WO2024087620A1 - 太阳电池的制备方法和太阳电池 - Google Patents

太阳电池的制备方法和太阳电池 Download PDF

Info

Publication number
WO2024087620A1
WO2024087620A1 PCT/CN2023/097065 CN2023097065W WO2024087620A1 WO 2024087620 A1 WO2024087620 A1 WO 2024087620A1 CN 2023097065 W CN2023097065 W CN 2023097065W WO 2024087620 A1 WO2024087620 A1 WO 2024087620A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
layer
seed layer
copper seed
preparing
Prior art date
Application number
PCT/CN2023/097065
Other languages
English (en)
French (fr)
Inventor
魏科胜
余义
王金
徐磊
Original Assignee
通威太阳能(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(安徽)有限公司 filed Critical 通威太阳能(安徽)有限公司
Publication of WO2024087620A1 publication Critical patent/WO2024087620A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the invention relates to the technical field of solar cells, and in particular to a preparation method of a solar cell and a solar cell.
  • Solar energy is considered to be a sustainable clean energy with great application prospects.
  • Solar cells can absorb solar energy and generate electricity, and are indispensable devices for large-scale application of solar energy.
  • Copper has excellent electrical conductivity and low cost, and is considered to be an ideal alternative material.
  • the traditional preparation process of copper grid electrode usually includes: first sputtering a copper seed layer on a transparent conductive film, and then preparing a copper grid electrode on the copper seed layer.
  • some copper atoms will ionize to form copper ions with large kinetic energy and bombard the surface of the transparent conductive film, which will cause morphological defects on the surface of the transparent conductive film, resulting in poor contact between the transparent conductive film and the copper seed layer and reduced battery efficiency. Therefore, the current preparation process of the copper seed layer still needs to be further optimized.
  • a method for preparing a solar cell which comprises the following steps:
  • a gate line electrode is formed on the second copper seed layer.
  • the step of preparing the barrier layer includes: placing the solar cell substrate in a cleaning solution to ultrasonically clean the transparent conductive film, and depositing the material of the barrier layer on the transparent conductive film after ultrasonic cleaning.
  • the material of the barrier layer includes one or more of transition metal sulfides and metal nitrides.
  • the cleaning solution includes pure water or a dilute hydrochloric acid solution with a mass concentration of 1% to 10%.
  • the method for preparing the solar cell further includes: placing the solar cell substrate in an activation solution for copper plating activation treatment.
  • the activation solution includes a buffered oxidative etching solution and a chemical copper plating activator.
  • the thickness of the first copper seed layer is 10 nm to 200 nm.
  • the thickness of the second copper seed layer is 100 nm to 200 nm.
  • the thickness of the barrier layer is 1 nm to 10 nm.
  • the deposition rate is 0.4 nm/s to 1.0 nm/s.
  • the temperature in the step of preparing the second copper seed layer, is 20°C to 60°C.
  • the gate line electrode is prepared by chemical copper plating or electrochemical copper plating.
  • the solar cell substrate also includes a silicon substrate, a front intrinsic amorphous silicon layer, a front doped amorphous silicon layer, a back intrinsic amorphous silicon layer and a back doped amorphous silicon layer, the front intrinsic amorphous silicon layer and the front doped amorphous silicon layer are sequentially stacked on the front side of the silicon substrate, the back intrinsic amorphous silicon layer and the back doped amorphous silicon layer are sequentially stacked on the back side of the silicon substrate, and the transparent conductive film has two layers, and the two layers of the transparent conductive film are respectively arranged on the front doped amorphous silicon layer and the back doped amorphous silicon layer.
  • a solar cell comprising:
  • a solar cell substrate wherein the solar cell substrate comprises a transparent conductive film
  • a barrier layer the barrier layer being disposed on the transparent conductive film
  • a first copper seed layer wherein the first copper seed layer is prepared by chemical copper plating, and the first copper seed layer is disposed on the barrier layer;
  • a second copper seed layer wherein the second copper seed layer is prepared by sputtering, and the second copper seed layer is disposed on the first copper seed layer;
  • a copper gate electrode is disposed on the second copper seed layer.
  • the thickness of the barrier layer is 1 nm to 10 nm.
  • the material of the barrier layer includes one or both of transition metal sulfides and nitrides.
  • the thickness of the first copper seed layer is 10 nm to 200 nm.
  • the thickness of the second copper seed layer is 100 nm to 200 nm.
  • the solar cell substrate further comprises a silicon substrate, a front intrinsic amorphous silicon layer, a front doped amorphous silicon layer, a back intrinsic amorphous silicon layer and a back doped amorphous silicon layer.
  • the front intrinsic amorphous silicon layer and the front doped amorphous silicon layer are sequentially stacked on the front side of the silicon substrate
  • the back intrinsic amorphous silicon layer and the back doped amorphous silicon layer are sequentially stacked on the back side of the silicon substrate
  • the transparent conductive film has two layers, which are respectively arranged on the front doped amorphous silicon layer and the back doped amorphous silicon layer.
  • FIG1 shows a method for preparing a solar cell in one embodiment of the present disclosure
  • FIG2 shows a schematic structural diagram of a solar cell substrate provided in step S1 of the preparation method of FIG1 ;
  • FIG3 shows a schematic diagram of the device structure prepared in step S2 of the preparation method of FIG1 ;
  • FIG4 shows a schematic diagram of the device structure prepared in step S3 of the preparation method of FIG1 ;
  • FIG5 shows a schematic diagram of the device structure prepared in step S3 of the preparation method of FIG1 ;
  • FIG6 shows a schematic structural diagram of a solar cell prepared by the preparation method of FIG1 ;
  • Silicon substrate 111. Intrinsic amorphous silicon layer on the front side; 112. Doped amorphous silicon layer on the front side; 113. Transparent conductive film on the front side; 114. Blocking layer on the front side; 115. First copper seed layer on the front side; 116. Second copper seed layer on the front side; 117. Copper grid electrode on the front side; 121. Intrinsic amorphous silicon layer on the back side; 122. Doped amorphous silicon layer on the back side; 123. Transparent conductive film on the back side; 124. Blocking layer on the back side; 125. First copper seed layer on the back side; 126. Second copper seed layer on the back side; 127. Copper grid electrode on the back side.
  • An embodiment of the present disclosure provides a method for preparing a solar cell, characterized in that it includes the following steps: preparing a barrier layer on a transparent conductive film of a solar cell substrate; preparing a first copper seed layer on the barrier layer by chemical copper plating; preparing a second copper seed layer on the first copper seed layer by sputtering; and preparing a gate electrode on the second copper seed layer.
  • the method for preparing the solar cell pre-prepare a barrier layer, which can effectively prevent copper ions from entering the surface of the solar cell substrate, solve the problem of copper ion contamination of the solar cell substrate, and facilitate the preparation of a first copper seed layer by chemical copper plating.
  • a barrier layer which can effectively prevent copper ions from entering the surface of the solar cell substrate, solve the problem of copper ion contamination of the solar cell substrate, and facilitate the preparation of a first copper seed layer by chemical copper plating.
  • the generated copper ions are directly absorbed by the first copper seed layer, thereby avoiding damage to the transparent conductive film.
  • the conductivity of the copper seed layer is also effectively guaranteed, and the electrical contact performance between the copper seed layer and the transparent conductive film is effectively improved, thereby significantly improving the efficiency of the prepared solar cell.
  • the present disclosure also provides an embodiment of the method for preparing a solar cell, as shown in FIG. 1 , which includes steps S1 to S5 .
  • Step S1 providing a solar cell substrate including a transparent conductive film.
  • the solar cell substrate has semiconductor components that can convert light energy into electrical energy, transparent
  • the conductive film is arranged on the semiconductor component to collect the current generated by the semiconductor component. In order to conduct the current to the external circuit, it is also necessary to prepare a grid electrode on the solar cell substrate.
  • the solar cell substrate is a substrate of a crystalline silicon solar cell.
  • a crystalline silicon solar cell refers to a solar cell using a silicon wafer as a substrate.
  • the solar cell substrate is a substrate of a heterojunction solar cell.
  • the doping types of the front doped amorphous silicon layer 112 and the back doped amorphous silicon layer 122 are different.
  • the doping type of the silicon substrate 100 is N-type
  • the doping type of the front doped amorphous silicon layer 112 is also N-type
  • the doping type of the back doped amorphous silicon layer 122 is P-type.
  • the solar cell substrate is a substrate of a heterojunction solar cell.
  • the surface of the silicon substrate 100 of the solar cell substrate has a pyramid-shaped texture.
  • the solar cell substrate may be provided by preparing the solar cell substrate by an upstream production line.
  • the preparation process of the solar cell substrate may include sequentially depositing an intrinsic amorphous silicon layer, a doped amorphous silicon layer and a transparent conductive film on a silicon substrate 100, and the specific preparation method may refer to existing processes.
  • Step S2 preparing a barrier layer on the transparent conductive film.
  • the barrier layer is disposed on the transparent conductive film.
  • the barrier layer has two The front barrier layer 114 and the back barrier layer 124 are respectively disposed on the front transparent conductive film 113 and the back transparent conductive film 123.
  • the barrier layer is used to block the copper ions in the subsequent chemical copper plating process to prevent the copper ions from contaminating the solar cell substrate. It can be understood that the barrier layer should have light transmittance and conductivity to maintain the normal operation of the solar cell.
  • the thickness of the barrier layer is 1 nm to 10 nm.
  • the thickness of the barrier layer is 1 nm, 3 nm, 5 nm, 8 nm, 10 nm, or a range therebetween.
  • the material of the barrier layer includes one or both of transition metal sulfide and nitride.
  • the nitride may be selected from one or more of copper nitride (Cu 3 N), gallium nitride and indium nitride, and the transition metal sulfide may include but is not limited to molybdenum sulfide.
  • the barrier layer may be prepared by physical vapor deposition or chemical vapor deposition.
  • the barrier layer may cover the entire transparent conductive film, or may be disposed on a partial area on the transparent conductive film.
  • the step of ultrasonically cleaning the solar cell substrate in a cleaning solution is also included.
  • the ultrasonic cleaning of the solar cell substrate is used to remove impurities on the surface of the solar cell substrate, such as particles, dust, etc., to prepare for the subsequent preparation of the barrier layer and the deposition of the first copper seed layer, so that the contact between the first copper seed layer and the transparent conductive film is more complete, thereby improving the electrical performance and tensile force.
  • the temperature of the cleaning liquid is 20°C to 80°C.
  • the cleaning liquid in the step of ultrasonically cleaning the solar cell substrate in a cleaning liquid, includes pure water, or the cleaning liquid includes a dilute hydrochloric acid solution with a mass concentration of 1% to 10%.
  • Step S3 preparing a first copper seed layer on the barrier layer by chemical copper plating.
  • the first copper seed layer is disposed on the barrier layer.
  • the first copper seed layer has two layers, namely a front first copper seed layer 115 and a back first copper seed layer 125, which are disposed on the front barrier layer 114 and the back barrier layer 124 respectively.
  • chemical copper plating refers to placing the workpiece to be copper-plated in a chemical copper plating solution containing copper ions, reducing the copper ions and allowing the generated copper to be directly deposited on the surface of the workpiece to be copper-plated to complete the copper plating.
  • the thickness of the first copper seed layer is 10nm to 200nm.
  • the thickness of the first copper seed layer is 10nm to 100nm.
  • the thickness of the first copper seed layer is 10nm to 50nm.
  • the thickness of the first copper seed layer is 10nm, 20nm, 30nm, 40nm, 50nm, or a range between the thicknesses.
  • the plating solution used for chemical copper plating contains copper ions and a reducing agent.
  • the reducing agent includes glyoxylic acid.
  • the concentration of glyoxylic acid in the plating solution is 1.3 g/L to 32.5 g/L.
  • the concentration of glyoxylic acid in the plating solution is 1.3 g/L, 5 g/L, 10 g/L, 15 g/L, 25 g/L, 32.5 g/L, or a range between the above concentrations.
  • the plating solution used for chemical copper plating includes copper sulfate.
  • the concentration of copper sulfate in the plating solution is 2 g/L to 25 g/L.
  • the concentration of copper sulfate in the plating solution is 2 g/L, 5 g/L, 10 g/L, 15 g/L, 25 g/L, or a range between the above concentrations.
  • the plating solution used for chemical copper plating also includes one or more of a complexing agent, a stabilizer and a foaming agent.
  • the concentration of the complexing agent in the plating solution is 1g/L to 40g/L.
  • the concentration of the stabilizer in the plating solution is 2mg/L to 40mg/L.
  • the concentration of the foaming agent in the plating solution is 2mg/L to 40mg/L.
  • the complexing agent may include ethylenediaminetetraacetic acid
  • the stabilizer may include bipyridine
  • the foaming agent may include one or more of polyethylene glycol and phenyl polyoxyethylene ether sodium phosphate.
  • the solar cell before preparing the first copper seed layer, the solar cell The cell substrate is placed in an activation solution for activation treatment, wherein the activation treatment is used to form a catalyst on the surface of the solar cell substrate to accelerate the deposition of copper metal on the surface of the solar cell substrate.
  • the activation solution includes a buffered oxidative etching solution and an electroless copper plating activator.
  • the electroless copper plating activator includes a palladium salt and nitric acid.
  • the palladium salt can be palladium chloride.
  • the activation time is 3s to 100s.
  • the activation temperature is 20°C to 50°C.
  • Step S4 preparing a second copper seed layer on the first copper seed layer by sputtering.
  • the second copper seed layer is disposed on the first copper seed layer.
  • the second copper seed layer has two layers, namely, a front second copper seed layer 116 and a back second copper seed layer 126, which are disposed on the front first copper seed layer 115 and the back first copper seed layer 125 respectively.
  • the copper film layer prepared by sputtering has high density and tensile properties.
  • some copper atoms will be ionized into copper ions.
  • the copper ions with large kinetic energy bombard the surface of the transparent conductive film, causing hole defects on the surface of the transparent conductive film.
  • the preparation method of the solar cell of this embodiment is to form a first copper seed layer by chemical copper plating in advance, and then to prepare a second copper seed layer by sputtering on the first copper seed layer.
  • the first copper seed layer mainly plays a role in blocking the second copper seed layer prepared by sputtering, and the second copper seed layer is matched with the first copper seed layer to improve the quality and tension of the copper seed layer.
  • the combination of the first copper seed layer and the second copper seed layer can effectively improve the performance of the solar cell.
  • the thickness of the second copper seed layer is 100 nm to 200 nm.
  • the thickness of the second copper seed layer is 100 nm, 120 nm, 140 nm, 160 nm, 180 nm, 200 nm, or a range between the above thicknesses.
  • the method of preparing the second copper seed layer is selected from magnetron sputtering.
  • the deposition rate is 0.4 nm/s to 1.0 nm/s.
  • the sputtering power is 100W ⁇ 2000W.
  • the temperature is 20°C to 60°C.
  • a protective gas is introduced in the step of preparing the second copper seed layer.
  • the protective gas includes argon.
  • the flow rate of the introduced protective gas is 100 sccm to 1200 sccm.
  • the first copper seed layer and the second copper seed layer are used as seed layers for the copper grid electrode to be prepared later.
  • the seed layer is arranged between the solar cell substrate and the grid electrode, which not only assists in the preparation of the grid electrode, but also adheres the grid electrode to the solar cell substrate to maintain good adhesion and conductivity.
  • Step S5 preparing a copper gate electrode on the second copper seed layer.
  • the copper gate electrode is disposed on the second copper seed layer.
  • there are two copper gate electrodes namely a front copper gate electrode 117 and a back copper gate electrode 127.
  • the front copper gate electrode 117 is disposed on the front second copper seed layer 116
  • the back copper gate electrode 127 is disposed on the back second copper seed layer 126.
  • the copper gate electrode is the main structure of the gate electrode, and the copper gate electrode can be prepared by chemical copper plating or electrochemical copper plating. Since the first copper seed layer and the second copper seed layer are prepared in advance, the copper gate electrode can be selectively grown on the first copper seed layer and the second copper seed layer.
  • steps S1 to S5 the preparation of the copper seed layer and the copper grid electrode on the solar cell substrate can be completed.
  • Chemical copper plating can avoid damage caused by copper ion bombardment during the sputtering process.
  • the traditional technology does not use chemical copper plating to prepare the copper seed layer. This is mainly because when chemical copper is plated on the transparent conductive film, copper ions will contaminate the solar cell substrate, resulting in degradation of the performance of the solar cell.
  • the copper seed layer prepared by chemical copper plating has poor density and low tension between it and the transparent conductive film, which cannot meet the performance requirements of the copper seed layer.
  • the method for preparing the solar cell of the above-mentioned embodiment prepares a barrier layer in advance, which can effectively prevent copper ions from entering the surface of the solar cell substrate, solve the problem of copper ion contamination of the solar cell substrate, and facilitate the preparation of a first copper seed layer by chemical copper plating.
  • a barrier layer in advance, which can effectively prevent copper ions from entering the surface of the solar cell substrate, solve the problem of copper ion contamination of the solar cell substrate, and facilitate the preparation of a first copper seed layer by chemical copper plating.
  • the generated copper ions are directly absorbed by the first copper seed layer, thereby avoiding damage to the transparent conductive film.
  • the conductivity of the copper seed layer is also effectively guaranteed, and ultimately the efficiency of the prepared solar cell is significantly improved.
  • the present disclosure also provides a solar cell, which includes: a solar cell substrate, the solar cell substrate includes a transparent conductive film; a barrier layer, the barrier layer is arranged on the transparent conductive film; a first copper seed layer, the first copper seed layer is prepared by chemical copper plating, and the first copper seed layer is arranged on the barrier layer; a second copper seed layer, the second copper seed layer is prepared by sputtering, and the second copper seed layer is arranged on the first copper seed layer; a copper grid line electrode, the copper grid line electrode is arranged on the second copper seed layer.
  • the solar cell can be prepared by the preparation method of the solar cell in the above embodiment.
  • the transparent conductive film in the solar cell substrate has two layers, namely, the front transparent conductive film 113 and the back transparent conductive film 123.
  • the barrier layer, the first copper seed layer, the second copper seed layer and the copper grid electrode each have two layers arranged on the front and back.
  • the front barrier layer 114, the front first copper seed layer 115, the front second copper seed layer 116 and the front copper grid electrode 117 are sequentially stacked on the front transparent conductive film 113, and the back barrier layer 124, the back first copper seed layer 125, the back second copper seed layer 126 and the back copper grid electrode 127 are sequentially stacked on the back transparent conductive film 123.
  • the solar cell substrate used in the following embodiments and comparative examples is a heterojunction solar cell substrate, which includes an N-type silicon substrate with a thickness of 150 ⁇ m, a front intrinsic amorphous silicon layer, an N-type doped amorphous silicon layer, and a front transparent conductive film stacked in sequence on the front side of the N-type silicon substrate, and a back intrinsic amorphous silicon layer, a P-type doped amorphous silicon layer, and a back transparent conductive film stacked in sequence on the back side of the N-type silicon substrate, wherein the front transparent conductive film and the back transparent conductive film are both 110 nm thick indium tin oxide film layers.
  • Preparation of solar cell substrate Select N-type doped single crystal silicon wafers with a thickness of 150 ⁇ m for texturing and cleaning to prepare a textured surface.
  • plasma enhanced chemical vapor deposition intrinsic amorphous silicon thin films are plated on the front and back of the silicon wafer after texturing, and then an N-type doped amorphous silicon layer is prepared on the front and a P-type doped amorphous silicon layer is prepared on the back.
  • 110 ⁇ m thick indium tin oxide is prepared on the front and back of the silicon wafer as a transparent conductive film to obtain a solar cell substrate.
  • barrier layer The solar cell substrate is placed in a cleaning solution for ultrasonic cleaning, the cleaning solution includes 70% pure water, and the temperature of the cleaning solution is 35° C. A layer of copper nitride with a thickness of about 5 nm is deposited on the transparent conductive film as a barrier layer.
  • Preparation of the first copper seed layer The solar cell substrate is placed in an activation solution for activation at 30°C for 5 seconds, wherein the activation solution includes a buffered oxidative etching solution and an electroless copper plating activator, and the electroless copper plating activator includes a nitric acid-palladium chloride replacement solution.
  • the solar cell substrate is transferred to the plating solution for ultrasonic copper plating, and the thickness of the first copper seed layer is controlled to be 30nm.
  • the plating solution is composed of the following components: 10g/L copper sulfate, 2mL/L glyoxylic acid, 4g/L ethylenediaminetetraacetic acid, 5mg/L bipyridyl, 2 ⁇ L/L each of polyethylene glycol and phenyl polyoxyethylene ether sodium phosphate.
  • the solar cell substrate is placed in a magnetron sputtering chamber, and the second copper seed layer is prepared on the first copper seed layer by magnetron sputtering.
  • the magnetron sputtering power is 200 W
  • the argon flow rate is 1000 sccm
  • the deposition rate is 0.5 nm/s
  • the deposition time is 280 s
  • the deposition pressure is 0.5 Pa
  • the deposition temperature is 40°C
  • the deposition thickness is 140 nm.
  • a copper gate electrode is formed on the second copper seed layer.
  • Preparation of solar cell substrate Select N-type doped single crystal silicon wafers with a thickness of 150 ⁇ m for texturing and cleaning to prepare a textured surface.
  • plasma enhanced chemical vapor deposition intrinsic amorphous silicon thin films are plated on the front and back of the silicon wafer after texturing, and then an N-type doped amorphous silicon layer is prepared on the front and a P-type doped amorphous silicon layer is prepared on the back.
  • 110 ⁇ m thick indium tin oxide is prepared on the front and back of the silicon wafer as a transparent conductive film to obtain a solar cell substrate.
  • the solar cell substrate is placed in a magnetron sputtering chamber, and a copper seed layer is prepared on the solar cell substrate by magnetron sputtering.
  • the magnetron sputtering power is 200 W
  • the argon gas flow rate is 1000 sccm
  • the deposition rate is 0.5 nm/s
  • the deposition time is 340 s
  • the deposition pressure is 0.5 Pa
  • the deposition temperature is 40°C
  • the deposition thickness is 170 nm.
  • a copper gate electrode is prepared on the copper seed layer.
  • Preparation of solar cell substrate Select N-type doped single crystal silicon wafers with a thickness of 150 ⁇ m for texturing and cleaning to prepare a textured surface.
  • plasma enhanced chemical vapor deposition intrinsic amorphous silicon thin films are plated on the front and back of the silicon wafer after texturing, and then an N-type doped amorphous silicon layer is prepared on the front and a P-type doped amorphous silicon layer is prepared on the back.
  • 110 ⁇ m thick indium tin oxide is prepared on the front and back of the silicon wafer as a transparent conductive film to obtain a solar cell substrate.
  • barrier layer The solar cell substrate is placed in a cleaning solution for ultrasonic cleaning, the cleaning solution includes 70% pure water, and the temperature of the cleaning solution is 35° C. A layer of copper nitride with a thickness of about 5 nm is deposited on the transparent conductive film as a barrier layer.
  • the solar cell substrate is placed in a magnetron sputtering chamber, and a copper seed layer is prepared on the barrier layer by magnetron sputtering.
  • the magnetron sputtering power is 200 W
  • the argon flow rate is 1000 sccm
  • the deposition rate is 0.5 nm/s
  • the deposition time is 340 s
  • the deposition pressure is 0.5 Pa
  • the deposition temperature is 40°C
  • the deposition thickness is 170 nm.
  • a copper gate electrode is prepared on the copper seed layer.
  • Preparation of solar cell substrate Select N-type doped single crystal silicon wafers with a thickness of 150 ⁇ m for texturing and cleaning to prepare a textured surface.
  • plasma enhanced chemical vapor deposition intrinsic amorphous silicon thin films are plated on the front and back of the silicon wafer after texturing, and then an N-type doped amorphous silicon layer is prepared on the front and a P-type doped amorphous silicon layer is prepared on the back.
  • 110 ⁇ m thick indium tin oxide is prepared on the front and back of the silicon wafer as a transparent conductive film to obtain a solar cell substrate.
  • barrier layer The solar cell substrate is placed in a cleaning solution for ultrasonic cleaning, the cleaning solution includes 70% pure water, and the temperature of the cleaning solution is 35° C. A layer of copper nitride with a thickness of about 5 nm is deposited on the transparent conductive film as a barrier layer.
  • Preparation of copper seed layer The solar cell substrate is placed in an activation solution at 30°C for 5 seconds.
  • the activation solution includes a buffered oxidative etching solution and an electroless copper plating activator.
  • the electroless copper plating activator includes a nitric acid-palladium chloride replacement solution.
  • the solar cell substrate is transferred to the plating solution for ultrasonic copper plating.
  • the thickness of the plated copper seed layer is controlled to be 170nm.
  • the plating solution is composed of the following components: 10g/L copper sulfate, 2mL/L glyoxylic acid, 4g/L ethylenediaminetetraacetic acid, 5mg/L bipyridine, polyethylene glycol and 2 ⁇ L/L sodium phenyl polyoxyethylene ether phosphate.
  • a copper gate electrode is prepared on the copper seed layer.
  • the electrical properties and tensile forces of the above-mentioned embodiments and comparative examples were tested, wherein the electrical properties include the efficiency ( Eta ), open circuit voltage ( Voc ), short circuit current ( Isc ), fill factor (FF), series resistance ( Rs ) and parallel resistance ( Rsh ) of the solar cell.
  • the test performance of comparative example 1 was taken as 100%, and the test performances of the embodiments and other comparative examples were normalized. The results can be seen in Table 1.
  • Comparative Examples 2 and 3 are 100.04% and 100.02%, respectively, which are slightly higher than those of Comparative Example 1. This is mainly because the transparent conductive film was ultrasonically cleaned before the copper seed layer was prepared, which reduced the contact resistance.
  • the solar cell efficiencies of Comparative Examples 2 and 3 are 100.01% and 99.99%, respectively, which are basically unchanged compared to Comparative Example 1.
  • the copper seed layer prepared by magnetron sputtering or chemical copper plating alone cannot effectively improve the efficiency of the solar cell.
  • the tensile properties of Comparative Example 3 also showed a significant decrease. This is mainly because the copper seed layer prepared by chemical copper plating is relatively transportable inside and has poor adhesion to the substrate. Therefore, the copper seed layer is usually not prepared by chemical copper plating.
  • the short-circuit current of Example 1 is 100.32% and the efficiency is 100.18%, which are greatly improved compared with Comparative Examples 1 to 3.
  • a first copper seed layer is first prepared by chemical copper plating, and then a second copper seed layer is prepared on the first copper seed layer by magnetron sputtering.
  • the first copper seed layer avoids damage to the transparent conductive film during magnetron sputtering, and the second copper seed layer prepared by magnetron sputtering makes the two copper seed layers have better conductivity as a whole.
  • the combination of the two avoids their respective defects and effectively exerts each other's advantages, so that the short-circuit current and efficiency of the solar cell are significantly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开提供了一种太阳电池的制备方法和太阳电池。该太阳电池的制备方法包括如下步骤:在太阳电池基片的透明导电薄膜(113)上制备阻挡层(114);通过化学镀铜的方式,在阻挡层(114)上制备第一铜种子层(115);通过溅射的方式,在第一铜种子层(115)上制备第二铜种子层(116);在第二铜种子层(116)上制备栅线电极(117)。

Description

太阳电池的制备方法和太阳电池
本申请要求于2022年10月27日提交中国专利局、申请号为2022113228063、公开名称为“太阳电池的制备方法和太阳电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳电池技术领域,特别是涉及一种太阳电池的制备方法和太阳电池。
背景技术
传统的化石能源存在污染较大、不可持续等缺点。太阳能被认为是一种可持续的清洁能源,具有极高的应用前景。太阳电池能够吸收太阳能并产生电能,是大规模应用太阳能所不可或缺的器件。
在太阳电池的结构中,除了将光能转化为电能所必须的半导体之外,通常还包括将电流导出至外电路的透明导电薄膜和栅线电极。传统的栅线电极通常采用丝网印刷导电银浆的方式制备。导电银浆的材料费用较高也是太阳电池的生产成本居高不下的一大原因。寻找银栅线电极的替代材料和工艺是降低太阳电池生产成本的有效手段。
铜具有优秀的导电性能以及较低的成本,被认为是一种较为理想的替代材料。传统的铜栅线电极的制备工艺通常包括:先在透明导电薄膜上溅射一层铜种子层,然后再在铜种子层上制备铜栅线电极。然而,在溅射制备铜种子层的过程中,部分铜原子会电离形成动能较大的铜离子并轰击透明导电薄膜表面,这会使透明导电薄膜表面发生形貌缺陷,导致透明导电薄膜与铜种子层之间的接触变差、电池效率降低。因此,目前的铜种子层的制备工艺仍然有待进一步优化。
发明内容
根据本公开的一些实施例,提供了一种太阳电池的制备方法,其包括如下步骤:
在太阳电池基片的透明导电薄膜上制备阻挡层;
通过化学镀铜的方式,在所述阻挡层上制备第一铜种子层;
通过溅射的方式,在所述第一铜种子层上制备第二铜种子层;
在所述第二铜种子层上制备栅线电极。
在本公开的一些实施例中,制备所述阻挡层的步骤包括:将所述太阳电池基片置于清洗液中对所述透明导电薄膜进行超声清洗,及,在超声清洗后的所述透明导电薄膜上沉积所述阻挡层的材料。
在本公开的一些实施例中,所述阻挡层的材料包括过渡金属硫化物和金属氮化物中的一种或多种。
在本公开的一些实施例中,所述清洗液包括纯水或质量浓度为1%~10%的稀盐酸溶液。
在本公开的一些实施例中,在制备所述阻挡层之后、且在制备所述第一铜种子层之前,所述太阳电池的制备方法还包括:将所述太阳电池基片置于活化溶液中进行镀铜活化处理的步骤。
在本公开的一些实施例中,所述活化溶液包括缓冲氧化刻蚀液和化学镀铜活化剂。
在本公开的一些实施例中,所述第一铜种子层的厚度为10nm~200nm。
在本公开的一些实施例中,所述第二铜种子层的厚度为100nm~200nm。
在本公开的一些实施例中,所述阻挡层的厚度为1nm~10nm。
在本公开的一些实施例中,在制备第二铜种子层的步骤中,沉积速率为0.4nm/s~1.0nm/s。
在本公开的一些实施例中,在制备第二铜种子层的步骤中,温度为20℃~60℃。
在本公开的一些实施例中,制备栅线电极的方式选自化学镀铜或者电化学镀铜。
在本公开的一些实施例中,所述太阳电池基片还包括硅衬底、正面本征非晶硅层、正面掺杂非晶硅层、背面本征非晶硅层和背面掺杂非晶硅层,所述正面本征非晶硅层和所述正面掺杂非晶硅层依次层叠设置于所述硅衬底的正面上,所述背面本征非晶硅层和所述背面掺杂非晶硅层依次层叠设置于所述硅衬底的背面上,所述透明导电薄膜有两层,两层所述透明导电薄膜分别设置于所述正面掺杂非晶硅层上和背面掺杂非晶硅层上。
根据本公开的又一些实施例,提供了一种太阳电池,其包括:
太阳电池基片,所述太阳电池基片包括透明导电薄膜;
阻挡层,所述阻挡层设置于所述透明导电薄膜上;
第一铜种子层,所述第一铜种子层通过化学镀铜的方式制备,所述第一铜种子层设置于所述阻挡层上;
第二铜种子层,所述第二铜种子层通过溅射的方式制备,所述第二铜种子层设置于所述第一铜种子层上;
铜栅线电极,所述铜栅线电极设置于所述第二铜种子层上。
在本公开的一些实施例中,所述阻挡层的厚度为1nm~10nm。
在本公开的一些实施例中,所述阻挡层的材料包括过渡金属硫化物和氮化物中的一种或两种。
在本公开的一些实施例中,所述第一铜种子层的厚度为10nm~200nm。
在本公开的一些实施例中,所述第二铜种子层的厚度为100nm~200nm。
在本公开的一些实施例中,所述太阳电池基片还包括硅衬底、正面本征非晶硅层、正面掺杂非晶硅层、背面本征非晶硅层和背面掺杂非晶硅层,所 述正面本征非晶硅层和所述正面掺杂非晶硅层依次层叠设置于所述硅衬底的正面上,所述背面本征非晶硅层和所述背面掺杂非晶硅层依次层叠设置于所述硅衬底的背面上,所述透明导电薄膜有两层,两层所述透明导电薄膜分别设置于所述正面掺杂非晶硅层上和背面掺杂非晶硅层上。
本公开的一个或多个实施例的细节在下面的附图和描述中提出。本公开的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1示出了本公开一个实施例中的太阳电池的制备方法;
图2示出了图1的制备方法中步骤S1提供的太阳电池基片的结构示意图;
图3示出了图1的制备方法中步骤S2制备的器件结构示意图;
图4示出了图1的制备方法中步骤S3制备的器件结构示意图;
图5示出了图1的制备方法中步骤S3制备的器件结构示意图;
图6示出了图1的制备方法制备的太阳电池的结构示意图;
其中,各附图标记及其含义如下:
100、硅衬底;111、正面本征非晶硅层;112、正面掺杂非晶硅层;113、正面透明导电薄膜;114、正面阻挡层;115、正面第一铜种子层;116、正面第二铜种子层;117、正面铜栅线电极;121、背面本征非晶硅层;122、背面掺杂非晶硅层;123、背面透明导电薄膜;124、背面阻挡层;125、背面第一铜种子层;126、背面第二铜种子层;127、背面铜栅线电极。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形 式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文所使用的“多”包括两个和多于两个的项目。本文所使用的“某数以上”应当理解为某数及大于某数的范围。
本公开的一个实施例提供了一种太阳电池的制备方法,其特征在于,包括如下步骤:在太阳电池基片的透明导电薄膜上制备阻挡层;通过化学镀铜的方式,在所述阻挡层上制备第一铜种子层;通过溅射的方式,在所述第一铜种子层上制备第二铜种子层;在所述第二铜种子层上制备栅线电极。
该实施例提供的太阳电池的制备方法预先制备一层阻挡层,能够有效阻止铜离子进入太阳电池基片表面,解决铜离子污染太阳电池基片的问题,以便于通过化学镀铜的方式制备一层第一铜种子层。通过第一铜种子层的阻挡,在溅射制备第二铜种子层的过程中,产生的铜离子直接被第一铜种子层吸收,因而能够避免透明导电薄膜的损伤。并且通过第一铜种子层和第二铜种子层的结合,在保证透明导电薄膜不受损伤的情况下,还有效保证了铜种子层的导电性,铜种子层与透明导电薄膜之间的电接触性能得到有效提升,进而制备的太阳电池的效率也得到了显著提高。
为了便于理解上述太阳电池的制备方法的具体实现方式,本公开还提供了太阳电池的制备方法的实施例,参照图1所示,其包括步骤S1~步骤S5。
步骤S1,提供包括透明导电薄膜的太阳电池基片。
其中,太阳电池基片中具有能够将光能转化为电能的半导体部件,透明 导电薄膜设置于半导体部件上,用于收集半导体部件产生的电流。为了将该电流导出至外电路,还需要在太阳电池基片上制备栅线电极。
在该实施例的一些示例中,太阳电池基片为晶硅太阳电池的基片。晶硅太阳电池指的是以硅片作为衬底的太阳电池。可选地,太阳电池基片为异质结太阳电池的基片。
参照图2所示,在该实施例的一些示例中,该太阳电池基片硅衬底100、正面本征非晶硅层111、正面掺杂非晶硅层112、背面本征非晶硅层121和背面掺杂非晶硅层122,正面本征非晶硅层111设置于衬底的正面,正面掺杂非晶硅层112设置于正面本征非晶硅层111上,背面本征非晶硅层121设置于衬底的背面,背面掺杂非晶硅层122设置于背面本征非晶硅层121上,该太阳电池基片中的透明导电薄膜有两个,分别为正面透明导电薄膜113和背面透明导电薄膜123,正面透明导电薄膜113设置于正面掺杂非晶硅上,背面透明导电薄膜123设置于背面掺杂非晶硅上。其中,正面掺杂非晶硅层112和背面掺杂非晶硅层122的掺杂类型不相同。可选地,硅衬底100的掺杂类型为N型,正面掺杂非晶硅层112的掺杂类型也为N型,背面掺杂非晶硅层122的掺杂类型为P型。可以理解,该太阳电池基片为异质结太阳电池的基片。
在该实施例的一些示例中,该太阳电池基片的硅衬底100表面具有金字塔状绒面。
在该实施例的一些示例中,提供太阳电池基片的方式可以是由上游生产线制备太阳电池基片。太阳电池基片的制备过程可以包括在硅衬底100上依次沉积本征非晶硅层、掺杂非晶硅层和透明导电薄膜,其具体的制备方式可以参照已有的工艺。
步骤S2,在透明导电薄膜上制备阻挡层。
参照图3所示,阻挡层设置于透明导电薄膜上。可选地,阻挡层有两 层,分别为正面阻挡层114和背面阻挡层124,分别设置于正面透明导电薄膜113上和背面透明导电薄膜123上。其中,阻挡层用于阻挡后续化学镀铜过程中的铜离子,防止铜离子污染太阳电池基片。可以理解,阻挡层应具有透光性和导电性,以保持太阳电池的正常工作运行。
在该实施例的一些示例中,阻挡层的厚度为1nm~10nm。例如,阻挡层的厚度为1nm、3nm、5nm、8nm、10nm,或其中各厚度之间的范围。通过设置阻挡层的厚度为1nm~10nm,能够在阻挡铜离子的同时尽可能降低阻挡层对于太阳电池基片带来的负面影响。
在该实施例的一些示例中,阻挡层的材料包括过渡金属硫化物和氮化物中的一种或两种。可选地,氮化物可以选自氮化铜(Cu3N)、氮化镓和氮化铟中的一种或多种,过渡金属硫化物可以包括但不限于硫化钼。
在该实施例的一些示例中,制备阻挡层的方式可以是物理气相沉积法或化学气相沉积法。
在该实施例的一些示例中,阻挡层可以整体覆盖透明导电薄膜,也可以设置于透明导电薄膜上的部分区域上。
在该实施例的一些示例中,在透明导电薄膜上制备阻挡层之前,还包括在清洗液中超声清洗太阳电池基片的步骤。其中,超声清洗太阳电池基片的作用是去除太阳电池基片表面的杂质,例如颗粒、粉尘等,为后续制备阻挡层及沉积第一铜种子层做准备,使得第一铜种子层与透明导电薄膜之间的接触更为充分,提高电性能和拉力。
在该实施例的一些示例中,在清洗液中超声清洗太阳电池基片的步骤中,清洗液的温度为20℃~80℃。
在该实施例的一些示例中,在清洗液中超声清洗太阳电池基片的步骤中,清洗液中包括纯水,或者,该清洗液包括质量浓度1%~10%的稀盐酸溶液。
步骤S3,通过化学镀铜的方式,在阻挡层上制备第一铜种子层。
参照图4所示,第一铜种子层设置于阻挡层上。可选地,第一铜种子层有两层,分别为正面第一铜种子层115和背面第一铜种子层125,分别设置于正面阻挡层114上和背面阻挡层124上。
其中,化学镀铜指的是将待镀铜工件置于含有铜离子的化学镀铜液中,将铜离子还原并使得生成的铜直接在待镀铜工件表面沉积,完成镀铜。
在该实施例的一些示例中,第一铜种子层的厚度为10nm~200nm。可选地,第一铜种子层的厚度为10nm~100nm。进一步可选地,第一铜种子层的厚度为10nm~50nm。例如,第一铜种子层的厚度为10nm、20nm、30nm、40nm、50nm、或其中各厚度之间的范围。
在该实施例的一些示例中,化学镀铜所用的镀液中含有铜离子和还原剂。
在该实施例的一些示例中,还原剂包括乙醛酸。可选地,乙醛酸在镀液中的浓度为1.3g/L~32.5g/L。例如,乙醛酸在镀液中的浓度为1.3g/L、5g/L、10g/L、15g/L、25g/L、32.5g/L,或上述各浓度之间的范围。
在该实施例的一些示例中,化学镀铜所用的镀液中包括硫酸铜。硫酸铜在镀液中的浓度为2g/L~25g/L。例如,硫酸铜在镀液中的浓度为2g/L、5g/L、10g/L、15g/L、25g/L,或上述各浓度之间的范围。
在该实施例的一些示例中,化学镀铜所用的镀液中还包括络合剂、稳定剂和起泡剂中的一种或多种。可选地,络合剂在镀液中的浓度为1g/L~40g/L。稳定剂在镀液中的浓度为2mg/L~40mg/L。起泡剂在镀液中的浓度为2mg/L~40mg/L。可选地,络合剂可以包括乙二胺四乙酸,稳定剂可以包括联吡啶,起泡剂可以包括聚乙二醇和苯基聚氧乙烯醚磷酸钠中的一种或多种。
在该实施例的一些示例中,在制备第一铜种子层之前,还包括将太阳电 池基片置于活化溶液中进行活化处理的步骤。其中,活化处理用于在太阳电池基片表面形成催化剂,用于加速铜金属在太阳电池基片表面的沉积。
在该实施例的一些示例中,活化溶液包括缓冲氧化刻蚀液和化学镀铜活化剂。可选地,化学镀铜活化剂包括钯盐和硝酸。钯盐可以是氯化钯。
在该实施例的一些示例中,在将太阳电池基片置于活化溶液中进行活化处理的步骤中,活化时间为3s~100s。可选地,活化温度为20℃~50℃。
步骤S4,通过溅射的方式,在第一铜种子层上制备第二铜种子层。
参照图5所示,第二铜种子层设置于第一铜种子层上。可选地,第二铜种子层有两层,分别为正面第二铜种子层116和背面第二铜种子层126,分别设置于正面第一铜种子层115上和背面第一铜种子层125上。
其中,通过溅射的方式制备的铜膜层具有较高的致密性和拉力性能,然而溅射过程中,部分铜原子会被电离成铜离子,动能较大的铜离子轰击透明导电薄膜表面,会导致透明导电薄膜表面存在孔洞缺陷。
该实施例的太阳电池的制备方式预先通过化学镀铜的方式形成第一铜种子层,再在第一铜种子层上溅射制备第二铜种子层,第一铜种子层主要起到阻挡溅射制备的第二铜种子层的作用,第二铜种子层则与第一铜种子层搭配,起到提高铜种子层的质量和拉力的作用。通过第一铜种子层和第二铜种子层的搭配,能够有效改善太阳电池的性能。
在该实施例的一些示例中,第二铜种子层的厚度为100nm~200nm。例如,第二铜种子层的厚度为100nm、120nm、140nm、160nm、180nm、200nm,或上述各厚度之间的范围。
在该实施例的一些示例中,制备第二铜种子层的方式选自磁控溅射。
在该实施例的一些示例中,在制备第二铜种子层的步骤中,沉积速率为0.4nm/s~1.0nm/s。
在该实施例的一些示例中,在制备第二铜种子层的步骤中,溅射功率为 100W~2000W。
在该实施例的一些示例中,在制备第二铜种子层的步骤中,温度为20℃~60℃。
在该实施例的一些示例中,在制备第二铜种子层的步骤中,通入保护性气体。可选地,保护性气体包括氩气。可选地,通入的保护性气体的流量为100sccm~1200sccm。
其中,第一铜种子层和第二铜种子层用于作为后续制备的铜栅线电极的种子层。该种子层设置于太阳电池基片与栅线电极之间,不仅起到辅助栅线电极制备的作用,还用于将栅线电极粘附到太阳电池基片上,保持较好的粘附性和导电性。
步骤S5,在第二铜种子层上制备铜栅线电极。
参照图6所示,铜栅线电极设置于第二铜种子层上。可选地,铜栅线电极有两个,分别为正面铜栅线电极117和背面铜栅线电极127。正面铜栅线电极117设置于正面第二铜种子层116上,背面铜栅线电极127设置于背面第二铜种子层126上。
其中,铜栅线电极是栅线电极的主体结构,铜栅线电极的制备方式可以是化学镀铜或者电化学镀铜。由于预先制备了第一铜种子层和第二铜种子层,铜栅线电极能够选择性地生长在第一铜种子层和第二铜种子层上。
可以理解,通过步骤S1~步骤S5,能够完成太阳电池基片上铜种子层和铜栅线电极的制备。
通过化学镀铜的方式能够避免溅射制备过程中铜离子轰击带来的损伤。然而传统技术中并不会采用化学镀铜的方式制备铜种子层,这主要是由于在透明导电薄膜上化学镀铜时,铜离子会污染太阳电池基片,导致太阳电池的性能劣化。并且,化学镀铜制备的铜种子层致密性差、与透明导电薄膜之间的拉力较低,无法满足铜种子层的性能需求。
上述实施例的太阳电池的制备方法预先制备一层阻挡层,能够有效阻止铜离子进入太阳电池基片表面,解决铜离子污染太阳电池基片的问题,以便于通过化学镀铜的方式制备一层第一铜种子层。通过第一铜种子层的阻挡,在溅射制备第二铜种子层的过程中,产生的铜离子直接被第一铜种子层吸收,因而能够避免透明导电薄膜的损伤。并且通过第一铜种子层和第二铜种子层的结合,在保证透明导电薄膜不受损伤的情况下,还有效保证了铜种子层的导电性,最终显著使得制备的太阳电池的效率得到了显著提高。
本公开还提供了一种太阳电池,其包括:太阳电池基片,太阳电池基片包括透明导电薄膜;阻挡层,阻挡层设置于透明导电薄膜上;第一铜种子层,第一铜种子层通过化学镀铜的方式制备,第一铜种子层设置于阻挡层上;第二铜种子层,第二铜种子层通过溅射的方式制备,第二铜种子层设置于第一铜种子层上;铜栅线电极,铜栅线电极设置于第二铜种子层上。
可以理解,该太阳电池能够由上述实施例中的太阳电池的制备方法制备得到。
参照图6所示,在该实施例的其中一个示例中,太阳电池基片中的透明导电薄膜有两层,分别为正面透明导电薄膜113和背面透明导电薄膜123。阻挡层、第一铜种子层、第二铜种子层和铜栅线电极各有设置于正面和背面的两层。正面阻挡层114、正面第一铜种子层115、正面第二铜种子层116和正面铜栅线电极117依次层叠设置于正面透明导电薄膜113上,背面阻挡层124、背面第一铜种子层125、背面第二铜种子层126和背面铜栅线电极127依次层叠设置于背面透明导电薄膜123上。
为了更易于理解及实现本发明,以下还提供了如下较易实施的、更为具体详细的实施例及对比例作为参考。通过下述具体实施例和对比例的描述及性能结果,本发明的各实施例及其优点也将显而易见。
如无特殊说明,以下各实施例所用的原材料皆可从市场上常规购得。
以下各实施例和对比例中所用的太阳电池基片为异质结太阳电池基片,其包括具有N型硅衬底,N型硅衬底的厚度为150μm,N型硅衬底正面上依次层叠设置有正面本征非晶硅层、N型掺杂非晶硅层、正面透明导电薄膜,N型硅衬底背面上依次层叠设置有背面本征非晶硅层、P型掺杂非晶硅层和背面透明导电薄膜,其中正面透明导电薄膜和背面透明导电薄膜均为110nm厚的氧化铟锡膜层。
实施例1
制备太阳电池基片:选择N型掺杂的、厚度为150μm的单晶硅片进行制绒清洗,制备绒面。通过等离子增强化学气相沉积法,在制绒完成后的硅片正面和背面镀本征非晶硅薄膜,再于正面制备N型掺杂非晶硅层,于背面制备P型掺杂非晶硅层。通过磁控溅射法,在硅片的正面和背面上各制备厚度为110μm的氧化铟锡作为透明导电薄膜,制得太阳电池基片。
制备阻挡层:将太阳电池基片置于清洗液中进行超声清洗处理,清洗液中包括70%的纯水,清洗液的温度为35℃。在透明导电薄膜上沉积一层约5nm厚的氮化铜,作为阻挡层。
制备第一铜种子层:将太阳电池基片置于活化溶液中在30℃下活化5s,活化溶液中包括缓冲氧化刻蚀液和化学镀铜活化剂,化学镀铜活化剂包括硝酸-氯化钯置换液。将太阳电池基片转移至镀液中进行超声镀铜,控制镀的第一铜种子层的厚度为30nm,镀液由以下组分构成:10g/L的硫酸铜、2mL/L的乙醛酸、乙二胺四乙酸4g/L、联吡啶5mg/L、聚乙二醇和苯基聚氧乙烯醚磷酸钠各2μL/L。
制备第二铜种子层:将太阳电池基片置于磁控溅射腔室中,在第一铜种子层上磁控溅射制备第二铜种子层,磁控溅射功率为200W,氩气流量为1000sccm,沉积速率为0.5nm/s,沉积时间为280s,沉积压力为0.5Pa,沉积温度为40℃,沉积厚度为140nm。
在第二铜种子层上制备铜栅线电极。
对比例1
制备太阳电池基片:选择N型掺杂的、厚度为150μm的单晶硅片进行制绒清洗,制备绒面。通过等离子增强化学气相沉积法,在制绒完成后的硅片正面和背面镀本征非晶硅薄膜,再于正面制备N型掺杂非晶硅层,于背面制备P型掺杂非晶硅层。通过磁控溅射法,在硅片的正面和背面上各制备厚度为110μm的氧化铟锡作为透明导电薄膜,制得太阳电池基片。
制备铜种子层:将太阳电池基片置于磁控溅射腔室中,在太阳电池基片上磁控溅射制备铜种子层,磁控溅射功率为200W,氩气流量为1000sccm,沉积速率为0.5nm/s,沉积时间为340s,沉积压力为0.5Pa,沉积温度为40℃,沉积厚度为170nm。
在铜种子层上制备铜栅线电极。
对比例2
制备太阳电池基片:选择N型掺杂的、厚度为150μm的单晶硅片进行制绒清洗,制备绒面。通过等离子增强化学气相沉积法,在制绒完成后的硅片正面和背面镀本征非晶硅薄膜,再于正面制备N型掺杂非晶硅层,于背面制备P型掺杂非晶硅层。通过磁控溅射法,在硅片的正面和背面上各制备厚度为110μm的氧化铟锡作为透明导电薄膜,制得太阳电池基片。
制备阻挡层:将太阳电池基片置于清洗液中进行超声清洗处理,清洗液中包括70%的纯水,清洗液的温度为35℃。在透明导电薄膜上沉积一层约5nm厚的氮化铜,作为阻挡层。
制备铜种子层:将太阳电池基片置于磁控溅射腔室中,在阻挡层上磁控溅射制备铜种子层,磁控溅射功率为200W,氩气流量为1000sccm,沉积速率为0.5nm/s,沉积时间为340s,沉积压力为0.5Pa,沉积温度为40℃,沉积厚度为170nm。
在铜种子层上制备铜栅线电极。
对比例3
制备太阳电池基片:选择N型掺杂的、厚度为150μm的单晶硅片进行制绒清洗,制备绒面。通过等离子增强化学气相沉积法,在制绒完成后的硅片正面和背面镀本征非晶硅薄膜,再于正面制备N型掺杂非晶硅层,于背面制备P型掺杂非晶硅层。通过磁控溅射法,在硅片的正面和背面上各制备厚度为110μm的氧化铟锡作为透明导电薄膜,制得太阳电池基片。
制备阻挡层:将太阳电池基片置于清洗液中进行超声清洗处理,清洗液中包括70%的纯水,清洗液的温度为35℃。在透明导电薄膜上沉积一层约5nm厚的氮化铜,作为阻挡层。
制备铜种子层:将太阳电池基片置于活化溶液中在30℃下活化5s,活化溶液中包括缓冲氧化刻蚀液和化学镀铜活化剂,化学镀铜活化剂包括硝酸-氯化钯置换液。将太阳电池基片转移至镀液中进行超声镀铜,控制镀的铜种子层的厚度为170nm,镀液由以下组分构成:10g/L的硫酸铜、2mL/L的乙醛酸、乙二胺四乙酸4g/L、联吡啶5mg/L、聚乙二醇和苯基聚氧乙烯醚磷酸钠各2μL/L。
在铜种子层上制备铜栅线电极。
测试上述各实施例和各对比例的电性能和拉力,其中电性能包括太阳电池的效率(Eta)、开路电压(Voc)、短路电流(Isc)、填充因子(FF)、串联电阻(Rs)和并联电阻(Rsh),以对比例1的测试性能为100%,将各实施例和其他对比例的各测试性能进行归一化处理,结果可见于表1。
表1

参照表1所示,对比例2和对比例3的短路电流分别为100.04%和100.02%,相较于对比例1有少许提高,这主要是因为在制备铜种子层之前,对透明导电薄膜进行了超声清洗处理,降低了接触电阻。但对比例2和对比例3的太阳电池效率分别为100.01%和99.99%,相较于对比例1基本不变,这说明单独采用磁控溅射或化学镀铜的方式制备铜种子层,均无法有效提高太阳电池的效率。另外,对比例3的拉力性能还出现明显下降,这主要是因为化学镀铜制备的铜种子层内部较为输送、与基底之间的附着力也较差,因而通常不会采用化学镀铜的方式制备铜种子层。
实施例1的短路电流为100.32%、效率为100.18%,相较于对比例1~3均存在大幅度提升,这主要是因为:先通过化学镀铜制备第一铜种子层,再在第一铜种子层上通过磁控溅射制备第二铜种子层,第一铜种子层避免了磁控溅射时对透明导电薄膜产生损伤,磁控溅射制备第二铜种子层又使得两层铜种子层整体具有较好的导电性,二者相结合分别避免了各自的缺陷并有效发挥了彼此的优点,使得太阳电池的短路电流和效率均得到明显提升。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种太阳电池的制备方法,包括如下步骤:
    在太阳电池基片的透明导电薄膜上制备阻挡层;
    通过化学镀铜的方式,在所述阻挡层上制备第一铜种子层;
    通过溅射的方式,在所述第一铜种子层上制备第二铜种子层;
    在所述第二铜种子层上制备栅线电极。
  2. 根据权利要求1所述的太阳电池的制备方法,制备所述阻挡层的步骤包括:将所述太阳电池基片置于清洗液中对所述透明导电薄膜进行超声清洗,及,在超声清洗后的所述透明导电薄膜上沉积所述阻挡层的材料。
  3. 根据权利要求2所述的太阳电池的制备方法,所述阻挡层的材料包括过渡金属硫化物和金属氮化物中的一种或多种。
  4. 根据权利要求2~3任一项所述的太阳电池的制备方法,所述清洗液包括纯水或质量浓度为1%~10%的稀盐酸溶液。
  5. 根据权利要求1~4任一项所述的太阳电池的制备方法,在制备所述阻挡层之后、且在制备所述第一铜种子层之前,所述太阳电池的制备方法还包括:将所述太阳电池基片置于活化溶液中进行镀铜活化处理的步骤。
  6. 根据权利要求5所述的太阳电池的制备方法,所述活化溶液包括缓冲氧化刻蚀液和化学镀铜活化剂。
  7. 根据权利要求1~6任一项所述的太阳电池的制备方法,所述第一铜种子层的厚度为10nm~200nm。
  8. 根据权利要求1~7任一项所述的太阳电池的制备方法,所述第二铜种子层的厚度为100nm~200nm。
  9. 根据权利要求1~8任一项所述的太阳电池的制备方法,所述阻挡层的厚度为1nm~10nm。
  10. 根据权利要求1~9任一项所述的太阳电池的制备方法,在制备第二铜种子层的步骤中,沉积速率为0.4nm/s~1.0nm/s。
  11. 根据权利要求1~10任一项所述的太阳电池的制备方法,在制备第二铜种子层的步骤中,温度为20℃~60℃。
  12. 根据权利要求1~11任一项所述的太阳电池的制备方法,制备栅线电极的方式选自化学镀铜或者电化学镀铜。
  13. 根据权利要求1~12任一项所述的太阳电池的制备方法,所述太阳电池基片还包括硅衬底、正面本征非晶硅层、正面掺杂非晶硅层、背面本征非晶硅层和背面掺杂非晶硅层,所述正面本征非晶硅层和所述正面掺杂非晶硅层依次层叠设置于所述硅衬底的正面上,所述背面本征非晶硅层和所述背面掺杂非晶硅层依次层叠设置于所述硅衬底的背面上,所述透明导电薄膜有两层,两层所述透明导电薄膜分别设置于所述正面掺杂非晶硅层上和背面掺杂非晶硅层上。
  14. 一种太阳电池,其包括:
    太阳电池基片,所述太阳电池基片包括透明导电薄膜;
    阻挡层,所述阻挡层设置于所述透明导电薄膜上;
    第一铜种子层,所述第一铜种子层通过化学镀铜的方式制备,所述第一铜种子层设置于所述阻挡层上;
    第二铜种子层,所述第二铜种子层通过溅射的方式制备,所述第二铜种子层设置于所述第一铜种子层上;
    铜栅线电极,所述铜栅线电极设置于所述第二铜种子层上。
  15. 根据权利要求14所述的太阳电池,所述阻挡层的厚度为1nm~10nm。
  16. 根据权利要求14~15任一项所述的太阳电池,所述阻挡层的材料包括过渡金属硫化物和氮化物中的一种或两种。
  17. 根据权利要求14~16任一项所述的太阳电池,所述第一铜种子层的厚度为10nm~200nm。
  18. 根据权利要求14~17任一项所述的太阳电池,所述第二铜种子层的厚度为100nm~200nm。
  19. 根据权利要求14~18任一项所述的太阳电池,所述太阳电池基片还包 括硅衬底、正面本征非晶硅层、正面掺杂非晶硅层、背面本征非晶硅层和背面掺杂非晶硅层,所述正面本征非晶硅层和所述正面掺杂非晶硅层依次层叠设置于所述硅衬底的正面上,所述背面本征非晶硅层和所述背面掺杂非晶硅层依次层叠设置于所述硅衬底的背面上,所述透明导电薄膜有两层,两层所述透明导电薄膜分别设置于所述正面掺杂非晶硅层上和背面掺杂非晶硅层上。
PCT/CN2023/097065 2022-10-27 2023-05-30 太阳电池的制备方法和太阳电池 WO2024087620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211322806.3A CN115663066B (zh) 2022-10-27 2022-10-27 太阳电池的制备方法和太阳电池
CN202211322806.3 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024087620A1 true WO2024087620A1 (zh) 2024-05-02

Family

ID=84991482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097065 WO2024087620A1 (zh) 2022-10-27 2023-05-30 太阳电池的制备方法和太阳电池

Country Status (2)

Country Link
CN (1) CN115663066B (zh)
WO (1) WO2024087620A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663066B (zh) * 2022-10-27 2023-12-29 通威太阳能(安徽)有限公司 太阳电池的制备方法和太阳电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133779A1 (en) * 2013-05-29 2016-05-12 Kaneka Corporation Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
CN111326290A (zh) * 2018-12-14 2020-06-23 海安科技株式会社 透明导电膜的制造方法
CN114005889A (zh) * 2020-07-27 2022-02-01 福建钧石能源有限公司 一种制备太阳能电池金属栅线的方法
CN115663066A (zh) * 2022-10-27 2023-01-31 通威太阳能(安徽)有限公司 太阳电池的制备方法和太阳电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222733A (ja) * 2013-05-14 2014-11-27 イビデン株式会社 プリント配線板およびその製造方法
CN104701410A (zh) * 2013-12-10 2015-06-10 泉州市博泰半导体科技有限公司 一种硅基异质结电池片上金属栅线的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133779A1 (en) * 2013-05-29 2016-05-12 Kaneka Corporation Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
CN111326290A (zh) * 2018-12-14 2020-06-23 海安科技株式会社 透明导电膜的制造方法
CN114005889A (zh) * 2020-07-27 2022-02-01 福建钧石能源有限公司 一种制备太阳能电池金属栅线的方法
CN115663066A (zh) * 2022-10-27 2023-01-31 通威太阳能(安徽)有限公司 太阳电池的制备方法和太阳电池

Also Published As

Publication number Publication date
CN115663066B (zh) 2023-12-29
CN115663066A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP3926800B2 (ja) タンデム型薄膜光電変換装置の製造方法
JP5694620B1 (ja) 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法
WO2019119817A1 (zh) 一种太阳能异质结电池及其制备方法
WO2012043124A1 (ja) 光電変換装置の製造方法
JP4162516B2 (ja) 光起電力装置
WO2024087620A1 (zh) 太阳电池的制备方法和太阳电池
JP5174635B2 (ja) 太陽電池素子
Shi et al. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells
CN112186062B (zh) 一种太阳能电池及其制作方法
JP2004221368A (ja) 光起電力装置
TW201017915A (en) Solar cell substrates and methods of manufacture
JP2020017763A (ja) 光電変換装置の製造方法
JP2010283337A (ja) 半導体装置およびその作製方法
WO2023231434A1 (zh) 太阳电池及制备方法、发电装置
WO2024103818A1 (zh) 异质结太阳能电池及制备方法
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
WO2012013155A1 (en) Cdte solar battery and method of preparing the same
WO2024082635A1 (zh) 太阳电池的制备方法及太阳电池
JP5593250B2 (ja) 光電変換装置
WO2024060621A1 (zh) 电池的制备方法、电池和电子产品
CN106887483A (zh) 硅基异质接面太阳能电池及其制备方法
WO2017110456A1 (ja) 光電変換装置の製造方法
CN111403538A (zh) 太阳能电池及其制备方法
TWI447919B (zh) 具有異質接面之矽基太陽能電池及其製程方法
CN114744052B (zh) 太阳能电池及光伏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881212

Country of ref document: EP

Kind code of ref document: A1