WO2024087436A1 - 普鲁士白电极材料及其制备方法 - Google Patents

普鲁士白电极材料及其制备方法 Download PDF

Info

Publication number
WO2024087436A1
WO2024087436A1 PCT/CN2023/079167 CN2023079167W WO2024087436A1 WO 2024087436 A1 WO2024087436 A1 WO 2024087436A1 CN 2023079167 W CN2023079167 W CN 2023079167W WO 2024087436 A1 WO2024087436 A1 WO 2024087436A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
prussian white
prussian
white electrode
filter residue
Prior art date
Application number
PCT/CN2023/079167
Other languages
English (en)
French (fr)
Inventor
李爱霞
谢英豪
余海军
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024087436A1 publication Critical patent/WO2024087436A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/18Copolymerisation of aldehydes or ketones
    • C08G2/22Copolymerisation of aldehydes or ketones with epoxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of positive electrode materials, for example, a Prussian white electrode material and a preparation method thereof.
  • the cathode material is one of the core parts of sodium-ion batteries, and plays a vital role in improving the battery's rate, specific capacity, operating voltage, and cycle stability.
  • the cathode materials for sodium-ion batteries that have been improved the most are polyanionic compounds, layered oxides, and Prussian blue analogs.
  • Prussian blue analogs have high theoretical capacity and cycle stability due to their unique three-dimensional open framework structure. Therefore, the research on Prussian blue analogs has received widespread attention and is considered to be a sodium-ion battery material with great application potential.
  • Prussian blue analog positive electrode materials include Prussian blue positive electrode materials and Prussian white positive electrode materials.
  • people have mainly used morphology control, carbon coating, doping and other technologies to modify Prussian white positive electrode materials in order to better improve the cycle performance and service life of sodium ion batteries.
  • the density of the carbon coating obtained by the carbon coating method is relatively small, the tap density of the Prussian white electrode material is reduced, thereby reducing the volume specific capacity and energy density of the Prussian white electrode material, thereby affecting the conductivity and cycle performance of the Prussian white positive electrode material; and for the doping method, since the amount of doping added is difficult to control, it is difficult to obtain a Prussian white electrode material with good conductivity and cycle performance. Therefore, in the traditional method of improving the Prussian white positive electrode material, there is still the phenomenon of poor conductivity and poor cycle performance of the Prussian white positive electrode material.
  • the embodiment of the present application provides a polyacetal coating with good compactness and good looseness to improve the tap density, conductivity and cyclability of the Prussian white electrode material and solve the problem of the Prussian white electrode material and its preparation method that the doping amount is difficult to control.
  • a method for preparing a Prussian white electrode material comprises the following steps:
  • the sodium ferrocyanide solution, the complexing agent and the manganese salt are mixed and heated to obtain a suspension;
  • the second filter residue is dried to obtain a Prussian white electrode material.
  • the cyclic acetal includes at least one of 1,3-dioxolane, propylene glycol formal and diethylene glycol formal.
  • the formaldehyde solution includes at least one of a 40% to 50% formaldehyde solution and a polyoxymethylene solution with a degree of polymerization less than 4.
  • the initiator includes at least one of boron trifluoride and titanium tetrachloride.
  • the mass of the cyclic acetal is 5% to 8% of the mass of formaldehyde in the formaldehyde solution.
  • the total mass of the cyclic acetal and the formaldehyde solution accounts for 1.8% to 2.5% of the mass of the first filter residue.
  • the amount of the initiator used is 0.1 mmol to 0.5 mmol.
  • the ball milling treatment conditions are: ball milling temperature is 80° C. to 100° C., and ball milling time is 2 h to 4 h.
  • the filtration operation is centrifugal filtration.
  • the Prussian white electrode material is obtained by the preparation method of the Prussian white electrode material described in any of the above embodiments.
  • the embodiments of the present application have at least the following advantages:
  • the preparation method of the above-mentioned Prussian white electrode material is as follows: sodium ferrocyanide solution, a complexing agent The mixture is mixed with manganese salt and heated to generate Prussian white crystal nuclei with fewer vacancy defects in the suspension, and then the suspension is aged to allow the Prussian white crystal nuclei to continue to grow slowly to obtain Prussian white crystal nuclei with fewer vacancy defects, and then the filtrate is filtered to obtain a first filter residue, that is, the first filter residue is the Prussian white crystal nuclei, and then cyclic acetal, formaldehyde solution and initiator are added to the first filter residue for ball milling treatment, so that the cyclic acetal, formaldehyde solution and initiator can be coated on the surface of the Prussian white crystal nuclei to generate a conductive polyacetal coating with good tightness and good looseness, so that the tap density and volume specific capacity of the Prussian white electrode material can be improved.
  • the conductive polyacetal since the conductive polyacetal itself has a certain lubricity, when being ball-milled, the conductive polyacetal can effectively reduce the friction loss of the Prussian white crystal core during ball milling, so as to effectively avoid the deformation of the Prussian white crystal core, thereby ensuring that the Prussian white crystal core can provide a good skeleton support for the conductive polyacetal coating during the ball milling process, thereby ensuring that the Prussian white electrode material has a good cycle performance.
  • FIG1 is a flow chart of a Prussian white electrode material according to one embodiment of the present application.
  • FIG. 2 is a SEM image of a Prussian white electrode material product according to an embodiment of the present application.
  • the present application provides a preparation method of a Prussian white electrode material, comprising the following steps: mixing and heating a sodium ferrocyanide solution, a complexing agent and a manganese salt to obtain a suspension; subjecting the suspension to an aging reaction to obtain a liquid to be filtered; filtering the liquid to be filtered to obtain a first filter residue; adding cyclic acetal, a formaldehyde solution and an initiator to the first filter residue for ball milling to obtain a semi-finished Prussian white electrode material; washing the semi-finished Prussian white electrode material, filtering the washed semi-finished Prussian white electrode material to obtain a second filter residue; and drying the second filter residue to obtain a Prussian white electrode material.
  • the above-mentioned Prussian white electrode material can generate Prussian white crystal nuclei with fewer vacancy defects in the suspension by mixing and heating a sodium ferrocyanide solution, a complexing agent and a manganese salt, and then the suspension is aged to allow the Prussian white crystal nuclei to continue to grow slowly, thereby obtaining Prussian white electrode material with fewer vacancy defects.
  • the first filter residue is the Prussian white crystal core
  • the filtrate to be filtered is filtered to obtain the first filter residue, that is, the first filter residue is the Prussian white crystal core
  • the cyclic acetal, formaldehyde solution and initiator are added to the first filter residue for ball milling treatment, so that the cyclic acetal, formaldehyde solution and initiator can be coated on the surface of the Prussian white crystal core to form a conductive polyacetal coating with good tightness and good looseness, so that the tap density, volume specific capacity and energy density of the Prussian white electrode material can be improved, thereby improving the conductive performance and cycle performance of the Prussian white positive electrode material, and then the Prussian white electrode is subjected to the ball milling treatment.
  • the semi-finished electrode material is washed with water so that the residual cyclic acetal, formaldehyde and initiator on the surface of the Prussian white positive electrode material can be dissolved in water, and then the washed Prussian white electrode material semi-finished product is filtered to remove excess cyclic acetal, formaldehyde and initiator to obtain a second filter residue with high purity, and finally the second filter residue is dried to effectively remove the moisture in the second filter residue to obtain a Prussian white electrode material with high purity, thereby effectively solving the problem that the doping amount is difficult to control, so as to ensure that a Prussian white electrode material with good conductivity and good cyclability is obtained.
  • the Prussian white crystal core, cyclic acetal, formaldehyde solution and initiator can be effectively mixed evenly through the ball milling treatment, so as to form a tight conductive polyacetal coating on the surface of the Prussian white crystal core;
  • the particle size of the Prussian white electrode material after the ball milling treatment becomes smaller, which helps to remove the crystal water inside the Prussian white crystal core to improve the conductivity of the Prussian white crystal core;
  • a Prussian white electrode material with a relatively uniform particle size can be obtained, so that the prepared Prussian white electrode material can be evenly coated on the electrode sheet, thereby obtaining a battery with a higher energy density, thereby improving the conductivity and cycle performance of the battery.
  • the conductive polyacetal since the conductive polyacetal itself has a certain lubricity, when ball milling is carried out, the conductive polyacetal can effectively reduce the friction loss of the Prussian white crystal core during ball milling, so as to effectively avoid deformation of the Prussian white crystal core, thereby ensuring that the Prussian white crystal core can provide better skeleton support for the conductive polyacetal coating during the ball milling process, thereby ensuring that the Prussian white electrode material has better cycle performance.
  • the Prussian white electrode material of one embodiment includes part or all of the following steps:
  • the added cyclic acetal, formaldehyde solution and initiator can form a conductive polyacetal coating with good compactness and looseness on the surface of the Prussian white crystal core, so that not only the tap density of the Prussian white electrode material can be improved, that is, the tap density can reach 1.5g/ cm3 , thereby improving the volumetric capacity and energy density of the Prussian white electrode material, and further improving the conductivity and cycle performance of the Prussian white positive electrode material.
  • the Prussian white crystal core mainly acts as a catalyst during the reaction, and can cooperate with the initiator to accelerate the polymerization reaction of the cyclic acetal and formaldehyde solution on the surface of the Prussian white crystal core, so as to ensure that a tight conductive polyacetal coating is obtained on the surface of the Prussian white crystal core.
  • the Prussian white crystal core, cyclic acetal, formaldehyde solution and initiator can be effectively mixed evenly through the ball milling treatment, so as to form a tight conductive polyacetal coating on the surface of the Prussian white crystal core;
  • the particle size of the Prussian white electrode material after the ball milling treatment becomes smaller, which helps to remove the crystal water inside the Prussian white crystal core to improve the conductivity of the Prussian white crystal core;
  • a Prussian white electrode material with a relatively uniform particle size can be obtained, so that the Prussian white electrode material can be evenly coated on the electrode sheet, thereby obtaining a battery with a higher energy density, thereby improving the conductivity and cycle performance of the battery.
  • the conductive polyacetal itself has a certain lubricity, when ball milling is performed, the conductive polyacetal can effectively reduce the friction loss of the Prussian white crystal core during ball milling, so as to effectively avoid the deformation of the Prussian white crystal core, thereby ensuring that the Prussian white crystal core can provide a good skeleton support for the conductive polyacetal coating during the ball milling process, thereby ensuring that the Prussian white electrode material has good Has better cycle performance.
  • the Prussian white electrode material semi-finished product can be washed with water so that the residual cyclic acetal, formaldehyde and initiator on the surface of the Prussian white positive electrode material can be dissolved in water, and then the washed Prussian white electrode material semi-finished product is filtered to remove excess cyclic acetal, formaldehyde and initiator to obtain a second filter residue with high purity.
  • the preparation method of the Prussian white electrode material comprises the following steps: mixing and heating a sodium ferrocyanide solution, a complexing agent and a manganese salt to generate a Prussian white crystal nucleus with fewer vacancy defects in a suspension, then subjecting the suspension to an aging reaction to allow the Prussian white crystal nucleus to continue to grow slowly to obtain a Prussian white crystal nucleus with fewer vacancy defects, filtering the filtrate to obtain a first filter residue, that is, the first filter residue is the Prussian white crystal nucleus, and then adding cyclic acetal, formaldehyde solution and initiator to the first filter residue for ball milling treatment, so that the cyclic acetal, formaldehyde solution and initiator can be coated on the surface of the Prussian white crystal nucleus to generate a conductive polyacetal coating with better compactness and better looseness, so that the Prussian white can be improved.
  • the tap density, volumetric capacity and energy density of the electrode material are improved, thereby improving the conductivity and cycle performance of the Prussian white positive electrode material.
  • the Prussian white electrode material semi-finished product is then washed with water to allow the residual cyclic acetal, formaldehyde and initiator on the surface of the Prussian white positive electrode material to be dissolved in water.
  • the washed Prussian white electrode material semi-finished product is then filtered to remove excess cyclic acetal, formaldehyde and initiator to obtain a second filter residue with high purity.
  • the second filter residue is dried to effectively remove the moisture in the second filter residue to obtain a Prussian white electrode material with high purity, thereby effectively solving the problem that the doping amount is difficult to control, so as to ensure that a Prussian white electrode material with good conductivity and good cyclability is obtained.
  • cyclic acetal, formaldehyde solution and initiator are added to the first filter residue for ball milling.
  • the ball milling can effectively mix the Prussian white crystal core, cyclic acetal, formaldehyde solution and initiator evenly, so as to form a conductive polyacetal coating with good tightness and good looseness on the surface of the Prussian white crystal core, as shown in FIG. 2, and on the other hand, The particle size of the Prussian white electrode material after ball milling becomes smaller, which helps to remove the crystal water inside the Prussian white crystal core to improve the conductivity of the Prussian white crystal core.
  • a Prussian white electrode material with a more uniform particle size can be obtained so that the Prussian white electrode material can be evenly coated on the electrode sheet, thereby obtaining a battery with a higher energy density, thereby improving the conductivity and cycle performance of the battery.
  • the conductive polyacetal since the conductive polyacetal itself has a certain lubricity, when being ball-milled, the conductive polyacetal can effectively reduce the friction loss of the Prussian white crystal core during ball milling, so as to effectively avoid the deformation of the Prussian white crystal core, thereby ensuring that the Prussian white crystal core can provide better skeleton support for the conductive polyacetal coating during the ball milling process, thereby ensuring that the Prussian white electrode material has better cycle performance.
  • the step of mixing and heating the sodium ferrocyanide solution, the complexing agent and the manganese salt to obtain a suspension includes the following specific steps: adding the sodium ferrocyanide solution, the complexing agent and a part of the manganese salt into a reaction kettle for a first mixing and heating to generate a preliminary suspension solution; adding the remaining manganese salt to the preliminary suspension solution for a second mixing and heating to obtain the suspension solution.
  • the present application adds the manganese salt twice to effectively inhibit the reaction rate of the sodium ferrocyanide solution and the manganese salt, and at the same time, adding sufficient complexing agent can further inhibit the reaction rate of the sodium ferrocyanide solution and the manganese salt, so that the Prussian white primary nucleus with fewer vacancy defects of ferrocyanide and crystal water defects can be obtained, so that the Prussian white primary nucleus can provide a better skeleton structure for the inner layer of the Prussian white crystal nucleus. That is to say, the obtained Prussian white primary nucleus with fewer vacancy defects and water of crystallization defects of ferrocyanide can ensure that the inner layer of the Prussian white crystal nucleus has good conductivity and circulation.
  • the remaining manganese salt is added to the initial suspension for mixing and heating, so that the remaining manganese salt can slowly react with the sodium ferrocyanide solution, and the suspension is then aged to allow the Prussian white crystal nucleus to continue to grow slowly, so as to further obtain a Prussian white crystal nucleus with fewer vacancy defects, thereby ensuring that the inner and outer layers of the Prussian white crystal nucleus have good conductivity and circulation.
  • the mass ratio of the manganese salt to the sodium ferrocyanide solution is 1-2.5, and the mass ratio of the complexing agent to the manganese salt is 0.1-20, so as to ensure that the Prussian white primary nucleus with less vacancy defects and crystal water defects of ferrocyanide is obtained.
  • the sodium ferrocyanide solution, the The step of first mixing and heating the complexing agent and part of the manganese salt to generate a suspended initial liquid includes the following specific steps: adding sodium ferrocyanide solution to a reaction kettle under an inert atmosphere, starting stirring, and heating to 50°C to 90°C, then slowly adding part of the manganese salt and the complexing agent to the reaction kettle, and controlling the addition time of part of the manganese salt and the complexing agent to be 0.2h to 2h to ensure that a Prussian white primary nucleus with fewer vacancy defects and crystal water defects of ferrocyanide is obtained.
  • the addition time of the remaining manganese salt is controlled to be 6 hours to 7.8 hours, and the heating temperature of the second mixed heating is 40°C to 60°C.
  • the reaction rate of the manganese salt and the sodium ferrocyanide solution can be better controlled to effectively avoid the manganese salt being added too quickly to cause the outer layer of the Prussian white crystal core with more vacancy defects of ferrocyanide and crystal water defects, thereby ensuring that the outer layer of the Prussian white crystal core with good conductivity and circulativity is formed in the inner layer of the Prussian white, and then ensuring that the Prussian white crystal core with good conductivity and circulativity in both the inner and outer layers is obtained.
  • the mass ratio of the amount of the manganese salt added to the remaining amount of the manganese salt added is 1: 4. It can be understood that by controlling the mass ratio of the amount of the manganese salt added to the remaining amount of the manganese salt added to be 1: 4, it is ensured that the manganese salt can be slowly added to the sodium ferrocyanide solution, thereby ensuring that the reaction of the manganese salt and the sodium ferrocyanide solution is relatively slow, so as to facilitate the acquisition of Prussian white crystal cores with good conductivity and cyclicity in both the inner and outer layers.
  • the added amount of part of the manganese salt is relatively less than the remaining added amount of the manganese salt.
  • the mass ratio of manganese salt to sodium ferrocyanide solution is 1-2.5
  • the mass ratio of complexing agent to manganese salt is 0.1-20
  • the temperature of the first mixed heating is 50°C-90°C, so that the added part of the manganese salt can fully, completely and slowly react with the sodium ferrocyanide solution under the conditions of sufficient sodium ferrocyanide solution and complexing agent to form an inner layer of Prussian white with fewer vacancy defects of ferrocyanide and crystal water defects.
  • the heating temperature of the first mixed heating is higher than the heating temperature of the second mixed heating.
  • the heating temperature of the first mixed heating is the same as the heating temperature of the second mixed heating, or the heating temperature of the first mixed heating is lower than the heating temperature of the second mixed heating, the reaction rates of the sodium ferrocyanide solution and the manganese salt in the first mixed heating and the sodium ferrocyanide solution and the manganese salt in the second mixed heating will be quite different, resulting in a large difference in the size of the inner and outer layers of the Prussian white crystal core, which in turn affects the skeleton formation of the Prussian white crystal core, and thus cannot provide a good skeleton support for the conductive polyacetal coating.
  • the present application controls the heating temperature of the first mixed heating to be higher than the heating temperature of the second mixed heating to ensure that the reaction rates of the sodium ferrocyanide solution and the manganese salt in the first mixed heating and the sodium ferrocyanide solution and the manganese salt in the second mixed heating are slightly different, that is, the reaction rates of the two are relatively uniform, thereby ensuring that the size of the crystal nuclei of the inner and outer layers of the Prussian white crystal core is relatively small, and thus it can be ensured that the size of the crystal nuclei of the inner and outer layers of the Prussian white crystal core is relatively uniform, and the conductivity and recyclability are good, thereby not only providing a better skeleton support for the conductive polyacetal coating, but also improving the conductivity and recyclability of the Prussian white crystal core itself, to ensure that a Prussian white electrode material with good conductivity, good recyclability and good structural stability can be obtained later.
  • the aging reaction is for 3 hours to 24 hours to ensure that the Prussian white crystal nucleus can grow slowly, so as to ensure that the Prussian white crystal nucleus with fewer defects is obtained.
  • the cyclic acetal includes at least one of 1,3 dioxolane, propylene glycol formal and diethylene glycol formal. It is understood that 1,3 dioxolane, propylene glycol formal and diethylene glycol formal can provide a reaction substrate for the conductive polyacetal coating. In addition, 1,3 dioxolane, propylene glycol formal and diethylene glycol formal are all soluble in water, so that the residual cyclic acetal can be quickly removed by subsequent water washing.
  • the cyclic acetal is a mixture of 1,3 dioxolane, propylene glycol formal and diethylene glycol formal. It can be understood that since 1,3 dioxolane is a cyclic structure, propylene glycol formal is a chain structure, and diethylene glycol formal is a chain structure, by compounding 1,3 dioxolane, propylene glycol formal and diethylene glycol formal, and coordinating with a chain formaldehyde solution, a conductive polyacetal coating with good tightness and good looseness can be formed on the surface of the Prussian white crystal core.
  • the mass ratio of the 1,3-dioxolane, the propylene glycol formal and the diethylene glycol formal is 5:1:1, so as to ensure that the cyclic acetal and the formaldehyde solution can be coated on the surface of the Lux white crystal core to form a conductive polyacetal coating with good density and looseness.
  • the formaldehyde solution includes at least one of a 40% to 50% formaldehyde solution and a polyoxymethylene solution with a degree of polymerization less than 4, so as to provide a reaction substrate for the conductive polyacetal coating.
  • the 40% to 50% formaldehyde solution and the polyoxymethylene solution with a degree of polymerization less than 4 are both soluble in water, so that the residual formaldehyde solution can be quickly removed by subsequent water washing.
  • the formaldehyde solution is a mixture of the 40% to 50% formaldehyde solution and the polyformaldehyde solution having a polymerization degree less than 4. It can be understood that if the formaldehyde solution is entirely 40% to 50% formaldehyde solution, the formaldehyde solution and the cyclic acetal can generate polyformaldehyde with a higher polymerization degree on the surface of the Prussian white crystal core, and the polyformaldehyde with a higher polymerization degree is dense and strong. Since the dense and strong conductive polyacetal coating is not conducive to the passage of sodium ions of the Prussian white electrode material, the cycle performance of the Prussian white electrode material is reduced.
  • the present application compounded 40% to 50% formaldehyde solution and polyformaldehyde solution with a degree of polymerization less than 4, so that the added polyformaldehyde solution with a degree of polymerization less than 4 and 40% to 50% formaldehyde solution are used in conjunction with cyclic acetal, thereby generating a Prussian white crystal core with good compactness and good looseness to facilitate the passage of sodium ions, thereby improving the conductivity and cycle performance of the Prussian white electrode material.
  • the polyformaldehyde solution with a degree of polymerization of less than 4 has the characteristics of uniform particles and good water solubility, and can be combined with cyclic acetal to form a relatively uniform, loose and compact conductive polyacetal coating on the surface of the Prussian white crystal core, the volumetric capacity and energy density of the Prussian white electrode material can be improved while increasing the tap density of the Prussian white electrode material, thereby improving the conductivity and cycle performance of the Prussian white positive electrode material, and at the same time, it is beneficial to quickly remove residual formaldehyde, cyclic acetal and initiator during subsequent water washing to obtain a second filter residue with relatively high purity.
  • the size of the crystal nuclei generated in the inner and outer layers of the Prussian white crystal core is relatively uniform, and is combined with a compound liquid of a polyoxymethylene solution with a degree of polymerization less than 4 and a 40% to 50% formaldehyde solution, it is possible to ensure that a uniform conductive polyacetal coating with good looseness and tightness is generated on the surface of the Prussian white crystal core, thereby ensuring that the Prussian white electrode material has good uniformity from the inside to the outside, and thus obtaining a Prussian white electrode material with good conductivity, good cyclability and good structural stability.
  • the mass of the cyclic acetal is 5% to 8% of the mass of the formaldehyde in the formaldehyde solution to ensure that the cyclic acetal and formaldehyde can form a conductive polyacetal coating with good compactness and looseness on the surface of the Prussian white crystal core.
  • the sum of the mass of the cyclic acetal and the formaldehyde solution accounts for the mass of the first 1.8% to 2.5% of the mass of the filter residue can effectively avoid the waste of cyclic acetal and formaldehyde solution or the inadequate coating of the conductive polyacetal coating, thereby ensuring that the conductive polyacetal coating can be fully coated on the surface of the Prussian white crystal core, thereby improving the conductivity and recyclability of the Prussian white electrode material.
  • the initiator includes at least one of boron trifluoride and titanium tetrachloride, so as to ensure that the added boron trifluoride and titanium tetrachloride cooperate with the Prussian white crystal core to accelerate the polymerization reaction of the cyclic acetal and the formaldehyde solution on the surface of the Prussian white crystal core, so as to quickly obtain a uniform conductive polyacetal coating with good looseness and compactness.
  • both boron trifluoride and titanium tetrachloride can be dissolved in water, so that the residual boron trifluoride and titanium tetrachloride can be quickly removed by water washing to obtain a Prussian white electrode material with higher purity.
  • the amount of the initiator used is 0.1 mmol to 0.5 mmol. It can be understood that since the Prussian white crystal core can play a catalytic role in the polymerization reaction, the amount of the initiator used can be reduced, so that the Prussian white crystal core can be used in conjunction with the initiator to accelerate the polymerization reaction of the cyclic acetal and the formaldehyde solution on the surface of the Prussian white crystal core, so as to ensure that a uniform conductive polyacetal coating with good looseness and tightness can be quickly obtained.
  • the conditions of the ball milling treatment are: the ball milling temperature is 80°C ⁇ 100°C, and the ball milling time is 2h ⁇ 4h. It can be understood that, since the ball milling treatment can reduce the particle size of the Prussian white crystal core, and can also effectively remove the crystal water inside the Prussian white crystal core, a compact Prussian white electrode material with a small and uniform particle size and less crystal water can be obtained.
  • the ball milling time exceeds 4h and the ball milling temperature is higher than 100°C, it is easy to cause the particle size of the Prussian white electrode material to be very small, causing the skeleton of the Prussian white crystal core to be easily deformed, thereby causing the cyclicity of the Prussian white electrode material to be poor; if the ball milling time exceeds 2h and the ball milling temperature is higher than 80°C, it is easy to cause the crystal water content inside the Prussian white crystal core to be high, causing the conductivity of the skeleton of the Prussian white crystal core to be low, thereby causing the conductivity of the Prussian white electrode material to be poor.
  • the present application controls the ball milling temperature to 80°C to 100°C and the ball milling time to 2h to 4h, which can not only ensure the effective removal of the crystalline water content inside the Prussian white crystal core, but also ensure that a Prussian white electrode material with a good and uniform particle size is obtained, and at the same time ensure that a layer of uniform, tight and loose conductive polyacetal coating is formed on the surface of the Prussian white crystal core, thereby improving the conductivity and cyclability of the Prussian white electrode material.
  • the particle size of the semi-finished Prussian white electrode material is 0.8 ⁇ m to 2.8 ⁇ m, so as to ensure that the Prussian white electrode material with smaller particle size and better structural stability is obtained later, which is particularly suitable for Miniaturized batteries can produce thinner batteries with high energy density, such as button batteries.
  • the following step is also included: air-drying the first filter residue.
  • the first filter residue obtained by filtration contains moisture, and the cyclic acetal, formaldehyde solution and initiator are all easily soluble in water, if the cyclic acetal, formaldehyde solution and initiator are directly added to the first filter residue, the cyclic acetal, formaldehyde solution and initiator will dissolve on the surface of the first filter residue when they come into contact with the first filter residue, which will not only increase the usage of cyclic acetal, formaldehyde solution and initiator, thereby increasing production costs, but also reduce the reaction rate of the conductive polyacetal coating, thereby affecting production efficiency, and also affect the structural morphology of the generated conductive polyacetal coating, thereby affecting the conductivity and recyclability of the polyacetal coating itself.
  • the present application can effectively remove moisture from the surface of the first filter residue by air-drying the first filter residue to ensure that the added cyclic acetal, formaldehyde solution, initiator and the first filter residue are in direct contact.
  • the first filter residue is the Prussian white crystal core, thereby ensuring that the cyclic acetal and formaldehyde solution can be directly polymerized on the surface of the Prussian white crystal core to generate a conductive polyacetal coating.
  • it ensures the firmness of the connection between the conductive polyacetal coating and the Prussian white crystal core, and accelerates the reaction speed of generating the conductive polyacetal coating, thereby improving production efficiency.
  • the air-drying operation is performed at a temperature of 100° C. to 120° C. for a time of 2 min to 10 min, so as to quickly remove moisture from the surface of the first filter residue.
  • the semi-finished Prussian white electrode material is washed with deionized water or pure water to ensure that a semi-finished Prussian white electrode material with high purity is obtained.
  • the filtration operation is centrifugal filtration to quickly achieve the filtration operation, thereby improving the production efficiency of the Prussian white electrode material.
  • the drying temperature is 150°C to 180°C and the drying time is 4h to 8h. It is understandable that if the drying temperature is lower than 150°C and the drying time is less than 4h, it is difficult to ensure that the moisture of the second filter residue is completely removed. If the drying temperature is higher than 180°C and the drying time is higher than 8h, it is easy to cause the structure of the conductive polycondensation coating to deform, thereby affecting the conductivity and circulation of the conductive polycondensation coating.
  • the present application controls the drying temperature to 150°C to 180°C and the time to 4h to 8h, so that the conductive polycondensation coating in contact with the surface of the Prussian white crystal core is in a slightly melted state, so that it can better adhere to the surface of the Prussian white crystal core, thereby further improving the connection firmness between the Prussian white crystal core and the conductive polycondensation coating, avoiding the phenomenon that the conductive polycondensation coating is not easy to fall off, thereby improving the circulability of the Prussian white electrode material, and at the same time ensuring that the moisture of the second filter residue is more completely removed to obtain a Prussian white electrode material with fewer vacancy defects, thereby obtaining a Prussian white electrode material with good conductivity, good circulability and good connectivity.
  • the present application increases the drying temperature to ensure a more comprehensive removal of moisture from the conductive polycondensation coating, that is, the drying temperature of the present application is controlled to be 150°C to 180°C, which is higher than the drying temperature of the traditional Prussian white electrode material modification of 80°C to 120°C, thereby ensuring a more comprehensive removal of moisture from the conductive polycondensation coating.
  • the drying temperature of 150°C to 180°C can also effectively ensure the The conductive polycondensation coating body in contact with the surface of the Prussian white crystal core is in a slightly melted state, that is, the surface of the conductive polycondensation coating body in contact with the surface of the Prussian white crystal core is ensured to be in a molten state while the interior is in a solid structure.
  • the surface of the conductive polycondensation coating body is kept in a slightly melted state, so that the conductive polycondensation coating body can better adhere to the surface of the Prussian white crystal core, thereby further improving the connection firmness between the Prussian white crystal core and the conductive polycondensation coating body, avoiding the phenomenon that the conductive polycondensation coating body is not easy to fall off, and thus improving the recyclability of the Prussian white electrode material.
  • the subsequent drying time can be effectively shortened, so that the drying time of the present application is shorter than the drying time of traditional Prussian white electrode material modification.
  • the moisture drying of the Prussian white electrode material can be carried out in batches, thereby ensuring that a Prussian white electrode material with fewer vacancy defects is obtained, and further obtaining a Prussian white electrode material with good conductivity, good cyclability and good connectivity.
  • the concentration of the sodium ferrocyanide is 0.3 mol/L to 0.6 mol/L.
  • the concentration of the manganese salt is 0.4 mol/L to 2 mol/L.
  • the complexing agent includes at least one of citric acid, maleic acid, citric acid, ethylenediaminetetraacetic acid, sodium citrate and ammonia water.
  • the concentration of the complexing agent is 0.4 mol/L to 15 mol/L.
  • the preparation method of the Prussian white electrode material described in any of the above embodiments is used to obtain a Prussian white electrode material with good conductivity, good cyclability and good connectivity.
  • the embodiments of the present application have at least the following advantages:
  • the preparation method of the above-mentioned Prussian white electrode material comprises the following steps: mixing and heating a sodium ferrocyanide solution, a complexing agent and a manganese salt to generate a Prussian white crystal nucleus with fewer vacancy defects in a suspension, then subjecting the suspension to an aging reaction to allow the Prussian white crystal nucleus to continue to grow slowly to obtain a Prussian white crystal nucleus with fewer vacancy defects, filtering the filtrate to obtain a first filter residue, that is, the first filter residue is the Prussian white crystal nucleus, and then adding cyclic acetal, formaldehyde solution and initiator to the first filter residue for ball milling treatment, so that the cyclic acetal, formaldehyde solution and initiator can be coated on the surface of the Prussian white crystal nucleus to form a conductive polyacetal coating with better compactness and better looseness, so that the Prussian white crystal nucleus can be improved.
  • the tap density, volumetric capacity and energy density of the white electrode material are improved, thereby improving the conductivity and cycle performance of the Prussian white positive electrode material; the Prussian white electrode material semi-finished product is then washed with water so that the residual cyclic acetal, formaldehyde and initiator on the surface of the Prussian white positive electrode material can be dissolved in water; the washed Prussian white electrode material semi-finished product is then filtered to remove excess cyclic acetal, formaldehyde and initiator to obtain a second filter residue with high purity; and finally the second filter residue is dried to effectively remove the moisture in the second filter residue to obtain a Prussian white electrode material with high purity, thereby effectively solving the problem that the doping amount is difficult to control, so as to ensure that a Prussian white electrode material with good conductivity and good cyclability is obtained.
  • the heating temperature is 60° C.
  • the addition time of the remaining 2 mol/L manganese chloride is controlled to be 6 hours to obtain the suspension liquid, wherein the mass ratio of 2 mol/L manganese chloride to 0.6 mol/L sodium ferrocyanide solution is 2.5, and the mass ratio of 15 mol/L citric acid to 2 mol/L manganese chloride is 20;
  • the suspension is aged for 24 hours to obtain a liquid to be filtered; the liquid to be filtered is centrifuged to obtain a first filter residue; the first filter residue is air-dried at a temperature of 120° C. for 2 minutes;
  • the semi-finished product of the Prussian white electrode material is washed with deionized water, and the washed semi-finished product of the Prussian white electrode material is centrifugally filtered to obtain a second filter residue; the second filter residue is dried at a temperature of 180° C. for 4 hours to obtain the Prussian white electrode material.
  • the remaining 0.4 mol/L manganese hydroxide was added to the initial suspension for a second mixing and heating at a temperature of 40°C.
  • the addition time of 0.4 mol/L manganese hydroxide was 7.8 h to obtain the suspension, wherein the mass ratio of 0.4 mol/L manganese hydroxide to 0.3 mol/L sodium ferrocyanide solution was 1:1, and the mass ratio of 0.4 mol/L ethylenediaminetetramine to ...
  • the mass ratio of acetic acid to 0.4 mol/L manganese hydroxide is 0.1;
  • the suspension is aged for 3 hours to obtain a filtrate; the filtrate is centrifugally filtered to obtain a first filter residue; the first filter residue is air-dried at a temperature of 100° C. for 10 minutes;
  • the semi-finished product of the Prussian white electrode material is washed with pure water, and the washed semi-finished product of the Prussian white electrode material is centrifugally filtered to obtain a second filter residue; the second filter residue is dried at a temperature of 150° C. for 8 hours to obtain the Prussian white electrode material.
  • the heating temperature is 55° C.
  • the remaining 1.5 mol/L manganese sulfate is added for 7.5 hours to obtain the suspension
  • the mass ratio of 1.5 mol/L manganese sulfate to 0.4 mol/L sodium ferrocyanide solution is 2
  • the mass ratio of 4 mol/L complexing agent to 1.5 mol/L manganese sulfate is 3
  • the mass ratio of part of the 1.5 mol/L manganese sulfate added to the remaining 1.5 mol/L manganese sulfate added is 1:4;
  • the suspension is aged for 8 hours to obtain a filtrate; the filtrate is centrifugally filtered to obtain a first filter residue; the first filter residue is air-dried at a temperature of 110° C. for 5 minutes;
  • diethylene glycol formal, 50% formaldehyde solution and 0.3 mmol boron trifluoride are added to the first filter residue for ball milling at a ball milling temperature of 85° C. for a ball milling time of 2.5 h to obtain a semi-finished Prussian white electrode material with a particle size of 1.3 ⁇ m, wherein the mass of diethylene glycol formal is 6% of the mass of formaldehyde in the 50% formaldehyde solution, and the total mass of diethylene glycol formal and the 50% formaldehyde solution accounts for 2.2% of the mass of the first filter residue;
  • the semi-finished product of the Prussian white electrode material is washed with pure water, and the washed semi-finished product of the Prussian white electrode material is centrifugally filtered to obtain a second filter residue; the second filter residue is dried at a drying temperature of The temperature was 170°C for 3 hours to obtain the Prussian white electrode material.
  • the complexing agent is a mixed solution of citric acid, sodium citrate and ethylenediaminetetraacetic acid, and the addition time of part of 2 mol/L manganese sulfate and 5 mol/L complexing agent is controlled to be 1 hour to generate a suspension initial solution;
  • the suspension is aged for 7 hours to obtain a filtrate; the filtrate is centrifugally filtered to obtain a first filter residue; the first filter residue is air-dried at a temperature of 115° C. for 4 minutes;
  • the ball milling temperature is 85° C.
  • the ball milling time is 2.5 h
  • a Prussian white electrode material semi-finished product with a particle size of 1.3 ⁇ m is obtained, wherein the cyclic acetal is obtained by compounding 1,3-dioxolane, diethylene glycol formal and diethylene glycol formal in a mass ratio of 5:1:1, the formaldehyde solution is a mixture of 50% formaldehyde solution and a polyformaldehyde solution with a polymerization degree of less than 4, the initiator is a mixture of boron trifluoride and titanium tetrachloride, the mass of the cyclic acetal is 6% of the mass of formaldehyde in the formaldehyde solution, and the total mass of the cyclic acetal and the formaldehyde solution accounts for 2.2%
  • the semi-finished product of the Prussian white electrode material is washed with pure water, and the washed semi-finished product of the Prussian white electrode material is centrifugally filtered to obtain a second filter residue; the second filter residue is dried at a temperature of 165° C. for 3 hours to obtain the Prussian white electrode material.
  • Example 3 The difference from Example 3 is that the mass of diethylene glycol formal is 8% of the mass of formaldehyde in the 50% formaldehyde solution, and the total mass of diethylene glycol formal and the 50% formaldehyde solution accounts for 2.5% of the mass of the first filter residue.
  • Example 3 The difference from Example 3 is that the mass of diethylene glycol formal is 5% of the mass of formaldehyde in the 50% formaldehyde solution, and the sum of the mass of diethylene glycol formal and the 50% formaldehyde solution accounts for 5% of the mass of the first filter residue. 1.8%.
  • Example 3 The difference from Example 3 is that the mass of diethylene glycol formal is 5% of the mass of formaldehyde in the 50% formaldehyde solution, and the total mass of diethylene glycol formal and the 50% formaldehyde solution accounts for 4% of the mass of the first filter residue.
  • Example 3 The difference from Example 3 is that the mass of diethylene glycol formal is 2% of the mass of formaldehyde in the 50% formaldehyde solution, and the total mass of diethylene glycol formal and the 50% formaldehyde solution accounts for 5% of the mass of the first filter residue.
  • Example 3 The difference from Example 3 is that the mass of diethylene glycol formal is 10% of the mass of formaldehyde in the 50% formaldehyde solution, and the total mass of diethylene glycol formal and the 50% formaldehyde solution accounts for 5% of the mass of the first filter residue.
  • Example 3 The difference from Example 3 is that diethylene glycol formal is replaced with 1,4-butanediol formal, and the rest remains unchanged.
  • Example 3 The difference from Example 3 is that the ball milling process is omitted in the step of adding diethylene glycol formal, 50% formaldehyde solution and 0.3 mmol boron trifluoride to the first filter residue for ball milling process, and the rest remains unchanged.
  • Example 4 It can be seen from Examples 1 to 6 and Comparative Examples 1 to 4 in Table 1 that the mass of the cyclic acetals in Examples 1 to 6 is 5% to 8% of the mass of the formaldehyde in the formaldehyde solution, and the total mass of the cyclic acetal and the formaldehyde solution accounts for 1.8% to 2.5% of the mass of the first filter residue, thereby ensuring that a relatively uniform conductive polyacetal coating with good looseness and compactness is formed on the surface of the Prussian white electrode material, so that under the condition of improving the tap density of the Prussian white electrode material, the volume specific capacity and energy density of the Prussian white electrode material can also be improved, thereby improving the conductivity and cycle performance of the polyacetal-coated Prussian white positive electrode material, especially Example 4 has the best conductivity and cycle performance, mainly because the cyclic acetal and formaldehyde solution in Example 4 are both prepared as a composite mixed solution, thereby ensuring that the uniformity, looseness and compact
  • Example 3 and Comparative Example 5 that since the ball milling treatment is omitted in Comparative Example 5, the conductivity and cycle performance of the polyacetal-coated Prussian white positive electrode material both show a downward trend, making the capacity ratio and capacity retention rate of Comparative Example 5 lower than those of Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本文公布一种普鲁士白电极材料及其制备方法。上述的普鲁士白电极材料的制备方法,包括如下步骤:对亚铁氰化钠溶液、络合剂和锰盐进行混合加热,并进行陈化反应,得到待过滤液;对待过滤液进行过滤操作;向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,并进行水洗,再过滤,得到第二滤渣;对第二滤渣进行干燥,得到普鲁士白电极材料。通过该方法,能够在普鲁士白晶核表面紧密包覆一层导电性聚缩醛,提高普鲁士白电极材料导电性能,且通过水洗可快速去除残余环状缩醛、甲醛和引发剂,以确保得到导电性和循环性好的普鲁士白电极材料。

Description

普鲁士白电极材料及其制备方法 技术领域
本申请实施例涉及正极材料技术领域,例如一种普鲁士白电极材料及其制备方法。
背景技术
随着可再生能源和清洁能源的发展,产生了大规模储能的需求。为了顺利接入、充分消纳可再生能源发电,实现能源的优化管理和高效利用,需要集中式储能、分布式储能、直流配电网的协调应用。原则上,适合于大规模储能应用的二次电池须安全性高,成本低廉,资源丰富并且具有优良的电化学性能如长寿命,高功率密度等。
正极材料是钠离子电池的核心部分之一,对电池的倍率、比容、工作电压、循环稳定性的提高起着至关重要的作用。目前,钠离子电池的正极材料改进较多的有聚阴离子化合物,层状氧化物和普鲁士蓝类似物,其中普鲁士蓝类似物因其独特的三维开框架结构而具有高的理论容量和循环稳定性,因此,普鲁士蓝类似物的研究受到了广泛的重视,被认为是极具有应用潜力的钠离子电池材料。
普鲁士蓝类似物正极材料包括普鲁士蓝正极材料和普鲁士白正极材料。近年来,人们主要采用形貌调控、碳包覆、掺杂等技术对普鲁士白正极材料进行改性,以更好地提高钠离子电池的循环性能和使用寿命。然而,由于碳包覆方法得到的碳包覆体的密度较小,从而降低了普鲁士白电极材料的振实密度,进而减少了普鲁士白电极材料的体积比容量和能量密度,进而影响了普鲁士白正极材料的导电性能和循环性能;而对于掺杂法而言,由于加入的掺杂量比较难控制,从而较难得到导电性能和循环性能较好的普鲁士白电极材料。因此,传统对普鲁士白正极材料改进的方法中,仍存在着普鲁士白正极材料导电性较差、和循环性能较差的现象。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供一种紧密度较好、疏松度较好聚缩醛的包覆体,以提高普鲁士白电极材料的振实密度、导电性和循环性且解决了掺杂量比较难控制的普鲁士白电极材料及其制备方法。
本申请实施例是通过以下技术方案来实现的:
一种普鲁士白电极材料的制备方法,包括如下步骤:
对亚铁氰化钠溶液、络合剂和锰盐进行混合加热,得到悬浊液;
对所述悬浊液进行陈化反应,得到待过滤液;
对所述待过滤液进行过滤操作,得到第一滤渣;
向所述第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,得到普鲁士白电极材料半成品;
对所述普鲁士白电极材料半成品进行水洗,对水洗后的所述普鲁士白电极材料半成品进行过滤操作,得到第二滤渣;
对所述第二滤渣进行干燥,得到普鲁士白电极材料。
在其他一些实施例中,所述环状缩醛包括1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛中的至少一种。
在其他一些实施例中,所述甲醛溶液包括40%~50%甲醛溶液和聚合度小于4的聚甲醛溶液中的至少一种。
在其他一些实施例中,所述引发剂包括三氟化硼和四氯化钛中的至少一种。
在其他一些实施例中,所述环状缩醛的质量为所述甲醛溶液中的甲醛质量的5%~8%。
在其他一些实施例中,所述环状缩醛和所述甲醛溶液的质量总和占所述第一滤渣的质量的1.8%~2.5%。
在其他一些实施例中,所述引发剂的使用量为0.1mmol~0.5mmol。
在其他一些实施例中,所述球磨处理的条件为:球磨温度为80℃~100℃,球磨时间2h~4h。
在其他一些实施例中,所述过滤操作为离心过滤。
在其他一些实施例中,采用上述任一实施例中所述的普鲁士白电极材料的制备方法得到的。
与相关技术相比,本申请实施例至少具有以下优点:
1、上述的普鲁士白电极材料的制备方法,通过将亚铁氰化钠溶液、络合剂 和锰盐进行混合加热,可以在悬浊液中生成空位缺陷较少的普鲁士白晶核,然后对悬浊液进行陈化反应,以使普鲁士白晶核持续慢慢长大,以得到空位缺陷更少的普鲁士白晶核,再对待过滤液进行过滤,以得到第一滤渣,即第一滤渣为普鲁士白晶核,然后向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,以使环状缩醛、甲醛溶液和引发剂能够在普鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体,如此,可以提高普鲁士白电极材料的振实密度、体积比容量和能量密度,从而提高普鲁士白正极材料的导电性能和循环性能,接着对普鲁士白电极材料半成品进行水洗,以使普鲁士白正极材料表面残余环状缩醛、甲醛和引发剂能够溶解在水中,然后对水洗后的普鲁士白电极材料半成品进行过滤操作,以除去多余的环状缩醛、甲醛和引发剂,得到纯度高的第二滤渣,最后再对第二滤渣进行干燥,以有效地去除第二滤渣内的水分,以得到纯度较高的普鲁士白电极材料,从而有效解决掺杂量较难控制的现象,以确保得到导电性好和循环性好的普鲁士白电极材料。
2、上述的普鲁士白电极材料的制备方法,由于向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,一方面经过球磨处理能够有效地将普鲁士白晶核、环状缩醛、甲醛溶液和引发剂混合均匀,以便在普鲁士白晶核的表面包覆生成一层紧密的导电性聚缩醛包覆体,另一方面经过球磨处理后的普鲁士白电极材料的粒径变小,有助于去除普鲁士白晶核内部的结晶水,以提高普鲁士白晶核的导电性,另一方面,经过球磨处理后可以得到粒径较均匀的普鲁士白电极材料,以便制备得到的普鲁士白电极材料能够均匀地涂覆在极片上,从而得到能量密度较高的电池,进而提高了电池的导电性能和循环性能。
3、上述的普鲁士白电极材料的制备方法,由于导电性聚缩醛自身具有一定润滑性,当在进行球磨处理时,导电性聚缩醛能够有效地减少普鲁士白晶核在球磨时的摩擦损耗量,以有效避免普鲁士白晶核发生变形,从而确保普鲁士白晶核在球磨的过程中能够为导电性聚缩醛包覆体提供较好的骨架支撑,进而确保普鲁士白电极材料具有较好的循环性能。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使 用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施方式的普鲁士白电极材料的流程图;
图2本申请一实施方式的普鲁士白电极材料产品的SEM图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于抑制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请提供一种普鲁士白电极材料的制备方法,包括如下步骤:对亚铁氰化钠溶液、络合剂和锰盐进行混合加热,得到悬浊液;对所述悬浊液进行陈化反应,得到待过滤液;对所述待过滤液进行过滤操作,得到第一滤渣;向所述第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,得到普鲁士白电极材料半成品;对所述普鲁士白电极材料半成品进行水洗,对水洗后的所述普鲁士白电极材料半成品进行过滤操作,得到第二滤渣;对所述第二滤渣进行干燥,得到普鲁士白电极材料。
上述的普鲁士白电极材料,通过将亚铁氰化钠溶液、络合剂和锰盐进行混合加热,可以在悬浊液中生成空位缺陷较少的普鲁士白晶核,然后对悬浊液进行陈化反应,以使普鲁士白晶核持续慢慢长大,以得到空位缺陷更少的普鲁士 白晶核,再对待过滤液进行过滤,以得到第一滤渣,即第一滤渣为普鲁士白晶核,然后向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,以使环状缩醛、甲醛溶液和引发剂能够在普鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体,如此,可以提高普鲁士白电极材料的振实密度、体积比容量和能量密度,从而提高普鲁士白正极材料的导电性能和循环性能,接着对普鲁士白电极材料半成品进行水洗,以使普鲁士白正极材料表面残余环状缩醛、甲醛和引发剂能够溶解在水中,然后对水洗后的普鲁士白电极材料半成品进行过滤操作,以除去多余的环状缩醛、甲醛和引发剂,得到纯度高的第二滤渣,最后再对第二滤渣进行干燥,以有效地去除第二滤渣内的水分,以得到纯度较高的普鲁士白电极材料,从而有效解决掺杂量较难控制的现象,以确保得到导电性好和循环性好的普鲁士白电极材料。进一步地,由于向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,一方面经过球磨处理能够有效地将普鲁士白晶核、环状缩醛、甲醛溶液和引发剂混合均匀,以便在普鲁士白晶核的表面包覆生成一层紧密的导电性聚缩醛包覆体,另一方面经过球磨处理后的普鲁士白电极材料的粒径变小,有助于去除普鲁士白晶核内部的结晶水,以提高普鲁士白晶核的导电性,另一方面,经过球磨处理后可以得到粒径较均匀的普鲁士白电极材料,以便制备得到的普鲁士白电极材料能够均匀地涂覆在极片上,从而得到能量密度较高的电池,进而提高了电池的导电性能和循环性能。进一步地,上述的普鲁士白电极材料的制备方法,由于导电性聚缩醛自身具有一定润滑性,当在进行球磨处理时,导电性聚缩醛能够有效地减少普鲁士白晶核在球磨时的摩擦损耗量,以有效避免普鲁士白晶核发生变形,从而确保普鲁士白晶核在球磨的过程中能够为导电性聚缩醛包覆体提供较好的骨架支撑,进而确保普鲁士白电极材料具有较好的循环性能。
请参阅图1,为更好地理解本申请的技术方案和有益效果,以下结合具体实施例对本申请做进一步地详细说明,一实施方式的普鲁士白电极材料包括如下步骤的部分或全部:
S110、对亚铁氰化钠溶液、络合剂和锰盐进行混合加热,得到悬浊液。可以理解,加入的亚铁氰化钠溶液与锰盐能够发生共沉淀反应,以生成普鲁士白晶核,同时加入的络合剂能够有效地抑制亚铁氰化钠溶液与锰盐的反应速度,以生成空位缺陷较少的普鲁士白晶核。
S120、对所述悬浊液进行陈化反应,得到待过滤液。可以理解,通过对悬浊液进行陈化反应,以使普鲁士白晶核持续慢慢长大,以得到空位缺陷更少的普鲁士白晶核,以为后续导电性聚缩醛包覆体提供骨架支撑。
S130、对所述待过滤液进行过滤操作,得到第一滤渣,即得到普鲁士白晶核,以为后续导电性聚缩醛包覆体提供骨架支撑。
S140、向所述第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,得到普鲁士白电极材料半成品。
可以理解,加入的环状缩醛、甲醛溶液和引发剂能够在普鲁士白晶核表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体,如此,不仅可以提高普鲁士白电极材料的振实密度,即振实密度可达到1.5g/cm3,从而提高普鲁士白电极材料的体积比容量和能量密度,进而提高普鲁士白正极材料的导电性能和循环性能。
需要说明的是,普鲁士白晶核在反应时主要是作为催化剂,同时配合着引发剂能够加快环状缩醛、甲醛溶液在普鲁士白晶核的表面发生聚合反应,以确保在普鲁士白晶核的表面得到紧密的导电性聚缩醛包覆体。此外,环状缩醛和甲醛溶液在普鲁士白晶核的表面发生聚合反应时,普鲁士白晶核的骨架不会出现变形现象,以确保能够为导电性聚缩醛包覆体提供较好的骨架支撑,以确保制备得到导电性高和循环性好的普鲁士白电极材料。
值得一提的是,由于向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,一方面经过球磨处理能够有效地将普鲁士白晶核、环状缩醛、甲醛溶液和引发剂混合均匀,以便在普鲁士白晶核的表面包覆生成一层紧密的导电性聚缩醛包覆体,另一方面经过球磨处理后的普鲁士白电极材料的粒径变小,有助于去除普鲁士白晶核内部的结晶水,以提高普鲁士白晶核的导电性,另一方面,经过球磨处理后可以得到粒径较均匀的普鲁士白电极材料,以便普鲁士白电极材料能够均匀地涂覆在极片上,从而得到能量密度较高的电池,进而提高了电池的导电性能和循环性能。
还需要理解的是,由于导电性聚缩醛自身具有一定润滑性,当在进行球磨处理时,导电性聚缩醛能够有效地减少普鲁士白晶核在球磨时的摩擦损耗量,以有效避免普鲁士白晶核发生变形,从而确保普鲁士白晶核在球磨的过程中能够为导电性聚缩醛包覆体提供较好的骨架支撑,进而确保普鲁士白电极材料具 有较好的循环性能。
S150、对所述普鲁士白电极材料半成品进行水洗,对水洗后的所述普鲁士白电极材料半成品进行过滤操作,得到第二滤渣。
可以理解,由于环状缩醛、甲醛溶液和引发剂均溶于水,因此,可以通过对普鲁士白电极材料半成品进行水洗,以使普鲁士白正极材料表面残余环状缩醛、甲醛和引发剂能够溶解在水中,然后对水洗后的普鲁士白电极材料半成品进行过滤操作,以除去多余的环状缩醛、甲醛和引发剂,得到纯度高的第二滤渣。
S160、对所述第二滤渣进行干燥,得到普鲁士白电极材料。可以理解,通过对第二滤渣进行干燥,以有效地去除第二滤渣内的水分,以得到纯度较高的普鲁士白电极材料,从而有效解决掺杂量较难控制的现象,以确保得到导电性好和循环性好的普鲁士白电极材料。
上述的普鲁士白电极材料的制备方法,通过将亚铁氰化钠溶液、络合剂和锰盐进行混合加热,以在悬浊液中生成空位缺陷较少的普鲁士白晶核,然后对悬浊液进行陈化反应,以使普鲁士白晶核持续慢慢长大,以得到空位缺陷更少的普鲁士白晶核,再对待过滤液进行过滤,以得到第一滤渣,即第一滤渣为普鲁士白晶核,然后向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,以使环状缩醛、甲醛溶液和引发剂能够在普鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体,如此,可以提高普鲁士白电极材料的振实密度、体积比容量和能量密度,从而提高普鲁士白正极材料的导电性能和循环性能,接着对普鲁士白电极材料半成品进行水洗,以使普鲁士白正极材料表面残余环状缩醛、甲醛和引发剂能够溶解在水中,然后对水洗后的普鲁士白电极材料半成品进行过滤操作,以除去多余的环状缩醛、甲醛和引发剂,得到纯度高的第二滤渣,最后再对第二滤渣进行干燥,以有效地去除第二滤渣内的水分,以得到纯度较高的普鲁士白电极材料,从而有效解决掺杂量较难控制的现象,以确保得到导电性好和循环性好的普鲁士白电极材料。
上述的普鲁士白电极材料的制备方法,由于向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,一方面经过球磨处理能够有效地将普鲁士白晶核、环状缩醛、甲醛溶液和引发剂混合均匀,以便在普鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体,请参阅图2,另一方 面经过球磨处理后的普鲁士白电极材料的粒径变小,有助于去除普鲁士白晶核内部的结晶水,以提高普鲁士白晶核的导电性,另一方面,经过球磨处理后可以得到粒径较均匀的普鲁士白电极材料,以便普鲁士白电极材料能够均匀地涂覆在极片上,从而得到能量密度较高的电池,进而提高了电池的导电性能和循环性能。
上述的普鲁士白电极材料的制备方法,由于导电性聚缩醛自身具有一定润滑性,当在进行球磨处理时,导电性聚缩醛能够有效地减少普鲁士白晶核在球磨时的摩擦损耗量,以有效避免普鲁士白晶核发生变形,从而确保普鲁士白晶核在球磨的过程中能够为导电性聚缩醛包覆体提供较好的骨架支撑,进而确保普鲁士白电极材料具有较好的循环性能。
在其他一些实施例中,在对所述对亚铁氰化钠溶液、络合剂和锰盐进行混合加热,得到悬浊液的步骤中,包括如下具体步骤:向反应釜中加入所述亚铁氰化钠溶液、所述络合剂和部分所述锰盐进行第一混合加热,以生成悬浊初液;向所述悬浊初液加入余下的所述锰盐进行第二混合加热,以得到所述悬浊液。
可以理解,由于加入的亚铁氰化钠溶液与锰盐的反应速度过快容易在普鲁士白晶核内生成亚铁氰根的空位缺陷和较多的结晶水缺陷,从而造成普鲁士白晶核的导电性和循环性能较差。因此,本申请通过将锰盐分两次加入,以有效抑制亚铁氰化钠溶液与锰盐的反应速度,同时加入充足的络合剂可以进一步抑制亚铁氰化钠溶液与锰盐的反应速度,从而可以得到亚铁氰根的空位缺陷和结晶水缺陷较少的普鲁士白初核,以使普鲁士白初核能够为普鲁士白晶核内层提供较好的骨架结构。也就是说,得到的亚铁氰根的空位缺陷和结晶水缺陷较少的普鲁士白初核能够确保普鲁士白晶核的内层具有较好的导电性和循环性,接着向悬浊初液加入余下的锰盐进行混合加热,以使得剩下的锰盐能够与亚铁氰化钠溶液慢慢反应,并配合着后续对悬浊液进行陈化反应,以使普鲁士白晶核能够持续慢慢长大,以进一步得到空位缺陷较少的普鲁士白晶核,从而确保得到普鲁士白晶核的内外层均具有较好的导电性和循环性。
在其他一些实施例中,所述锰盐与所述亚铁氰化钠溶液的质量比为1~2.5,所述络合剂与所述锰盐的质量比为0.1~20,以确保得到亚铁氰根的空位缺陷和结晶水缺陷较少的普鲁士白初核。
在其他一些实施例中,在所述向反应釜中加入所述亚铁氰化钠溶液、所述 络合剂和部分所述锰盐进行第一混合加热,以生成悬浊初液的步骤中,包括如下具体的步骤:在惰性气氛下,向反应釜中加入亚铁氰化钠溶液,开启搅拌,并加热至50℃~90℃,再将部分锰盐和络合剂缓慢地加入反应釜中,并且控制部分锰盐和络合剂的加液时间为0.2h~2h,以确保得到亚铁氰根的空位缺陷和结晶水缺陷较少的普鲁士白初核。
在其他一些实施例中,在所述向所述悬浊初液加入余下的所述锰盐进行第二混合加热中,控制余下的所述锰盐的加液时间为6h~7.8h,并且所述第二混合加热的加热温度为40℃~60℃。
可以理解,通过控制余下的所述锰盐的加液时间为6h~7.8h,加热温度为40℃~60℃,以确保锰盐能够缓慢地与亚铁氰化钠溶液反应,以更好地控制锰盐与亚铁氰化钠溶液反应的速度,以有效地避免锰盐加入过快以造成亚铁氰根的空位缺陷和结晶水缺陷较多的普鲁士白晶核的外层,从而确保在普鲁士白内层形成导电性和循环性好的普鲁士白晶核的外层,进而确保得到内外层均具有较好的导电性和循环性的普鲁士白晶核。
在其他一些实施例中,部分的所述锰盐的加入量和余下的所述锰盐加入量的质量比为1:4。可以理解,通过控制部分的所述锰盐的加入量和余下的所述锰盐加入量的质量比为1:4,以确保锰盐能够缓慢地加入至亚铁氰化钠溶液中,从而确保锰盐和亚铁氰化钠溶液的反应相对缓慢,以有利于得到内外层均具有较好的导电性和循环性的普鲁士白晶核。
需要说明的是,由于部分的所述锰盐的加入量和余下的所述锰盐加入量的质量比为1:4,使得部分锰盐的加入量比余下锰盐加入量相对较少,同时配合着锰盐与亚铁氰化钠溶液的质量比为1~2.5,络合剂与锰盐的质量比为0.1~20,以及第一混合加热的温度为50℃~90℃,使得加入的部分锰盐在充足的亚铁氰化钠溶液和络合剂的条件下,能够与亚铁氰化钠溶液的充分、全面且缓慢地反应生成亚铁氰根的空位缺陷和结晶水缺陷较少的普鲁士白的内层。
在其他一些实施例中,所述第一混合加热的加热温度高于所述第二混合加热的加热温度。
可以理解,由于亚铁氰化钠溶液与锰盐发生反应时能够在悬浊液生成普鲁士白晶核沉淀,从而会造成悬浊液中液体减少。也就是说越接近反应结束的时间,悬浊液中液体的量会越少,而生成普鲁士白晶核沉淀会越多,从而使得第 一混合加热时的悬浊初液的总液体量大于比第二混合加热的悬浊液的总液体量,若第一混合加热的加热温度和第二混合加热的加热温度一样,或者第一混合加热的加热温度低于第二混合加热的加热温度,都会造成第一混合加热中亚铁氰化钠溶液与锰盐和第二次混合加热中的铁氰化钠溶液与锰盐的反应速度相差较大,从而造成普鲁士白晶核的内外层的晶核的大小相差较大,进而影响普鲁士白晶核的骨架成形,进而无法为导电性聚缩醛包覆体提供较好的骨架支撑。因此,本申请通过控制第一混合加热的加热温度高于所述第二混合加热的加热温度,以确保第一混合加热中亚铁氰化钠溶液与锰盐和第二次混合加热中的铁氰化钠溶液与锰盐的反应速度相差较小,即两者反应速度相对较匀速,从而确保普鲁士白晶核的内外层的晶核的大小相对较小,进而可以确保得到普鲁士白晶核的内外层的晶核大小相对均匀,且导电性和循环性好,进而不仅能够为导电性聚缩醛包覆体提供较好的骨架支撑,还提高了普鲁士白晶核自身的导电性和循环性,以确保后续可以得到导电性好、循环性好和结构稳定性好的普鲁士白电极材料。
在其他一些实施例中,所述陈化反应为3h~24h,以确保普鲁士白晶核能够缓慢地生长,以确保得到缺陷较少的普鲁士白晶核。
在其他一些实施例中,所述环状缩醛包括1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛中的至少一种。可以理解,由于1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛能够为导电性聚缩醛包覆体提供反应基材。此外,1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛均溶于水,以便后续通过水洗可以快速地去除残留的环状缩醛。
在其他一些实施例中,所述环状缩醛为1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛的混合液。可以理解,由于1,3二氧戊环为环状结构,丙二醇缩甲醛为链状结构,二乙二醇缩甲醛为链状结构,通过将1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛进行复配后,并配合着链状的甲醛溶液,从而可以在普鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体。
在其他一些实施例中,所述1,3二氧戊环、所述丙二醇缩甲醛和所述二乙二醇缩甲醛质量比为5:1:1,以确保环状缩醛与甲醛溶液能够在鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体。
在其他一些实施例中,所述甲醛溶液包括40%~50%甲醛溶液和聚合度小于4的聚甲醛溶液中的至少一种,以为导电性聚缩醛包覆体提供反应基材。此外,40%~50%甲醛溶液和聚合度小于4的聚甲醛溶液均溶于水,以便后续通过水洗可以快速地去除残留的甲醛溶液。
在其他一些实施例中,所述甲醛溶液为所述40%~50%甲醛溶液和所述聚合度小于4的聚甲醛溶液的混合液。可以理解,若甲醛溶液全部采用40%~50%甲醛溶液,使得甲醛溶液与环状缩醛能够在普鲁士白晶核的表面生成聚合度较高的多聚甲醛,而聚合度较高的多聚甲醛中的紧密度且较结实,由于较紧密度且较结实的导电性聚缩醛包覆体不利于普鲁士白电极材料的钠离子的通行,从而降低普鲁士白电极材料的循环性能。因此,为了确保导电性聚缩醛包覆体具有较好的紧密度和疏松度,本申请通过将40%~50%甲醛溶液和聚合度小于4的聚甲醛溶液进行复配使用,以使加入的聚合度小于4的聚甲醛溶液和40%~50%甲醛溶液配合着环状缩醛使用,从而可以在普鲁士白晶核的表面生成具有较好的紧密度和较好的疏松度,以便钠离子的通行,从而提高普鲁士白电极材料的导电性和循环性能。
进一步地,由于聚合度小于4的聚甲醛溶液具有颗粒均匀和水溶性好的特点,并且配合着环状缩醛能够在普鲁士白晶核的表面生成较均匀、疏松度和紧密度较好的导电性聚缩醛包覆体,以在提高普鲁士白电极材料的振实密度的条件下,还可以提高普鲁士白电极材料的体积比容量和能量密度,进而提高普鲁士白正极材料的导电性能和循环性能,同时有利于后续水洗时能够快速地去除残留的甲醛、环状缩醛和引发剂,以得到纯度相对较高的第二滤渣。
值得一提的是,由于普鲁士白晶核的内外层生成晶核的大小较为均匀,并配合着聚合度小于4的聚甲醛溶液和40%~50%甲醛溶液的复配液,从而可以确保在普鲁士白晶核的表面生成均匀、疏松度和紧密度较好的导电性聚缩醛包覆体,从而确保普鲁士白电极材料从内部至外部具有较好的均一性,进而得到导电性好、循环性好和结构稳定性好的普鲁士白电极材料。
在其他一些实施例中,所述环状缩醛的质量为所述甲醛溶液中的甲醛质量的5%~8%,以确保环状缩醛和甲醛能够在普鲁士白晶核的表面生成具有较好的紧密度和疏松度的导电性聚缩醛包覆体。
在其他一些实施例中,所述环状缩醛和所述甲醛溶液的质量总和占所述第 一滤渣的质量的1.8%~2.5%,可以有效避免了出现环状缩醛和甲醛溶液容易浪费或导电性聚缩醛包覆体出现包覆不到位的现象,从而可以确保导电性聚缩醛包覆体能够全面地包覆在普鲁士白晶核的表面,进而提高了普鲁士白电极材料的导电性和循环性。
在其他一些实施例中,所述引发剂包括三氟化硼和四氯化钛中的至少一种,以确保加入的三氟化硼和四氯化钛配合着普鲁士白晶核,能够加快环状缩醛和甲醛溶液在普鲁士白晶核的表面的聚合反应,以快速得到均匀、疏松度和紧密度较好的导电性聚缩醛包覆体。此外,三氟化硼和四氯化钛均可以溶于水,以便后续能够通过水洗快速去除残留的三氟化硼和四氯化钛,以得到纯度较高的普鲁士白电极材料。
进一步地,在其他一些实施例中,所述引发剂的使用量为0.1mmol~0.5mmol。可以理解,由于普鲁士白晶核在聚合反应时能起到催化作用,从而能够减少引发剂的使用量,使得普鲁士白晶核配合着引发剂的使用,能够加快环状缩醛和甲醛溶液在普鲁士白晶核的表面的聚合反应,以确保可以快速得到均匀、疏松度和紧密度较好的导电性聚缩醛包覆体。
在其他一些实施例中,所述球磨处理的条件为:球磨温度为80℃~100℃,球磨时间2h~4h。可以理解,由于经过球磨处理能够减小普鲁士白晶核的粒径,且还能有效地去除普鲁士白晶核内部的结晶水,从而可以得到粒径较小且均匀、结晶水较少的紧密的普鲁士白电极材料。若球磨时间超过4h,球磨温度高于100℃,则容易造成普鲁士白电极材料的粒径很小以引起普鲁士白晶核的骨架容易出现变形的现象,从而造成普鲁士白电极材料的循环性较差;若球磨时间超过2h,球磨温度高于80℃,则容易造成普鲁士白晶核内部的结晶水含量较多以引起普鲁士白晶核的骨架的导电性变低,从而造成普鲁士白电极材料的导电性较差。因此,本申请通过控制球磨温度为80℃~100℃,球磨时间2h~4h,不仅能够确保有效地去除普鲁士白晶核内部的结晶水含量,且还确保得到粒径较好且均匀的普鲁士白电极材料,同时还确保在普鲁士白晶核的表面包覆生成一层均匀、紧密度和疏松度较好的导电性聚缩醛包覆体,从而提高普鲁士白电极材料的导电性和循环性。
在其他一些实施例中,所述普鲁士白电极材料半成品的粒径为0.8μm~2.8μm,以确保后续得到粒径较小且结构稳定性较好的普鲁士白电极材料,尤其适用于 小型化的电池,可以得到更薄型的高能量密度的电池,例如钮扣电池。
在其他一些实施例中,在向所述第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,得到普鲁士白电极材料半成品的步骤之前,还包括如下步骤:对所述第一滤渣进行风干操作。
可以理解,由于过滤得到的第一滤渣存在有水分,并且环状缩醛、甲醛溶液和引发剂均易溶于水,若直接对向第一滤渣加入环状缩醛、甲醛溶液和引发剂,使得环状缩醛、甲醛溶液和引发剂与第一滤渣接触时会在第一滤渣的表面发生溶解,不仅会造成环状缩醛、甲醛溶液和引发剂的使用量增多,从而增加了生产成本,而且还会降低导电性聚缩醛包覆体的反应速度,从而影响生产效率,同时还会影响生成导电性聚缩醛包覆体的结构形貌,从而影响聚缩醛包覆体自身的导电性和循环性。
因此,本申请通过对第一滤渣进行风干操作,从而能够有效地去除第一滤渣表面的水分,以确保加入的环状缩醛、甲醛溶液、引发剂和第一滤渣直接进行接触,第一滤渣即为普鲁士白晶核,从而确保环状缩醛和甲醛溶液能够在普鲁士白晶核的表面直接聚合生成导电性的聚缩醛包覆体,一方面确保了导电性的聚缩醛包覆体与普鲁士白晶核连接的牢固性,且加快了生成导电性聚缩醛包覆体的反应速度,从而提高了生产效率,另一方面避免了环状缩醛、甲醛溶液和引发剂发生水解,以减少环状缩醛、甲醛溶液和引发剂的使用量,从而降低了生产成本,另一方面确保在普鲁士白晶核表面形成均匀、紧密度和疏松度较好的导电性聚缩醛包覆体,从而确保聚缩醛包覆体具有优异的导电性和循环性。
在其他一些实施例中,所述风干操作的温度为100℃~120℃,时间2min~10min,以快速地除去第一滤渣表面的水分。
在其他一些实施例中,采用去离子水或纯水对所述普鲁士白电极材料半成品进行水洗,以确保得到纯度高的普鲁士白电极材料半成品。
在其他一些实施例中,所述过滤操作为离心过滤,以快速实现过滤操作,从而提高普鲁士白电极材料的生产效率。
在其他一些实施例中,所述干燥的温度为150℃~180℃,时间4h~8h。可以理解的是,若干燥低于150℃,干燥时间小于4h,从而较难确保全面地去除第二滤渣的水分,若干燥高于180℃,干燥时间高于8h,容易造成导电性聚缩包覆体的结构发生变形,从而影响导电性聚缩包覆体的导电性和循环性。因此, 本申请通过控制干燥的温度为150℃~180℃,时间4h~8h,使得与普鲁士白晶核的表面接触的导电性聚缩包覆体具有微融的状态,以便更好地粘附在普鲁士白晶核的表面,从而进一步提高普鲁士白晶核与导电性聚缩包覆体的连接牢固性,避免了导电性聚缩包覆体不容易出现脱落的现象,从而提高普鲁士白电极材料的循环性,同时还确保较全面地去除第二滤渣的水分,以得到空位缺陷较少的普鲁士白电极材料,从而得到导电性好、循环性好和连接性好的普鲁士白电极材料。
值得一提的是,由于本申请的普鲁士白晶核的表面形成有均匀、紧密度和疏松度较好的导电性聚缩包覆体,从而使得本申请的热传导的速度相对传统的较慢些,因此,本申请通过提高干燥的温度以确保较全面地去除导电性聚缩包覆体上的水分,即控制本申请的干燥温度为150℃~180℃,比传统的普鲁士白电极材料改性的干燥温度为80℃~120℃较高,从而确保较全面地去除导电性聚缩包覆体上的水分,同时,干燥温度为150℃~180℃,还能够有效地确保与普鲁士白晶核的表面接触的导电性聚缩包覆体具有微融的状态,即,确保与普鲁士白晶核的表面接触的导电性聚缩包覆体的表面为熔融状态而内部为固态结构,如此在不破坏导电性聚缩包覆体总体的结构框架条件下,保持导电性聚缩包覆体的表面具有微融的状态,以便导电性聚缩包覆体更好地粘附在普鲁士白晶核的表面,从而进一步提高普鲁士白晶核与导电性聚缩包覆体的连接牢固性,避免了导电性聚缩包覆体不容易出现脱落的现象,进而提高了普鲁士白电极材料的循环性
还需要理解的是,由于在向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理已经对普鲁士白晶核内外层的水分进行了处理,从而能够有效地减短后续干燥的时间,从而使得本申请的干燥时间相对传统的普鲁士白电极材料改性的干燥时间较短,如此,可以实现对普鲁士白电极材料水分干燥的分批进行,从而可以确保得到空位缺陷较少的普鲁士白电极材料,进而得到导电性好、循环性好和连接性好的普鲁士白电极材料。
在其他一些实施例中,所述亚铁氰化钠的浓度为0.3mol/L~0.6mol/L。
在其他一些实施例中,所述锰盐的浓度为0.4mol/L~2mol/L。
在其他一些实施例中,所述络合剂包括柠檬酸、马来酸、枸杞酸、乙二胺四乙酸、柠檬酸钠和氨水中的至少一种。
在其他一些实施例中,所述络合剂的浓度为0.4mol/L~15mol/L。
在其他一些实施例中,采用上述任一实施例中所述的普鲁士白电极材料的制备方法得到的,以得到导电性好、循环性好和连接性好普鲁士白电极材料。
与相关技术相比,本申请实施例至少具有以下优点:
1、上述的普鲁士白电极材料的制备方法,通过将亚铁氰化钠溶液、络合剂和锰盐进行混合加热,以在悬浊液中生成空位缺陷较少的普鲁士白晶核,然后对悬浊液进行陈化反应,以使普鲁士白晶核持续慢慢长大,以得到空位缺陷更少的普鲁士白晶核,再对待过滤液进行过滤,以得到第一滤渣,即第一滤渣为普鲁士白晶核,然后向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,以使环状缩醛、甲醛溶液和引发剂能够在普鲁士白晶核的表面包覆生成一层紧密度较好、疏松度较好的导电性聚缩醛包覆体,如此,可以提高普鲁士白电极材料的振实密度、体积比容量和能量密度,从而提高普鲁士白正极材料的导电性能和循环性能,接着对普鲁士白电极材料半成品进行水洗,以使普鲁士白正极材料表面残余环状缩醛、甲醛和引发剂能够溶解在水中,然后对水洗后的普鲁士白电极材料半成品进行过滤操作,以除去多余的环状缩醛、甲醛和引发剂,得到纯度高的第二滤渣,最后再对第二滤渣进行干燥,以有效地去除第二滤渣内的水分,以得到纯度较高的普鲁士白电极材料,从而有效解决掺杂量较难控制的现象,以确保得到导电性好和循环性好的普鲁士白电极材料。
2、上述的普鲁士白电极材料的制备方法,由于向第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,一方面经过球磨处理能够有效地将普鲁士白晶核、环状缩醛、甲醛溶液和引发剂混合均匀,以便在普鲁士白晶核的表面包覆生成一层紧密的导电性聚缩醛包覆体,另一方面经过球磨处理后的普鲁士白电极材料的粒径变小,有助于去除普鲁士白晶核内部的结晶水,以提高普鲁士白晶核的导电性,另一方面,经过球磨处理后可以得到粒径较均匀的普鲁士白电极材料,以便普鲁士白电极材料能够均匀地涂覆在极片上,从而得到能量密度较高的电池,进而提高了电池的导电性能和循环性能。
3、上述的普鲁士白电极材料的制备方法,由于导电性聚缩醛自身具有一定润滑性,当在进行球磨处理时,导电性聚缩醛能够有效地减少普鲁士白晶核在球磨时的摩擦损耗量,以有效避免普鲁士白晶核发生变形,从而确保普鲁士白晶核在球磨的过程中能够为导电性聚缩醛包覆体提供较好的骨架支撑,进而确 保普鲁士白电极材料具有较好的循环性能。
以下例举一些具体实施例,若提到%,均表示按重量百分比计。需注意的是,下列实施例并没有穷举所有可能的情况,并且下述实施例中所用的材料如无特殊说明,均可从商业途径得到。
实施例1
向反应釜中加入0.6mol/L亚铁氰化钠溶液,开启搅拌,并加热至90℃,通入氮气,再将部分2mol/L氯化锰和15mol/L柠檬酸用计量泵通入反应釜中,并且控制部分2mol/L氯化锰和15mol/L柠檬酸的加液时间为2h,以生成悬浊初液;
向所述悬浊初液加入余下的2mol/L氯化锰进行第二混合加热,加热温度为60℃,并控制余下2mol/L氯化锰的加液时间为6h,以得到所述悬浊液,其中,2mol/L氯化锰和0.6mol/L亚铁氰化钠溶液的质量比为2.5,15mol/L柠檬酸和2mol/L氯化锰的质量比为20;
对悬浊液进行陈化反应24h,得到待过滤液;对待过滤液进行离心过滤,得到第一滤渣;对第一滤渣进行风干操作,风干操作的温度为120℃,时间2min;
在惰性气氛下,向所述第一滤渣加入1,3二氧戊环、40%甲醛溶液和0.5mmol三氟化硼进行球磨处理,球磨温度为100℃,球磨时间2h,得到粒径为2.8μm普鲁士白电极材料半成品,其中1,3二氧戊环的质量为40%甲醛溶液中的甲醛质量的5%,并且1,3二氧戊环和40%甲醛溶液的质量总和占第一滤渣的质量的1.8%;
采用去离子水对普鲁士白电极材料半成品进行水洗,对水洗后的普鲁士白电极材料半成品进行离心过滤,得到第二滤渣;对第二滤渣进行干燥,干燥的温度为180℃,时间4h,得到普鲁士白电极材料。
实施例2
向反应釜中加入0.3mol/L亚铁氰化钠溶液,开启搅拌,并加热至50℃,通入氮气,再将部分0.4mol/L氢氧化锰和0.4mol/L乙二胺四乙酸用计量泵通入反应釜中,并且控制部分0.4mol/L氢氧化锰和0.4mol/L乙二胺四乙酸的加液时间为0.2h,以生成悬浊初液;
向所述悬浊初液加入余下的0.4mol/L氢氧化锰进行第二混合加热,加热温度为40℃,0.4mol/L氢氧化锰的加液时间为7.8h,以得到所述悬浊液,其中,0.4mol/L氢氧化锰和0.3mol/L亚铁氰化钠溶液的质量比为1,0.4mol/L乙二胺四 乙酸和0.4mol/L氢氧化锰的质量比为0.1;
对悬浊液进行陈化反应3h,得到待过滤液;对待过滤液进行离心过滤,得到第一滤渣;对第一滤渣进行风干操作,风干操作的温度为100℃,时间10min;
在惰性气氛下,向所述第一滤渣加入丙二醇缩甲醛、45%甲醛溶液和0.3mmol四氯化钛进行球磨处理,球磨温度为80℃,球磨时间4h,得到粒径为0.8μm普鲁士白电极材料半成品,其中丙二醇缩甲醛的质量为45%甲醛溶液中的甲醛质量的8%,并且丙二醇缩甲醛和45%甲醛溶液的质量总和占第一滤渣的质量的2.5%;
采用纯水对普鲁士白电极材料半成品进行水洗,对水洗后的普鲁士白电极材料半成品进行离心过滤,得到第二滤渣;对第二滤渣进行干燥,干燥的温度为150℃,时间8h,得到普鲁士白电极材料。
实施例3
向反应釜中加入0.4mol/L亚铁氰化钠溶液,开启搅拌,并加热至65℃,通入氮气,再将部分1.5mol/L硫酸锰和4mol/L络合剂用计量泵通入反应釜中,4mol/L络合剂为柠檬酸和乙二胺四乙酸混合液,并且控制部分1.5mol/L硫酸锰和4mol/L络合剂的加液时间为0.5h,以生成悬浊初液;
向所述悬浊初液加入余下的1.5mol/L硫酸锰进行第二混合加热,加热温度为55℃,余下的1.5mol/L硫酸锰的加液时间为7.5h,以得到所述悬浊液,1.5mol/L硫酸锰和0.4mol/L亚铁氰化钠溶液的质量比为2,4mol/L络合剂和1.5mol/L硫酸锰的质量比为3,并且部分1.5mol/L硫酸锰的加入量和余下1.5mol/L硫酸锰加入量的质量比为1:4;
对悬浊液进行陈化反应8h,得到待过滤液;对待过滤液进行离心过滤,得到第一滤渣;对第一滤渣进行风干操作,风干操作的温度为110℃,时间5min;
在惰性气氛下,向所述第一滤渣加入二乙二醇缩甲醛、50%甲醛溶液和0.3mmol三氟化硼进行球磨处理,球磨温度为85℃,球磨时间2.5h,得到粒径为1.3μm普鲁士白电极材料半成品,其中二乙二醇缩甲醛的质量为50%甲醛溶液中的甲醛质量的6%,并且二乙二醇缩甲醛和50%甲醛溶液的质量总和占第一滤渣的质量的2.2%;
采用纯水对普鲁士白电极材料半成品进行水洗,对水洗后的普鲁士白电极材料半成品进行离心过滤,得到第二滤渣;对第二滤渣进行干燥,干燥的温度 为170℃,时间3h,得到普鲁士白电极材料。
实施例4
向反应釜中加入0.5mol/L亚铁氰化钠溶液,开启搅拌,并加热至65℃,通入氮气,再将部分2mol/L硫酸锰和5mol/L络合剂用计量泵通入反应釜中,络合剂为柠檬酸、柠檬酸钠和乙二胺四乙酸混合液,并且控制部分2mol/L硫酸锰和5mol/L络合剂的加液时间为1h,以生成悬浊初液;
向所述悬浊初液加入余下的2mol/L硫酸锰进行第二混合加热,加热温度为55℃,余下的2mol/L硫酸锰的加液时间为7h,以得到所述悬浊液,其中,2mol/L硫酸锰和0.5mol/L亚铁氰化钠溶液的质量比为1.5,5mol/L络合剂和2mol/L硫酸锰的质量比为5,并且部分1.5mol/L硫酸锰的加入量和余下1.5mol/L硫酸锰加入量的质量比为1:4;
对悬浊液进行陈化反应7h,得到待过滤液;对待过滤液进行离心过滤,得到第一滤渣;对第一滤渣进行风干操作,风干操作的温度为115℃,时间4min;
在惰性气氛下,向所述第一滤渣加入环状缩醛、甲醛溶液和0.3mmol引发剂进行球磨处理,球磨温度为85℃,球磨时间2.5h,得到粒径为1.3μm普鲁士白电极材料半成品,其中,环状缩醛为1,3二氧戊环、二乙二醇缩甲醛和二乙二醇缩甲醛按照质量比为5:1:1进行复配得到的,甲醛溶液为50%甲醛溶液和聚合度小于4的聚甲醛溶液的混合液,引发剂为三氟化硼和四氯化钛的混合液,环状缩醛的质量为甲醛溶液中的甲醛质量的6%,并且环状缩醛和甲醛溶液的质量总和占第一滤渣的质量的2.2%;
采用纯水对普鲁士白电极材料半成品进行水洗,对水洗后的普鲁士白电极材料半成品进行离心过滤,得到第二滤渣;对第二滤渣进行干燥,干燥的温度为165℃,时间3h,得到普鲁士白电极材料。
实施例5
与实施例3的区别在于,二乙二醇缩甲醛的质量为50%甲醛溶液中的甲醛质量的8%,并且二乙二醇缩甲醛和50%甲醛溶液的质量总和占第一滤渣的质量的2.5%。
实施例6
与实施例3的区别在于,二乙二醇缩甲醛的质量为50%甲醛溶液中的甲醛质量的5%,并且二乙二醇缩甲醛和50%甲醛溶液的质量总和占第一滤渣的质量 的1.8%。
对比例1
与实施例3的区别在于,二乙二醇缩甲醛的质量为50%甲醛溶液中的甲醛质量的5%,并且二乙二醇缩甲醛和50%甲醛溶液的质量总和占第一滤渣的质量的4%。
对比例2
与实施例3的区别在于,二乙二醇缩甲醛的质量为50%甲醛溶液中的甲醛质量的2%,并且二乙二醇缩甲醛和50%甲醛溶液的质量总和占第一滤渣的质量的5%。
对比例3
与实施例3的区别在于,二乙二醇缩甲醛的质量为50%甲醛溶液中的甲醛质量的10%,并且二乙二醇缩甲醛和50%甲醛溶液的质量总和占第一滤渣的质量的5%。
对比例4
与实施例3的区别在于,将二乙二醇缩甲醛更换为1,4丁二醇缩甲醛,其余的不变。
对比例5
与实施例3的区别在于,在向所述第一滤渣加入二乙二醇缩甲醛、50%甲醛溶液和0.3mmol三氟化硼进行球磨处理的步骤中减少了球磨处理,其余的不变。
测试项目
将所述实施例1~6和对比例1~5得到的普鲁士白电极材料制备成扣式半电池,并在2~4V的电压下、分别在0.1C和5C条件下进行充放电,样品的理化参数如表1所示:
表1扣式半电池的理化数据

从表1中的实施例1~6和对比例1~4中可以看出,实施例1~6的环状缩醛的质量为所述甲醛溶液中的甲醛质量的5%~8%,并且环状缩醛和所述甲醛溶液的质量总和占所述第一滤渣的质量的1.8%~2.5%,从而确保在普鲁士白电极材料的表面形成较均匀、疏松度和紧密度较好的导电性聚缩醛包覆体,以在提高普鲁士白电极材料的振实密度的条件下,还可以提高普鲁士白电极材料的体积比容量和能量密度,进而提高聚缩醛包覆的普鲁士白正极材料的导电性能和循环性能,尤其是实施例4的导电性和循环性的效果最优,主要是由于实施例4中的环状缩醛和甲醛溶液均采用复配混合液,从而确保得到导电性聚缩醛包覆体的均匀性、疏松度和紧密度均较好,进而更好地确保了聚缩醛包覆的普鲁士白正极材料的导电性能和循环性能。
从实施例3和对比例5中可以看出,由于对比例5省略了球磨处理,从而导致聚缩醛包覆的普鲁士白正极材料的导电性能和循环性能均呈现下降的趋势,使得对比例5的电容量比和容量保持率均低于实施例3的电容量比和容量保持率。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的抑制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种普鲁士白电极材料的制备方法,其包括如下步骤:
    对亚铁氰化钠溶液、络合剂和锰盐进行混合加热,得到悬浊液;
    对所述悬浊液进行陈化反应,得到待过滤液;
    对所述待过滤液进行过滤操作,得到第一滤渣;
    向所述第一滤渣加入环状缩醛、甲醛溶液和引发剂进行球磨处理,得到普鲁士白电极材料半成品;
    对所述普鲁士白电极材料半成品进行水洗,对水洗后的所述普鲁士白电极材料半成品进行过滤操作,得到第二滤渣;
    对所述第二滤渣进行干燥,得到普鲁士白电极材料。
  2. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述环状缩醛包括1,3二氧戊环、丙二醇缩甲醛和二乙二醇缩甲醛中的至少一种。
  3. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述甲醛溶液包括40%~50%甲醛溶液和聚合度小于4的聚甲醛溶液中的至少一种。
  4. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述引发剂包括三氟化硼和四氯化钛中的至少一种。
  5. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述环状缩醛的质量为所述甲醛溶液中的甲醛质量的5%~8%。
  6. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述环状缩醛和所述甲醛溶液的质量总和占所述第一滤渣的质量的1.8%~2.5%。
  7. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述引发剂的使用量为0.1mmol~0.5mmol。
  8. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述球磨处理的条件为:球磨温度为80℃~100℃,球磨时间2h~4h。
  9. 根据权利要求1所述的普鲁士白电极材料的制备方法,其中,所述过滤操作为离心过滤。
  10. 一种普鲁士白电极材料,其采用权利要求1~9中任一项中所述的普鲁士白电极材料的制备方法得到的。
PCT/CN2023/079167 2022-10-26 2023-03-02 普鲁士白电极材料及其制备方法 WO2024087436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211318760.8A CN115724441B (zh) 2022-10-26 2022-10-26 普鲁士白电极材料及其制备方法
CN202211318760.8 2022-10-26

Publications (1)

Publication Number Publication Date
WO2024087436A1 true WO2024087436A1 (zh) 2024-05-02

Family

ID=85293987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079167 WO2024087436A1 (zh) 2022-10-26 2023-03-02 普鲁士白电极材料及其制备方法

Country Status (3)

Country Link
CN (1) CN115724441B (zh)
FR (1) FR3141564A1 (zh)
WO (1) WO2024087436A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394140A (zh) * 2017-07-05 2017-11-24 河南师范大学 聚多巴胺包覆的钠铁基普鲁士蓝类电极材料的制备方法
CN110224130A (zh) * 2019-06-27 2019-09-10 浙江大学 一种导电高分子包覆的普鲁士蓝类钠离子电池正极材料及其制备方法
JP2022056387A (ja) * 2020-09-29 2022-04-08 積水化学工業株式会社 変性ポリビニルアセタール樹脂及び蓄電池電極用組成物
CN114639811A (zh) * 2022-03-23 2022-06-17 河北科技大学 一种普鲁士蓝电极材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394140A (zh) * 2017-07-05 2017-11-24 河南师范大学 聚多巴胺包覆的钠铁基普鲁士蓝类电极材料的制备方法
CN110224130A (zh) * 2019-06-27 2019-09-10 浙江大学 一种导电高分子包覆的普鲁士蓝类钠离子电池正极材料及其制备方法
JP2022056387A (ja) * 2020-09-29 2022-04-08 積水化学工業株式会社 変性ポリビニルアセタール樹脂及び蓄電池電極用組成物
CN114639811A (zh) * 2022-03-23 2022-06-17 河北科技大学 一种普鲁士蓝电极材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAKRAE JO: "Polyaniline-Encapsulated Hollow Co–Fe Prussian Blue Analogue Nanocubes Modified on a Polypropylene Separator To Improve the Performance of Lithium–Sulfur Batteries", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 40, 13 October 2021 (2021-10-13), US , pages 47593 - 47602, XP093161356, ISSN: 1944-8244, DOI: 10.1021/acsami.1c12855 *
MOJING CHEN: "Polypyrrole-Coated K 2 Mn[Fe(CN) 6 ] Stabilizing Its Interfaces and Inhibiting Irreversible Phase Transition during the Zinc Storage Process in Aqueous Batteries", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 14, no. 1, 12 January 2022 (2022-01-12), US , pages 1092 - 1101, XP093161357, ISSN: 1944-8244, DOI: 10.1021/acsami.1c20649 *
ZHANG ZHENG; LIU HONGDA; SOMG ZHAOXIA; LIU WEI: "Supercapacitive Performance of Polyaniline-coated CoFe Prussian Blue Analogues Composites", FUHE-CAILIAO-XUEBAO : JIKAN = ACTA MATERIAE COMPOSITAE SINICA, BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (BUAA); EDITORIAL BOARD OF JOURNAL OF BUAA, CN, vol. 37, no. 3, 31 March 2020 (2020-03-31), CN , pages 731 - 739, XP009554030, ISSN: 1000-3851 *

Also Published As

Publication number Publication date
CN115724441A (zh) 2023-03-03
CN115724441B (zh) 2024-01-05
FR3141564A1 (fr) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2021168600A1 (zh) 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
WO2021159618A1 (zh) 一种高功率型的锂离子电池用正极材料及其制备方法
CN113649043B (zh) 一种高负载Mn-N活性位点掺杂碳材料催化剂的制备方法及其在锂硫电池上的应用
CN113571674B (zh) 一种原位碳包覆二元过渡金属氧化物异质结碗状纳米复合材料的制备方法及其应用
CN113745493A (zh) 一种石墨烯改性高镍系正极材料的制备方法
CN111952554A (zh) 一种锂离子电池三元正极材料及其制备方法
CN115732674A (zh) 钠正极前驱体材料及其制备方法和应用
WO2024066192A1 (zh) 低缺陷普鲁士蓝类正极材料的制备方法及其应用
GB2617727A (en) Radial nickel-based precursor and preparation method therefor
CN108767219A (zh) 一种纳米复合材料及其制备方法和应用
CN111342069A (zh) 一种表面金修饰的高载量碳载铂钴催化剂及其制备方法和应用
WO2024087436A1 (zh) 普鲁士白电极材料及其制备方法
WO2023093161A1 (zh) 一种锰酸锌负极材料的制备方法
CN114853071B (zh) 一种具有多层结构的钠离子正极材料前驱体及制备方法
CN116282073A (zh) 一种锰基普鲁士蓝正极材料及其制备方法和应用
CN115991505A (zh) 一种改性三元正极材料及其制备方法和应用
CN113972365A (zh) 一种碳包覆球状四氧化三钴/四氧化三铁复合材料及其制备方法和应用
CN114105141A (zh) 一种富氧官能团碳材料的制备方法与用途
CN112133914A (zh) 一种多孔炭负载超小PbSO4纳米粒子复合材料及其制备以及在铅炭电池正极的应用
CN115340133B (zh) 一种钼掺杂富镍三元前驱体及其制备方法
CN115140782B (zh) 一种核壳结构的富锂锰基正极材料前驱体及其制备方法
CN117219768A (zh) 一种电池正极铅膏及其制备方法和蓄电池
CN118160110A (zh) 一种表面改性硬碳负极材料及其制备方法和应用
WO2024077829A1 (zh) 锌银电池及其高比容量AgO正极材料
CN108511730B (zh) 一种多孔网状Zn2Ti3O8/TiO2纳米复合片状粒子及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881039

Country of ref document: EP

Kind code of ref document: A1