使用需求实现对耐辐射玻璃材料的耐辐照性能的特定设计。
根据一些优选的实施方式,网络改变体包括氧化硼、氧化镉、氧化钆中的至少一种。
需要说明的是,至少一种即为任意一种或任意几种以任意比例混合的混合物。
根据一些优选的实施方式,网络改变体由氧化镉和氧化钆组成。
根据一些优选的实施方式,网络改变体中氧化镉和氧化钆的摩尔比不大于1:1(例如,可以为1:1、0.9:1、0.8:1、0.7:1或0.6:1等)。
根据一些更优选的实施方式,网络改变体中氧化镉和氧化钆的摩尔比为1:1。
根据一些优选的实施方式,耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%,氧化镉0~0.7%,氧化钆0.1~0.6%。
需要说明的是,针对氧化镉的摩尔百分比为0~0.7%,例如,可以为0%,0.05%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%、0.6%、0.65%或0.7%。
针对氧化钆的摩尔百分比为0.1~0.6%,例如,可以为0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%或0.6%。
在本发明中,氧化镉作为玻璃结构中的网络改变体,填充在网络结构的间隙中,单键键能为83.7kJ/mol,能显著增加玻璃材料的密度。同时,Cd的 中子俘获反应截面为2450b,在辐照过程中,与辐照粒子发生碰撞的几率极高,起到减速或吸收辐照粒子的作用,从而对玻璃的网络结构进行保护,由于其属于网络改变体,发生碰撞后对玻璃结构的破坏很小。经实验证实本发明选择的氧化镉含量为0~0.7%摩尔百分比。
在本发明中,氧化钆作为玻璃结构中的网络改变体,Gd的7个电子轨道上有1个电子,是稀土元素中最大数的不成对电子,目前元素周期表中,Gd有最高的中子俘获反应截面49000b,辐照时与粒子发生碰撞的几率最高,对粒子的减速和吸收作用最显著,因而能对玻璃的网络结构起到优异的保护作用。经实验证实本发明选择的氧化钆含量为0.1~0.6%摩尔百分比。
根据一些优选的实施方式,耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅60~65%(例如,可以为60%、60.5%、61%、61.5%、62%、62.5%、63%、63.5%、64%、64.5%或65%),氧化铝5~7%(例如,可以为5%、5.5%、6%、6.5%或7%),氧化钙14~16%(例如,可以为14%、14.5%、15%、15.5%或16%),氧化镁10~15%(例如,可以为10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%或15%),氧化钡0.8~1.0%(例如,可以为0.8%、0.85%、0.9%、0.95%或1.0%),氧化锡0.3~0.5%(例如,可以为0.3%、0.35%、0.4%、0.45%或0.5%),氧化锆0.5~1.0%(例如,可以为0.5%、0.55%、0.6%、0.65%、0.7%、0.75%、0.79%、0.85%、0.9%、0.95%或0.99%),网络改变体0.2~0.5%(例如,可以为0.21%、0.25%、0.29%、0.35%、0.4%、0.45%或0.5%)。
根据一些更优选的实施方式,耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅65.6%,氧化铝4.8%,氧化钙15.4%,氧化镁12.3%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%,氧化钆0.34%。
根据一些优选的实施方式,耐辐射玻璃材料的综合中子俘获反应截面为10~180b。
需要说明的是,在本发明中,利用玻璃性质具有加和性的特点,所述综合中子俘获反应截面由下述公式计算得到:
其中,F用于表征综合中子俘获反应截面;k用于表征耐辐射玻璃材料 中的各组分,n用于表征耐辐射玻璃材料中的组分种类总数;Ak用于表征第k个组分的摩尔百分比;ωk用于表征第k个组分中非氧元素的中子俘获反应截面。经实验证实,按照上述公式计算得到的耐辐射玻璃材料的综合中子俘获反应截面,得出了综合中子俘获反应截面越大,耐辐照性能越优异的结论。因此,进一步证实了本发明提出的基于元素的中子俘获反应截面设计的耐辐射玻璃材料具有更优异的耐辐照性能。
本发明还提供了一种耐辐射玻璃材料的制备方法,该制备方法包括如下步骤:
将以摩尔百分比计的二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%和网络改变体0.1~0.7%进行混匀,经熔制、成形得到耐辐射玻璃材料。
根据一些优选的实施方式,耐辐射玻璃材料为玻璃纤维。
具体地,在本发明中,可以采用全氧燃烧、全电熔或火电结合的方式进行窑炉熔制,从而形成均质玻璃。熔制玻璃时的窑炉可采用含有耐高温、耐玻璃液侵蚀的耐火材料组成的熔窑进行,如电熔高锆砖、致密锆砖、电熔莫来石砖等。还可以采用耐火材料致密锆砖、刚玉砖、电熔铬锆刚玉砖、莫来石构造的代铂炉进行二步法拉丝生产玻璃纤维,即先按照上述各组分及其摩尔百分比熔制玻璃,再用玻璃拉制玻璃纤维。也可以采用具有上述耐火材料构造的窑炉通路进行一步法拉丝生产玻璃纤维。
根据一些更优选的实施方式,玻璃纤维的直径为8~22μm(例如,可以为8μm、9μm、10μm、11μm、12μm、14μm、15μm、16μm、18μm、20μm或22μm)。
根据一些优选的实施方式,熔制的温度为1500~1600℃(例如,可以为1500℃、1520℃、1550℃、1580℃、1590℃或1600℃)。
本发明还提供了一种耐辐射玻璃材料的应用,应用于耐辐射材料领域。
根据一些优选的实施方式,耐辐射玻璃材料用作热核融合反应堆的磁场线圈的绝缘材料。
为了更加清楚地说明本发明的技术方案及优点,下面通过几个实施例对一种耐辐射玻璃材料及其制备方法与应用进行详细说明。
以下实施例中所采用的各组分原料的粒径均低于200目,且最终制备得 到的耐辐射玻璃材料中存在不可避免的杂质。
实施例1
耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅65.54%,氧化铝4.83%,氧化钙15.38%,氧化镁12.31%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%、氧化钆0.34%。按照上述配比准确称量各组分,将称量后的各组分进行混匀得到配合料,通过气力混合并输送至窑炉加料口,采用自动加料机投料,在1600℃采用全电熔或的窑炉熔制得到澄清、均化的玻璃液,将该玻璃液制备成玻璃球,再将熔制好的玻璃球利用代铂炉,在1550℃下再熔融,采用400以上漏板,控制玻璃纤维成型工艺参数得到直径为8~22μm的连续玻璃纤维,即耐辐射玻璃材料。
实施例2
实施例2与实施例1基本相同,其不同之处在于:
耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅65.60%,氧化铝4.82%,氧化钙15.38%,氧化镁12.30%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%、氧化镉0.23%、氧化钆0.17%。
实施例3
实施例3与实施例1基本相同,其不同之处在于:
耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅65.56%,氧化铝4.82%,氧化钙15.37%,氧化镁12.29%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%、氧化镉0.45%。
实施例4
实施例4与实施例1基本相同,其不同之处在于:
耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅64.99%,氧化铝4.78%,氧化钙13.06%,氧化镁15.23%,氧化钡0.79%,氧化锡0.2%,氧化锆0.49%、氧化镉0.45%。
实施例5
实施例5与实施例1基本相同,其不同之处在于:
二氧化硅58%,氧化铝8%,氧化钙18%,氧化镁12%,氧化钡1.2%,氧化锡0.8%,氧化锆1.2%、氧化钆0.34%。
实施例6
实施例6与实施例1基本相同,其不同之处在于:
二氧化硅65.54%,氧化铝4.83%,氧化钙15.38%,氧化镁12.31%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%、氧化钆0.1%。
实施例7
实施例7与实施例1基本相同,其不同之处在于:
二氧化硅67%,氧化铝4%,氧化钙12%,氧化镁15%,氧化钡0.5%,氧化锡0.1%,氧化锆0.9%、氧化钆0.34%。
对比例1
对比例1与实施例1基本相同,其不同之处在于:
耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅63.89%,氧化铝4.70%,氧化钙14.97%,氧化镁14.97%,氧化钡0.78%,氧化锡0.2%,氧化锆0.49%。
对比例2
对比例2与实施例1基本相同,其不同之处在于:
耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅63.35%,氧化铝4.66%,氧化钙12.73%,氧化镁17.82%,氧化钡0.77%,氧化锡0.2%,氧化锆0.48%。
将实施例1至4以及对比例1和2所制备的制备的耐辐射玻璃材料作为试样进行力学性能测试、γ射线辐照试验、析晶上限温度和高温粘度测定,并根据前述公式计算得到试样的综合中子俘获反应截面,测试结果如表1所示。其中,γ射线辐照试验的测试条件为:钴源活度约9万居里,剂量率11034Gy/h,总辐照剂量1.02×107Gy;采用梯度析晶温度测试炉,测试玻璃的析晶上限温度;采用美国BROOKFIELD高温粘度仪测定高温粘度。其中,弹性模量采用动态法,通过测试超声波或声波在试样中的传播速度计算得出材料弹性模量。
表1

针对上述试样,分别在辐照前和辐照后进行UV-VIS-NIR光谱测试,并比较其在辐照前后的吸收衰减变化,经计算得到的吸收衰减率曲线如图1所示(其中,曲线由下至上依次对应为实施例1、实施例2、实施例3);其中,测量波长范围为300~1300nm;图1的横坐标为波长(单位nm),纵坐标为吸收衰减率。
吸收衰减率,即(α)/α,α和α分别为玻璃片辐照前后的吸收系数,吸收衰减率对波长曲线是表征玻璃材料耐辐照性能优劣的一种方法,其峰值越低,则耐辐照性能越好,反之,则越差。由图1可知,实施例1所制备的耐辐射玻璃材料的耐辐照性能最佳,与本发明的设计构思一致,即通过引入高中子俘获反应截面的氧化物,减慢或吸收辐照粒子,能够更好的保护玻璃的网络结构。同时,结合表1和图1也进一步证实了通过本发明的方法计算得到的耐辐射玻璃材料的综合中子俘获反应截面越大,其耐辐照性能越优异。
同时,经实验证实,本发明实施例1至7所制备得到的耐辐射玻璃材料,在经γ射线辐照剂量1.02×107Gy辐照后,玻璃纤维均未产生明显的脆化、收缩、粉化和导热系数增加的现象,制备的玻璃纤维仍具有良好的机械性能。而且本发明制备的耐辐射玻璃材料能够在太空环境中长期耐受高剂量累计辐照,可满足其在10年以上使用寿命的要求。
由表1可知,本发明实施例所制备的耐辐射玻璃材料,耐高剂量辐照、 兼具高强度高模量。同时根据成形温度可以发现,本发明改善了纤维成形工艺性能,降低了生产难度,更能适应工业的连续化生产。由实施例3和实施例4可以看出,由于氧化钙和氧化镁的含量变化导致成型温差相差较大。进一步地,经实验证实,本发明所制备的耐辐射玻璃材料可应用于800~900℃(例如,可以为800℃、820℃、850℃、880℃或900℃)的环境中,还具有优异的耐温性能;且该玻璃纤维的拉伸强度约为3000MPa。因此按照本发明各组分及其用量的配比制备得到的耐辐射玻璃纤维,不仅具有优异的耐高剂量辐照性能,且兼具优异的力学性能和耐温性,可用于热核融合反应堆的磁场线圈的绝缘材料,也可用于航天航空、深空探测等涉及粒子辐射的领域。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。本发明未详细说明部分为本领域技术人员公知技术。

Claims (13)

  1. 一种耐辐射玻璃材料,其特征在于,所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%,网络改变体0.1~0.7%;其中,所述网络改变体为至少一种由中子俘获反应截面不小于100b的元素和氧元素结合形成的化合物。
  2. 根据权利要求1所述的耐辐射玻璃材料,其特征在于,
    所述网络改变体包括氧化硼、氧化镉、氧化钆中的至少一种。
  3. 根据权利要求1所述的耐辐射玻璃材料,其特征在于,
    所述网络改变体由氧化镉和氧化钆组成。
  4. 根据权利要求3所述的耐辐射玻璃材料,其特征在于,
    所述网络改变体中氧化镉和氧化钆的摩尔比不大于1:1。
  5. 根据权利要求3所述的耐辐射玻璃材料,其特征在于,
    所述网络改变体中氧化镉和氧化钆的摩尔比为1:1。
  6. 根据权利要求1所述的耐辐射玻璃材料,其特征在于,
    所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%,氧化镉0~0.7%,氧化钆0.1~0.6%。
  7. 根据权利要求1所述的耐辐射玻璃材料,其特征在于,
    所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅60~65%,氧化铝5~7%,氧化钙14~16%,氧化镁10~15%,氧化钡0.8~1.0%,氧化锡0.3~0.5%,氧化锆0.5~1.0%,所述网络改变体0.2~0.5%。
  8. 根据权利要求1至7中任一所述的耐辐射玻璃材料,其特征在于,
    所述耐辐射玻璃材料包括以摩尔百分比计的如下组分:二氧化硅65.6%,氧化铝4.8%,氧化钙15.4%,氧化镁12.3%,氧化钡0.8%,氧化锡0.2%,氧化锆0.5%,氧化钆0.34%。
  9. 根据权利要求1至8中任一所述的耐辐射玻璃材料的制备方法,其特征在于,所述制备方法包括如下步骤:
    将以摩尔百分比计的二氧化硅58~67%,氧化铝4~8%,氧化钙12~18%,氧化镁7~18%,氧化钡0.5~1.2%,氧化锡0.1~0.8%,氧化锆0.5~1.2%和所述网络改变体0.1~0.7%进行混匀,经熔制、成形得到所述耐辐射玻璃材料。
  10. 根据权利要求9所述的制备方法,其特征在于,
    所述耐辐射玻璃材料为玻璃纤维;所述玻璃纤维的直径为8~22μm。
  11. 根据权利要求9所述的制备方法,其特征在于,
    所述熔制的温度为1500~1600℃。
  12. 根据权利要求1至8中任一所述的耐辐射玻璃材料或根据权利要求9至11中任一所述的制备方法制备得到的耐辐射玻璃材料的应用,其特征在于,将所述耐辐射玻璃材料用于耐辐射材料领域。
  13. 根据权利要求12所述的应用,其特征在于,将所述耐辐射玻璃材料用作热核融合反应堆的磁场线圈的绝缘材料。
PCT/CN2023/103156 2022-10-28 2023-06-28 一种耐辐射玻璃材料及其制备方法与应用 WO2024087693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211339184.5 2022-10-28
CN202211339184.5A CN115611513B (zh) 2022-10-28 2022-10-28 一种耐辐射玻璃材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2024087693A1 true WO2024087693A1 (zh) 2024-05-02

Family

ID=84875640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103156 WO2024087693A1 (zh) 2022-10-28 2023-06-28 一种耐辐射玻璃材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115611513B (zh)
WO (1) WO2024087693A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611513B (zh) * 2022-10-28 2024-06-04 南京玻璃纤维研究设计院有限公司 一种耐辐射玻璃材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160155521A1 (en) * 2013-07-19 2016-06-02 Hitachi, Ltd. Neutron-absorbing glass and neutron-absorbing material using the same, and management method of corium, unloading method of corium, and shutdown method of nuclear reactor to which the same is applied
CN108569845A (zh) * 2017-03-10 2018-09-25 肖特股份有限公司 富碱金属铝硅酸盐玻璃的生产工艺,富碱金属铝硅酸盐玻璃及其用途
US20200239355A1 (en) * 2015-09-03 2020-07-30 Hitachi, Ltd. Glass composition, neutron-absorbing material comprising same, method for managing molten fuel, method for taking out molten fuel, and method for stopping nuclear reactor
CN113003941A (zh) * 2021-03-15 2021-06-22 南京玻璃纤维研究设计院有限公司 玻璃组合物、玻璃纤维、玻璃纤维棉、纤维混纺纱及制备方法
WO2022145401A1 (ja) * 2020-12-28 2022-07-07 新日本繊維株式会社 無機組成物及びその繊維並びにフレーク
CN115611513A (zh) * 2022-10-28 2023-01-17 南京玻璃纤维研究设计院有限公司 一种耐辐射玻璃材料及其制备方法与应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557864B2 (ja) * 1996-09-24 2004-08-25 住友電気工業株式会社 放射線遮蔽材及びその製造方法
US20070102672A1 (en) * 2004-12-06 2007-05-10 Hamilton Judd D Ceramic radiation shielding material and method of preparation
JP2011085582A (ja) * 2009-09-18 2011-04-28 Nippon Electric Glass Co Ltd 放射線遮蔽安全ガラスとその製造方法
CN103641326B (zh) * 2013-11-22 2016-10-26 张亚峰 一种防辐射玻璃
CN104291685A (zh) * 2014-09-24 2015-01-21 中材科技股份有限公司 耐辐照玻璃纤维以及利用其制成的针刺毡
CN104926120B (zh) * 2015-06-11 2017-06-09 成都光明光电有限责任公司 特种防护玻璃
CN105908560B (zh) * 2016-04-19 2018-02-16 中材科技股份有限公司 一种耐辐照玻璃纤维空气滤纸的制备方法
CN106226339A (zh) * 2016-09-20 2016-12-14 清华大学 中子产生设备,中子成像设备以及成像方法
CN107342113A (zh) * 2017-07-21 2017-11-10 中国核动力研究设计院 一种耐高温耐辐照无机屏蔽材料
CN108623146A (zh) * 2018-06-26 2018-10-09 成都光明光电有限责任公司 环境友好型特种防护玻璃
CN113754275A (zh) * 2021-09-23 2021-12-07 成都光明光电有限责任公司 防辐射玻璃
CN114605724A (zh) * 2022-03-01 2022-06-10 南京爱克斯射线防护技术有限公司 一种辐射防护复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160155521A1 (en) * 2013-07-19 2016-06-02 Hitachi, Ltd. Neutron-absorbing glass and neutron-absorbing material using the same, and management method of corium, unloading method of corium, and shutdown method of nuclear reactor to which the same is applied
US20200239355A1 (en) * 2015-09-03 2020-07-30 Hitachi, Ltd. Glass composition, neutron-absorbing material comprising same, method for managing molten fuel, method for taking out molten fuel, and method for stopping nuclear reactor
CN108569845A (zh) * 2017-03-10 2018-09-25 肖特股份有限公司 富碱金属铝硅酸盐玻璃的生产工艺,富碱金属铝硅酸盐玻璃及其用途
WO2022145401A1 (ja) * 2020-12-28 2022-07-07 新日本繊維株式会社 無機組成物及びその繊維並びにフレーク
CN113003941A (zh) * 2021-03-15 2021-06-22 南京玻璃纤维研究设计院有限公司 玻璃组合物、玻璃纤维、玻璃纤维棉、纤维混纺纱及制备方法
CN115611513A (zh) * 2022-10-28 2023-01-17 南京玻璃纤维研究设计院有限公司 一种耐辐射玻璃材料及其制备方法与应用

Also Published As

Publication number Publication date
CN115611513A (zh) 2023-01-17
CN115611513B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2024087693A1 (zh) 一种耐辐射玻璃材料及其制备方法与应用
Givord et al. X-ray and neutron determination of a so-called Th2Ni17-type structure in the lutetium-iron system
Kaur et al. Heavy metal oxide glasses as gamma rays shielding material
CN108335771B (zh) 中子屏蔽材料及其制备方法
US2747105A (en) Transparent nuclear radiation shield
CN105645865A (zh) 一种稀土防核辐射砂浆及其制备方法
CN111205067B (zh) 一种中子及γ射线协同防护的玻璃-陶瓷材料及其制备方法
CN107342113A (zh) 一种耐高温耐辐照无机屏蔽材料
US10777330B2 (en) MgF2 system fluoride sintered body for radiation moderator and method for producing the same
CN113003941B (zh) 玻璃组合物、玻璃纤维、玻璃纤维棉、纤维混纺纱及制备方法
CN106565085B (zh) 光学玻璃组合物、光学玻璃及其制备方法和应用
JP7401079B2 (ja) 無機組成物及びその繊維並びにフレーク
CN112551951A (zh) 防辐射混凝土组合物、制备方法及预制容器
JPWO2022145401A5 (zh)
CN113754275A (zh) 防辐射玻璃
CN110981361A (zh) 一种高h元素含量防辐射混凝土及其制备方法
US3122509A (en) Coherent nuclear reactor elements
CN102167511A (zh) 低能辐射防护玻璃的制造方法
CN109592961B (zh) 一种耐高温含硼锶磷铝酸盐水泥基核电混凝土
JP2520978B2 (ja) 放射線遮蔽材
CN112863721A (zh) 一种铀基中子伽马复合屏蔽材料
US5221646A (en) Neutron absorbing glass compositions
CN109704714B (zh) 一种防辐射型磷铝酸盐水泥基核电混凝土
Chang et al. Research Progress of Neutron Shielding Materials
JP6664639B2 (ja) 放射線遮蔽体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881282

Country of ref document: EP

Kind code of ref document: A1