WO2024084983A1 - 成形材料及び樹脂成形体 - Google Patents

成形材料及び樹脂成形体 Download PDF

Info

Publication number
WO2024084983A1
WO2024084983A1 PCT/JP2023/036337 JP2023036337W WO2024084983A1 WO 2024084983 A1 WO2024084983 A1 WO 2024084983A1 JP 2023036337 W JP2023036337 W JP 2023036337W WO 2024084983 A1 WO2024084983 A1 WO 2024084983A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
molding material
benzotriazole
mass
material according
Prior art date
Application number
PCT/JP2023/036337
Other languages
English (en)
French (fr)
Inventor
笙太郎 今岡
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024084983A1 publication Critical patent/WO2024084983A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a molding material, and a resin molded body, vehicle components, optical components, containers, medical components, and housing equipment components obtained by molding this molding material.
  • Methacrylic resins are widely used as molding materials for vehicle components such as interior and exterior materials for vehicles, such as tail lamp covers, head lamp covers, meter panels, pillar garnishes, front grilles, and emblems; building components; components for residential facilities, such as vanities, bathtubs, and flush toilets; optical components, such as lenses and light guides, and medical components, such as containers for cosmetics, cuvettes, etc.
  • methacrylic resins are molded by molding methods such as press molding, injection molding, gas-assisted injection molding, welding molding, extrusion molding, blow molding, film molding, blow molding, multi-layer molding, and melt spinning.
  • injection molding methacrylic resin pellets are transported into the hot cylinder of an injection molding machine, and the molten resin is then injected into a mold that has been processed into various shapes. The molded body obtained after cooling is then released from the mold and taken out as the product.
  • Patent Document 1 describes the application of a monovalent fatty acid metal salt, such as lithium stearate, to acrylic polymer particles, which can be injection molded at low temperatures to obtain a thick-film product with good optical performance and a highly aesthetic appearance.
  • ultraviolet absorbents are often blended into the molding material to ensure weather resistance during storage and use.
  • benzotriazole-based ultraviolet absorbents are usually used as the ultraviolet absorbent from the perspective of imparting weather resistance, etc.
  • Patent Document 1 there is no example of using an ultraviolet absorber such as a benzotriazole-based ultraviolet absorber, and therefore the resulting resin molded article has a problem of poor weather resistance.
  • an ultraviolet absorber such as a benzotriazole-based ultraviolet absorber
  • Patent Document 1 it is believed that the problem of weather resistance can be solved by including a benzotriazole-based ultraviolet absorber.
  • the present inventors have found that when a fatty acid metal salt and a benzotriazole-based ultraviolet absorber coexist, the resulting resin molded product yellows.
  • Methacrylic resins are often used in decorative parts due to their transparency, and because good appearance and color tone are required, yellowing is a major problem. Conventionally, no technique has been known that solves the problem of yellowing caused by the coexistence of a benzotriazole-based ultraviolet absorber and a fatty acid metal salt.
  • the present invention aims to solve the problem of yellowing in molding materials in which fatty acid metal salts are externally added to methacrylic resin pellets containing a benzotriazole-based UV absorber, and to provide a molding material and a resin molding that have excellent weather resistance and good appearance and color tone.
  • the present inventors have found that yellowing can be suppressed by using a fatty acid metal salt of a divalent or trivalent typical metal as the fatty acid metal salt to be externally added to methacrylic resin pellets containing a benzotriazole-based ultraviolet absorber.
  • the present invention has been achieved based on these findings, and has the following gist.
  • the benzotriazole-based ultraviolet absorber is one or more selected from the group consisting of 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2H-benzotriazol-2-yl)-4-methylphenol, 6-di-t-pentylphenol, and 2-(2'-hydroxy-5'-t-octylphenyl)benzotriazole.
  • the benzotriazole-based ultraviolet absorber is one or more selected from the group consisting of 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(2'-hydroxy-3'
  • fatty acid of the fatty acid metal salt is one or more fatty acids selected from the group consisting of saturated fatty acids having 8 to 22 carbon atoms and unsaturated fatty acids having 8 to 22 carbon atoms.
  • fatty acid of the fatty acid metal salt is one or more selected from the group consisting of palmitic acid, stearic acid, myristic acid, lauric acid, and montanic acid.
  • a molding material for injection molding comprising the molding material described in any one of [1] to [11].
  • a housing equipment component formed by molding a molding material according to any one of [1] to [13].
  • a method for producing a resin molded body comprising molding a molding material to which a fatty acid metal salt, the metal of which is a typical divalent or trivalent metal, is externally added to methacrylic resin pellets containing a methacrylic resin and a benzotriazole ultraviolet absorber, the benzotriazole ultraviolet absorber being present in an amount of 0.001 parts by mass or more and less than 0.3 parts by mass per 100 parts by mass of the methacrylic resin pellets, to obtain a resin molded body.
  • a divalent or trivalent typical metal salt of a fatty acid is used as the fatty acid metal salt, and the content of the benzotriazole-based UV absorber per 100 parts by mass of the methacrylic resin pellets is 0.001 parts by mass or more and less than 0.3 parts by mass, thereby solving the problem of yellowing and providing a methacrylic resin molded product that has excellent weather resistance as well as a good appearance and color tone.
  • the molding material of the present invention is a molding material obtained by externally adding a fatty acid metal salt to methacrylic resin pellets containing a methacrylic resin and a benzotriazole ultraviolet absorber, characterized in that the metal of the fatty acid metal salt is a divalent or trivalent typical metal, and the content of the benzotriazole ultraviolet absorber per 100 parts by mass of the methacrylic resin pellets is 0.001 parts by mass or more and less than 0.3 parts by mass.
  • the methacrylic resin pellets containing a methacrylic resin and a benzotriazole-based ultraviolet absorber before the fatty acid metal salt is externally added may be referred to as "the methacrylic resin pellets of the present invention.”
  • the incorporation of a benzotriazole-based UV absorber into a methacrylic resin pellet may be referred to as "internal addition”
  • the attachment or application of a fatty acid metal salt to a methacrylic resin pellet may be referred to as "external addition.”
  • typical metals refer to elements in groups 1, 2, and 12 to 18 of the periodic table.
  • ⁇ Mechanism> when a fatty acid metal salt of a divalent or trivalent typical metal is externally added to a methacrylic resin pellet, yellowing can be suppressed even in the presence of a benzotriazole ultraviolet absorber.
  • the mechanism is thought to be as follows.
  • benzotriazole-based ultraviolet absorbers improve weather resistance is as follows.
  • Benzotriazole compounds e.g., Tinuvin (registered trademark)-P
  • transition to an excited state by ultraviolet light and are deactivated to the electronic ground state without emitting light via intramolecular hydrogen bonds between the phenolic hydroxyl group and the benzotriazole group.
  • ultraviolet energy is converted into thermal energy. That is, the benzotriazole compound has a phenolic hydroxyl group in the molecule which is involved in this intramolecular hydrogen bond, and thus prevents deterioration due to ultraviolet light and exhibits an effect of improving weather resistance.
  • benzotriazole-based UV absorbers have a phenolic hydroxyl group, they can undergo a complex formation reaction in the presence of metal species such as fatty acid metal salts, and it is believed that the metal complexes produced by this reaction are the cause of yellowing.
  • the metal in the fatty acid metal salt is a typical divalent or trivalent metal, it does not have highly reactive d or f orbitals, and being divalent or trivalent, it is thought that a complex formation reaction with the phenolic hydroxyl group is unlikely to occur. Therefore, phenolate ions are not generated, and yellowing is thought to be suppressed.
  • the molding material of the present invention is obtained by externally adding a fatty acid metal salt to the methacrylic resin pellets of the present invention.
  • the methacrylic resin pellets of the present invention contain a methacrylic resin (synonymous with a methacrylic polymer) and a benzotriazole-based ultraviolet absorber.
  • the methacrylic polymer is a polymer mainly composed of repeating units derived from methyl methacrylate (hereinafter also referred to as "methyl methacrylate units").
  • methyl methacrylate units repeating units derived from methyl methacrylate
  • the molding material of the present invention can improve the transparency of the obtained resin molded body, suppress thermal decomposition of the resin molded body, and improve weather resistance and moldability.
  • "mainly composed of methyl methacrylate units” means, in one embodiment, that the content of methyl methacrylate units in the methacrylic polymer (100% by mass) is 50% by mass or more.
  • the content of methyl methacrylate units in the methacrylic polymer (100% by mass) contained in the molding material of the present invention is preferably 50% by mass or more.
  • methacrylic polymers include a homopolymer of methyl methacrylate and a copolymer containing 50% by mass or more but less than 100% by mass of methyl methacrylate units and more than 0% by mass but not more than 50% by mass of repeating units derived from monomers other than methyl methacrylate (hereinafter also referred to as "other monomer units").
  • the monomer other than methyl methacrylate that forms the other monomer unit is not particularly limited as long as it is a monomer that can be copolymerized with methyl methacrylate.
  • the other monomer may be a monofunctional monomer having one radically polymerizable double bond in one molecule, or a polyfunctional monomer having two or more radically polymerizable double bonds in one molecule. From the viewpoint of obtaining an excellent balance between the fluidity, moldability, and thermal decomposition property of the methacrylic polymer, an acrylic acid ester is preferred as the monomer other than methyl methacrylate.
  • the methacrylic polymer contains repeating units derived from acrylic esters (hereinafter also referred to as "acrylic ester units") as other monomer units
  • the methacrylic polymer (100% by mass) preferably contains 50% by mass or more and less than 100% by mass of methyl methacrylate units and more than 0% by mass and less than 50% by mass of acrylic ester units, more preferably contains 70% by mass or more and less than 100% by mass of methyl methacrylate units and more than 0% by mass and less than 30% by mass of acrylic ester units, even more preferably contains 80% by mass or more and less than 99.9% by mass of methyl methacrylate units and more than 0.1% by mass and less than 20% by mass of acrylic ester units, and particularly preferably contains 90% by mass or more and less than 99.5% by mass of methyl methacrylate units and more than 0.5% by mass and less than 10% by mass of acrylic ester units.
  • acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, isobornyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, norbornyl acrylate, adamantyl acrylate, dicyclopentenyl acrylate, dicyclopentanyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, etc.
  • methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate Preferred are methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, and 2-hydroxyethyl acrylate, with methyl acrylate and ethyl acrylate being more preferred.
  • One type of acrylic acid ester may be used alone, or two or more types may be used in combination.
  • methacrylic polymer is a polymer (A) containing in its main chain a repeating unit derived from a (meth)acrylic acid ester monomer (hereinafter also referred to as a "(meth)acrylic acid ester unit.”
  • (meth)acrylic acid ester means “methacrylic acid ester” or “methacrylic acid ester and acrylic acid ester”
  • ring structural unit a structural unit derived from a ring structure
  • ring structural unit examples include a glutaric anhydride structural unit, a maleic anhydride structural unit, a glutarimide structural unit, a lactone ring structural unit, and an N-substituted maleimide structural unit.
  • One type of ring structural unit may be used alone, or two or more types may be used in combination.
  • the lower limit of the content of the (meth)acrylic acid ester unit in the polymer (A) is not particularly limited. From the viewpoint of not impairing the inherent performance of the methacrylic resin, that is, the resin molded body obtained has excellent transparency, processability, and mechanical properties, the content of the (meth)acrylic acid ester unit is preferably 80 mol% or more, more preferably 90 mol% or more, and even more preferably 94 mol% or more, based on the total number of moles (100 mol%) of the repeating units (including structural units; the same applies below) contained in the polymer (A). The upper limit of the content of the (meth)acrylic acid ester unit in the polymer (A) is not particularly limited.
  • the content of the (meth)acrylic acid ester unit is preferably 99.999 mol% or less, more preferably 99.9 mol% or less, and even more preferably 99.5 mol% or less, based on the total number of moles (100 mol%) of the repeating units contained in the polymer (A).
  • the above upper and lower limits can be combined in any combination.
  • the content of the (meth)acrylic acid ester unit in the polymer (A) is preferably 80 to 99.999 mol %, more preferably 90 to 99.9 mol %, and even more preferably 94 to 99.5 mol %, based on the total number of moles (100 mol %) of the repeating units contained in the polymer (A).
  • the lower limit of the content of the ring structural unit in the polymer (A) is not particularly limited. From the viewpoint of excellent heat resistance of the obtained resin molded body, the content of the ring structural unit is preferably 0.001 mol% or more, more preferably 0.01 mol% or more, and even more preferably 0.05 mol% or more, relative to the total number of moles of the repeating units contained in the polymer (A) (100 mol%).
  • the upper limit of the content of the ring structural unit in the polymer (A) is not particularly limited.
  • the content of the ring structural unit is preferably 10 mol% or less, more preferably 3 mol% or less, and even more preferably 0.3 mol% or less, relative to the total number of moles of the repeating units contained in the polymer (A) (100 mol%).
  • the above upper and lower limits can be combined in any combination.
  • the content of the ring structural unit in the polymer (A) is preferably 0.001 to 10 mol %, more preferably 0.01 to 3 mol %, and even more preferably 0.05 to 0.3 mol %, based on the total number of moles (100 mol %) of the repeating units contained in the polymer (A).
  • examples of the acrylic acid ester include the acrylic acid esters exemplified in the description of the methacrylic polymer described above.
  • methacrylic acid esters other than methyl methacrylate examples include ethyl methacrylate, n-propyl methacrylate, iso-propyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, norbornyl methacrylate, adamantyl methacrylate, dicyclopentenyl methacrylate, dicyclopentanyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, and the like.
  • the polymer (A) may contain a structural unit derived from a monomer having a carboxyl group (hereinafter, also referred to as a "monomer unit having a carboxyl group"). Some of the monomer units having a carboxyl group may form a ring structural unit by, for example, a cyclization reaction with an ester group, and the ring structural unit may be introduced into the main chain of the methacrylic polymer. Therefore, the methacrylic polymer may contain a monomer unit having a carboxyl group.
  • Examples of monomers having a carboxyl group include acrylic acid, methacrylic acid (hereinafter, acrylic acid and/or methacrylic acid are referred to as "(meth)acrylic acid”), 2-(hydroxymethyl)acrylic acid, 2-(hydroxyethyl)acrylic acid, and crotonic acid.
  • the monomer having a carboxyl group may be used alone or in combination of two or more types.
  • polymer (A) is a polymer that contains, as a (meth)acrylic acid ester unit, a repeating unit (A1) (hereinafter also referred to as “unit (A1)”) derived from methyl methacrylate, a repeating unit (A2) (hereinafter also referred to as “unit (A2)”) derived from (meth)acrylic acid, and a glutaric anhydride structural unit (A3) (hereinafter also referred to as "unit (A3)”) as a ring structural unit.
  • A1 (hereinafter also referred to as "unit (A1)”
  • unit (A2)) hereinafter also referred to as “unit (A2)
  • A3 glutaric anhydride structural unit
  • the polymer (A) containing the unit (A3) makes it easier to improve the heat resistance of the resulting resin molded product.
  • the unit (A3) is represented by the following chemical structural formula.
  • R A and R B each independently represent a hydrogen atom or a methyl group.
  • the lower limit of the content of the unit (A1) in the polymer (A) is not particularly limited. From the viewpoint that the obtained resin molded body does not impair the inherent performance of the methacrylic resin, that is, excellent transparency, processability, and mechanical properties, the content of the unit (A1) in the polymer (A) is preferably 80 mol% or more, more preferably 90 mol% or more, and even more preferably 94 mol% or more, based on the total number of moles of the repeating units contained in the polymer (100 mol%).
  • the upper limit of the content of the unit (A1) in the polymer (A) is not particularly limited.
  • the content of the unit (A1) in the polymer (A) is preferably 99.4 mol% or less, more preferably 99 mol% or less, and even more preferably 98 mol% or less, based on the total number of moles of the repeating units contained in the polymer (100 mol%).
  • the above upper and lower limits can be combined in any combination.
  • the content of the unit (A1) in the polymer (A) is preferably 80 to 99.4 mol%, more preferably 90 to 99 mol%, and even more preferably 94 to 98 mol%, based on the total number of moles (100 mol%) of the repeating units contained in the polymer (A).
  • a methacrylic acid unit is preferred because it provides excellent heat resistance to the resulting resin molded product.
  • the lower limit of the content of the unit (A2) in the polymer (A) is not particularly limited. From the viewpoint of excellent heat resistance and mechanical properties of the obtained resin molded body, the content of the unit (A2) in the polymer (A) is preferably 0.5 mol% or more, more preferably 1 mol% or more, and even more preferably 2 mol% or more, relative to the total number of moles of the repeating units contained in the polymer (100 mol%).
  • the upper limit of the content of the unit (A2) in the polymer (A) is not particularly limited.
  • the content of the unit (A2) in the polymer (A) is preferably 20 mol% or less, more preferably 7 mol% or less, and even more preferably 3.5 mol% or less, relative to the total number of moles of the repeating units contained in the polymer (100 mol%).
  • the above upper and lower limits can be combined in any combination.
  • the content of the unit (A2) in the polymer (A) is preferably 0.5 to 20 mol %, more preferably 1 to 7 mol %, and even more preferably 2 to 3.5 mol %, based on the total number of moles (100 mol %) of the repeating units contained in the polymer (A).
  • the lower limit of the content of the unit (A3) in the polymer (A) is not particularly limited. From the viewpoint of excellent heat resistance of the obtained resin molded body, the content of the unit (A3) is preferably 0.001 mol% or more, more preferably 0.01 mol% or more, and even more preferably 0.05 mol% or more, based on the total number of moles of the repeating units contained in the polymer (A) (100 mol%).
  • the upper limit of the content of the unit (A3) in the polymer (A) is preferably 10 mol% or less, more preferably 3 mol% or less, and even more preferably 0.3 mol% or less, based on the total number of moles of the repeating units contained in the polymer (100 mol%), based on the inhibition of molded coloring, molded appearance, and weather resistance of the obtained resin molded body.
  • the above upper and lower limits can be combined in any combination.
  • the content of the unit (A3) in the polymer (A) is, for example, preferably 0.001 to 10 mol %, more preferably 0.01 to 3 mol %, and even more preferably 0.05 to 0.3 mol %, based on the total number of moles (100 mol %) of the repeating units contained in the polymer (A).
  • the unit (A3) may be a unit constructed by a cyclization reaction between a methoxycarbonyl group derived from the unit (A1) and a carboxyl group derived from the adjacent unit (A2) in a copolymer obtained by copolymerizing methyl methacrylate and (meth)acrylic acid.
  • the content of each unit in the methacrylic resin such as the polymer (A) is a value calculated from 1 H-NMR measurement.
  • the method disclosed in WO 2019/013186 can be used.
  • the method for producing the methacrylic resin is not particularly limited.
  • the method may be a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method, or a solution polymerization method. From the viewpoint of excellent productivity, the bulk polymerization method and the suspension polymerization method are preferred.
  • the method for producing polymer (A) containing units (A1), (A2) and (A3) is not particularly limited.
  • the production methods disclosed in WO 2017/022393 and WO 2019/013186 can be used.
  • the methacrylic resin pellets of the present invention contain a benzotriazole-based ultraviolet absorber in a proportion of 0.001 part by mass or more and less than 0.3 part by mass per 100 parts by mass of the methacrylic resin pellets of the present invention.
  • the benzotriazole-based ultraviolet absorbent contained in the methacrylic resin pellets of the present invention is not particularly limited, and any conventionally known benzotriazole-based ultraviolet absorbent can be used.
  • Benzotriazole-based UV absorbers include 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2H-benzotriazol-2-yl)-4-methylphenol, 6-di-t-pentylphenol, 2-(2'-hydroxy-5'-t-octylphenyl)benzotriazole, 2-(2-hydroxy-5'-t-octylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-amylphenyl)benzotriazole, 2-(2-hydroxy-5-t-butylphenyl)benzotriazole,
  • 2-(2'-hydroxy-5 '-methylphenyl)benzotriazole 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(2'-hydroxy-3'-t-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2H-benzotriazol-2-yl)-4-methylphenol, 6-di-t-pentylphenol, and 2-(2'-hydroxy-5'-t-octylphenyl)benzotriazole are preferred, and 2-(2H-benzotriazol-2-yl)-4-methylphenol is particularly preferred.
  • UV absorbers may be used alone or in combination of two or more.
  • UV absorbents can be commercially available.
  • Tinuvin (registered trademark) series manufactured by BASF Japan can be used.
  • the content (internal addition amount) of the benzotriazole-based ultraviolet absorber in the methacrylic resin pellets of the present invention is 0.001 part by mass or more and less than 0.3 part by mass per 100 parts by mass of the methacrylic resin pellets. If the content of the benzotriazole-based ultraviolet absorber is equal to or more than the lower limit, the effect of improving weather resistance due to the inclusion of the benzotriazole-based ultraviolet absorber can be sufficiently obtained.
  • the content of the benzotriazole-based ultraviolet absorber is preferably 0.002 parts by mass or more, more preferably 0.003 parts by mass or more, even more preferably 0.005 parts by mass or more, and particularly preferably 0.009 parts by mass or more.
  • the content of the benzotriazole-based ultraviolet absorber is less than the above upper limit, the yellowing of the resin molded body due to the inclusion of the benzotriazole-based ultraviolet absorber can be reduced.
  • the content of the benzotriazole-based ultraviolet absorber is preferably 0.1 parts by mass or less, more preferably 0.07 parts by mass or less, even more preferably 0.06 parts by mass or less, and particularly preferably 0.05 parts by mass or less.
  • the upper and lower limits can be arbitrarily combined.
  • the content of the benzotriazole-based ultraviolet absorber in the methacrylic resin pellets of the present invention is preferably 0.002 parts by mass to 0.1 parts by mass, more preferably 0.003 parts by mass to 0.07 parts by mass, still more preferably 0.005 parts by mass to 0.06 parts by mass, and particularly preferably 0.009 parts by mass to 0.05 parts by mass.
  • the methacrylic resin pellet of the present invention may contain one or more of various additives that are usually added to molding materials, within a range that does not impair the effects of the present invention.
  • the additives include light diffusing agents, antioxidants, colorants, pigments, dyes, heat stabilizers, reinforcing agents, fillers, flame retardants, foaming agents, lubricants other than fatty acids, plasticizers, antistatic agents, light stabilizers, impact resistance improvers, flow improvers, release agents, processing elasticity imparting agents, and ultraviolet absorbers other than benzotriazole-based ultraviolet absorbers.
  • the methacrylic resin pellets of the present invention are, for example, those to be fed to a molding machine for press molding, extrusion molding, injection molding, film molding, or the like, and are not particularly limited in shape, and may be cylindrical, spherical, cubic, or the like.
  • the size of the methacrylic resin pellets there are no particular limitations on the size of the methacrylic resin pellets, but for example, if they are cylindrical, it is preferable that the axial length of the cylinder (axis length) is 1.5 to 6 mm, the length of the major axis of the face perpendicular to the axial direction is about 1.5 to 5 mm, and the length of the minor axis of the face perpendicular to the axial direction is about 1.5 to 4.5 mm.
  • the size is such that the volume is equivalent to that of cylindrical methacrylic resin pellets of the above dimensions.
  • the surface area of the methacrylic resin pellets is preferably 10 mm 2 to 450 mm 2 , more preferably 30 mm 2 to 300 mm 2 , and particularly preferably 40 mm 2 to 200 mm 2. In the case of other shapes, it is preferable that the surface area is equivalent to that of cylindrical methacrylic resin pellets of the above dimensions. If the surface area of the methacrylic resin pellets is within the above range, it becomes possible to externally add fatty acid metal salts to a predetermined range, and it becomes possible to provide resin molded products with excellent appearance, color tone, and weather resistance.
  • a polymerization reaction may be carried out by adding the benzotriazole-based ultraviolet absorber and other additives used as necessary at a predetermined ratio in a polymerization reaction tank or in a raw material introduction path to the polymerization reaction tank when producing the methacrylic resin according to a conventional method, and then pelletizing the reaction product.
  • the methacrylic resin pellets of the present invention containing these additives may be obtained by feeding the produced methacrylic resin, the benzotriazole-based ultraviolet absorber, and other additives used as necessary at a predetermined ratio into a single-screw extruder or a twin-screw extruder, heating and melt-kneading the mixture, and then pelletizing the mixture.
  • the benzotriazole-based UV absorber and some of the other additives used as necessary may be added to the polymerization reactor or to the raw material introduction path to the polymerization reactor, and the remainder may be melt-kneaded with the produced methacrylic resin in a single-screw extruder or twin-screw extruder.
  • the metal species of the fatty acid metal salt externally added to the methacrylic resin pellets of the present invention is a divalent or trivalent typical metal from the viewpoint of excellent yellowing suppression effect of the obtained resin molded body.
  • the "fatty acid metal salt of a divalent or trivalent typical metal” is also referred to as the "fatty acid metal salt of the present invention.”
  • the divalent or trivalent typical metal of the fatty acid metal salt of the present invention is preferably a divalent or trivalent metal element of Groups 1, 2, and 13 to 18 in the periodic table, more preferably Mg, Ca, Al, Ba, etc., and Mg, Ca, and Al are particularly preferred because they have high compatibility with methacrylic resins and are less likely to cause cloudiness in the resulting resin molded product, and Al is particularly preferred from the viewpoint of improving the appearance of the resulting resin molded product.
  • the fatty acid constituting the fatty acid metal salt of the present invention is preferably a saturated fatty acid having 8 to 22 carbon atoms and/or an unsaturated fatty acid having 8 to 22 carbon atoms, from the viewpoint of compatibility with methacrylic resins.
  • saturated fatty acids with 8 to 22 carbon atoms include caprylic acid (8 carbon atoms), pelargonic acid (9 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms), myristic acid (14 carbon atoms), pentadecylic acid (15 carbon atoms), palmitic acid (16 carbon atoms), margaric acid (17 carbon atoms), stearic acid (18 carbon atoms), arachidic acid (20 carbon atoms), heneicosylic acid (21 carbon atoms), and behenic acid (22 carbon atoms).
  • Examples of unsaturated fatty acids with 8 to 22 carbon atoms include myristoleic acid (14 carbon atoms), palmitoleic acid (16 carbon atoms), sapienic acid (16 carbon atoms), oleic acid (18 carbon atoms), elaidic acid (18 carbon atoms), vaccenic acid (18 carbon atoms), gadoleic acid (20 carbon atoms), eicosenoic acid (20 carbon atoms), erucic acid (22 carbon atoms), linoleic acid (18 carbon atoms), eicosadienoic acid (20 carbon atoms), docosadienoic acid (22 carbon atoms), ⁇ -linolenic acid (18 carbon atoms), ⁇ -linolenic acid (18 carbon atoms), and pinolenic acid (1 carbon atoms).
  • ⁇ -eleostearic acid (18 carbon atoms), ⁇ -eleostearic acid (18 carbon atoms), mead acid (20 carbon atoms), dihomo- ⁇ -linolenic acid (20 carbon atoms), eicosatrienoic acid (20 carbon atoms), stearidonic acid (18 carbon atoms), arachidonic acid (20 carbon atoms), eicosatetraenoic acid (20 carbon atoms), adrenic acid (22 carbon atoms), bosseopentaenoic acid (18 carbon atoms), eicosapentaenoic acid (20 carbon atoms), osbondo acid (22 carbon atoms), sardine acid (22 carbon atoms), docosahexaenoic acid (22 carbon atoms), etc.
  • the fatty acid of the fatty acid metal salt of the present invention is preferably palmitic acid, stearic acid, myristic acid, lauric acid or montanic acid, and particularly preferably stearic acid.
  • Aluminum stearate is the most preferred fatty acid metal salt of the present invention from the viewpoint of improving the appearance of the resulting resin molded article.
  • the fatty acid metal salts of the present invention may be used alone or in combination of two or more.
  • the lower and upper limits of the amount of the fatty acid metal salt of the present invention added externally to the methacrylic resin pellets of the present invention are not particularly limited, but it is preferably 0.0001 parts by mass or more and 0.5 parts by mass or less per 100 parts by mass of the methacrylic resin pellets (methacrylic resin pellets not containing a fatty acid metal salt).
  • the amount of the fatty acid metal salt added externally is equal to or more than the above lower limit, the effect of improving the appearance of the resin molded article obtained by the effect of improving the plasticization behavior during molding by the fatty acid metal salt of the present invention can be more effectively obtained.
  • This lower limit is more preferably 0.001 parts by mass or more, even more preferably 0.003 parts by mass or more, particularly preferably 0.005 parts by mass or more, and most preferably 0.01 parts by mass or more.
  • This upper limit is more preferably 0.3 parts by mass or less, even more preferably 0.2 parts by mass or less, particularly preferably 0.1 parts by mass or less, and most preferably 0.05 parts by mass or less. The upper and lower limits can be arbitrarily combined.
  • the amount of the fatty acid metal salt of the present invention added externally is preferably 0.0001 to 0.5 parts by mass, more preferably 0.001 to 0.3 parts by mass, even more preferably 0.003 to 0.2 parts by mass, particularly preferably 0.005 to 0.1 parts by mass, and most preferably 0.01 to 0.05 parts by mass, relative to 100 parts by mass of the methacrylic resin pellets of the present invention.
  • the method of manufacturing the molding material of the present invention by externally adding the fatty acid metal salt of the present invention to the methacrylic resin pellets of the present invention is not particularly limited, and it is sufficient that the fatty acid metal salt is externally added in a state where it is not chemically bonded.
  • a method of dry blending a method of spraying or adding the fatty acid metal salt of the present invention to the methacrylic resin pellets of the present invention in powder form using a stirring device and stirring, or a method of dispersing the methacrylic resin pellets in a liquid containing the fatty acid metal salt of the present invention and then removing the solvent from the surface of the methacrylic resin pellets.
  • dry blending methods include mixing methacrylic resin pellets and fatty acid metal salts in a mixer such as a general ribbon blender, tumbler, Nauta mixer, or Henschel mixer.
  • a mixer such as a general ribbon blender, tumbler, Nauta mixer, or Henschel mixer.
  • An example of a stirring device used in the above-mentioned spraying and stirring is one equipped with a cylindrical container with a bottom, a screw that rotates and revolves along the inner wall surface of the container, and a spraying means for spraying the fatty acid metal salt of the present invention onto the methacrylic resin pellets of the present invention placed in the container.
  • the spraying means may be, for example, a spray nozzle for spraying the fatty acid metal salt, etc.
  • the spraying means may have a heating means such as a heater for heating the fatty acid metal salt.
  • the methacrylic resin pellets of the present invention are placed in a container of such an agitator, and the fatty acid metal salt of the present invention is sprayed in a powder, liquid or molten state from a spraying means onto the methacrylic resin pellets of the present invention in the container while being stirred, thereby causing the fatty acid metal salt to adhere to the methacrylic resin pellets of the present invention.
  • the methacrylic resin pellets onto which the fatty acid metal salt has been sprayed and impregnated are further uniformly stirred by the screw rotating and revolving along the inner wall surface of the container, whereby the fatty acid metal salt of the present invention can be uniformly externally added to the methacrylic resin pellets of the present invention.
  • the temperature in the container depending on the type of fatty acid metal salt. For example, by increasing the temperature in the container to about 60 to 80° C., the uniform external addition of the fatty acid metal salt of the present invention can be improved.
  • Methods for changing the temperature inside the container include, for example, a method of passing a heated inert gas through the container, a method of heating the inside of the container with a heater, and a method of controlling the temperature by passing a heat medium through the jacket of the container.
  • a solution or dispersion is prepared in which the total amount of the fatty acid metal salt of the present invention added to the solvent is 0.05 to 1 mass %, and this is sprayed onto the methacrylic resin pellets of the present invention, or the methacrylic resin pellets of the present invention are placed in the liquid and treated.
  • a method for applying the fatty acid metal salt of the present invention to the methacrylic resin pellets of the present invention by spraying the fatty acid metal salt-containing liquid of the present invention for example, a method in which the methacrylic resin pellets are arranged on a transport device such as a conveyor, and the fatty acid metal salt-containing liquid is continuously sprayed as the pellets pass through a sprayer can be mentioned.
  • the method of adding the methacrylic resin pellets of the present invention to a fatty acid-containing salt-containing liquid and externally adding the fatty acid metal salt of the present invention to the methacrylic resin pellets of the present invention can be carried out by a commonly known method.
  • the fatty acid metal salt-containing liquid and the methacrylic resin pellets are added to a mixing tank equipped with an agitator, mixed for a predetermined time at a temperature between 0°C and the boiling point of the solvent, and the methacrylic resin pellets and the liquid are separated by a method such as filtration.
  • the solvent is dried by blowing air or applying hot air as necessary.
  • the fatty acid metal salt does not volatilize and remains on the surface of the methacrylic resin pellets. Therefore, after drying, it becomes possible to externally add the fatty acid metal salt of the present invention to the methacrylic resin pellets.
  • any commonly used solvent can be used, and it is preferable to use a solvent in which, due to the composition of the methacrylic resin in the methacrylic resin pellets of the present invention, no or little dissolution of the methacrylic resin is observed in the solvent.
  • An example of such a solvent is water.
  • a solvent with a boiling point of 30°C to 150°C at normal pressure is preferred, and water is particularly preferred from the perspective of cost and safety.
  • the resin molded article of the present invention is obtained by molding the molding material of the present invention.
  • the resin molded article of the present invention is not particularly limited as long as it is molded by a known molding method such as press molding, injection molding, gas-assisted injection molding, welding molding, extrusion molding, blow molding, film molding, blow molding, multi-layer molding, melt spinning, etc., but press molding, extrusion molding, injection molding, or film molding is more preferable, and injection molding is even more preferable from the viewpoint of obtaining excellent plasticization properties.
  • the molding material of the present invention is preferred as a molding material for press molding, extrusion molding, injection molding or film molding (also referred to as use for press molding, extrusion molding, injection molding or film molding), and is particularly suitable as a molding material for injection molding (also referred to as use for injection molding).
  • the resin molded article of the present invention include vehicle components such as interior and exterior materials for vehicles, such as tail lamp covers, head lamp covers, meter panels, pillar garnishes, front grilles, and emblems; building components; components for housing facilities, such as washbasins, bathtubs, and flush toilets; optical components, such as lenses and light guides; containers for cosmetics, etc.; and medical components, such as cuvettes.
  • vehicle components such as interior and exterior materials for vehicles, such as tail lamp covers, head lamp covers, meter panels, pillar garnishes, front grilles, and emblems
  • building components components for housing facilities, such as washbasins, bathtubs, and flush toilets
  • optical components such as lenses and light guides
  • medical components such as cuvettes.
  • the resin molded article of the present invention is particularly suitable for use as vehicle members, optical members, containers, medical members, housing equipment members, cosmetic containers, etc., due to its excellent appearance, weather resistance, transparency, and chemical resistance.
  • Methacrylic resin Mitsubishi Chemical Corporation's methacrylic resin "ACRYPET (registered trademark) VH"
  • Fatty acid metal salts Lithium stearate: “Lithium stearate” manufactured by Kawamura Chemical Industries, Ltd. (referred to as “Li stearate” in Table 1).
  • Sodium stearate “Sodium stearate” manufactured by Kawamura Chemical Industries, Ltd. (referred to as “Na stearate” in Table 1).
  • Calcium stearate "Calcium stearate” manufactured by Kawamura Chemical Industries, Ltd. (referred to as “Ca stearate” in Table 1).
  • Aluminum stearate "Alste #30" manufactured by Kawamura Chemical Industries, Ltd.
  • Magnesium stearate “Mg-St” manufactured by Nitto Kasei Kogyo Co., Ltd. (referred to as “Mg stearate” in Table 1).
  • Benzotriazole-based ultraviolet absorber “Tinuvin (registered trademark)-P” (2-(2H-benzotriazol-2-yl)-4-methylphenol) manufactured by BASF Japan Ltd.
  • the yellow index (YI) value was measured with a spectrophotometer "U-4100" manufactured by Hitachi High-Technologies Corporation in accordance with JIS K7105 in a transmission mode using a C light source transmission method with an optical path length of 140 mm. The measurement was performed on three test pieces, and the average value was calculated and evaluated according to the following criteria. ⁇ : YI value is less than 10.0 ⁇ : YI value is 10.0 or more
  • the following accelerated exposure test was carried out on a resin molded test piece, and L*, a*, and b* after the test were measured to determine the color difference ⁇ E*ab.
  • ⁇ Accelerated Exposure Test> The accelerated exposure test was carried out using an "Eye Super UV Tester" manufactured by Iwasaki Electric Co., Ltd. Specifically, the injection molded test piece prepared in the appearance evaluation was cut, and a resin molded test piece (50 mm x 50 mm x 4 mm) was placed in the evaluation chamber, and ultraviolet light with a wavelength of 300 to 400 nm and an irradiation intensity of 150 mW/ m2 was irradiated from the Eye Super UV Tester for 200 hours.
  • the irradiation position was adjusted every 25 hours to uniformly irradiate the test piece with UV light.
  • L*, a*, and b* were measured at an optical path length of 4.0 mm using a spectrophotometer (model name "U-4100", manufactured by Hitachi High-Technologies Corporation), and the color difference ⁇ E*ab was calculated and judged according to the following criteria.
  • ⁇ E*ab value is 3.0 or more
  • Example 1 The methacrylic resin and the benzotriazole-based ultraviolet absorber (Tinuvin-P) were used so that the content of Tinuvin-P in 100 parts by mass of the resulting methacrylic resin pellets was 0.03 parts by mass, and these were supplied to a twin-screw extruder (model name "TEM35", manufactured by Shibaura Machine Co., Ltd.), melt-kneaded at a cylinder temperature of the extruder of 250°C, and benzotriazole-based ultraviolet absorber-containing methacrylic resin pellets were obtained at a die temperature of 60°C.
  • TEM35 twin-screw extruder
  • the benzotriazole-based ultraviolet absorbent-containing methacrylic resin pellet was cylindrical (surface area: 46 mm 2 ) with a major axis of 3.2 mm in the direction perpendicular to the axial direction and an axial length of 3.0 mm.
  • Calcium stearate was externally added to the obtained benzotriazole-based ultraviolet absorber-containing methacrylic resin pellets by the following method. Methacrylic resin pellets dried at 80°C for 16 hours or more and powdered calcium stearate were placed in a polyethylene bag and hand-blended for 1 minute to obtain pellets in which calcium stearate was externally added to methacrylic resin pellets containing a benzotriazole-based ultraviolet absorber in the amount shown in Table 1.
  • Example 2 Except for the fact that magnesium stearate was added externally instead of calcium stearate as the fatty acid metal salt, test pieces of resin molded articles were produced and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Except for using aluminum stearate as the external fatty acid metal salt instead of calcium stearate, test pieces of resin molded articles were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the methacrylic resin pellets of the present invention which have 0.001 to 0.3 parts by mass of a benzotriazole-based UV absorber added internally to the methacrylic resin pellets and calcium stearate, magnesium stearate, and aluminum stearate added externally, can produce methacrylic resin molded products that are excellent in appearance, color tone, and weather resistance.
  • Comparative Example 1 in which a benzotriazole-based ultraviolet absorber was added internally to the methacrylic resin pellets and no fatty acid metal salt was added externally, there was no problem of yellowing, but the plasticization characteristics during injection molding were poor, causing a poor appearance (silver) and resulting in a poor appearance.
  • Comparative Example 2 in which a benzotriazole-based ultraviolet absorber was added internally and lithium stearate was added externally, the coexistence of the benzotriazole-based ultraviolet absorber and the monovalent metal salt caused yellowing problems and the color tone was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

メタクリル系樹脂及びベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに脂肪酸金属塩を外添させた成形材料であって、前記メタクリル系樹脂ペレット100質量部における前記ベンゾトリアゾール系紫外線吸収剤の含有量が、0.001質量部以上0.3質量部未満であり、前記脂肪酸金属塩の金属が2価又は3価の典型金属である、成形材料。

Description

成形材料及び樹脂成形体
 本発明は、成形材料と、この成形材料を成形してなる樹脂成形体、車両用部材、光学用部材、容器、医療用部材及び住宅設備部材に関する。
 メタクリル系樹脂は、テールランプカバーや、ヘッドランプカバー、メーターパネル、ピラーガーニッシュ、フロントグリル、エンブレムといった車両の内外装材料等の車両用部材;建築部材;洗面化粧台、浴槽、水洗便器等の住宅設備向け部材;レンズ、導光体等の光学用部材、化粧品等の容器、キュベット等の医療用部材等の成形材料として多用されている。
 これらの用途に適用される場合、メタクリル系樹脂は、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸等の成形法により成形される。例えば、射出成形では、射出成形機の高温のシリンダー内にメタクリル系樹脂ペレットが搬送され、その後、溶融した樹脂が種々の形状に加工された金型内に射出される。その後冷却して得られた成形体が金型から離型されて製品として取り出される。
 従来、メタクリル系樹脂の射出成形時の可塑化性や離型性、低温成形性などを改善して、得られる製品の外観等を改善するために、メタクリル系樹脂ペレットに脂肪酸金属塩を外添させることが行われている。
 例えば、特許文献1には、ステアリン酸リチウム等の1価の脂肪酸金属塩をアクリルポリマー粒子に適用することで、低温で射出成形を行って良好な光学性能と高審美的外観を有する厚膜の製品を得ることが記載されている。
 ところで、メタクリル系樹脂製品においては、保管時や使用時の耐候性を確保するために、紫外線吸収剤を成形材料に配合することが行われている。この場合、紫外線吸収剤としては、耐候性付与効果等の観点から、通常ベンゾトリアゾール系紫外線吸収剤が用いられている。
特開平8-294935号公報
 特許文献1では、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤を用いた例がないため、得られる樹脂成形体は耐候性に劣るという課題がある。
 特許文献1において、耐候性の課題は、ベンゾトリアゾール系紫外線吸収剤を含有させることで解決できると考えられる。しかしながら、本発明者の検討により、脂肪酸金属塩とベンゾトリアゾール系紫外線吸収剤とが共存した場合、得られる樹脂成形体は黄変を起こすことが判明した。
 メタクリル系樹脂は、その透明性から意匠部品に使用されることが多く、良好な外観と色調が求められることから、黄変は大きな問題となる。
 従来、このようなベンゾトリアゾール系紫外線吸収剤と脂肪酸金属塩との共存による黄変を解決する技術は知られていなかった。
 本発明は、ベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに脂肪酸金属塩を外添させた成形材料における黄変の問題を解決し、耐候性に優れると共に、良好な外観と色調を有する樹脂成形体を与える成形材料及びその樹脂成形体を提供することを目的とする。
 本発明者は、ベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに外添させる脂肪酸金属塩として、2価又は3価の典型金属の脂肪酸金属塩を用いることにより、黄変を抑制することができることを見出した。
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
[1] メタクリル系樹脂及びベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに脂肪酸金属塩を外添させた成形材料であって、前記メタクリル系樹脂ペレット100質量部における前記ベンゾトリアゾール系紫外線吸収剤の含有量が0.001質量部以上0.3質量部未満であり、前記脂肪酸金属塩の金属が2価又は3価の典型金属である、成形材料。
[2] 前記典型金属が、Mg、Ca、及びAlよりなる群から選択される1種又は2種以上である、[1]に記載の成形材料。
[3] 前記典型金属が、Alである、[2]に記載の成形材料。
[4] 前記ベンゾトリアゾール系紫外線吸収剤が、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、6-ジ-t-ペンチルフェノール、及び2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールよりなる群から選択される1種又は2種以上である、[1]~[3]のいずれかに記載の成形材料。
[5] 前記ベンゾトリアゾール系紫外線吸収剤が、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノールである、[4]に記載の成形材料。
[6] 前記脂肪酸金属塩の脂肪酸が、炭素数8~22の飽和脂肪酸及び炭素数8~22の不飽和脂肪酸よりなる群から選択される1種又は2種以上である、[1]~[5]のいずれかに記載の成形材料。
[7] 前記脂肪酸金属塩の脂肪酸が、パルミチン酸、ステアリン酸、ミリスチン酸、ラウリン酸及びモンタン酸よりなる群から選択される1種又は2種以上である、[6]に記載の成形材料。
[8] 前記脂肪酸金属塩の脂肪酸が、ステアリン酸である、[7]に記載の成形材料。
[9] 前記脂肪酸金属塩の外添量が、前記メタクリル系樹脂ペレット100質量部に対して0.0001質量部~0.5質量部である、[1]~[8]のいずれかに記載の成形材料。
[10] 前記メタクリル系樹脂ペレットの表面積が10mm~450mmである、[1]~[9]のいずれかに記載の成形材料。
[11] 前記メタクリル系樹脂のメタクリル酸メチル由来の繰り返し単位の含有割合が50質量%以上である、[1]~[10]のいずれかに記載の成形材料。
[12] プレス成形、押出成形、射出成形又はフィルム成形用成形材料である、[1]~[11]のいずれかに記載の成形材料。
[13] [1]~[11]のいずれかに記載の成形材料よりなる射出成形用成形材料。
[14] [1]~[11]のいずれかに記載の成形材料のプレス成形、押出成形、射出成形またはフィルム成形への使用。
[15] [1]~[11]のいずれかに記載の成形材料の射出成形への使用。
[16] [1]~[13]のいずれかに記載の成形材料を成形してなる、樹脂成形体。
[17] [1]~[13]のいずれかに記載の成形材料を成形してなる、車両用部材。
[18] [1]~[13]のいずれかに記載の成形材料を成形してなる、光学用部材。
[19] [1]~[13]のいずれかに記載の成形材料を成形してなる、容器。
[22] [1]~[13]のいずれかに記載の成形材料を成形してなる、医療用部材。
[21] [1]~[13]のいずれかに記載の成形材料を成形してなる、住宅設備部材。
[22] メタクリル系樹脂、ベンゾトリアゾール系紫外線吸収剤とを含有するメタクリル系樹脂ペレットであって、前記メタクリル系樹脂ペレット100質量部における前記ベンゾトリアゾール系紫外線吸収剤の含有量が、0.001質量部以上0.3質量部未満であるメタクリル系樹脂ペレットに対し、金属が2価又は3価の典型金属である脂肪酸金属塩を外添させた成形材料を成形して樹脂成形体を得る、樹脂成形体の製造方法。
[23] 前記成形材料を射出成形して前記樹脂成形体を得る、[22]に記載の樹脂成形体の製造方法。
 本発明によれば、ベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに脂肪酸金属塩を外添させた成形材料において、前記脂肪酸金属塩として、脂肪酸の2価又は3価の典型金属塩を用い、前記メタクリル系樹脂ペレット100質量部における前記ベンゾトリアゾール系紫外線吸収剤の含有量を、0.001質量部以上0.3質量部未満とすることで、黄変の問題を解決し、耐候性に優れると共に、良好な外観と色調を有するメタクリル系樹脂成形体を提供することができる。
 以下、詳細に本発明の形態について説明する。本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[成形材料]
 本発明の成形材料は、メタクリル系樹脂およびベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに脂肪酸金属塩を外添させた成形材料であって、前記脂肪酸金属塩の金属が2価又は3価の典型金属であり、前記メタクリル系樹脂ペレット100質量部における前記ベンゾトリアゾール系紫外線吸収剤の含有量が、0.001質量部以上0.3質量部未満であることを特徴とする。
 以下において、メタクリル系樹脂及びベンゾトリアゾール系紫外線吸収剤を含有する、脂肪酸金属塩を外添する前のメタクリル系樹脂ペレットを「本発明のメタクリル系樹脂ペレット」と称す場合がある。
 以下において、メタクリル系樹脂ペレットにベンゾトリアゾール系紫外線吸収剤を含有させることを「内添」と称し、メタクリル系樹脂ペレットに脂肪酸金属塩を付着させる又は塗布することを「外添」と称す場合がある。また、典型金属とは、周期表における1族、2族と12族から18族の元素のことをさす。
<メカニズム>
 本発明に従って、メタクリル系樹脂ペレットに2価又は3価の典型金属の脂肪酸金属塩を外添させると、ベンゾトリアゾール系紫外線吸収剤と共存しても、黄変を抑制することができるメカニズムについては、以下のように考えられる。
 ベンゾトリアゾール系紫外線吸収剤による耐候性向上のメカニズムは、以下の通りである。
 紫外線によりベンゾトリアゾール系化合物(例えばTinuvin(登録商標)-P)が励起状態に遷移し、フェノール系水酸基-ベンゾトリアゾール基間の分子内水素結合を介して発光を伴うことなく電子基底状態へと失活する。この過程によって、紫外線エネルギーを熱エネルギーに変換する。
 即ち、ベンゾトリアゾール系化合物は、この分子内水素結合に関与するフェノール系水酸基を分子内に持つことで、紫外線劣化を防止して耐候性向上効果が発揮される。
 このように、ベンゾトリアゾール系紫外線吸収剤は、フェノール系水酸基を持つことから、脂肪酸金属塩のような金属種が存在すると、錯形成反応を起こすことがあり、この反応により生成される金属錯体が黄変を引き起こす原因と考えられる。
 しかしながら、脂肪酸金属塩の金属が2価又は3価の典型金属である場合、反応性の高いd軌道やf軌道を持たず、かつ、2価または3価であることによって、フェノール系水酸基との錯形成反応が起きにくくなると考えられる。したがって、フェノラートイオンは生成されないため、黄変が抑制されると考えられる。
<成形材料>
 本発明の成形材料は本発明のメタクリル系樹脂ペレットに対して、脂肪酸金属塩を外添させたものである。本発明のメタクリル系樹脂ペレットは、メタクリル系樹脂(メタクリル系重合体と同義である。)およびベンゾトリアゾール系紫外線吸収剤を含有する。
<メタクリル系重合体>
 メタクリル系重合体は、メタクリル酸メチル由来の繰り返し単位(以下、「メタクリル酸メチル単位」ともいう。)を主成分とする重合体である。本発明の成形材料は、メタクリル系重合体を含有することにより、得られる樹脂成形体の透明性が向上するとともに、樹脂成形体の熱分解が抑制され、耐候性、成形性を良好にすることができる。本発明において、「メタクリル酸メチル単位を主成分とする」とは、一態様として、メタクリル系重合体(100質量%)中のメタクリル酸メチル単位の含有割合が50質量%以上であることをいう。
 上記の理由から、本発明の成形材料に含まれるメタクリル系重合体(100質量%)中のメタクリル酸メチル単位の含有割合は、50質量%以上であることが好ましい。このようなメタクリル系重合体として、例えば、メタクリル酸メチルの単独重合体、メタクリル酸メチル単位50質量%以上100質量%未満とメタクリル酸メチル以外の単量体由来の繰り返し単位(以下、「他の単量体単位」ともいう。)0質量%を超えて50質量%以下とを含む共重合体を挙げることができる。
 他の単量体単位を形成するメタクリル酸メチル以外の単量体としては、メタクリル酸メチルと共重合可能な単量体であれば特に限定されない。他の単量体は、一分子内にラジカル重合可能な二重結合を1つ有する単官能単量体であってもよいし、一分子内にラジカル重合可能な二重結合を2つ以上有する多官能単量体であってもよい。メタクリル系重合体の流動性、成形性、及び熱分解性のバランスに優れる観点から、メタクリル酸メチル以外の単量体としては、アクリル酸エステルが好ましい。
 メタクリル系重合体が、他の単量体単位としてアクリル酸エステル由来の繰り返し単位(以下、「アクリル酸エステル単位」ともいう。)を含む場合、メタクリル系重合体(100質量%)中に、メタクリル酸メチル単位50質量%以上100質量%未満とアクリル酸エステル単位0質量%を超えて50質量%以下とを含有することが好ましく、メタクリル酸メチル単位70質量%以上100質量%未満とアクリル酸エステル単位0質量%を超えて30質量%以下とを含有することがより好ましく、メタクリル酸メチル単位80質量%以上99.9質量%以下とアクリル酸エステル単位0.1質量%以上20質量%以下とを含有することがさらに好ましく、メタクリル酸メチル単位90質量%以上99.5質量%以下とアクリル酸エステル単位0.5質量%以上10質量%以下を含有することが特に好ましい。
 アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸iso-プロピル、アクリル酸n-ブチル、アクリル酸iso-ブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、アクリル酸イソボルニル、アクリル酸グリシジル、アクリル酸テトラヒドロフルフリル、アクリル酸ノルボルニル、アクリル酸アダマンチル、アクリル酸ジシクロペンテニル、アクリル酸ジシクロペンタニル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル等が挙げられる。好ましくは、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチルであり、アクリル酸メチル、アクリル酸エチルがより好ましい。アクリル酸エステルは、1種を単独で用いてもよく、2種以上を併用してもよい。
 メタクリル系重合体の別の態様としては、主鎖に、(メタ)アクリル酸エステル単量体由来の繰り返し単位(以下、「(メタ)アクリル酸エステル単位」ともいう。ここで、「(メタ)アクリル酸エステル」とは、「メタクリル酸エステル」、又は「メタクリル酸エステルとアクリル酸エステル」を意味する。)及び環構造由来の構造単位(以下、「環構造単位」と略する。)を含む重合体(A)を挙げることができる。環構造単位としては、例えば、グルタル酸無水物構造単位、マレイン酸無水物構造単位、グルタルイミド構造単位、ラクトン環構造単位、及びN-置換マレイミド構造単位が挙げられる。環構造単位は、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合体(A)中の(メタ)アクリル酸エステル単位の含有割合の下限値は特に限定されない。得られる樹脂成形体が透明性に優れ、加工性、機械的特性に優れるというメタクリル系樹脂本来の性能を損なわない観点から、(メタ)アクリル酸エステル単位の含有割合は、重合体(A)に含まれる繰り返し単位(構造単位を含む。以下同様。)の総モル数(100mol%)に対して、80mol%以上が好ましく、90mol%以上がより好ましく、94mol%以上がさらに好ましい。重合体(A)中の(メタ)アクリル酸エステル単位の含有割合の上限値は特に限定されない。得られる樹脂成形体の耐熱性に優れる観点から、(メタ)アクリル酸エステル単位の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、99.999mol%以下が好ましく、99.9mol%以下がより好ましく、99.5mol%以下がさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。例えば、重合体(A)中の(メタ)アクリル酸エステル単位の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して80~99.999mol%が好ましく、90~99.9mol%がより好ましく、94~99.5mol%がさらに好ましい。
 重合体(A)中の環構造単位の含有割合の下限値は特に限定されない。得られる樹脂成形体が耐熱性に優れる観点から、環構造単位の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、0.001mol%以上が好ましく、0.01mol%以上がより好ましく、0.05mol%以上がさらに好ましい。重合体(A)中の環構造単位の含有割合の上限値は特に限定されない。得られる樹脂成形体が耐熱性に優れ、成形着色の抑制、成形外観、及び耐候性に優れる観点から、環構造単位の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、10mol%以下が好ましく、3mol%以下がより好ましく、0.3mol%以下がさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。例えば、重合体(A)中の環構造単位の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、0.001~10mol%が好ましく、0.01~3mol%がより好ましく、0.05~0.3mol%がさらに好ましい。
 (メタ)アクリル酸エステル単位を形成するメタクリル酸メチル以外の(メタ)アクリル酸エステルのうち、アクリル酸エステルとしては、前述のメタクリル系重合体の説明で例示したアクリル酸エステルが挙げられる。また、メタクリル酸メチル以外のメタクリル酸エステルとしては、例えば、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸iso-プロピル、メタクリル酸n-ブチル、メタクリル酸iso-ブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸n-オクチル、メタクリル酸2-エチルヘキシル、メタクリル酸イソボルニル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル、メタクリル酸ノルボルニル、メタクリル酸アダマンチル、メタクリル酸ジシクロペンテニル、メタクリル酸ジシクロペンタニル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル等を挙げることができる。
 これらの(メタ)アクリル酸エステルは1種を単独で用いてもよく、2種以上を併用してもよい。
 重合体(A)は、カルボキシル基を有する単量体に由来する構成単位(以下、「カルボキシル基を有する単量体単位」ともいう。)を含むことができる。一部のカルボキシル基を有する単量体単位は、例えばエステル基との間の環化反応により環構造単位を形成し、メタクリル系重合体の主鎖中に環構造単位を導入しうる。そのため、メタクリル系重合体に、カルボキシル基を有する単量体単位が含まれていてもよい。カルボキシル基を有する単量体としては、例えば、アクリル酸、メタクリル酸(以下、アクリル酸及び/又はメタクリル酸を「(メタ)アクリル酸」と称す。)、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、クロトン酸が挙げられる。カルボキシル基を有する単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 重合体(A)の一態様としては、(メタ)アクリル酸エステル単位として、メタクリル酸メチル由来の繰り返し単位(A1)(以下、「単位(A1)」ともいう。)、(メタ)アクリル酸由来の繰り返し単位(A2)(以下、「単位(A2)」ともいう。)、及び環構造単位としてグルタル酸無水物構造単位(A3)(以下、「単位(A3)」ともいう。)を含む重合体が挙げられる。
 重合体(A)が単位(A3)を含むことにより、得られる樹脂成形体の耐熱性を向上させやすい。単位(A3)は、以下の化学構造式で示される。
Figure JPOXMLDOC01-appb-C000001
(式中、R及びRは、それぞれ独立に、水素原子又はメチル基を示す。)
 重合体(A)中の単位(A1)の含有割合の下限値は特に限定されない。得られる樹脂成形体が、透明性に優れ、加工性、機械的特性に優れるというメタクリル系樹脂本来の性能を損なわない観点から、重合体(A)中の単位(A1)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、80mol%以上が好ましく、90mol%以上がより好ましく、94mol%以上がさらに好ましい。重合体(A)中の単位(A1)の含有割合の上限値は特に限定されない。得られる樹脂成形体の耐熱性に優れる観点から、重合体(A)中の単位(A1)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、99.4mol%以下が好ましく、99mol%以下がより好ましく、98mol%以下がさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。例えば、重合体(A)中の単位(A1)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、80~99.4mol%が好ましく、90~99mol%がより好ましく、94~98mol%がさらに好ましい。
 単位(A2)としては、得られる樹脂成形体の耐熱性に優れることから、メタクリル酸単位が好ましい。
 重合体(A)中の単位(A2)の含有割合の下限値は特に限定されない。得られる樹脂成形体の耐熱性、機械特性に優れる観点から、重合体(A)中の単位(A2)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、0.5mol%以上が好ましく、1mol%以上がより好ましく、2mol%以上がさらに好ましい。重合体(A)中の単位(A2)の含有割合の上限値は特に限定されない。得られる樹脂成形体の成形外観、低吸水性、及び成形性に優れるというメタクリル系樹脂本来の性能を損なわない観点から、重合体(A)中の単位(A2)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、20mol%以下が好ましく、7mol%以下がより好ましく、3.5mol%以下がさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。例えば、重合体(A)中の単位(A2)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、0.5~20mol%が好ましく、1~7mol%がより好ましく、2~3.5mol%がさらに好ましい。
 重合体(A)中の単位(A3)の含有割合の下限値は特に限定されない。得られる樹脂成形体が耐熱性に優れる観点から、単位(A3)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、0.001mol%以上が好ましく、0.01mol%以上がより好ましく、0.05mol%以上がさらに好ましい。重合体(A)中の単位(A3)の含有割合の上限値は、得られる樹脂成形体の成形着色の抑制、成形外観、及び耐候性に優れる観点から、単位(A3)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、10mol%以下が好ましく、3mol%以下がより好ましく、0.3mol%以下がさらに好ましい。
 上記の上限値及び下限値は任意に組み合わせることができる。例えば、重合体(A)中の単位(A3)の含有割合は、重合体(A)に含まれる繰り返し単位の総モル数(100mol%)に対して、例えば、0.001~10mol%が好ましく、0.01~3mol%がより好ましく、0.05~0.3mol%がさらに好ましい。
 単位(A3)は、メタクリル酸メチル及び(メタ)アクリル酸を共重合させた共重合体において、単位(A1)に由来するメトキシカルボニル基と、隣接する単位(A2)に由来するカルボキシル基との環化反応により構築された単位であってもよい。
 本発明において、重合体(A)等のメタクリル系樹脂中の各単位の含有量は、H-NMR測定から算出した値とする。具体的には、国際公開第2019/013186号に開示された方法を用いることができる。
 メタクリル系樹脂の製造方法は特に限定されない。例えば、塊状重合法、懸濁重合法、乳化重合法、溶液重合法が挙げられる。生産性に優れる観点から、塊状重合法、懸濁重合法が好ましい。
 メタクリル系樹脂のうち、単位(A1)、単位(A2)及び単位(A3)を含む重合体(A)を製造する方法は特に限定されない。例えば、国際公開第2017/022393号、国際公開第2019/013186号に開示された製造方法を用いることができる。
<ベンゾトリアゾール系紫外線吸収剤>
 本発明のメタクリル系樹脂ペレットは、本発明のメタクリル系樹脂ペレット100質量部に対して0.001質量部以上0.3質量部未満の割合でベンゾトリアゾール系紫外線吸収剤を含有する。
 本発明のメタクリル系樹脂ペレットに含まれるベンゾトリアゾール系紫外線吸収剤としては特に制限はなく、従来公知のベンゾトリアゾール系紫外線吸収剤を用いることができる。
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、6-ジ-t-ペンチルフェノール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-(2H-ベンゾトリアゾール-2-イル)フェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(2-ヒドロキシエチル)フェノール]、2-[2-ヒドロキシ-3-(4,5,6,7-テトラヒドロ-1,3-ジオキソ-1H-イソインドール-2-イルメチル)-5-メチルフェニル]-2H-ベンゾトリアゾール等が挙げられる。これらのうち、メタクリル系樹脂との相溶性の観点から、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、6-ジ-t-ペンチルフェノール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールが好ましく、特に2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノールが好ましい。
 これらのベンゾトリアゾール系紫外線吸収剤は、1種のみを用いてもよく、2種以上を併用してもよい。
 これらのベンゾトリアゾール系紫外線吸収剤は、市販品を用いることができる。例えば、BASFジャパン社製のTinuvin(登録商標)シリーズを用いることができる。
 本発明のメタクリル系樹脂ペレット中のベンゾトリアゾール系紫外線吸収剤の含有量(内添量)は、メタクリル系樹脂ペレット100質量部に対して0.001質量部以上、0.3質量部未満である。
 ベンゾトリアゾール系紫外線吸収剤の含有量が上記下限以上であれば、ベンゾトリアゾール系紫外線吸収剤を含有することによる耐候性の改善効果を十分に得ることができる。ベンゾトリアゾール系紫外線吸収剤の含有量は、好ましくは0.002質量部以上、より好ましくは0.003質量部以上、さらに好ましくは0.005質量部以上、特に好ましくは0.009質量部以上である。
 ベンゾトリアゾール系紫外線吸収剤の含有量が上記上限未満であれば、ベンゾトリアゾール系紫外線吸収剤を含有することによる樹脂成形体の黄変を低減することができる。ベンゾトリアゾール系紫外線吸収剤の含有量は、好ましくは0.1質量部以下、より好ましくは0.07質量部以下、さらに好ましくは0.06質量部以下、特に好ましくは00.5質量部以下である。
 上記の上限値及び下限値は任意に組み合わせることができる。即ち、本発明のメタクリル系樹脂ペレット中のベンゾトリアゾール系紫外線吸収剤の含有量は、好ましくは0.002質量部~0.1質量部、より好ましくは0.003質量部~0.07質量部、さらに好ましくは0.005質量部~0.06質量部、特に好ましくは0.009質量部~0.05質量部である。
<その他の添加剤>
 本発明のメタクリル系樹脂ペレットには、上記のベンゾトリアゾール系紫外線吸収剤以外に、通常、成形材料に内添される各種の添加剤の1種又は2種以上が、本発明の効果を損なわない範囲で含まれていてもよい。
 該添加剤としては、光拡散剤、酸化防止剤、着色剤、顔料、染料、熱安定化剤、補強剤、充填材、難燃剤、発泡剤、脂肪酸以外の滑剤、可塑剤、帯電防止剤、光安定材、耐衝撃改良材、流動性向上剤、離型剤、加工弾性付与剤、ベンゾトリアゾール系紫外線吸収剤以外の紫外線吸収剤等が挙げられる。
<形状・大きさ・表面積>
 本発明のメタクリル系樹脂ペレットは、例えば、プレス成形、押出成形、射出成形又はフィルム成形等の成形機に供されるものであり、その形状には特に制限はなく、円柱状、球状、サイコロ状等であってよい。
 メタクリル系樹脂ペレットの大きさについても特に制限はないが、例えば円柱状の場合、円柱の軸方向の長さ(軸長)が1.5~6mmで、軸方向に直交する面の長径の長さが1.5~5mm程度であることが好ましく、軸方向に直交する面の短径の長さが1.5~4.5mm程度であることが好ましい。他の形状の場合は、上記した寸法の円柱状のメタクリル系樹脂ペレットと同等の体積となる程度の大きさであることが好ましい。
 メタクリル系樹脂ペレットの表面積についても特に制限はないが、例えば円柱状の場合、10mm~450mmであることが好ましく、30mm~300mmであることがより好ましく、40mm~200mmであることが特に好ましい。他の形状の場合は、上記した寸法の円柱状のメタクリル系樹脂ペレットと同等の表面積となることが好ましい。メタクリル系樹脂ペレットの表面積が上記範囲内であれば、脂肪酸金属塩を所定の範囲外添させることが可能となり、外観、色調、耐候性に優れた樹脂成形体を提供することが可能となる。
<メタクリル系樹脂ペレットの製造方法>
 前述のベンゾトリアゾール系紫外線吸収剤と、必要に応じて用いられるその他の添加剤を内添した本発明のメタクリル系樹脂ペレットを製造するには、常法に従ってメタクリル系樹脂を製造する際に重合反応槽内或いは重合反応槽への原料投入径路において、ベンゾトリアゾール系紫外線吸収剤と、必要に応じて用いられるその他の添加剤を所定の割合で添加して重合反応を行い、反応生成物をペレット化すればよい。或いは、製造されたメタクリル系樹脂と、ベンゾトリアゾール系紫外線吸収剤と、必要に応じて用いられるその他の添加剤とを所定の割合で一軸押出機や二軸押出機に投入し、加熱して溶融混練した後ペレット化することでも、これらが内添された本発明のメタクリル系樹脂ペレットを得ることができる。
 ベンゾトリアゾール系紫外線吸収剤と、必要に応じて用いられるその他の添加剤の一部を重合反応槽内或いは重合反応槽への原料投入径路において添加し、残部を製造されたメタクリル系樹脂に対して一軸押出機や二軸押出機で溶融混練してもよい。
<2価又は3価の典型金属の脂肪酸金属塩>
 本発明のメタクリル系樹脂ペレットに外添される脂肪酸金属塩の金属種は、得られる樹脂成形体の黄変抑制効果に優れる観点から、2価又は3価の典型金属である。以下、「2価又は3価の典型金属の脂肪酸金属塩」を「本発明の脂肪酸金属塩」ともいう。
 本発明の脂肪酸金属塩の2価又は3価の典型金属としては、周期表における1族、2族と13族から18族の2価又は3価の金属元素が好ましく、さらに好ましくは、Mg、Ca、Al、Ba等が挙げられ、Mg、Ca及びAlがメタクリル系樹脂との相溶性が高く、得られる樹脂成形体に曇りが発生しづらいため特に好ましく、特にAlが、得られる樹脂成形体の外観向上効果の観点から最も好ましい。
 本発明の脂肪酸金属塩を構成する脂肪酸としては、メタクリル系樹脂との相溶性の観点から、炭素数8~22の飽和脂肪酸及び/又は炭素数8~22の不飽和脂肪酸が好ましい。
 炭素数8~22の飽和脂肪酸としては、例えば、カプリル酸(炭素数8)、ペラルゴン酸(炭素数9)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、ペンタデシル酸(炭素数15)、パルミチン酸(炭素数16)、マルガリン酸(炭素数17)、ステアリン酸(炭素数18)、アラキジン酸(炭素数20)、ヘンイコシル酸(炭素数21)、ベヘン酸(炭素数22)等が挙げられる。
 炭素数8~22の不飽和脂肪酸としては、例えば、ミリストレイン酸(炭素数14)、パルミトレイン酸(炭素数16)、サピエン酸(炭素数16)、オレイン酸(炭素数18)、エライジン酸(炭素数18)、バクセン酸(炭素数18)、ガドレイン酸(炭素数20)、エイコセン酸(炭素数20)、エルカ酸(炭素数22)、リノール酸(炭素数18)、エイコサジエン酸(炭素数20)、ドコサジエン酸(炭素数22)、α-リノレン酸(炭素数18)、γ-リノレン酸(炭素数18)、ピノレン酸(炭素数18)、α-エレオステアリン酸(炭素数18)、β-エレオステアリン酸(炭素数18)、ミード酸(炭素数20)、ジホモ-γ-リノレン酸(炭素数20)、エイコサトリエン酸(炭素数20)、ステアリドン酸(炭素数18)、アラキドン酸(炭素数20)、エイコサテトラエン酸(炭素数20)、アドレン酸(炭素数22)、ボセオペンタエン酸(炭素数18)、エイコサペンタエン酸(炭素数20)、オズボンド酸(炭素数22)、イワシ酸(炭素数22)、ドコサヘキサエン酸(炭素数22)等が挙げられる。
 本発明の脂肪酸金属塩の脂肪酸としては、入手容易性の観点から、パルミチン酸、ステアリン酸、ミリスチン酸、ラウリン酸またはモンタン酸が好ましく、ステアリン酸が特に好ましい。
 本発明の脂肪酸金属塩としては、得られる樹脂成形体の外観向上効果の観点から、ステアリン酸アルミニウムが最も好ましい。
 本発明の脂肪酸金属塩は、1種のみを用いてもよく、2種以上を併用してもよい。
 本発明のメタクリル系樹脂ペレットに対する本発明の脂肪酸金属塩の外添量の下限値および上限値は特に限定されないが、メタクリル系樹脂ペレット(脂肪酸金属塩を含まないメタクリル系樹脂ペレット)100質量部に対して0.0001質量部以上、0.5質量部以下が好ましい。
 脂肪酸金属塩の外添量が上記下限以上であれば、本発明の脂肪酸金属塩による成形時の可塑化挙動改善効果により得られる樹脂成形体の外観向上効果をより有効に得ることができる。この下限値は、より好ましくは0.001質量部以上、さらに好ましくは0.003質量部以上、特に好ましくは0.005質量部以上、最も好ましくは0.01質量部以上である。
 脂肪酸金属塩の外添量が上記上限以下であれば、離型時に金型表面に余剰の脂肪酸金属塩が残存することによる金型や樹脂成形体の汚染が発生しにくい。この上限値は、より好ましくは0.3質量部以下、さらに好ましくは0.2質量部以下、特に好ましくは0.1質量部以下、最も好ましくは0.05質量部以下である。
 上記の上限値及び下限値は任意に組み合わせることができる。即ち、本発明の脂肪酸金属塩の外添量は本発明のメタクリル系樹脂ペレット100質量部に対して、好ましくは0.0001質量部~0.5質量部、より好ましくは0.001質量部~0.3質量部、さらに好ましくは0.003質量部~0.2質量部、特に好ましくは0.005質量部~0.1質量部、最も好ましくは0.01質量部~0.05質量部である。
<成形材料の製造方法>
 本発明のメタクリル系樹脂ペレットに本発明の脂肪酸金属塩を外添させて本発明の成形材料を製造する方法としては、特に制限はなく、脂肪酸金属塩が化学結合していない状態で外添されていればよい。例えばドライブレンドする方法や、撹拌装置を用いて、本発明のメタクリル系樹脂ペレットに本発明の脂肪酸金属塩を噴霧または粉体を添加して撹拌する方法や、本発明の脂肪酸金属塩を含有する液中にメタクリル系樹脂ペレットを分散させ、その後メタクリル系樹脂ペレット表面の溶剤を除去する方法が挙げられる。
 ドライブレンドの方法としては、例えば一般的なリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー等の混合機でメタクリル系樹脂ペレットと脂肪酸金属塩を混合する方法が挙げられる。
 上述した噴霧して撹拌する場合に用いられる撹拌装置の一例として、有底円筒形状の容器と、その容器の内側壁面に沿って自転および公転するスクリューと、容器内に投入した本発明のメタクリル系樹脂ペレットに本発明の脂肪酸金属塩を噴霧する噴霧手段とを備えるものが挙げられる。
 噴霧手段としては、例えば、脂肪酸金属塩を噴霧するスプレーノズル等が挙げられる。噴霧手段は、脂肪酸金属塩を加熱するためのヒーター等の加熱手段を有していてもよい。
 このような撹拌装置の容器内に本発明のメタクリル系樹脂ペレットを投入し、容器内の本発明のメタクリル系樹脂ペレットに対して、撹拌下に、噴霧手段から本発明の脂肪酸金属塩を粉末状、液状あるいは溶融状態にして噴霧して添着させる。
 次いで、脂肪酸金属塩が噴霧、添着されたメタクリル系樹脂ペレットは、容器の内側壁面に沿って自転および公転するスクリューによって更に均一に撹拌される。これにより、本発明のメタクリル系樹脂ペレットに本発明の脂肪酸金属塩を均一に外添させることができる。
 本発明のメタクリル系樹脂ペレットに本発明の脂肪酸金属塩をより均一に外添させるために、脂肪酸金属塩の種類に応じて、容器内の温度を変化させることが好ましい。例えば、容器内の温度を60~80℃程度に上げることで、本発明の脂肪酸金属塩の均一外添性を高めることができる。
 容器内の温度を変化させる方法としては、例えば、容器内に加熱した不活性ガスを流通させる方法、ヒーターで容器内を加熱する方法、容器のジャケットに熱媒などを流通させて温度制御する方法等が挙げられる。
 本発明の脂肪酸金属塩を含有する液中に本発明のメタクリル系樹脂ペレットを分散させ、その後メタクリル系樹脂ペレット表面の溶剤を除去する方法としては、例えば、溶剤への本発明の脂肪酸金属塩の合計添加量を、0.05~1質量%とした溶液又は分散液を調製し、これを本発明のメタクリル系樹脂ペレットに噴霧するか、該液中に本発明のメタクリル系樹脂ペレットを投入して処理する方法が挙げられる。
 本発明の脂肪酸金属塩含有液を噴霧することで、本発明の脂肪酸金属塩を本発明のメタクリル系樹脂ペレットに塗布する方法として、例えば、コンベアなどの移送装置上にメタクリル系樹脂ペレットを並べ、噴霧器内を通過させる際に脂肪酸金属塩含有液を連続的に噴霧する方法などが挙げられる。
 脂肪酸含有塩含有液中に本発明のメタクリル系樹脂ペレットを投入し、本発明の脂肪酸金属塩を本発明のメタクリル系樹脂ペレットに外添する方法は、通常知られている方法で実施可能である。例えば、攪拌機を備えた混合槽に脂肪酸金属塩含有液およびメタクリル系樹脂ペレットを投入し、0℃~溶剤の沸点以下の温度にて、所定時間混合を行い、濾過等の方法で、メタクリル系樹脂ペレットおよび液を分離する。
 次に、送風あるいは必要に応じて熱風を与えることにより溶剤を乾燥させる。この際、脂肪酸金属塩は揮発しないため、そのままメタクリル系樹脂ペレット表面に残留する。従って乾燥後、本発明の脂肪酸金属塩をメタクリル系樹脂ペレットに外添することが可能となる。
 溶剤としては、通常用いられる溶剤を用いることが可能であり、本発明のメタクリル系樹脂ペレットのメタクリル系樹脂の組成により、溶剤へのメタクリル系樹脂の溶解が無い又はほとんど観察されないものを用いることが好ましい。このような溶剤としては、例えば水を挙げることができる。好ましい溶剤としては、乾燥工程の効率および作業性のよさから、常圧における沸点が30℃~150℃の溶剤が好ましく、コスト及び安全性を考えると水が特に好ましい。
[樹脂成形体]
 本発明の樹脂成形体は、本発明の成形材料を成形してなるものである。
 本発明の樹脂成形体は、公知の成形方法、例えば、プレス成形、射出成形、ガスアシスト射出成形、溶着成形、押出成形、吹込成形、フィルム成形、中空成形、多層成形、溶融紡糸等によって成形されるものであれば、特に限定されないが、プレス成形、押出成形、射出成形またはフィルム成形がより好ましく、優れた可塑化特性が得られる観点から、射出成形がさらに好ましい。
 このようなことから、本発明の成形材料はプレス成形、押出成形、射出成形またはフィルム成形用成形材料(プレス成形、押出成形、射出成形またはフィルム成形への使用ともいう。)として好ましく、特に射出成形用成形材料(射出成形への使用ともいう。)として好適である。
 本発明の樹脂成形体の具体例としては、テールランプカバーや、ヘッドランプカバー、メーターパネル、ピラーガーニッシュ、フロントグリル、エンブレムといった車両の内外装材料等の車両用部材;建築部材;洗面化粧台、浴槽、水洗便器等の住宅設備向け部材;レンズ、導光体等の光学用部材;化粧品等の容器;キュベット等の医療用部材などが挙げられる。
 これらのうち、特に本発明の樹脂成形体は、その優れた外観、耐候性、透明性、耐薬品性により、車両用部材、光学用部材、容器、医療用部材、住宅設備部材、化粧品容器等に好適に用いられる。
 以下に実施例を挙げて本発明をより具体的に説明する。
[使用原料]
 以下の実施例及び比較例で用いた原料は以下の通りである。
メタクリル系樹脂:三菱ケミカル社製メタクリル樹脂「ACRYPET(登録商標)VH」
脂肪酸金属塩:
 ステアリン酸リチウム:川村化成工業(株)製「ステアリン酸リチウム」(表1中「ステアリン酸Li」と記載する。)
 ステアリン酸ナトリウム:川村化成工業(株)製「ステアリン酸ナトリウム」(表1中「ステアリン酸Na」と記載する。)
 ステアリン酸カルシウム:川村化成工業(株)製「ステアリン酸カルシウム」(表1中「ステアリン酸Ca」と記載する。)
 ステアリン酸アルミニウム:川村化成工業(株)製「アルステ#30」(表1中「ステアリン酸Al」と記載する。)
 ステアリン酸マグネシウム:日東化成工業(株)製「Mg―St」(表1中「ステアリン酸Mg」と記載する。)
ベンゾトリアゾール系紫外線吸収剤:BASFジャパン社製「Tinuvin(登録商標)-P」(2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール)
[評価方法]
 以下の実施例及び比較例で製造された樹脂成形体の評価方法は以下の通りである。
(1) 外観
 樹脂成形体試験片を目視確認し、シルバー(外観不良)の発生数から下記基準で評価した。
○:試験片10個中、シルバーの発生した試験片の数が1個以下
△:試験片10個中、シルバーの発生した試験片の数が2個以上4個以下
×:試験片10個中、シルバーの発生した試験片の数が5個以上
(2) 色調
 樹脂成形体試験片について、日立ハイテクノロジーズ社製分光光度計「U-4100」を用い、透過方式にてJIS K7105に準拠し、C光源透過法にて光路長140mmのイエローインデックス(YI)値を測定した。測定は3個の試験片について行い、その平均値を算出し、下記基準で評価した。
○:YI値が10.0未満
×:YI値が10.0以上
(3) 耐候性
 樹脂成形体試験片について、以下の促進暴露試験を行い、試験後のL*、a*、b*を測定し、色差ΔE*abを求めた。
<促進暴露試験>
 促進暴露試験は、岩崎電気株式会社製「アイスーパーUVテスター」を用いて行った。具体的には、外観評価で作製した射出成形試験片を切断し、評価室内に樹脂成形体試験片(50mm×50mm×4mm)を設置し、アイスーパーUVテスターから波長300~400nmの照射強度150mW/mの紫外線を200時間照射した。25時間ごとに照射位置を調整することで、試験片に均一にUV照射を行った。
 試験前後の試験片について、分光光度計(機種名「U-4100」、日立ハイテクノロジーズ製)を用い、光路長4.0mmにおけるL*、a*、b*を測定し、色差ΔE*abを求め、下記基準に従って判定した。
  ○:ΔE*ab値が3.0未満
  ×:ΔE*ab値が3.0以上
[実施例1]
 メタクリル系樹脂とベンゾトリアゾール系紫外線吸収剤(Tinuvin-P)を、得られるメタクリル系樹脂ペレット100質量部中のTinuvin-Pの含有量が0.03質量部となるように用いて、これらを二軸押出機(機種名「TEM35」、芝浦機械(株)製)に供給し、押出機のシリンダー温度250℃で溶融混練し、金型温度60℃でベンゾトリアゾール系紫外線吸収剤含有メタクリル系樹脂ペレットを得た。
 このベンゾトリアゾール系紫外線吸収剤含有メタクリル系樹脂ペレットは、軸方向に直交する方向の長径が3.2mm、軸長が3.0mmの円柱状(表面積46mm)である。
 得られたベンゾトリアゾール系紫外線吸収剤含有メタクリル系樹脂ペレットに、以下の方法でステアリン酸カルシウムを外添させた。
 80℃で16時間以上乾燥させたメタクリル系樹脂ペレットと、粉末状のステアリン酸カルシウムをポリエチレン袋に入れ、1分間ハンドブレンドすることで、ベンゾトリアゾール系紫外線吸収剤含有メタクリル系樹脂ペレットにステアリン酸カルシウムが表1に示す外添量で外添されたペレットを得た。
 得られたペレットを80℃で約16時間熱風乾燥した後に、下記条件で射出成形を行い、樹脂成形体の試験片を20個製造し、前述の(1)~(3)の評価を行った。
・射出成形機:機種名:EC75-SXII、芝浦機械製株式会社製
・金型:120mm×140mm×4mmのプレート成形体用金型
・シリンダー温度:230℃
・ホッパー下温度:50℃
・金型温度:60℃
・サイクル時間:60秒
・スクリュー回転数:90rpm
・背圧:10MPa
 評価結果を表1に示す。
[実施例2]
 脂肪酸金属塩として、ステアリン酸カルシウムの代りにステアリン酸マグネシウムを外添させたこと以外は、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
[実施例3]
 脂肪酸金属塩として、ステアリン酸カルシウムの代りにステアリン酸アルミニウムを外添させたこと以外は、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
[比較例1]
 ベンゾトリアゾール系紫外線吸収剤含有メタクリル系樹脂ペレットに、ステアリン酸カルシウムを外添させずに射出成形に供したこと以外は、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
[比較例2]
 脂肪酸金属塩として、ステアリン酸カルシウムの代りにステアリン酸リチウムを外添させたこと以外は、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
[比較例3]
 脂肪酸金属塩として、ステアリン酸カルシウムの代りにステアリン酸ナトリウムを外添させたこと以外は、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
[比較例4]
 ベンゾトリアゾール系紫外線吸収剤を用いず、ベンゾトリアゾール系紫外線吸収剤を含有しないメタクリル系樹脂ペレットを製造し、このメタクリル系樹脂ペレットに、脂肪酸金属塩として、ステアリン酸カルシウムの代りにステアリン酸リチウムを外添させたこと以外は、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
[比較例5]
 ベンゾトリアゾール系紫外線吸収剤の含有量を0.3質量部に変更した以外は実施例1と同様にベンゾトリアゾール系紫外線吸収剤含有メタクリル系樹脂ペレットを製造し、実施例1と同様に樹脂成形体の試験片を製造し、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1の実施例1~3より明らかなように、メタクリル系樹脂ペレットにベンゾトリアゾール系紫外線吸収剤を0.001質量部以上0.3質量部未満内添し、ステアリン酸カルシウム、ステアリン酸マグネシウムおよびステアリン酸アルミニウムを外添した本発明のメタクリル系樹脂ペレットによれば、外観、色調、耐候性のすべてにおいて優れたメタクリル系樹脂成形体を得ることができる。
 これに対して、メタクリル系樹脂ペレットにベンゾトリアゾール系紫外線吸収剤を内添し、脂肪酸金属塩を外添していない比較例1では、黄変の問題はないが、射出成形時の可塑化特性等が劣る結果、外観不良(シルバー)を引き起こし、外観に劣る。
 ベンゾトリアゾール系紫外線吸収剤を内添し、ステアリン酸リチウムを外添した比較例2のペレットでは、ベンゾトリアゾール系紫外線吸収剤と1価の金属塩とが共存することで黄変の問題があり、色調に劣る。
 ベンゾトリアゾール系紫外線吸収剤を内添し、ステアリン酸ナトリウムを外添した比較例3のペレットでは、ベンゾトリアゾール系紫外線吸収剤と1価の金属塩とが共存することで黄変の問題があり、色調に劣る。
 ステアリン酸リチウムを外添し、ペレット中にベンゾトリアゾール系紫外線吸収剤を含まない比較例4のペレットでは、黄変の問題はないが、耐候性に劣る。
 ステアリン酸カルシウムを外添し、ペレット中のベンゾトリアゾール系紫外線吸収剤が多く含有される比較例5のペレットでは、耐候性に問題はないが、黄変が生じる。
 以上より、メタクリル系樹脂ペレットに外観改善のために脂肪酸金属塩を外添するとともに、耐候性改善のためにベンゾトリアゾール系紫外線吸収剤を内添する場合において、本発明に従って、脂肪酸金属塩として、2価又は3価の典型金属塩を用いることにより、外観、色調、耐候性に優れた樹脂成形体を提供することができることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、発明の効果が奏される範囲内で様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年10月17日付で出願された日本特許出願2022-166336に基づいており、その全体が引用により援用される。

 

Claims (23)

  1.  メタクリル系樹脂及びベンゾトリアゾール系紫外線吸収剤を含むメタクリル系樹脂ペレットに脂肪酸金属塩を外添させた成形材料であって、前記メタクリル系樹脂ペレット100質量部における前記ベンゾトリアゾール系紫外線吸収剤の含有量が、0.001質量部以上0.3質量部未満であり、前記脂肪酸金属塩の金属が2価又は3価の典型金属である、成形材料。
  2.  前記典型金属が、Mg、Ca、及びAlよりなる群から選択される1種又は2種以上である、請求項1に記載の成形材料。
  3.  前記典型金属が、Alである、請求項2に記載の成形材料。
  4.  前記ベンゾトリアゾール系紫外線吸収剤が、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、6-ジ-t-ペンチルフェノール、及び2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾールよりなる群から選択される1種又は2種以上である、請求項1に記載の成形材料。
  5.  前記ベンゾトリアゾール系紫外線吸収剤が、2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノールである、請求項4に記載の成形材料。
  6.  前記脂肪酸金属塩の脂肪酸が、炭素数8~22の飽和脂肪酸及び炭素数8~22の不飽和脂肪酸よりなる群から選択される1種又は2種以上である、請求項1に記載の成形材料。
  7.  前記脂肪酸金属塩の脂肪酸が、パルミチン酸、ステアリン酸、ミリスチン酸、ラウリン酸及びモンタン酸よりなる群から選択される1種又は2種以上である、請求項6に記載の成形材料。
  8.  前記脂肪酸金属塩の脂肪酸が、ステアリン酸である、請求項7に記載の成形材料。
  9.  前記脂肪酸金属塩の外添量が、前記メタクリル系樹脂ペレット100質量部に対して0.0001質量部~0.5質量部である、請求項1に記載の成形材料。
  10.  前記メタクリル系樹脂ペレットの表面積が10mm~450mmである、請求項1に記載の成形材料。
  11.  前記メタクリル系樹脂のメタクリル酸メチル由来の繰り返し単位の含有割合が50質量%以上である、請求項1に記載の成形材料。
  12.  プレス成形、押出成形、射出成形又はフィルム成形用成形材料である、請求項1~11のいずれか一項に記載の成形材料。
  13.  請求項1~11のいずれか一項に記載の成形材料よりなる射出成形用成形材料。
  14.  請求項1~11のいずれか一項に記載の成形材料のプレス成形、押出成形、射出成形又はフィルム成形への使用。
  15.  請求項1~11のいずれか一項に記載の成形材料の射出成形への使用。
  16.  請求項1~11のいずれか一項に記載の成形材料を成形してなる、樹脂成形体。
  17.  請求項1~11のいずれか一項に記載の成形材料を成形してなる、車両用部材。
  18.  請求項1~11のいずれか一項に記載の成形材料を成形してなる、光学用部材。
  19.  請求項1~11のいずれか一項に記載の成形材料を成形してなる、容器。
  20.  請求項1~11のいずれか一項に記載の成形材料を成形してなる、医療用部材。
  21.  請求項1~11のいずれか一項に記載の成形材料を成形してなる、住宅用設備。
  22.  メタクリル系樹脂、ベンゾトリアゾール系紫外線吸収剤とを含有するメタクリル系樹脂ペレットであって、前記メタクリル系樹脂ペレット100質量部における、前記ベンゾトリアゾール系紫外線吸収剤の含有量が、0.001質量部以上0.3質量部未満であるメタクリル系樹脂ペレットに対し、金属が2価又は3価の典型金属である脂肪酸金属塩を外添させた成形材料を成形して樹脂成形体を得る、樹脂成形体の製造方法。
  23.  前記成形材料を射出成形して前記樹脂成形体を得る、請求項22に記載の樹脂成形体の製造方法。

     
PCT/JP2023/036337 2022-10-17 2023-10-05 成形材料及び樹脂成形体 WO2024084983A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-166336 2022-10-17
JP2022166336 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024084983A1 true WO2024084983A1 (ja) 2024-04-25

Family

ID=90737384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036337 WO2024084983A1 (ja) 2022-10-17 2023-10-05 成形材料及び樹脂成形体

Country Status (1)

Country Link
WO (1) WO2024084983A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302937A (ja) * 1999-04-23 2000-10-31 Kanegafuchi Chem Ind Co Ltd 軟質樹脂ペレット
JP2009286960A (ja) * 2008-05-30 2009-12-10 Mitsubishi Rayon Co Ltd アクリル樹脂フィルムの組成物ならびそれを用いた成形品
JP2015110757A (ja) * 2013-10-31 2015-06-18 住友化学株式会社 (メタ)アクリル系樹脂組成物及びそれを用いた(メタ)アクリル系樹脂フィルム
JP2019131809A (ja) * 2018-01-31 2019-08-08 旭化成株式会社 熱可塑性樹脂組成物及びその成形体
JP2019203123A (ja) * 2018-05-18 2019-11-28 旭化成株式会社 メタクリル系樹脂組成物及び成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302937A (ja) * 1999-04-23 2000-10-31 Kanegafuchi Chem Ind Co Ltd 軟質樹脂ペレット
JP2009286960A (ja) * 2008-05-30 2009-12-10 Mitsubishi Rayon Co Ltd アクリル樹脂フィルムの組成物ならびそれを用いた成形品
JP2015110757A (ja) * 2013-10-31 2015-06-18 住友化学株式会社 (メタ)アクリル系樹脂組成物及びそれを用いた(メタ)アクリル系樹脂フィルム
JP2019131809A (ja) * 2018-01-31 2019-08-08 旭化成株式会社 熱可塑性樹脂組成物及びその成形体
JP2019203123A (ja) * 2018-05-18 2019-11-28 旭化成株式会社 メタクリル系樹脂組成物及び成形体

Similar Documents

Publication Publication Date Title
JP5944388B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物及びその製造方法
JP5825919B2 (ja) 樹脂製光反射体用基体
KR20060048763A (ko) 천연계 충전재를 함유하는 수지 조성물의 제조 방법 및그것에 의해 제조된 수지 조성물
GB2075031A (en) Glass fibre-reinforced thermoplastic polyester composition
JPS5891736A (ja) 充填剤の顆粒化方法
JP2005132970A (ja) 熱可塑性樹脂組成物
JP6165056B2 (ja) ポリ(メタ)アクリラートを着色するための熱安定な分散添加剤を含有する水系液状着色料
JP6346097B2 (ja) 深みのある光沢効果を有するポリカーボネート製多層体
WO2024084983A1 (ja) 成形材料及び樹脂成形体
US5219627A (en) Surface-roughened rolled plate-shaped body containing converging pigment
WO2024084982A1 (ja) 成形材料及び樹脂成形体
JP2005097578A (ja) 熱可塑性樹脂組成物及び光反射体
US3223664A (en) Thermoplastic molding compositions
JPH06200102A (ja) 硬質熱可塑性ハロポリマー化合物の熱発生率を低下させる方法
JPH0372542A (ja) 樹脂組成物およびそれを用いた多層構造体
JP2008184550A (ja) 車載ランプ用熱可塑性樹脂組成物、成形品及び部品
JP5284557B2 (ja) 光反射体
JP2005120137A (ja) 重合体結合紫外線吸収剤、紫外線吸収剤組成物、紫外線遮蔽性組成物およびその製造方法ならびにそれを用いた加工物品
WO2023106330A1 (ja) メタクリル系樹脂成形材料、樹脂成形体、車両用部材、住宅設備部材、光学部材、医療用部材、容器、樹脂成形体の製造方法
JP3613990B2 (ja) 熱可塑性樹脂組成物および成形体
KR20230023737A (ko) 개선된 내후성을 갖는 열가소성 성형 조성물
KR20230023734A (ko) 열가소성 중합체의 착색 방법
JP3035444B2 (ja) 熱可塑性樹脂積層物
JPH08295774A (ja) 塩化ビニル系樹脂組成物
JPS6272709A (ja) 合成樹脂用滑剤および顔料分散剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879630

Country of ref document: EP

Kind code of ref document: A1